
Response Time Analysis for Dynamic Priority Scheduling in ROS2
Abdullah Al Arafat

Sudharsan Vaidhun

Kurt M. Wilson

University of Central Florida, USA

Jinghao Sun

Dalian University of Technology

China

Zhishan Guo

University of Central Florida

USA

ABSTRACT

Robot Operating System (ROS) is the most popular framework

for developing robotics software. Typically, robotics software is

safety-critical and employed in real-time systems requiring timing

guarantees. Since the first generation of ROS provides no timing

guarantee, the recent release of its second generation, ROS2, is nec-

essary and timely, and has since received immense attention from

practitioners and researchers. Unfortunately, the existing analysis

of ROS2 showed the peculiar scheduling strategy of ROS2 executor,
which severely affects the response time of ROS2 applications. This

paper proposes a deadline-based scheduling strategy for the ROS2

executor. It further presents an analysis for an end-to-end response

time of ROS2 workload (processing chain) and an evaluation of the

proposed scheduling strategy for real workloads.

ACM Reference Format:

Abdullah Al Arafat, Sudharsan Vaidhun, Kurt M. Wilson, Jinghao Sun,

and Zhishan Guo. 2022. Response Time Analysis for Dynamic Priority

Scheduling in ROS2. In Proceedings of the 59th ACM/IEEE Design Automation
Conference (DAC) (DAC ’22), July 10–14, 2022, San Francisco, CA, USA. ACM,

New York, NY, USA, 6 pages. https://doi.org/10.1145/3489517.3530447

1 INTRODUCTION

Over a decade, Robot Operating System (ROS) has been the standard

and most popular framework for developing robotics software,

mainly for its modularity and composability. However, the first

version of ROS was fundamentally limited in terms of real-time

capabilities, which eventually necessitated the emergence of ROS2

in 2017. ROS2 got immediate attention from both the autonomous

systems industry and academia, due to its capability of providing

real-time guarantees through enabling the Distributed Data Service

(DDS) communication interface.

As a foundational cornerstone for autonomous and robotic sys-

tems, it is essential that the response time of ROS2 workload can

be bounded. However, there was no such formal analytical model

for ROS2 before the pioneering work of Casini et al. [3]. It pre-

sented a model for the default ROS2 scheduler to enumerate the

response-time of workloads, the architectural hierarchy of the ROS2

framework, and working principle of the default ROS2 scheduler.

We thank Nan Guan from City University of Hong Kong for fruitful discussions on

the paper. This work is supported by NSF grants CNS 1850851, and PPoSS 2028481.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00

https://doi.org/10.1145/3489517.3530447

A
pp
lic
at
io
n

M
id
dl
ew

ar
e

ROS2

Callback Callback Callback
Node

Callback

O
S

Client Library

Data Distribution Service (DDS)

Language-Specific Client Library

rcl rclpyExecutor

Node

rclcpp

Linux/Windows/macOS
Figure 1: ROS2 Architecture [3]

Overview of ROS2. Fig. 1 presents the architecture of ROS2. ROS2

applications are typically composed of series of individual nodes
distributed in the application layer. Nodes preserve the molecularity

of application programs, and communicate with each other through

a publish/subscribe mechanism: nodes first publish messages on a

topic, and then the topic broadcasts messages to nodes subscribed

to the topic. When receiving a messages, nodes invoke callbacks
(fundamental programming blocks) to process the message. To

implement the publish/subscribe system, ROS2 leverages the un-

derlying data distribution service (DDS), which is an anonymous

and asynchronous message passing framework. To deploy a ROS2

application, individual nodes are mapped onto operating system

processes. ROS2 uses executors (in the client library) to coordinate

the execution of the callbacks of the nodes assigned in a process.

An executor maintains a readySet that stores the ready callbacks

assigned to the executor. At each time, the executor selects one

callback from the readySet to be executed non-preemptively on the

process. The updating strategies of readySet as follows — it is only

updated when it becomes empty, and it cannot contain two same

callbacks from different instances of a chain simultaneously. In con-

trast, a timer callback (first callback of a processing chain) can enter

the readySet instantly, and it starts execution either immediately or

after the completion of a non-preemptively executing callback.

