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ABSTRACT
The use of randomized algorithms in safety-critical systems is in-

vestigated. Under the vast majority of circumstances, randomized

algorithms out-perform deterministic ones on average; however,

it is not obvious how one goes about establishing the correctness

of safety-critical systems that use such algorithms. The approach

advocated in this work is to exploit the fact that many safety stan-

dards allow for small probabilities of failure of even the most critical

functionalities. We explore the use of concentration bounds — proba-

bilistic bounds on the likelihood of the performance of a randomized

algorithm deviating from its expected performance — to bound the

probability of failure of systems that incorporate randomized al-

gorithms, thereby showing compliance with safety standards that

allow for small probabilities of failure. We illustrate the use of the

proposed approach on several examples that both explain how the

approach is to be applied, and demonstrate the benefits of doing so.
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1 INTRODUCTION
The past few decades have witnessed a burst of activity within the

research community to explore the applicability of probabilistic

and statistical techniques to the analysis of timing properties of

safety-critical systems — see [17, 18] for surveys (citing 136 and 134

references, respectively, a large number of which are directly related

to probabilistic analysis). We consider this to be a very welcome

development: as safety-critical systems have gotten increasingly

more complex with regards to both their software and hardware

components and as the manner in which such systems interact

with the environment has become increasingly more sophisticated,

continued dependence upon the kinds of deterministic worst-case
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analysis techniques that have traditionally been used for the design

and verification of software in safety-critical systems is resulting

in increasingly inefficient implementations of such systems.

Despite the presence of this large body of research results, how-

ever, the adoption of probabilistic techniques for software devel-

opment and analysis has been rather slow in industrial practice

for safety-critical systems, particularly in domains that are subject

to statutory certification requirements. We believe that this is due

in large part to a fundamental mismatch between prior practice

in these domains, which are firmly rooted in worst-case analysis,

and some of the foundational notions that underpin the new proba-

bilistic ideas and results. In this research, we seek out and explore

the potential applicability of, probabilistic and statistical analysis

techniques that are less at odds with current industrial practice and

may, therefore, be more likely to gain acceptance.

SIL

Low demand mode

prob. failure on demand

Continuous/High demand mode

prob. failure per hour

1 ≥ 10
−2

to < 10
−1 ≥ 10

−6
to < 10

−5

2 ≥ 10
−3

to < 10
−2 ≥ 10

−7
to < 10

−6

3 ≥ 10
−4

to < 10
−3 ≥ 10

−8
to < 10

−7

4 ≥ 10
−5

to < 10
−4 ≥ 10

−9
to < 10

−8

Table 1: IEC 61508: Permitted Failure Probabilities

Observe that safety standards are one prominent place where

probabilistic specifications do appear in current practice in safety-

critical systems verification. Consider, for example, IEC 61508, an in-

ternational standard published by the International Electrotechnical

Commission titled Functional Safety of Electrical/Electronic/Program-
mable Electronic Safety-related Systems. This standard is generic

for safety-related systems, from which several industry-specific

standards (such as ISO 26262 standard, in widespread use in the

automotive industry) are derived. Recognizing that zero risk can

rarely be achieved in practice, IEC 61508 applies a probabilistic fail-

ure approach to account for the impact of failures. It defines Safety

Integrity Levels (SILs) 1 through 4, with 1 being the lowest and 4 the

highest, and associates an allowable probability of failure with each

SIL — see Table 1. Each functionality is then assigned an SIL, and it

is required to demonstrate that the probability of failure for that

functionality will not exceed the allowable thresholds. Several other

safety standards also similarly specify allowable failure probabili-

ties even for safety-critical functionalities: the more safety-critical

the functionality, the smaller the allowable failure probability. Our
efforts at integrating probabilistic techniques into safety-critical sys-
tem design and analysis seek to leverage off this pre-existing use of
the concept of probability in current safety standards.

The system certification process typically commences well be-

fore system deployment, and must, therefore, be performed, at least

initially, using models of the run-time behavior that is likely to be

encountered by the actual system during operation. To have high
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confidence that the conclusions regarding safety that are drawn on

the basis of such analyses will hold for the actual system during run-

time, the models of run-time behavior must be conservative: there

should be widespread agreement that the models do indeed cap-

ture all relevant aspects of actual run-time behavior that may arise.

Obtaining such agreement is, in addition to its technical aspects,

an inherently social and cultural process in the sense that multi-

ple interested parties — system builders, certification authorities,

customers, and other stakeholders whose safety may be compro-

mised if the system malfunctions — must, based upon evidence and

argumentation, come to agree that a particular model is indeed

appropriate for use in validating safety. In our opinion, this is one

of the most significant barriers to the adoption of many wonderful

probability-based research ideas that have been proposed: they re-

quire the acceptance of new models, that are inherently statistical

or probabilistic in nature, of the run-time behavior of systems.

