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Optimizing Energy in Non-Preemptive
Mixed-Criticality Scheduling by Exploiting

Probabilistic Information
Ashikahmed Bhuiyan, Federico Reghenzani, William Fornaciari, and Zhishan Guo

Abstract—The strict requirements on the timing correctness
biased the modeling and analysis of real-time systems toward
the worst-case performances. Such focus on the worst-case, how-
ever, does not provide enough information to effectively steer
the resource/energy optimization. In this article, we integrate a
probabilistic-based energy prediction strategy with the precise
scheduling of mixed-criticality tasks, where the timing correct-
ness must be met for all tasks at all scenarios. The dynamic
voltage and frequency scaling (DVFS) is applied to this precise
scheduling policy to enable energy minimization. We propose a
probabilistic technique to derive an energy-efficient speed (for the
processor) that minimizes the average energy consumption, while
guaranteeing the (worst-case) timing correctness for all tasks,
including LO-criticality ones, under any execution condition. We
present a response time analysis for such systems under the non-
preemptive fixed-priority scheduling policy. Finally, we conduct
an extensive simulation campaign based on randomly generated
task sets to verify the effectiveness of our algorithm (with respect
to energy savings) and it reports up to 46% energy-saving.

Index Terms—Embedded software, real-time systems, schedul-
ing algorithms.

I. INTRODUCTION

MANY embedded systems have hard real-time con-
straints that must be satisfied to guarantee the correct-

ness of the system behavior. Missing a time deadline is, in fact,
typically considered as a system failure. To ensure the tim-
ing correctness of a system, a schedulability test is performed
to verify that no task misses any deadline under any condi-
tion. The task models are usually characterized by the arrival
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pattern, (periodic, sporadic, or aperiodic, etc.,) the deadline,
and the execution time. In particular, most of the state-of-the-
art schedulability analysis considered that a task can execute
up to its worst-case execution time (WCET). During the real
execution, however, a task rarely needs to execute up to
its WCET [48]. For a large class of real-life applications,
WCET-based schedulability analysis is often proved to be very
pessimistic [35], as the task execution pattern may show great
variability [with respect to (w.r.t.) time]. Consequently, design-
ing a system with the assumption that a task will execute
up to its WCET, may lead to system over-provisioning, low
utilization, high costs, and excessive power/energy consump-
tion [38]. This is in contrast with the requirement of improving
performance while maintaining the nonfunctional property at
an acceptable level.

To efficiently utilize the non-negligible gap between the
WCET and the actual execution time, and to minimize energy
consumption, resource over-provisioning, and cost, the mixed-
criticality (MC) framework [50] received attention from a
wide community. In an MC setup, different software com-
ponents with different criticality levels are integrated into a
common platform. To each task, a criticality level is assigned
together with multiple execution time thresholds (at differ-
ent certification/pessimism levels), as described by Vestal’s
seminal paper [50]. This value is inspired by the industry stan-
dards for safety-critical systems: for instance, the DO-178C
avionic software standard [47] sets five levels of criticality:
{A, B, C, D, E}, where A is the criticality level referring to
functions that may cause catastrophic failures, while at level E,
to functions that do not affect safety. In real-time computing,
this value is interpreted as the level of assurance of the WCET.
To illustrate this concept, let us consider a dual-criticality
system, where the tasks are classified in LO-criticality and HI-
criticality. The tasks belonging to the latter category have two
values for the WCET: where one value is pessimistic, but safe,
while the other value is computed with an analysis that pro-
vides a lower level of assurance, and hence less pessimistic.
In this case, the less pessimistic value may not correctly
(over-)estimate the real WCET. Consequently, the execution
time of a task may overrun this value. When this condition
happens, i.e., the overrun, we say that a mode switch occurs.

Existing MC task-set scheduling strategies aimed at: 1) cor-
rectly scheduling all the tasks when the system exhibits less
pessimistic behaviors (in this case, the system is said to
be in LO-criticality mode) and 2) correctly scheduling the

0278-0070 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:37:14 UTC from IEEE Xplore.  Restrictions apply. 