Limitations of default ROS2. Following the properties of readySet,
there are two critical issues raised that affect the response time of

processing chains. (i) There is no notion of priority among different

processing chains in an executor, as any processing chain can enter

the readySet directly through activating the timer callback. There-

fore, in default ROS2 executor, it is not possible to provide higher
priority to any critical chain for better response time. (ii) Any pro-

cessing chain instance can receive interference from both past and

future instances of the same processing chain (self-interference)

due to the updating strategy of readySet and the privilege entrance

of the timer callback to the readySet.
The limitations of the readySet-based scheduling policy of ROS2

executor lead to longer response time of workloads in ROS2. To

eliminate such limitations of readySet-based scheduling, we aim

to design a new priority-based scheduling scheme for ROS2 execu-
tor. Intuitively, priority-driven scheduling policies (e.g., fixed- and

301

https://doi.org/10.1145/3489517.3530447
https://doi.org/10.1145/3489517.3530447
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489517.3530447&domain=pdf&date_stamp=2022-08-23

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Abdullah Al Arafat, Sudharsan Vaidhun, Kurt M. Wilson, Jinghao Sun, and Zhishan Guo

dynamic-priority-based scheduling) dominate over default readySet-
based scheduling, as the former schedulers can mitigate the self-

interference of processing chains by simply providing a unique

priority-order to each instance.

Related Works. Casini et al. [3] presented the first formal analy-

sis and modeling of ROS2 for bounding the end-to-end latency of

ROS2 application. This paper pointed out the peculiar scheduling

strategy of the default ROS2 executor. It developed the response

time-bound of any ROS2 processing chain that may span multi-

ple executors leveraging the compositional performance analysis

tool. Later, Tang et al. [9] published a follow-up paper improving

response time bound for default ROS2. The critical observations of

Tang et al. are the pipeline-style execution pattern of the callbacks

of a chain in the processing windows of executor, and only the

priority of the last callback in a chain has an impact on response

time. These observations enable them to reduce interference from

interfering chain instances, and providing the highest priority to

the last callback of the chain further improves the response time-

bound. A concurrent work from Blaß et al. [2] developed a better

response time response analysis for ROS2 exploiting the starvation

freedom and execution-time variance of callbacks.

A recent work by Choi et al. [4] partially addressed the lim-

itations of the default ROS2 executor scheduler and proposed a

chain level (fixed) priority-based scheduling scheme. The proposed

method performed well for prioritized chains over default sched-

uler, specifically for high-priority chains. However, low-priority

chains may suffer very high latency in an overloaded (in fact, in

general cases also) system due to frequent preemptions (see Fig. 2

and Table 2 in Section III). Therefore, instead of the fixed prior-

ity of each chain, we propose chain instance-level deadline-based

dynamic priority scheduling for ROS2 executor.
Contributions. In this paper, we first propose a deadline-driven

dynamic-priority-based scheduling scheme for ROS2 executor. Our
proposed scheduling scheme addresses the limitations of the default

ROS2 scheduler and dominates both the default ROS2 and exist-

ing fixed-priority-based scheduler in terms of end-to-end latency.

Specifically, we make the following contributions in this paper:

(1) We propose the first dynamic priority (deadline-based) sched-

uling scheme for the ROS2 executor. As a result, the proposed sched-
uler has a fine granularity to assign priorities at the chain instance-

level as opposed to fixed chain-level priorities.

(2) We analyze the proposed deadline-based scheduling scheme

for end-to-end latency of a ROS2 processing chain that could span

over multiple executors.

(3) We perform a detailed evaluation of the proposed scheduling

scheme through case studies using real-world workloads.

2 SYSTEM MODEL

Workload Model. We model the ROS2 workload following the

hierarchy of ROS2 architecture — Callbacks, Executor, and Chain

model of the workload.

Callback. The system consists of a set of 𝑁𝑐 callbacks 𝜏 = {𝜏𝑖 |1 ≤
𝑖 ≤ 𝑁𝑐 }. Each callback 𝜏𝑖 ∈ 𝜏 is represented by the following 2-

tuple,

𝜏𝑖 = (𝐶𝑖 , 𝜒𝑖) (1)

where, 𝐶𝑖 is the worst-case execution time of the callback. The pa-

rameter 𝜒𝑖 ∈ {𝜒𝑇 , 𝜒𝑅} represents the callback type – timer callback

𝜒𝑇 or regular callback 𝜒𝑅 . The regular callback is triggered by mes-

sages published on the topic. The timer callback do not subscribe

to topics and therefore cannot be triggered by messages. Instead,

timer callbacks are activated by system timers.

Executor. We consider a set of 𝑁𝜅 executors, 𝐸 = {𝐸𝑘 | 1 ≤ 𝑘 ≤
𝑁𝜅 }. Each callback is assigned to an executor and the mapping is

fixed throughout the runtime of the system. An executor can be

either single-threaded or multi-threaded. The same as in [3, 4, 9],

this paper considers the single-threaded executor.