A cyber-physical system (CPS) may be looked upon [3] as com-

prising three components: (i) software that executes on some (ii) com-
puting platform, and interacts with the (iii) environment within
which it operates using sensors (for input) and actuators (for out-

put). Many ideas surveyed in [17, 18] for integrating probabilistic

concepts into system analysis and design advocate for the modeling

of the run-time behavior of the platform, and/or of the interaction

with the environment, via probabilistic models — examples include

probabilistic worst-case execution time (probabilistic WCET) [8, 9]

and probabilistic modeling of execution time profiles [7] (both of

which assume a probabilistic model for the platform), and the sto-

chastic modeling of job arrivals [2, 14, 31] (which is essentially

a probabilistic model of the environment that gives rise to event-

triggered jobs). In contrast, the approachwe explore in this paper for

applying probabilistic concepts in safety-critical systems analysis

and design is to do so in a controlled manner, in the first component

comprising a CPS — the software — only. Specifically, we restrict
the application of probability to the explicit use of the algorithmic

technique of randomizationwithin specific algorithms in the soft-

ware, while continuing to model the rest of the CPS — the platforms

upon which these algorithms execute and the interaction with its

environment — using worst-case models. We emphasize that in our

proposed approach probabilistic techniques are limited to random-

ized algorithms: the models of input/environment assumed in the

analysis of these algorithms continue to be worst-case ones, as has

traditionally been the case with safety-critical systems.

Other researchers have also investigated the applicability of

randomization in analyzing safety-critical systems. For instance,

Davis et al. [16] explain some of the conceptual underpinnings of

probabilistic WCET by means of an elegant thought-experiment in-

volving hypothetical hardware that behaves in a time-randomized

manner; this thought-experiment is repurposed in [18, Section 6] to

illustrate the applicability and limitations of Extreme Value Theory

(EVT) [19] to probabilistic WCET analysis. Moving beyond thought-

experiments, randomized cache-replacement policies that are im-

plemented in both hardware and software have been explored quite

thoroughly in the real-time systems literature (see [18, Sections

6.1–6.2] for a survey). Most of this prior work on randomization in

safety-critical systems analysis seeks to enable measurement-based

characterization of run-time behavior in a probabilistic manner by

intuitively making it extremely unlikely that worst-case behavior

will occur and therefore increasing the likelihood that a limited

number of observations will encompass the vast majority of behav-

iors (i.e., will witness the “tail” of the distribution of behaviors —

see the discussion in [18, Section 6] concerning the use of EVT).

In contrast, the approach to incorporating probability that we are

proposing here does not require any additional measurement-based

characterization of system behavior, but rather assumes worst-case

behavior. We illustrate via a contrived (toy) example.

Example 1. Suppose that we were using the well-known quicksort
algorithm [23] to sort a 100-element array storing values that are
unknown prior to run-time, and the bottleneck operation is compar-
ing two elements. We, therefore, wish to determine the number of
comparisons needed, to provide an adequate time-budget allowing
the completion of sorting. As we will see in Section 2, it is known
that quicksort on a 100-element array may, in the worst case, require
as many as (100 × 99)/2 = 4950 comparisons; however, under the
assumption that each of the 100! possible permutations of the input
is equally likely, the average or expected number of comparisons
is merely 648. Unfortunately, since the array is given at run-time,
assuming that the values in it appear as a random permutation is
not necessarily valid1. But a randomized version of quicksort, which
randomly permutes the array prior to sorting, would indeed have the
expected number of comparisons be 648 regardless of the input.

The approach advocated in this paper additionally uses concen-
tration bounds, which are able to specify quantitative limits on the
deviation of random variables from their mean values, to derive results
of the form “the probability that the number of comparisons exceeds
755 is no larger than 10−1;” we are able to offer this guarantee without
making any assumptions whatsoever regarding the initial contents of
the array. Thus, if the requirement for sorting is assigned SIL-1 accord-
ing to the IEC 61508 standard and is a “low demand” functionality, we
conclude from Table 1 that it suffices to assign it a time-budget that is
adequate for performing 755 comparisons. We can similarly show that
if the SIL level is 2, 3, or 4, the number of comparisons that need to be
accommodated in the time-budget allocated to the sorting routine is
860, 966, and 1007, respectively. Thus, even at the highest SIL, only
about a fifth (1007/4950 ≈ 0.2034) of the worst-case-deterministic
number of comparisons need be accommodated. □

Contribution. The major contribution of this work is a proposed

approach, centered upon the use of concentration bounds, for in-
corporating probabilistic and statistical techniques into the analysis

of safety-critical systems that, as illustrated in the example above,

for certain problems is able to provide probabilistic bounds on

worst-case behavior that are significantly better than deterministic

worst-case bounds, without making any probabilistic assumptions

whatsoever on the execution platform or the interaction with the

environment — the only use of probability lies within randomized

algorithms, and the only dependence on probabilistic phenomena

is the assumed availability of a good random number generator.

By not requiring any change in the mind-set of current practice in

safety-critical systems validation and certification (since our use of

1
Any such assumption, even if well-founded, needs to be further justified based on

arguments regarding the actual run-time conditions under which the algorithm is

executed. That is, one must argue that the run-time environment can be represented by

amodel that is not a worst-case one. Asmentioned earlier, getting suchmodels accepted

by entities responsible for certification often represents a non-trivial challenge.



probabilities is entirely consistent with their use in many widely-

used safety standards), we believe there is a greater likelihood of

this approach being adopted by practitioners.

