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INTRODUCTION 

Evaluating human body movement is an essential step for biomechanical analysis and 

assessing a disease's condition and progression. The infrared light motion capture system is a 

standard method for assessing joint kinematics. However, the motion capture system requires 

a specific setup in a confined area, leading to challenges with quantitative assessment of 

walking conditions found in daily living. Using multiple inertial measurement units (IMU) 

sensors allows for the evaluation of movement outside the lab. Still, they are too burdensome 

for daily living due to needing sensors in specific locations on each limb. There is a need for an 

accurate kinematics assessment with a reduced number of sensors---this paper focuses on the 

setting where only one sensor is mounted on each shoe. Machine learning has been used to 

estimate joint kinematics with a reduced number of IMU sensors [1], but the resultant joint 

angle errors are not minor enough for applying movement evaluation. This paper proposes a 

new machine learning algorithm that provides highly accurate and real-time hip, knee, and 

ankle joint angle estimations in the sagittal plane using two shoe-mounted IMU sensors. We 

adapted five deep learning networks by implementing various configurations of Convolutional 

Neural Networks (CNNs) or Long-Short Term Memory (LSTM) Networks and ensembled 

them all together to leverage the advantage of each model. Our ensemble technique provides 

high correlation between predicted joint kinematics and kinematics measured with an infrared 

light motion capture system. 

 

CLINICAL SIGNIFICANCE 

Optimal control of wearable devices requires the input of different gait-related 

parameters. Our algorithm helps produce kinematics using a small number of sensors, which 

can be used to control patients' devices.   

 

METHODS 

Nine healthy subjects (six male and three female) participated in the study. The 

Institutional Review Board (IRB) of the University of Central Florida (UCF) approved the study 

protocol. We placed two IMU sensors on the participants' shoes. The participants walked on 

the treadmill at four different speeds: slow, normal, fast, and very fast, for approximately 2 

minutes per setting. We set up four different non-dimensional walking speeds; slow, normal, 

fast, and very fast from their leg length [2]. Then, the participants walked on the treadmill for 

2 minutes in each speed setting. Thirty-six reflective markers were placed on the participant 

based on a modified Helen-Hayes marker set [3]. Three-dimensional marker trajectories were 

captured with twelve infrared light cameras at a sampling rate of 100 Hz. The accelerometer 

and gyroscope data were recorded with a sampling frequency of ~148 Hz. We used OpenSim 

[4], an open-source musculoskeletal analysis tool to calculate joint angles during the walking 

conditions. Our study considers the hip, knee, and ankle angle on the sagittal plane for both 

legs, which results in six joint angle coordinates.  The performance of multiple neural networks 



may not be the same for a specific dataset. There are variances in the prediction due to the 

different structure of those networks. Ensembling different neural networks can be used to take 

advantage of better performing networks. In our work, we take the prediction average of five 

deep learning models. Our proposed ensemble network outperforms all the neural networks 

individually. We have used two metrics to evaluate the performance of the model. The Root 

Mean Square Error (RMSE) and the Pearson correlation coefficient were calculated between 

the ground truth kinematics and the deep learning model's prediction. 

 

DEMONSTRATION 

 From the result shown in Table 1, our proposed ensemble technique outperforms all 

single networks. RMSE of hip flexion angle has decreased 2-10% and 4-8% on average for the 

right and left leg, respectively. For knee angle, the RMSE reduction is 7-10%, 6-12% for right 

and left leg. For ankle angle, RMSE improvement is 3-11%, 1-12% for left and right leg, 

respectively. The correlation was slightly improved for the ensemble method in all joint angles 

for both left and right leg. 

Table 1: RMSE (Correlation) of different models for joint angles

 

SUMMARY 

We presented a machine learning technique to estimate lower extremity joint angles in 

treadmill walking in this work. Previous work estimated the joint angle directly from IMU 

sensors on each leg segment. This method is less practical as it requires many sensors on the 

body. Machine learning can be used to map data from a reduced number of sensors with joint 

angles.  In our method, two IMU sensors are fixed on the shoes. As a result, our method can 

more readily be applied to monitor gait outside of the lab and in daily living conditions. 
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Model Right Left 

Hip Knee Ankle Hip Knee Ankle 

Conv2D-net 4.01 

(0.982) 

4.18 

(0.985) 

2.94 

(0.945) 

3.86 

(0.982) 

4.33 

(0.984) 

2.80 

(0.952) 

Bi LSTM-net 4.15 

(0.981) 

4.16 

(0.985) 

3.09 

(0.939) 

3.91 

(0.982) 

4.17 

(0.984) 

3.10 

(0.948) 

Hybrid Conv1D-

LSTM-net 

4.35 

(0.981) 

4.24 

(0.985) 

3.20 

(0.938) 

3.81 

(0.984) 

4.13 

(0.985) 

3.13 

(0.947) 

Hybrid Conv2D-

LSTM-net-1 

4.15 

(0.981) 

4.12 

(0.986) 

3.03 

(0.942) 

3.80 

(0.984) 

4.09 

(0.985) 

2.92 

(0.952) 

Hybrid Conv2D-

LSTM-net-2 

4.28 

(0.980) 

4.10 

(0.986) 

3.01 

(0.944) 

3.75 

(0.984) 

4.02 

(0.985) 

2.89 

(0.951) 

Ensemble 

(Proposed) 

3.94 

(0.984) 

3.83 

(0.988) 

2.86 

(0.950) 

3.60 

(0.985) 

3.80 

(0.987) 

2.77 

(0.957) 