Chain Model. We represent the workload generated by all the

activations of the callbacks as a set of 𝑁Γ processing chains, Γ =

{Γ𝑖 | 1 ≤ 𝑖 ≤ 𝑁Γ}. Each chain Γ𝑖 ∈ Γ consists of a sequence of

callbacks,

Γ𝑗 = < 𝜏 𝑗1 , 𝜏 𝑗2 , . . . , 𝜏 𝑗 |Γ𝑗 |
> (2)

where, 𝜏 𝑗𝑖 ∈ 𝜏 and |Γ𝑗 | is the length of the chain. The starting

callback, 𝜏 𝑗1 , of the chain is usually a timer callback, and remaining

callbacks, {𝜏 𝑗𝑖 |𝑖 ∈ {2, . . . , |Γ𝑗 |}} are the regular callbacks.
Each chain Γ𝑗 is represented by the following 3-tuple:

Γ𝑗 = (𝐶Γ𝑗 , 𝐷 𝑗 ,𝑇𝑗) (3)

where𝐶Γ𝑗 is WCET of the chain, derived from the sum of theWCET

of all callbacks in the chain,

𝐶Γ𝑗 =
∑︁

∀𝑖:𝜏𝑖 ∈Γ𝑗
𝐶𝑖

𝐷 𝑗 and 𝑇𝑗 are the relative deadline and the minimum inter-arrival

time of the chain, Γ𝑗 , respectively. Note that, all callbacks 𝜏𝑖 ∈ Γ𝑗
have same absolute deadline instant as the associated chain Γ𝑗 .

Now, we define the workload of an executor 𝐸𝑘 as a set of pro-

cessing (sub)chains
1
in the executor,

𝐸𝑘 (Γ) = {Γ𝑘𝑗 |Γ
𝑘
𝑗 ∈ 𝐸𝑘 }

Here, Γ𝑘
𝑗
is either the chain Γ𝑗 or a segment of Γ𝑗 that belongs to the

executor 𝐸𝑘 and Γ𝑗 =
⋃
∀𝑘

Γ𝑘
𝑗
. We further denote the relative deadline

of Γ𝑘
𝑗
as 𝐷𝐾

𝑗
which either equal to 𝐷 𝑗 or derived from 𝐷 𝑗 using the

fact that all callbacks in a chain have same absolute deadline.

ResourceModel. The threads utilized by the executors are scheduled
using the Linux scheduler. Linux scheduler works by scheduling the

thread with the highest priority, and if there are multiple threads

with the same priority, then a specific scheduling policy is followed

to determine the thread to schedule. In our model, all ROS2 threads

will be preemptively scheduled with the same (highest) static pri-

ority and follow the sched_fifo policy. The budget guarantees

are provided to the threads by implementing them as constant

bandwidth server.

Communication Overhead. The communication among the call-

backs adds delay (overhead) in addition to the execution time of

callbacks. However, we neglect the communication overhead if the

callbacks in a communication link are in the same executor. In case

1
(sub)chain can be either a chain or a segment of a chain

302

Response Time Analysis for Dynamic Priority Scheduling in ROS2 DAC ’22, July 10–14, 2022, San Francisco, CA, USA

two communicating nodes are in two executors, we add a fixed com-

munication delay between 𝑘𝑡ℎ (𝜏𝑘 ∈ 𝐸𝑘) and ℓ𝑡ℎ (𝜏ℓ ∈ 𝐸ℓ) callbacks
as follows:

𝑑 (𝜏𝑘 , 𝜏ℓ) =
{
0, if 𝐸𝑘 = 𝐸ℓ

𝛾, ∀𝑘, ℓ : 𝐸𝑘 ≠ 𝐸ℓ

Overload Handling Mechanism. ROS2 contains an overload han-

dling mechanism to drop a timer callback (and so the associated

chain) in case the timer callback missed one or more of its period to

start execution. The overload handling mechanism is activated by

running rcl_timer_call function at the release instant of timer

callback. First, the next_call_time variable is incremented by the

timer’s period. Then next_call_time is compared with current

time instant to see whether next_call_time is in the past. If so,

next_call_time is incremented to the number of periods timer

already behind, ensuring that the timer skips missed periods.

3 PROBLEM AND METHOD

3.1 Problem Statement

As mentioned earlier, the default scheduler of the ROS2 executor
introduces two critical issues that adversely affect the response

time of processing chains. The existing chain-level fixed priority-

based scheduling scheme of ROS executor [4] addressed those crit-

ical problems. However, the chain-level priority proposed by Pi-

CAS [4] disproportionately affects lower priority chains, which

is further worsened in an overloaded scenario where the lowest

priority chains may receive no service. In this paper, we particularly

attempt to resolve two issues:
(1) We address the limitations of default readySet-based schedul-

ing scheme of ROS2 executor replacing the default scheduler with

a dynamic-priority based scheduler.

(2) We address the limitations of chain-level priority-based sched-
uling when the workload has chains with equal (semantic) priority.