Organization. We organize the remainder of the paper as follows.

In Sections 2–4, we explain our proposed approach and illustrate

its advantages and potential wide applicability by demonstrating

its use on three rather different problems — sorting unknown ar-

rays (Section 2), provisioning data-buffers to ensure no overflow

(Section 3), and parallel job scheduling (Section 4). Section 5 pro-

vides experimental evidence of the safety and effectiveness of our

proposed technique on a real platform. We place our work in the

context of other related work in Section 6 and conclude in Section 7.

2 RANDOMIZED QUICKSORT
Although sorting is not a particularly central problem in safety-

critical systems, we start by discussing the quicksort algorithm [23]

because this algorithm provides an excellent and easily-understood

vehicle for introducing the relevant concepts that underpin our

proposed approach for incorporating probabilistic techniques in

the analysis and design of safety-critical systems. The quicksort

algorithm may be briefly described in the following manner:

(1) choose some element in the array as a “pivot” element;

(2) compare each element in the array to the pivot element, to ob-

tain three sub-arrays of elements that are respectively (i) smaller

than, (ii) equal to, and (iii) greater than the pivot element; and

(3) recursively sort the first and third sub-arrays.

Quicksort has many desirable properties, including the fact that

it can be implemented as an “in-place” sorting algorithm (only a

constant amount of additional memory is needed); however, in the

worst case, the number of comparisons needed is quadratic in the

size of the array. This worst-case behavior occurs if the element

chosen as the pivot (both initially, and in each recursive call) is the

unique smallest or largest element in the array/ sub-array being

sorted; if this were to happen, the total number of comparisons

needed to sort an array of n elements is easily seen to be equal to

(n − 1) + (n − 2) + (n − 3) + · · · + 2 + 1 =
n(n − 1)

2
.

In randomized quicksort, the pivot element is chosen at random,

with each element in the array being equally likely to be selected;

the remaining two steps of the algorithm are unchanged.
2
Although

the worst-case number of comparisons remains (n(n − 1)/2) — this

would happen if the randomly-selected pivot at each recursive call

happens to be the largest or smallest element in the sub-array being

sorted during that recursive call — it should be intuitively clear

that this is very unlikely. Indeed, the expected (average) number of

comparisons is known to be far smaller: letting random variableQn
denote the number of comparisons made by randomized quicksort

on an n-element array, there is an easily-accessible text-book proof

in [13, Section 7.4.2] showing that E[Qn], the expected value ofQn ,

is bounded as follows:

E[Qn] <

n−1∑
i=1

n∑
k=1

2

k
=

n−1∑
i=1
O (logn) = O (n logn)

2
Note that all use of probabilistic concepts is therefore made exclusively under the

control of the sorting algorithm; analysis of randomized quicksort makes only worst-

case assumptions about the initial state of the array to be sorted.

A rather more detailed study of randomized quicksort [27] has

yielded a tighter bound [27, p 478] on the value of E[Qn], with

equality (in place of the “<” in the bound above):

E[Qn] = 2(n + 1)Hn − 4n (1)

(Here Hn
def

=
∑n
i=1 (1/i ) denotes the n’th harmonic number .)

Recall our claim, in Example 1, that the expected number of com-

parisons performed by randomized quicksort upon a 100-element

array is 648. This was obtained from Equation 1 by setting n to 100:

H100, the 100
th
harmonic number, is ≈ 5.1874, and hence we get

E[Q100] = 2 × 101 × 5.1874 − 400, or ≈ 648.

In addition to the tight bound of Expression 1 above on the ex-

pected number of comparisons, a further result in [27] provides

tight bounds on the probability of the number of comparisons devi-

ating from the expected number: for any ϵ > 0, the probability that

the actual number of comparisons performed exceeds ϵ times the ex-

pected number of comparisons, ϵ × E[Qn], decreases exponentially

with increasing ϵ :

Pr
(����Qn − E[Qn]

���� ≥ ϵ × E[Qn]
)
≤ n−(2+o (1))ϵ ln lnn (2)

from which we conclude that

Pr
(����Qn − E[Qn]

���� ≥ ϵE[Qn]
)
≤ n−2ϵ ln lnn (3)

with the bound becoming tighter asn gets larger (since an o(1)-term
approaches zero in value as n → ∞).

For a given permissible probability of error δ , we can compute

the value of ϵ needed to ensure that the RHS of Expression 3 is ≤ δ :

ϵ ≥
ln(1/δ )

2 × lnn × ln lnn
(4)

The claim we had made in Example 1, that the probability of the

number of comparisons made by randomized quicksort upon an

array of one hundred elements exceeding 755 is no larger than

10
−
1, was obtained from Expression 4 by setting δ = 10

−1
; doing

so yields a value of 0.1637 for ϵ , and therefore a value of

(1 + ϵ ) × E[Q100] = 1.1637 × 648 ≈ 755

is a safe upper bound on the number of comparisons that need to

be accommodated for SIL-1 functionalities, as claimed. The number

of comparisons for SIL-2, SIL-3, and SIL-4 can be similarly obtained

by setting δ in Expression 4 to 10
−2, 10−3, and 10

−4
, respectively.