BHUIYAN et al.: OPTIMIZING ENERGY IN NON-PREEMPTIVE MC SCHEDULING BY EXPLOITING PROBABILISTIC INFORMATION 3907

more important (HI-criticality) tasks under more pessimistic
behaviors, while no scheduling guarantee is given to the less
important (LO-criticality) tasks (in this case, the system is
said to be in HI-criticality mode). The system starts run-
ning in LO-criticality mode by scheduling the tasks under
optimistic assumptions. When a HI-criticality task violates its
assigned execution time threshold, the system switches to the
HI-criticality mode, i.e., mode switch, and it drops all the
LO-criticality tasks to guarantee the deadlines of HI-criticality
tasks. However, discarding (or providing degraded services) to
the LO-criticality tasks may result in severe performance loss
and it violates the task independence requirements for safety-
critical systems [21]. A recent work by Bhuiyan et al. [13]
handled the precise scheduling of MC systems, where full
service is provided to all tasks under both the pessimistic
and optimistic assumptions. They incorporated the dynamic
voltage and frequency scaling (DVFS) scheme to the precise
scheduling strategy and derived the energy-aware CPU speed
to execute in normal mode. However, the optimized energy
consumption is in accordance to the worst-case behaviors
under the normal mode. The energy consumption should be
optimized for the average/expected scenarios instead, and the
existing MC task model (with multiple WCETs) does not
provide sufficient information to perform such optimization.

Probabilistic Approaches: Probabilistic real-time
approaches have been proposed in the last two decades
to overcome the problem of the WCET estimation for modern
platforms [18], [46]. Most of these approaches are based on
the estimation of the distribution tail by exploiting the extreme
value theory, a statistical theory to model the probability of
extreme events, that in the real-time case it is used for the
WCET of the tasks. Unfortunately, the theory is still immature
and several challenges yet to be addressed before considering
its results reliable [31], [43], [45]. Hence, in this work,
we propose to exploit the probabilistic information not to
directly estimate the WCET for scheduling analysis purposes,
but to use them for the optimization of the system energy
consumption. Differently from previous probabilistic energy
approaches [42], the focus of this work is the satisfaction
of real-time requirements with a deterministic approach and
on top of that, exploiting the probabilistic information to
minimize the expected energy consumption of the system.

Our Contribution: Existing works aimed at minimizing
energy consumption at LO-criticality mode, but considered a
pessimistic assumption that all the tasks execute up to their
WCET, at their respective criticality levels [13]. Since a task
rarely needs to execute up to its WCET, we integrate the
probabilistic-based prediction strategy and the DVFS scheme
to the precise scheduling of MC tasks. To our knowledge, this
is the first work that considers the probabilistic information
to minimize energy consumption in an MC platform. The key
contributions of this article are as follows.

1) We propose an energy-aware scheduling strategy that
selects the proper (optimistic) WCETs for tasks and
the processor speeds under both (LO- and HI-criticality)
modes to minimize the overall average energy con-
sumption. This optimization is performed via a novel
probabilistic analysis of the execution time, coupled

with a dedicated response time analysis (RTA) which
guarantees the timing correctness of all tasks under both
the pessimistic and optimistic assumptions.

2) A variant of an existing MC non-preemptive fixed-
priority uniprocessor scheduling policy is proposed to
integrate the speed changing between different modes
and to remove the undesirable dropping of LO-criticality
tasks.

3) Based on a randomly generated task sets, we conduct
extensive simulation studies which supports the effec-
tiveness of our algorithm (w.r.t. energy consumption).

Organization: The remainder of this article is organized
as follows. Section II describes the task model with a solu-
tion overview. Section III provides an RTA of our algorithm.
Section IV discusses the technique to reduce the average
energy consumption. In Sections V and VI, we discuss the
simulation results and the related works. Section VII concludes
this article with some potential future directions.

II. PROBLEM FORMULATION AND PROPOSED SOLUTION

A. System Model

We consider a task-set τ = {τ1, τ2, · · · , τn}, running on an
uniprocesssor, where each task τi ∈ τ is an implicit deadline
periodic task, i.e., task deadline equals its period. Each task
τi ∈ τ generates an unbounded number of jobs τi,j, where
j can be an arbitrarily large number with j ≥ 1. We repre-
sent τi by a 5-tuple {Ti, CLO

i , CHI
i , pETi, Li}, where Ti is the

interarrival time between two subsequent jobs of τi, CLO
i and

CHI
i , respectively denote the LO and HI-criticality WCET of τi,

pETi the probabilistic profile as described later in Section II-B,
and Li is the criticality level, where Li ∈ {LO, HI}. We also
define, for convenience of the subsequent notation, the two
complementary subsets τ LO = {τi ∈ τ : Li = LO} and
τ HI = {τi ∈ τ : Li = HI}.