3.2 Proposed Scheduler

To replace the default scheduler of ROS2 executor, we proposed a

deadline-based (Earliest Deadline First (EDF)) scheduling policy

redesigning the readySet as a readyQueue.
Definition 1. readyQueue Ω is maintained in executor similar to
readySet in default ROS2. Unlike readySet, readyQueue is updated
after the completion of each non-preemptively executing callback.
The priority of the readyQueue is set based on the deadline of each
callback, where earliest deadline callback has higher priority than the
later one.

As the readyQueue prioritizes any callback only based on the

deadline parameter, there is no privilege priority of timer callback

in the readyQueue. This property of the readyQueue mitigates both

of the limitations of the default scheduler, as any released chain

has to wait to execute until the completion of high priority chains.

Scheduling Strategy. Our deadline-based scheduling policies for

(sub)chain scheduling in the executor are as follows:
(1) Whenever any chain instance releases, it enters to the waitset.

The readyQueue Ω of the executor is updated after the completion

of the execution of the current active callback due to the non-

preemptive execution of the callbacks.

Chains Specifications [sec]

(1) < 𝜏1, 𝜏2, 𝜏3 > 𝐶1 = 0.109;𝐶{2,3} = 0.131;𝑇1 = 1

(2) < 𝜏{4,··· ,10} > 𝐶4 = 0.109;𝐶{5,··· ,10} = 0.131;𝑇2 = 1

Table 1: Chain set for illustrative experiments.

Chain ID Mean Max Min STD

Default

1 1.478 1.879 0.632 0.355

2 4.108 4.913 2.415 0.445

PiCAS

1 0.442 1.373 0.373 0.565

2 2.055 2.654 1.655 0.314

OURs

1 0.849 1.372 0.376 0.305

2 1.424 1.922 0.903 0.310

Table 2: End-to-end latency results[sec] of two chains (Ta-

ble 1) running in default ROS2 scheduler, PiCAS [4], and our

deadline-based scheduler of ROS2 executor.

(2) The readyQueue Ω is prioritized based on the absolute dead-

line of each callback, and the callback with the earliest absolute

deadline is scheduled to execute non-preemptively. The higher pri-

ority chain’s callback can only preempt any active chain (executing)

after the completion of the currently executing callback.

(3) Suppose a chain instant is released, but the previous instant

of the chain has not started executing yet. In that case, the previous

instant of the chain is dropped by enabling the (original) overload

handing mechanism of ROS2.

Remark. Tardiness is allowed as ROS2 is unaware of deadlines.

Guarantees of meeting deadlines can only be achieved by verifying

that the worst-case latency of the chains do not exceed the deadlines.

In this work, we use the deadlines only to dynamically prioritize

chains (and callbacks) during runtime, but not to drop workloads.

This is acceptable since ROS2 inherently provides its own overload

handling mechanism to prevent unbounded latencies.

3.3 Illustrative Experiment

We present an experimental study on a simple workload (Table 1)

consisting of two processing chains. The experimental setup on

the ROS2 environment is presented in the evaluation section. We

perform the experiments for default ROS2 scheduler, PiCAS [4],

and our deadline-based scheduler of ROS2 executor. The execution
patterns for these three algorithms are illustrated in the Gantt

charts in Fig. 2. From the Gantt charts, Fig. 2 (b, c), in priority-

based scheduling, all chain instances complete the execution before

starting later instances, and only the chains with higher priorities

are active, reducing the interference in an active window. The

end-to-end latency of the chains for all three schedulers is shown

in Table 2. Our schedulers outperform the default scheduler for

both of the chains. Compared with PiCAS, our scheduler performs

better than PiCAS on average, and specifically, low-priority chains

consistently outperformed PiCAS.

4 RESPONSE TIME ANALYSIS

4.1 Overview

Wefirst analyze theworst-case response time (WCRT) of a (sub)chain

(analyzed chain) in an executor, then extend the analysis for end-to-

end latency of the chain span over the multiple executors using CPA
tool [6]Fig. 3 illustrates a possible scenarios of ROS2 processing

303

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Abdullah Al Arafat, Sudharsan Vaidhun, Kurt M. Wilson, Jinghao Sun, and Zhishan Guo

0 1 2 3 4 5 6 7 8 9
Time (s)

1
2
3
4
5
6
7
8
9

10

N
od

e
In

d
ex

(a) Default ROS2 Scheduler [3, 9]

0 1 2 3 4 5 6 7 8 9
Time (s)

1
2
3
4
5
6
7
8
9

10

N
od

e
In

d
ex

(b) PiCAS Scheduler [4]

0 1 2 3 4 5 6 7 8 9
Time (s)

1
2
3
4
5
6
7
8
9

10

N
od

e
In

d
ex

(c) EDF Scheduler (this paper)

Figure 2: Gantt-charts of ROS2 scheduling example for the workload of Table 1. The first three lines, in orange, represent the

executions of Chain 1. The remaining lines, in blue, represent the executions of Chain 2. In PiCAS scheduler (Fig. 2(b)), no

chain instances from chain 1 (orange) is dropped, but three instances (at 3, 6, and 9) from second chain (blue) is dropped. In

contrast, our scheduler dropped chain instances from both chain 1 (at 4 and 9) and chain 2 (at 3 and 7).