3 BUFFER SIZING
We now examine a problem of provisioning buffers in distributed

safety-critical embedded systems as our next illustrative example of

the safe and effective application of probabilistic methods in safety-

critical systems. Consider a node in a system that has n incoming

flows, all of which must be processed at the node. We model this

processing problem in the following manner:

• A total of at most one unit of flow arrives at the node (across

all n flows) per unit time, and is stored in buffers (one per

flow) until processed at the node.

• The node can process up to one unit of flow, all of which is
taken from a single buffer , during each time unit.



The buffer-provisioning problem in safety-critical systems is to

determine the minimum size of the buffer that must be provided

for each incoming flow to make the assurance that no data of any
incoming flows are lost before being processed. This is equivalent to
determining an upper bound on the maximum backlog that can

build up in any buffer. It was shown [1] that the node can guarantee

a Θ(logn) bound on the backlog of any flow by employing the

greedy strategy of processing, at each step, one unit of flow from

the incoming flow with the currently largest backlog (ties broken

arbitrarily); it was also shown that this bound is tight in the sense

that no (deterministic) algorithm can guarantee a o(logn) backlog.
Hence, to guarantee no loss on any flow, we must provision each

incoming flow with a buffer that can hold Θ(logn) flow.
Bender et al. [6] recently proposed a randomized algorithm with

a much smaller expected backlog, provided that the node is able

to process a bit more than one unit of flow per time unit (equiva-

lently, that the incoming flows sum to a bit less than one per time

unit). Specifically, under the assumption that the total flow arriving

across all n flows per unit time is bounded from above by (1 − ϵ )
for some ϵ ≤ 1

2
(while the node continues to be able to process one

unit of flow per unit time), they proved that the expected backlog is

Θ(log logn) in the worst case. Note that this represents an exponen-
tial improvement over the o(logn) lower bound for deterministic

algorithms, and argues strongly for the use of randomization.

For a given choice of ϵ and a selected buffer-size k , concentration
bounds are also derived in [6] on the probability of the backlog

exceeding k in any particular round: it is shown that this probability

F (k, ϵ ) is bounded from above as follows (here e denotes the base
of the natural logarithms, ≈ 2.718):

F (k, ϵ ) = k · e−k/3 +
ekϵ

2/6

1 − eϵ
2/6

(5)

We can use the result of Expression 5 to provision buffers for func-

tionalities that have verification/ certification requirements spec-

ified according to safety standards that permit non-zero failure

probabilities. Suppose, for example, that some functionality needs

to be shown to have a probability of failure no more than 10
−3
;

by choosing ϵ = 1/11 ≈ 0.091 (equivalently, ensuring that the

node can process 10% more flow than the maximum cumulative

inflow during each time unit), we may conclude that a buffer size

equal to 8127 suffices (since F (8127, 0.091) ≤ 10
−3
). Similarly, if

the error probability were required to be ≤ 10
−6
, then a buffer size

equal to 13142 suffices. In this manner, the size of the buffer to

be provisioned is determined entirely by the specified allowable

failure probability: while a functionality with a specified failure

probability of 10
−6

should be provided a buffer of size 13142 on

each incoming flow, it is wasteful to do so for a functionality with a

failure probability of 10
−3

(since buffers of size 8127 would suffice).

Remark.Note that the failure probability computed in Expression 5

does not depend on the number of incoming flowsn: it depends only
on the buffer size per flow and the amount by which the processing

capacity of the node exceeds the incoming flow.

4 MULTICORE FEDERATED SCHEDULING
In this section, we consider a problem that arises in multicore real-

time systems. We first describe the problem and its importance, and

existing theoretical results. However, some important pragmatic

considerationswere not adequately accounted for; as a consequence,

they do not always perform satisfactorily in practice. Next, we

discuss somemodifications that have subsequently beenmade to the

theoretical solutions; although these modifications do significantly

enhance performance under most circumstances, we show that the

worst-case performance may be poorer than of the original. We

then describe a randomized version of the modified solution and

show how it can be integrated into the safety-critical systems.

Theproblemconsidered, and its (theoretical) solution.Due to
a combination of multiple trends in real-time computing, including

the increasing computational demand of safety-critical applications

and the wide adoption of multicore and multiprocessor platforms,

a large body of research has been performed on multiprocessor

real-time scheduling (see [15] for a survey). Such research has in-

cluded the development of newmodels that are based upon directed

acyclic graphs (DAGs) ([4, 5]) for representing real-time workloads,

in a manner that maximally exposes internal parallelism in the

workload and thereby enables the exploitation of such parallelism

by multicore scheduling algorithms. Multicore real-time schedul-

ing algorithms have been specially designed to exploit the paral-

lelism exposed in these models; our focus here is on the federated
scheduling paradigm [26]. Upon systems of constrained-deadline
and implicit-deadline