The proposed approach works with non-preemptive fixed-
priority schedulers. The necessity of this restriction on
scheduling will be detailed later in this article, while the exten-
sion to dynamic priority schedulers is left as future work.
The scheduling decisions repeat over time and the size of this
time interval is called hyperperiod. The hyperperiod H can be
computed as the least common multiple of the tasks’ period:
H = LCM(T1, T2, . . . , Tn).

The system is assumed to be equipped by some sort of
power/energy control techniques of the hardware, such as the
DVFS. To simplify the theoretical analysis, we normalize the
system speed such that it is assumed that the system executes
all jobs at speed sHI ∈ (0, 1] under HI-criticality mode, while
sLO ∈ (0, 1] denotes the system speed under LO-criticality
mode. Note that the WCET and the probabilistic information
of the task model always refers to speed-1 condition, and they
can be considered the amount of work to be executed. Given
the WCET Ci of the ith task, the actual execution time in the
system becomes (Ci/s) for under executing speed of s. The
period (and the deadline) does not scale according to s and they
remain fixed. Since, in our strategy, the speed can change only
once per job execution, any overhead to change the DVFS set-
ting is assumed included in the WCET and negligible w.r.t.
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Fig. 1. Diagram of the speed-change mechanism during mode transition to
HI-criticality and the switch back to LO-criticality mode after idle.

the probabilistic execution time. The energy consumed by
the job of a task depends on s as well as the actual exe-
cution time of the job. We use the symbol ε(x, s) to indicate
the energy function that relates the execution time x and the
speed s to the energy consumption. Such function is hardware
dependent and can be arbitrary: the analysis of the following
sections works with any energy model, including nonlinear
formulations for ε(x, s).

Mode Switch Mechanism and Correctness Requirements:
Most of the existing papers on MC systems adopt the system
mode switch effect (refer to Section VI), i.e., dropping LO-
criticality tasks when a HI-criticality task overruns its CLO

i .
Instead, we adopted the speed-change mechanism, so that
each task τi (including LO-criticality ones) is guaranteed to
be executed under any condition. The system mode switch
to HI-criticality causes an increase of the processor frequency
to guarantee that all jobs are correctly schedule. The proposed
approach is depicted in Fig. 1. Resource/Energy efficiency
is achieved in LO-criticality mode by optimizing the trade-
off between the minimum system speed and probability of
mode-switch. Let sLO (and sHI) denote the processor speed
when the system is in LO-criticality (and HI-criticality, respec-
tively) mode. Same as the classical MC setting, the system
switches its mode to HI when a HI-criticality task overruns
its CLO

i . During the HI-criticality mode, the processor runs at
high frequency sHI in order to be able to schedule all the jobs
even in the most pessimistic assumptions. The system reverts
to LO-criticality at the end of each hyperperiod, or when the
system is idle, whichever comes earlier. The values of sLO, sHI,
and CLO

i depend on the schedulability of the task set and they
impact the system energy consumption. For this reason, the
goal of our approach is to select such parameters so that the
energy is minimized, according to probabilistic information,
while guaranteeing the schedulability of the whole task-set
according to deterministic WCET.

B. Probabilistic Model

The probabilistic profile of the execution time of a task τi is
identified by the symbol pETi and it is a 3× k matrix defined
as follows:

pETi =
⎛
⎝

e1 e2 · · · ek

fi(e1) fi(e2) · · · fi(ek)

Fi(e1) Fi(e2) · · · Fi(ek)

⎞
⎠ (1)

where e1, e2, . . . , ek are execution time values, f (·) is the prob-
abilistic mass function (PMF), and F(·) the cumulative distri-
bution function (CDF). Even if the last two rows are redundant
(PMF from the CDF is computable and vice versa), this simpli-
fies the notation in the subsequent sections. The inverse CDF
(ICDF) is also defined as F−1(p) := {ei : F(ei) = p}.

Example 1: Let consider the following execution profile:

pET1 =
⎛
⎝

5 7 12 19 20
0.10 0.60 0.25 0.04 0.01
0.10 0.70 0.95 0.99 1

⎞
⎠.

It represents the statistical distribution of the execution time
of the task τ1. The probability that a task requires 5 unit
of execution time is 0.1, for 7 unit of execution time case
the probability is 0.6 and so on. The last row represents the
CDF, for example, the probability that the execution time is
less or equal to 12 is 0.95. The ICDF in this case would be
F−1(0.95) = 12.