Executor A

Executor B

Callback

Key:

Timer

Figure 3: ROS2 processing chains in executors
chains assigned in the executors. We are particularly interested in

analyzing the response time of the sub-chain Γ𝐵
𝑗
in executor B, then

extend the analysis to calculate the end-to-end response time of

Γ𝑗 = Γ𝐴
𝑗
∪ Γ𝐵

𝑗
that span over executors A & B.

Arrival Curve. The release patterns of chains/sub-chains in an

executor 𝐸𝑘 are characterized by arrival curve, 𝛼 (Δ). Chains start
with a timer callback have a staircase arrival curve, 𝛼Γ𝑖 (Δ) =

⌈ Δ
𝑇𝑖

⌉
where at each period one instance of the chain is released. However,

the arrival curve for a chain starts with regular callback (sub-chain)

depends on the arrival curve of the starting sub-chain of the parent

chain and the response time of all precedent sub-chains (see Fig. 3).

The request bound function (rbf) of a chain Γ𝑘
𝑗
in a time range Δ is

upper bounded by [3],

rbf (Γ𝑘𝑗 ,Δ) = 𝛼Γ𝑘
𝑗
(Δ) ·𝐶Γ𝑘

𝑗

therefore, the demand bound function (dbf) of the chain is upper-

bounded by [5],

dbf (Γ𝑘𝑗 ,Δ) = rbf (Γ𝑘𝑗 ,Δ − 𝐷𝑘𝑗) (4)

dbf (Γ,Δ) implies that the maximum resource demand generated

by the chain instances of Γ that have both release and deadline

instances in the range of Δ times.

Resource Model. We consider a general case where resource

supply to each server is lower bounded by the supply-bound func-

tion sbf (Δ). sbf (Δ) implies the minimum guaranteed supply to the

server in each Δ time interval [7, 8]. In our analysis, we assume

sbf (Δ) is known (provided by the system designer). We define the

pseudo-inverse of sbf (Δ) as follows,

sbf (𝑥) = min{Δ | sbf (Δ) = 𝑥} (5)

sbf (𝑥) provides the minimum time in which the server gets 𝑥 unit

of processing time.

Intuitively, to bound theWCRT, we first calculate the slack time
2
,

instead of directly calculating the WCRT, for analyzed (sub)chain

instant similar to [5]. So, the WCRT, 𝑅 𝑗 of the analyzed chain, Γ𝑗 is
as follows:

𝑅 𝑗 = 𝐷 𝑗 − 𝑆∗𝑗 (6)

The minimum slack time, 𝑆∗
𝑗
, for all (sub)chain instances of the

analyzed (sub)chain Γ𝑗 is estimated from the resource demand of

all (sub)chains in the executor and the available resource supply to

the executor.
Finally, we develop the end-to-end WCRT of the analyzed chain,

adding the individual sub-chain WCRT and communication delays

between the sub-chains of different executors.

4.2 Properties

To compute the WCRT of a (sub)chain, Γ𝑘
𝑗
inside an executor 𝐸𝑘 , we

consider a ‘busy period’ of the executor. Any busy interval, (𝑡𝑜 , 𝑡𝑑],
in the executor is an interval where at least one chain instance is

ready to execute at any instant in the interval with a release time no

earlier than the 𝑡𝑜 and deadline no later than 𝑡𝑑 . Here, 𝑡𝑜 is the last

idle instant of the busy interval. To develop the resource demand of

all (sub)chain instances in such a busy period, let consider a minimal

set 𝜎 (Γ) that includes all (sub)chain instances with a release time

no earlier than the 𝑡𝑜 and deadline no later than the 𝑡𝑑 . Following

are the two facts of the minimal set 𝜎 (Γ),

Fact 1. All (sub)chain instances in 𝜎 (Γ) must have an execution
in (𝑡𝑜 , 𝑡𝑑] but the one with a deadline equal to 𝑡𝑑 .

Proof. If any (sub)chain instance does not execute in the busy

interval, the instance is removed from the minimal set 𝜎 (Γ). So,
if any instance in 𝜎 (Γ) does not execute in (𝑡𝑜 , 𝑡𝑑], it contradicts
the minimality of set 𝜎 (Γ). However, a chain instance in 𝜎 (Γ) with
deadline 𝑡𝑑 cannot execute at all, implying that it will miss the

deadline. □

Fact 2. In any busy interval, (𝑡𝑜 , 𝑡𝑑], at most one (sub)chain
instance with deadline > 𝑡𝑑 can execute non-preemptively for one
callback.
2
Slack time is the difference between the deadline and completion time of a chain

instance. Note that slack time can be negative, which usually occurred for ‘tardy’

instance, and we allow tardiness in our model.