3
sporadic DAG tasks, schedulability analysis

for federated scheduling reduces to the problem of determining

whether each invocation of the DAG is guaranteed to complete

within its deadline upon a given number of cores. The reduced

problem is essentially equivalent to the widely-studied makespan
minimization problem from traditional scheduling theory: sched-

ule a precedence-constrained collection of jobs upon an identical

multicore platform to minimize makespan. This problem has long

been known [33] to be NP-hard in the strong sense. However, Gra-

ham’s list scheduling algorithm [21], which greedily constructs a

work-conserving schedule by executing at each time instant an

available job, if any are present, upon any available core, performs

reasonably well. It was shown [21] that list scheduling makes the

following guarantee: if Sopt denotes the smallest makespan with

which a particular DAG can be scheduled uponm cores, then the

schedule generated by list scheduling this DAG uponm cores will

have a makespan no larger than (2− 1

m ) ×Sopt. This result, in con-

junction with a hardness result in [24] showing that determining

a schedule for a DAG with makespan ≤ 4

3
Sopt remains NP-hard

in the strong sense
4
, suggests that list scheduling is a reasonable

algorithm to use, and most run-time scheduling algorithms that are

used for scheduling DAGs use some variant of list scheduling.

An upper bound on the makespan of a schedule generated by list

scheduling is easily stated. LetW denote the cumulative worst-case

execution time of all the jobs (i.e., nodes) in a given DAG, and L
denote the maximum cumulative execution time of any sequence

of precedence-constrained jobs in the DAG. It has been shown [21]

that the makespan of the schedule generated by list scheduling on

m cores is guaranteed to be no more than
W
m + L ×

(
1 − 1

m

)
.

3
See, e.g., [4, page 15] for definitions of constrained- and implicit-deadline tasks.

4
In fact, assuming a reasonable complexity-theoretic conjecture that is somewhat

stronger than P , NP, a result of Svensson [30] implies that a polynomial-time algo-

rithm for determining a schedule of makespan ≤ 2Sopt for allm is ruled out.



An issue that arises in implementation. As seen above, list

scheduling has very good theoretical properties: it runs in efficient

polynomial time and provides a solution to an NP-hard problem

that is no more than a fact of two of the optimal solution, and fur-

thermore it is unlikely that any other polynomial-time algorithm

will be able to provide a better approximation. From an implemen-

tation perspective, however, list scheduling suffers from a serious

drawback: it requires that during run-time all jobs eligible to exe-

cute (because their predecessor jobs have completed execution) be

maintained in a centralized queue, and cores that are idling are re-

quired to get a job to execute from this centralized queue instantly.
5

While this may not be an issue when the number of cores is rela-

tively small, it has been observed that the centralized queue rapidly

becomes a bottleneck resource as the number of cores increases.

Dealing with this implementation issue. The obvious solution
to the problem of the bottleneck centralized queue is to replace it

with a distributed queue: rather than keeping all eligible jobs in a

single queue, multiple queues are maintained (typically, one per

core). Upon completing a job and thereby rendering some other

jobs eligible to execute, a core adds these newly-eligible jobs to

its own queue. Similarly, upon discovering that it is idle, a core

looks first at its own queue for a job to execute. If the idled core

discovers that its own queue is empty, then the second idea behind

the solution — work stealing — comes into play: the core visits the

queues of other cores one by one, and “steals” a job from the first

non-empty queue (if there is any) it encountered.

Distributed queues with work-stealing have been observed to

perform very well in practice; however (as with quicksort) one can

construct pathological cases where its performance would actually

be poorer than when using a single centralized queue. For example,

if all eligible jobs always end up placed in the same queue, from

which all the other cores must repeatedly steal — this queue be-

comes a bottleneck as in centralized queueing, and we additionally

have to pay the overhead of maintaining multiple queues and failed

steal attempts of visiting cores with empty queues. (See [20, Theo-

rem 19] for a formalization and details of this argument.) To make

such pathological worst-case behavior unlikely, work-stealing is

usually implemented in a randomized manner in the sense that a

core that needs to steal a job chooses from the other cores’ queues

uniformly at random. This version — randomized work-stealing

across distributed queues — has been widely used in industrial par-

allel runtime systems. This approach has additionally been adapted

for use in real-time systems [25], but with the caveat that its use is

restricted to soft-real-time systems: “· · · [randomized] work-stealing
may not be suitable for hard real-time tasks” [25, page 203].

In the remainder of this paper, we use previously-derived concen-

tration bounds for makespan under randomized work-stealing [32]

to demonstrate that scheduling strategies based on randomized

work-stealing can, in fact, be used in safety-critical systems; we

further validate this assertion via extensive experiments. Via our

proposed usage of concentration bounds, federated scheduling with

randomized work-stealing becomes compliant with the current

5
There are in fact a couple of possible choices here: in push schedulers, a master thread

dispatches work to cores as they become idle; in pull schedulers, cores access the
centralized queue themselves to grab jobs as they need them.

standards that require the guarantee of not exceeding the allow-

able probability of failure in the safety-critical systems. In contrast,

previous work [25] can only bound the expected response time and
cannot provide any probabilistic worst-case guarantee.