In this article, we considered the probabilistic profile, and
the related statistical functions, as discrete. This assumption
is in common with most of the other papers on probabilistic
approaches [18], since the time is discrete when used to mea-
sure the execution time, e.g., as the number of clock cycles.
The exact distribution of the task execution time is often
unknown and hard to be computed statically. To estimate the fi
and Fi of the tasks, an experimental campaign must be carried
out to directly measure the execution time of the task. Since,
in this article, we are not interested in the probabilistic-WCET,
but on the full probabilistic profile of the execution time, the
empirical CDF (ECDF) method is used. This method enables
to estimate the values Fi takes by directly measuring n-samples
of the execution time

Fi(x) = 1

n

n∑
i=1

1xi<x

where 1xi<x is the indicator function1 and x1, x2, . . . , xn is the
set of measured execution time samples. From the CDF it
is possible to compute the PMF fi(x) by the subsequent dif-
ferences of the CDF: fi(x) = F(x) − F(x − 1). To obtain a
precise estimation of the probabilistic profile, the task should
experience as much as possible execution conditions during
the measurements, i.e., inputs and states. The precision of
the ECDF estimation is derived from the Dvoretzky–Kiefer–
Wolfowitz inequality [19]: ε = √

(log(2/c))/(2n), where c
is an arbitrary low confidence. For example, if n = 10 000
samples are acquired, with a confidence of c = 10−6 the
maximum absolute error on the CDF is lower than ε ≤ 0.02.
More sophisticated statistical techniques can obtained better
results with a smaller number of samples, but this analysis
would be out of scope w.r.t. this article goals. It is important
to remark that this probabilistic information is used in this
work only for the optimization of the energy and it does not
impact the schedulability analysis. Consequently, inaccuracies
in the probabilistic execution time estimations [44] affect only

1The indicator function 1A has value 1 if the condition A is respected,
otherwise 0.
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Fig. 2. Overview of the proposed approach, with a focus on the optimization
algorithms.

the optimality w.r.t. the energy consumption and it does not
affect the satisfaction of the real-time constraints.

WCET in LO-Criticality Mode: In most of traditional MC
works, the value of WCET in LO-criticality mode, i.e., CLO

i ,
is assumed to be given or empirically selected according to a
defined percentage of the HI-criticality WCET. In this work,
instead, we compute the CLO

i so that it minimizes the energy
consumption.2 In fact, there is a tradeoff between the prob-
ability to switch to HI-criticality mode and the minimum
achievable speed in LO-criticality mode. Large values for CLO

i
would delay the activation of the HI-criticality mode, thus
reducing probability of this event to happen, but it requires to
increase the minimum speed in LO-criticality mode in order
to guarantee the schedulability. While, a small value for CLO

i
would decrease the minimum speed in LO-criticality mode, but
increases the chances of a mode-switch and, if it happens too
frequently, it may produce the opposite effect of increasing
the energy consumption. The approach to select CLO

i in this
work is based on the probabilistic profile, and in particular, by
exploiting the ICDF: a value pLO→HI, that represents the prob-
ability per job to switch from LO-criticality to HI-criticality,
is selected according to the optimization problem and used to
compute the WCET with the ICDF

CLO
i = F−1

i

(
pLO→HI

)
. (2)

C. Solution Overview

The flow of the approach proposed in this article to solve
the previously defined problem is outlined in Fig. 2. Note that,
real-time task scheduling requires a strict timing guarantee.
To ensure that the WCET prediction does not compromise the
system schedulability, we propose an approach composed of

2Although the calculation under such a purpose would technically lead to
execution thresholds that have nothing to do with “worst-case,” we never-
theless still follow the traditional MC work in the real-time and embedded
systems community by calling them WCET under the LO-criticality mode.

two optimization algorithms that contribute to obtaining the
schedule that requires a minimum average energy consump-
tion while guaranteeing that no task will miss the deadline.
The probabilistic information is used only for the energy
minimization and not for the schedulability test. Our schedu-
lability test remains safe by using the deterministic WCET,
i.e., as far as the worst-case estimations are trustworthy, our
solution will guarantee worst-case correctness.

1) The outer optimization that selects the WCET of the task
in LO-criticality mode, i.e., CLO

i , by choosing the best
value for mode switch probability pLO→HI that leads to
the minimum average energy. This goal can be formally
written with the following optimization problem:

min
pLO→HI

E[ε(x, sLO)] (3)

where E[·] is the expected value operator over the
execution time x and sLO is computed by the inner
optimization algorithm from pLO→HI. This part is
majorly described in Section IV.