304

Response Time Analysis for Dynamic Priority Scheduling in ROS2 DAC ’22, July 10–14, 2022, San Francisco, CA, USA

Proof. Following the deadline-based strategy, any chain in-

stance can be preempted by a higher priority chain at the com-

pletion instants of callbacks of the executing chain. Therefore,

the chain instance with deadline > 𝑡𝑑 can at most execute non-

preemptively for one callback with an execution starting time in-

stant < 𝑡𝑜 . Further, once the chains in 𝜎 (Γ) with deadline ≤ 𝑡𝑑
starts executing, any chain instance with deadline > 𝑡𝑑 cannot

execute in (𝑡𝑜 , 𝑡𝑑] following the minimality constraint of 𝜎 (Γ) and
the fact 1. □

Following facts 1 and 2, we can bound the blocking term for a

busy interval by low-priority chain instances.

Lemma 1. The maximum blocking time of analyzed chain, Γ𝑘
𝑗
in

a ‘busy interval’ of executor 𝐸𝑘 is upper-bounded by:

𝐵𝑘𝑗 = max

∀𝜏𝑖 ∈ 𝐸𝑘 (Γ)\Γ𝑘𝑗

{
𝐶𝑖 −

⌊
𝐶𝑖

𝑇𝑗

⌋
·𝑇𝑗

}
(7)

and 𝑇𝑗 is the minimum inter-arrival time of the analyzed chain, Γ𝑘
𝑗
.

Proof. Following fact 2, the blocking time by a lower priority

chain can be at most the execution time of ‘one callback’. However,

the blocking time for the analyzed chain, Γ𝑘
𝑗
cannot be from the

lower-priority instances of Γ𝑘
𝑗
as the release time of lower-priority

instances always later than the current instance. Therefore, lower-

priority blocking (sub)chain instances are from ∀𝜏𝑖 ∈ 𝐸𝑘 (Γ) \ Γ𝑘𝑗 .
Now, from the overload handlingmechanism, if any chain instant

cannot start execution for one or more periods of the chain instance,

then the chain instance is dropped. Therefore,

⌊
𝐶𝑖

𝑇𝑗

⌋
·𝑇𝑗 of𝐶𝑖 is not

included in blocking time. □

So, the maximum possible blocking time in a ‘busy interval’ of

the executor 𝐸𝑘 is,

𝐵𝑘 = max

∀𝑗 :Γ𝑘
𝑗

∈ 𝐸𝑘 (Γ)
{𝐵𝑘𝑗 } (8)

Lemma 2. The ‘Resource Demand’ in a busy interval (𝑡𝑜 , 𝑡𝑑],
RD(𝑡𝑑 − 𝑡𝑜) of the executor 𝐸𝑘 is upper-bounded by:

RD(ℓ) = 𝐵𝑘 +
∑︁

∀𝑗 :Γ𝑘
𝑗
∈𝐸𝑘 (Γ)

dbf (Γ𝑘𝑗 , ℓ) (9)

here, ℓ = 𝑡𝑑 − 𝑡𝑜 and dbf (Γ𝑘
𝑗
, 𝑡𝑑 − 𝑡𝑜) is the demand-bound function

of the chain Γ𝑘
𝑗
in the time interval of (𝑡𝑜 , 𝑡𝑑].

Proof. The demand-bound function of any chain in the executor
can be estimated using Eqn. (4). Therefore,

∑
∀𝑗 :Γ𝑘

𝑗
∈𝐸𝑘 (Γ) dbf (Γ

𝑘
𝑗
, ℓ)

provides the maximum possible resource demand by the workload

𝐸𝑘 (Γ) in (𝑡𝑜 , 𝑡𝑑] interval and 𝐵𝑘 is the maximum blocking term

(Eqn. 8) for the workload. Hence, the lemma follows. □

Without loss of generality, we consider the idle instant as 𝑡𝑜 = 0,

so the resource demand for any ‘busy interval’ ℓ :

RD(ℓ) = 𝐵𝑘 +
∑︁

∀𝑗 :Γ𝑘
𝑗
∈𝐸𝑘 (Γ)

dbf (Γ𝑘𝑗 , ℓ)

4.3 Response-Time inside an Executor
So far, we have both the maximum resource demand RD(ℓ) and
minimum resource supply by the supply-bound function, sbf (ℓ).
Now, we compute the minimum slack time for the analyzed chain

instances Γ𝑘
𝑗
in the executor 𝐸𝑘 using following lemma,

Lemma 3. The slack time of the analyzed (sub)chain Γ𝑘
𝑗
in execu-

tor 𝐸𝑘 is lower-bounded by:

𝑆∗𝑘𝑗 = min

∀𝛿 :𝐷𝑘
𝑗
≤𝛿≤𝐿𝑘

𝑗

{
𝛿 − sbf (RD(𝛿))

}
(10)

where 𝐿𝑘
𝑗
3 is an upper-bound of range [1].