Let us define the constant Φ as follows and e ≈ 2.718:

Φ = 2

/ (
1 − log

2

(
1 +

1

e

))
(6)

Note that the value of Φ is a bit less than 3.65.

Let random variable Srws denote the makespan of the schedule

generated when a DAG with cumulative WCETW and WCET of

the longest chain of precedence-constrained jobs L is scheduled by

a randomized work-stealing scheduler. It was proved in [32] that

E[Srws], the expected value of Srws, is bounded as follows:

E[Srws] ≤
(W
m
+ Φ × L + 1

)
(7)

Comparing with the worst-case makespan bound of list scheduling,

this expected makespan is, in fact, larger: this is the price we pay for

choosing to implement a distributed queue rather than a centralized

one. (Recall that this choice was necessitated by the need to not

have a centralized queue be a potential bottleneck during run-time.)

Since expected values are not always enough for safety-critical

systems: we also need concentration bounds specifying probabilities

on deviation from the expected values. Such a concentration bound

for makespan was derived in [32]:

P
(
Srws ≥

(W
m
+ Φ × L + 1

)
+ Φ × log

2

1

ϵ

)
≤ ϵ (8)

This essentially states that for any ϵ > 0, the probability that the

makespan of the schedule would exceed the expected value in

Expression 7 by an amount ≥ (Φ × log
2

1

ϵ ) is no greater than ϵ .
How should we be using this concentration bound in the design

and implementation of safety-critical systems? We first illustrate

via an example and subsequently detail how this concentration

bound can be used to obtain a resource-efficient implementation.

Example 2. Suppose that we have a constrained-deadline DAG
task with the following parameters: cumulative WCETW = 150ms,
maximum cumulativeWCET of any sequence of precedence-constrained
jobs L = 9ms, and relative deadline D = 68ms, which is to be sched-
uled using the federated scheduling algorithm [26] upon a dedicated
set of cores. Let us assume, as we did in Example 1, that the function-
ality of this task is characterized according to IEC 61508 (for which
the permitted failure probabilities are specified in Table 1). If it were
characterized as a low-demand SIL-2 task, then we see from Table 1
that the permitted failure probability is 10−2. Substituting this value
for ϵ in Expression 8 above, we have

P
(
Srws ≥

W

m
+ Φ × L + 1 + Φ × log

2
100

)
≤ 10

−2

⇐ P
(
Srws ≥

150

m
+ 3.65 × 9 + 1 + 3.65 × 6.644

)
≤ 10

−2

⇔ P
(
Srws ≥

150

m
+ 58.09

)
≤ 10

−1

Since the relative deadlineD of the task is 68ms, we need 150

m +58.09 ≤

68 from which we conclude that at least ⌈150/(68−58.09)⌉ = ⌈15.14⌉,
i.e., 16 cores are needed (and hence choosem ← 16).
Proceeding similarly, we can show that if the task were of SIL-1, then
we should assign it at least 7 cores. □



We now explain the algorithm illustrated in the example above.

We seek to determine the number of cores m to be devoted to a

given DAG task under federated scheduling. The values of the task

parametersW , L, and D are obtained from the task specifications.

The value of ϵ is dictated by safety requirements: it specifies the

permitted probability of failure for the task. Given these values, in

order to satisfy the safety requirements, it suffices to ensure that

W

m
+ Φ × L + 1 + Φ × log

2

1

ϵ
≤ D

⇔
W

m
≤ D −

(
Φ × L + 1 + Φ × log

2

1

ϵ

)
⇔ m ≥

⌈
W
/
D −
(
Φ × L + 1 + Φ × log

2

1

ϵ

) ⌉
(9)

Expression 9 specifies the minimum number of cores that need to be

devoted to a task — the presence of ϵ in this expression reveals the

dependence of this number on the permitted probability of failure.

5 EXPERIMENTAL EVALUATION OF
RANDOMIZED WORK-STEALING

We empirically evaluate the performance of randomized work-

stealing with widely-used DAG benchmark programs. Our results

confirm that the makespan of a program executed by randomized

work-stealing has a relatively small variation in practice, and that

this makespan is bounded by the concentration bound in Expres-

sion 8. In fact, the vast majority of the measured makespans do not

exceed the expected makespan calculated using Expression 7.

Experiment setup. We conduct the experiments on a 16-core ma-

chine with two Intel Xeon 3.1Ghz Processors E5-2687W (each with

8 cores), 64GB memory, and Linux version 3.5.0. We disable pro-

cessor throttling, processor sleeping, and hyper-threading. We use

parallel benchmark programs written in the Cilk Plus language and

choose the Cilk Plus branch 4.9.0 with a randomized work-stealing

scheduler as the parallel runtime system.