2) The inner optimization chooses the minimal sLO, which
ensures the task set to be schedulable according to the
RTA proposed in Section III, with the CLO

i thresholds
computed from pLO→HI according to (2). Once we com-
pute sLO and generate an output schedule, the energy
estimation procedure takes this schedule as input. This
computes, thanks to the probabilistic information, the
average energy, which is, in turn, used in the outer
optimization algorithm.

Finally, the optimal values for sLO and pLO→HI are com-
puted, together with the optimal schedule, w.r.t. the average
energy minimization, to be applied online.

III. RESPONSE TIME ANALYSIS

In this section, we discuss the existing RTA for a non-
preemptive FP scheduler for both the non-MC and the MC
tasks (Section III-A). Then, in Section III-B, we propose the
RTA for our algorithm.

A. Existing RTA for Non-MC and MC Tasks

Two state-of-the-art works [3], [39] proposed an RTA of
non-preemptive FP scheduling, but under settings that are
different from this paper’s focus. We will report the main
results in the form of equations to make it easier to follow
the subsequent RTA for our problem.

First, we describe some commonly used notations in most
FP scheduling analysis work. Let hep(i) [or hp(i)] denotes the
set of tasks with higher or equal (or higher only) priority than
τi. Similarly, lep(i) [or lp(i)] denotes the set of tasks with
lower or equal (or lower only) priority than τi.

Considering the non-preemptive FP scheduling for the non-
MC tasks, Mohan et al. [39] calculated the worst-case response
time (WCRT) Ri of task τi as follows:

Ri = Bi + Ci +
∑

τj∈hep(i)

Nj × Cj.

Here, Bi is the maximum duration that τi can be blocked by
lower priority tasks and Nj is the total number of interfering
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jobs of τj ∈ hep(i), defined as

Bi = max
τk∈lp(i)

Ck − 1, and Nj =
⌊

Ri − Ci

Tj
+ 1

⌋
. (4)

Before moving further into the details, let us introduce the
same notations but for the MC case: lpχ(i) [or hpχ(i), lepχ(i),
hepχ(i), respectively] denote the set of χ -criticality tasks with
lower (or higher only, lower or equal, lower or equal) priority
than τi, where χ ∈ {LO, HI} and other notations carry their
usual meaning. We also use Bχ

i , Cχ
i and Nχ

j to denote the
maximum blocking time, execution time, and the total number
of interfering jobs (τj ∈ hep(i)) of task τi at χ -criticality mode,
respectively.

Baek and Lee [3] extended the analysis above to MC task
model by considering the adaptive MC (AMC) scheme [4],
and derived WCRTs for the following three cases separately.

Case 1: WCRT at LO-criticality mode for any task τi is
calculated as

RLO
i = BLO

i + CLO
i +

∑
τj∈hep(i)

NLO
j × CLO

j (5)

where

BLO
i = max

τk∈lp(i)
CLO

k − 1, NLO
j =

⌊
RLO

i − CLO
i

Tj
+ 1

⌋
.

Case 2: WCRT at HI-criticality mode for any HI-criticality
task τi is calculated as

RHI
i = BHI

i + CHI
i +

∑
τj∈hepHI(i)

NHI
j × CHI

j (6)

where

BHI
i = max

τk∈lpHI(i)
CHI

k − 1, NHI
j =

⌊
RHI

i − CHI
i

Tj
+ 1

⌋
.

Case 3: WCRT during mode switch of a job released by task
τi (at LO-criticality mode but finished at HI-criticality mode)
is calculated as

RTR
i = BTR

i + CHI
i +

∑
τj∈hepLO(i)

NLO
j × CLO

j

+
∑

τj∈hepHI(i)

NHI
j × CHI

j (7)

where

BTR
i = max

(
max

τk∈lpLO(i)
CLO

k , max
τk∈lpHI(i)

CHI
k

)
− 1

NLO
j =

⌊
RLO

i − CLO
i

Tj
+ 1

⌋

NHI
j =

⌊
RTR

i − CHI
i

Tj
+ 1

⌋
.

For any HI-criticality task τi ∈ τHI, regardless of a mode-
switch, WCRT is upper bounded by RTR

i . Hence, under
the AMC scheme, the following conditions determine the
schedulability of a task-set τ : 1) ∀τi∈τ LO , RLO

i ≤ Di and
2) ∀τi∈τ HI , RTR

i ≤ Di.

B. RTA of Our Algorithm

In this section, we describe the RTA for our scheduling
algorithm, which considers the following assumption.