Proof. The lemma directly follows Theorem III.2 of [5]. □

Lemma 3 provides the exact slack for the tardy chains but gives

pessimistic slack time for hard sporadic chain scheduling [5]. How-

ever, we allow the tardiness of the processing chains. So, we do not

develop an exact test for hard sporadic chains.

Theorem 1. The response time of the analyzed chain (Γ𝑘
𝑗
) in the

executor (𝐸𝑘) is
𝑅𝑘𝑗 = 𝐷

𝑘
𝑗 − 𝑆

∗𝑘
𝑗 (11)

Proof. It directly follows from response time defined in (6). □

The response time of the analyzed chain Γ𝑘
𝑗
can further be bound

from above for the overloaded system using the overload handling

mechanism of ROS2 as follows,

𝑅𝑘𝑗 =

{
𝑅𝑘
𝑗
, if 𝑅𝑘

𝑗
≤ 𝑇𝑗 +𝐶Γ𝑗

𝑇𝑗 +𝐶Γ𝑗 , otherwise
(12)

this works following the fact that the overloading handling mech-

anism allows at max 𝑇𝑗 idle time for any chain instance to start

execution and the EDF makes the chain instance highest priority

among all active instances.

4.4 End-to-end Response Time

Finally, we analyze the end-to-end response time of the analyzed

chain, Γ𝑗 =
⋃
∀𝑘

Γ𝑘
𝑗
, which can span over the multiple executors in

the system.

Theorem 2. The end-to-end response time of the analyzed chain
Γ𝑗 is:

𝑅 𝑗 =
∑︁
∀𝑘
𝑅𝑘𝑗 + (𝐾𝑗 − 1) · 𝛾 (13)

where 𝐾𝑗 is the number of executors that the chain Γ𝑗 spanned.

Proof. It follows from the principle of the CPA tool: the end-to-

end response of the chain is the sum of individual response time in

each executor and the total communication delays. □

5 EVALUATION

In this section, we first explain our implementation of the proposed

chain instance-level priority scheduler in ROS2. Next, we present

experimental results comparing the different schedulers.

3𝐿𝑘
𝑗
= 𝑐

1−𝑐 · max{𝑇𝑗 −𝐷𝑘
𝑗
} where,∑∀Γ𝑘

𝑗
∈𝐸𝑘 (Γ) (𝐶Γ𝑘

𝑗
/𝑇𝑗) ≤ 𝑐 [1].

305

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Abdullah Al Arafat, Sudharsan Vaidhun, Kurt M. Wilson, Jinghao Sun, and Zhishan Guo

Chains Specifications (msec)

< 𝜏1, 𝜏2 > 𝐶1 = 2.3,𝐶2 = 16.1,𝑇1 = 80

< 𝜏1, 𝜏3, 𝜏4, 𝜏5 > 𝐶3 = 2.2,𝐶4 = 18.4,𝐶5 = 9.1,𝑇1 = 80

< 𝜏{6,··· ,9} > {𝐶{6,··· ,9} } = {23.1, 7.9, 14.2, 17.9},𝑇6 = 100

< 𝜏10, 𝜏11, 𝜏12 > 𝐶10 = 20.6,𝐶11 = 17.9,𝐶12 = 6.6,𝑇10 = 100

< 𝜏{13,··· ,16} > {𝐶{13,··· ,16} } = {1.7, 11, 6.6, 7.9},𝑇13 = 160

< 𝜏17, 𝜏18 > 𝐶17 = 1.7,𝐶18 = 195.5,𝑇17 = 1000

(𝐵𝐸1,...,6) 𝐶1 = 33.2,𝐶2 = 6.6,𝑇 = 120

Table 3: Specifications for the case study tests, where first six

chains are real-time chains and last row specifies the best-

effort (six) chains with same parameters.

RT1 RT2 RT3 RT4 RT5 RT6 BE1 BE2 BE3 BE4 BE5 BE6

Chain Index

0.0

0.2

0.4

0.6

0.8

E
n

d
-t

o
-E

n
d

L
at

en
cy

(s
) ROS2 Default [3, 9]

PiCAS [4]

Proposed

Figure 4: End-to-end latency - tested with the default ROS2,

PiCAS [4], our modified executor scheduler for the case study
workloads presented in Table 3.

5.1 Implementation

Our implementation features an alternate executor based on the

default SingleThreadedExecutor provided by rclcpp. Our modi-

fied executor maintains a priority queue, named readyQueue, and
populates it from the wait_set after every callback execution. We

created a unified structure to represent any type of callback along

with its chain membership, period, and deadline parameters, and

replaced the default executor’s unordered callback lists.