For a benchmark program, we use the profiling tool Cilkview [22]

to measure the workW and the burdened span L′, whereW is the

cumulative execution time of all the nodes in a DAG and L′ is
the execution time of the longest chain of precedence-constrained

nodes embedded with the explicit overhead of bookkeeping parallel

nodes in the Cilk Plus runtime system and the implicit overhead

due to the migration of stolen nodes [22]. Note that Cilkview only

measures the number of instructions, so we convert the instruction

counts into running time by measuring the actual running time of

W upon the same input.We use themeasuredworkW and burdened

span L′ to calculate the expectedmakespan of a benchmark program

on a given number of cores using Expression 7.

To obtain the actual makespan of a benchmark program on a

given number of cores, we execute the program using the random-

ized work-stealing scheduler in Cilk Plus for 100 times and measure

the execution times. We run each program with real-time priority

to reduce the interference from the other system programs.

Benchmark programs.We use 6 programs with different proper-

ties and DAG structures, as described below, for evaluation.

(a) SC: Data Stream Clustering (SC) is from the PARSEC benchmark

suite [10] and is designed for clustering continuously arriving data,

as inmultimedia applications and financial transactions. In PARSEC,

SC was originally parallelized using parallel for-loops in pthread,

OpenMP and TBB. We converted it into Cilk Plus using cilk_for.
SC was run on 2048 data points, where each data point has 32

dimensions and 5 to 10 centers are allowed.

(b) Nbody: N-body Force simulation program (Nbody) is a scientific

application in the problem based benchmark suite (PBBS) [28]. It

calculates the motion of particles under the influence of mutual

gravitational forces in a dynamic system. Nbody is parallelized in

Cilk Plus and has a complex DAG structure. Nbody was run on

1383 3-dimension in-sphere points for 1000 rounds.

(c) Cholesky: This program, from the Cilk-5.4.6 release [29], uses

the divide and conquer approach to performs Cholesky factoriza-

tion of a matrix. Cholesky is parallelized using many cilk_spawn
and cilk_sync, forming a general DAG structure. The Cholesky

program was run on a matrix of size 3000 × 3000.

(d) Strassen: It is from the Cilk-5.4.6 release [29] and implements par-

allel matrix multiplication using Strassen’s Algorithm. It recursively

calculates using sub-matrices and is parallelized using cilk_spawn
and cilk_sync. We run Strassen on matrices of size 512 × 512.

(e) LU: Similar to Cholesky, LU decomposition (LU) in the Cilk-5.4.6

release [29] also performs matrix factorization, but it has different

requirements on the input and output matrices. It has abundant

parallelism. We run LU on a matrix of size 2048 × 2048.

(f) Heat: This program from [29] simulates the heat diffusion using

a Jacobi-type iteration. Its computation is repeatedly performed on

a 2-dimension grid, where its parallelism comes from the recursive

decomposition of 2D grids in stripes and is abundant. We run Heat

on an input of 4096 × 1024 2D grid for 800 iterations.

Outcome of the experiments. Figure 1 shows the results for

the benchmark programs when executed on 1 to 16 cores by the

randomized work-stealing scheduler in Cilk Plus. The expected

makespans calculated using Expression 7 is displayed using the

dotted lines with circles, and the measured actual makespans of

100 runs for each setting is presented using the boxplots.

We can see that the measured makespans are almost always

smaller than the expected makespan in practice. For example, the

actual makespans are only about 40% and 66% of the expected

makespan for SC andNbody, respectively. TheHeat programhas the

closest distance between the two, where the measured makespans

are about 98% of the expected value. The difference between the

expected makespan and the average measured makespan is larger

when the parallelism degreeW /L′ of the program is low. This is

because the average measured makespan also follows the bound

in Expression 7, but usually with a constant Φ smaller than 3.65 in

practice. As SC and Nbody have smaller parallelism degrees of 4.1

and 5.9, respectively, their expected makespans deviate more from

their average measured makespans. In contrast, Cholesky, Strassen,

LU, and Heat have parallelism degrees of 27.99, 17.14, 89.74, and

343.55, respectively, all of which are larger than the maximum

number of available cores.

We would like to emphasize that in none of our runs did the mea-
sured makespan exceed the concentration bound as computed accord-
ing to Expression 8. Indeed, of all the measurements for the different

benchmark programs upon different numbers of cores, only in one

— one of the 100 runs of Strassen upon 16 cores — did we observe

a measured makespan exceeding the expected makespan. Even in

this case, though, the concentration bound was not exceeded: with



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Cores

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
)

(a) SC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Cores

0

0.05

0.1

0.15

0.2

0.25

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
)

(b) Nbody
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(c) Cholesky
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(d) Strassen
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(e) LU
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(f) Heat

Figure 1: Expected makespan vs. actual makespan of a benchmark program executed on an increasing number of cores by a
randomizedwork-stealing scheduler. The dotted lineswith circles show the expectedmakespans calculated using Expression 7.
The boxplots show themeasured actualmakespans of 100 repetitions for each setting,where the blue box gives thefirst, second,
and third quartiles, and the red crosses are the outliers.



W = 150ms, L′ = 9ms and a permitted failure probability 10
−2
,

the concentration bound for makespan on 16 cores is 67.47ms, as

calculated in Example 2, and is larger than the largest measured

makespan of 47ms that is the only measurement larger than the

expected makespan (which is 43ms). This observation gives us

confidence that the concentration bounds computed according to

Expression 8 are indeed safe upper bounds in practice

We also observed in our experiments that the makespan upon

scheduling with randomized work-stealing is highly predictable,
with relatively small variances between runs in practice. In particu-

lar, we note that Nbody and Streamcluster have the largest relative

standard deviations (i.e., standard deviation divided by the mean)

in their measured makespan on more than two cores, which are

only 4% to 10% and 2% to 5%, respectively. The other programs all

have relative standard deviations smaller than 2.6%.

6 RELATIONSHIP TO PRIOR WORK
As mentioned earlier, a vast body of research has been conducted

within the real-time computing community on the application of

probabilistic techniques to the analysis of real-time systems — the

interested reader is encouraged to read the previously cited sur-

veys [17, 18] for a comprehensive overview and critique. Much of

this prior work adopts one of two approaches:

(1) Modeling some system behavior (of programs, platforms, or

interaction with the environment) via probability distributions;

(2) Using results from probability theory (such as Extreme Value

Theory (EVT) [19]) to obtain a statistical estimate of worst-case
behavior by extrapolating from measurements made upon a

limited set of controlled experiments.
6

It is important to note that analysis methods falling under both

these approaches assume that the underlying behavior is proba-

bilistic in nature: the objective of the methods is to obtain some

characterization or model of this probabilistic behavior. We believe

that this is often a reasonable assumption (and characterizing it is

therefore a reasonable objective); however, as we have pointed out

earlier in Section 1, getting such assumptions accepted by the larger

safety-critical systems community is no easy task and involves a

significant social and cultural component in addition to the purely

technical ones of determining the right underlying models (and

choosing the right theoretical tools, such as EVT, that enable us

to do so). We reiterate that the main difference between our work

and these prior approaches is that we are making no additional

modeling assumptions: all our probability is within our (random-

ized) algorithms, where we have complete control over all aspects

of it, while our assumptions about the rest of the system – the

platform, and the interaction with the environment – continue to

be the worst-case ones that have traditionally found favor in the

safety-critical computing community. Furthermore, our use of con-

centration bounds to compute probabilities of failure fits in very

well with the existing use of probabilities in safety standards such

as IEC 61508 (Table 1) and its derivative standards.

6
Some research, such as [12], has made a strong case that even simpler results from

probability theory such as the Central Limit Theorem (CLT) and the Law of Large

Numbers (LoLN), are applicable to a large class of safety-critical systems. Applying

CLT or the LoLN typically requires one to make stronger assumptions concerning

the independence of different random variables and additionally require that they are

drawn from identical underlying distributions.

7 SUMMARY AND CONCLUSIONS
We proposed an approach for incorporating probabilistic and sta-

tistical techniques into the implementation and analysis of safety-

critical systems. This approach is centered upon encapsulating

all probabilistic concepts within specific randomized algorithms

and analyzing their performance under worst-case assumptions

concerning the run-time behavior of the rest of the system. Fur-

thermore, we only use randomized algorithms for which good

concentration bounds are known: these bounds provide tight limits

on the probability that relevant aspects of the algorithm’s run-time

performance will exceed specified limits. Since many widely used

safety standards allow for low but non-zero probabilities of failure,

the use of randomized algorithms with such concentration bounds

renders our proposed approach more compliant with the current

standards and methodologies in the safety-critical systems com-

munity than other proposed probabilistic approaches. As stated

earlier, there is a strong social and cultural aspect of getting new

approaches accepted into the inherently conservative domain of

safety-critical systems certification. Thus, the proposed approach

shows great promise in enhancing efficiency within the constraints

of current practice on certification of safety-critical systems.

There is a fairly broad and deep agenda for future research
that must be pursued in order to enhance the likelihood of adopting

this approach. Theoretically, this approach suggests a rich research

agenda for the community, which is strongly motivated by practical

system-building considerations. Specifically, we plan to identify

other randomized algorithms that can enhance resource-efficiency

in safety-critical systems and derive their concentration bounds.

Results that are already present in the traditional theoretical com-

puter science literature are not always ready for our use — many of

the published bounds tend to be derived asymptotically and stated

in asymptotic (O,Θ,Ω) terms, ignoring constant factors. While

concentration bounds for the three example problems we have con-

sidered exist in the literature, it took considerable effort for us to

identify the most useful formulation of the bounds — the ones that

give us the greatest resource-efficiency for a given failure proba-

bility. We had to obtain a deep understanding of the derivations of

these pre-existing asymptotic bounds in order to understand the

steps where approximations were being made, and where possible,

come up with ways of reducing these constant factors.

From a system’s perspective, our ongoing and future research

efforts seek to demonstrate the applicability of randomized algo-

rithms in safety-critical systems via proof-of-concept implementa-

tions. We plan to actually integrate the randomized algorithms into

industrial-strength systems and conduct extensive experiments to

illustrate their performance. By so doing, we seek to establish that

the randomized algorithms are easy to integrate into real systems,

and that system performance is indeed along the lines of what was

predicted by the theoretical application of concentration bounds.
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