When a chain completes execution, the executor checks the

time_until_trigger field of the chain’s associated timer and sets
the deadline field of the chain’s callbacks to time_until_trigger
+ period. Before a chain completes execution, the timer callback

may be triggered resulting in multiple chain instances ready for

execution. To prevent multiple chains from running at once, each

callback in a chain has a counter that keeps track of where in the

chain execution is happening. The counter can used to ensure that

the newly released chain instance is not scheduled until the counter

reaches the end of the current chain. The callbacks in the queue is

prioritized by chain instance first and then by callback deadlines.

5.2 Case Study

The ROS2 schedulers are implemented on an Nvidia Jetson Xavier
AGX in the 30𝑊 mode, with the clock frequencies fixed at 1.2Ghz.

Workload. To evaluate the deadline executor implementation, we

perform tests with a node layout inspired by case study II from [4].

The workload parameters are presented in Table 3.

Each test uses 4CPU cores, and each thread is set to the sched_fifo

Linux scheduling class. When testing the default ROS executor and
our modified executor, we use 8 executors. We distribute the real-

time chains across the first four executors and the best-effort chains
across the next four executors. Each executor runs in its own thread.

Threads containing real-time (RT) chains have their priorities set

to 99 (the maximum priority available in Linux), and the best-effort

(BE) chains are assigned priority 98. We then distribute the executors
across 4 CPU cores for load balancing. For testing the PiCAS execu-
tor, we added chain membership and priority fields and followed

the allocation scheme presented in the paper.

Results.We compare our deadline-based executor against the de-
fault ROS SingleThreadedExecutor and the existing chain-aware
priority-based execution strategy developed by Choi et al., Pi-

CAS [4]. We observe that for any chain, our proposed scheduler has

a lower or equal latency compared to PiCAS as well as the default

scheduler. Within each category (RT, BE), we observes that our

proposed scheduler has better average latency compared to others

for higher chain indices (Fig. 4). As a general trend, the default

scheduler has a lower average irrespective of the chain, but higher

worst-case latencies. In contrast, our proposed approach maintains

a lower average while having lower worst-case latencies as well.

All algorithms appear to favor lower index over higher index chains

and we believe this due to the tie-breaking behavior.

Note. Our latency times are not directly comparable to those found

in [4], due to the difference in the definition of latency. In our work,

we define latency as the time difference between release time of

the chain and the completion time of the last callback in the chain.

Whereas, [4] measure the latency starting from the point the timer

callback begins execution. The presented latency is in line with the

definition of latency in the real-time scheduling theory.

6 CONCLUSION AND FUTUREWORKS

In this paper, we proposed a deadline-based scheduling scheme for

ROS2 executor to overcome the limitations of the default readySet-
based scheduling technique. We used deadline as a tool to realize

dynamic priority setting, and presented an end-to-end response

time analysis for each processing chain spanning over multiple

executors. We evaluated the proposed scheduler using a case study

of the ROS2 application. Our future goal is to develop techniques

to optimally assign dynamic priorities (deadlines) for the workload,

such that the user-specified response time and latency requirements

can be met. While no such results exists yet, this work serves as a

first and important step, where the latency for a given workload

can be upper bounded, while deadlines are used to set dynamic

priorities.

REFERENCES

[1] S. K. Baruah et al. Algorithms and complexity concerning the preemptive sched-

uling of periodic, real-time tasks on one processor. Real-time systems.
[2] T. Blaß et al. A ros 2 response-time analysis exploiting starvation freedom and

execution-time variance. In 2021 IEEE Real-Time Systems Symposium (RTSS).
[3] D. Casini et al. Response-time analysis of ROS 2 processing chains under

reservation-based scheduling. In 31st Euromicro Conference on Real-Time Sys-
tems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[4] H. Choi et al. PiCAS: New Design of Priority-Driven Chain-Aware Scheduling

for ROS2. In 2021 IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS).

[5] N. Guan andW. Yi. General and efficient response time analysis for edf scheduling.

In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).
[6] R. Henia et al. System level performance analysis–the symta/s approach. IEE

Proceedings-Computers and Digital Techniques.
[7] I. Shin and I. Lee. Periodic resource model for compositional real-time guarantees.

In 24th IEEE Real-Time Systems Symposium (RTSS), 2003, pages 2–13. IEEE, 2003.
[8] I. Shin et al. Hierarchical scheduling framework for virtual clustering of multipro-

cessors. In 2008 Euromicro Conference on Real-Time Systems.
[9] Y. Tang et al. Response time analysis and priority assignment of processing chains

on ROS2 executors. In 2020 IEEE Real-Time Systems Symposium (RTSS).

306

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