Assumption: We assume that the WCET and the processor
speed has a linear relationship [13], i.e., if τi starts executing
on a processor (with CLO

i ) with a degraded speed sLO, it will
take CLO

i /sLO time units to finish execution.
Recall that under the LO-criticality mode, all the LO- and

HI-criticality tasks execute at an energy-conserving speed, i.e.,
sLO. After a LO- to HI-criticality mode switch, all the LO-
and HI-criticality tasks execute at the maximum processor
speed sHI.

Deriving RLO
i : Based on such assumption and the RTA anal-

ysis in (5), we calculate RLO
i for all the LO- and HI-criticality

tasks as follows:

RLO
i = BLO

i +
CLO

i

sLO

+
∑

τj∈hep(i)

NLO
j ×

CLO
j

sLO

(8)

with BLO
i and NLO

j computed as

BLO
i = max

τk∈lp(i)

(
CLO

k

sLO

)
− 1

NLO
j =

⎢⎢⎢⎣RLO
i − CLO

i
sLO

Tj
+ 1

⎥⎥⎥⎦. (9)

Deriving RHI
i : Now, we derive RHI

i thanks to (6). Recall that,
we do not drop any LO-criticality tasks after a mode switch.
Hence, hepHI(i) in (6) needs to be replaced by hep(i)

RHI
i = BHI

i +
CHI

i

sHI

+
∑

τj∈hep(i)

NHI
j ×

CHI
j

sHI

. (10)

We derive the blocking time, BHI
i , considering two cases.

Case 1: The blocking task, τk, initiates the mode-switch.
Clearly, τk ∈ τ HI, and the blocking time become

B(1)
i = max

τk∈lpHI(i)

(
cLO

k

sLO

+ cHI
k − cLO

k

sHI

)
− 1.

Case 2: Task τk releases and completes execution at HI-
criticality mode, and the blocking time becomes

B(2)
i = max

τk∈lp(i)

(
CHI

k

sHI

)
− 1.

We calculate BHI
i and NHI

j as

BHI
i = max

(
B(1)

i , B(2)
i

)

NHI
j =

⎢⎢⎢⎣RHI
i − CHI

i
sHI

Tj
+ 1

⎥⎥⎥⎦. (11)

Deriving RTR
i : Now, we calculate RTR

i , i.e., the WCRT of a
HI-criticality task τi that faces the mode-switch. Note that, RTR

i
cannot be deduced from the calculation of WCRT during the
stable (LO- or HI-criticality) modes [49]. We instead calculate
the WCRT of a HI-criticality task, τi, by summing the blocking
time, WCET of τi and the worst-case interference from other
tasks with a higher priority than τi. Unlike [3], we do not drop
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the LO-criticality tasks after a mode-switch. Hence, the LO-
criticality tasks can contribute to the interference (even after a
mode-switch). We derive the WCRT of a HI-criticality task τi

that faces mode-switch considering two cases: 1) τi initiates
the mode-switch and 2) any other (HI-criticality) task initiates
the mode-switch. For both these cases, we assume that the
mode-switch happens at time t∗.

Case 1: In this case, τi initiates the mode-switch and once
τi starts execution, it can execute till cHI

i , thanks to the non-
preemptivity. According to the assumption, τi starts execution
at LO-criticality mode. So, a task τk ∈ lp(i) that blocks τi must
start and finish execution at LO-criticality mode. We calculate
the maximum blocking time B(1)

i as follows:

B(1)
i = max

τk∈lp(i)

(
CLO

k

sLO

)
− 1.

Before the mode-switch, τi will execute up to
cLO

i at speed sLO, and after that it will execute at sHI.
Considering this scenario, we calculate the task execution
time C(1)

i

C(1)
i =

CLO
i

sLO

+ CHI
i − CLO

i

sHI

. (12)

Recall that, τi initiates the mode-switch. Hence, τi can be inter-
fered by τj (where τj ∈ hep(i)) at LO-criticality mode only. We
calculate the maximum interference I(1)

i as follows:

I(1)
i =

∑
τj∈hep(i)

⎢⎢⎢⎣RLO
i − CLO

i
sLO

Tj
+ 1

⎥⎥⎥⎦× CLO
j

sLO

.

Finally, we calculate the response time R(1)
i

R(1)
i = B(1)

i + C(1)
i + I(1)

i . (13)

Case 2: In this case, any HI-criticality task (other than τi)
initiates the mode-switch. We calculate the maximum blocking
time considering the following three subcases.

Subcase 2.1: The blocking task τk is released at LO-
criticality mode and does not initiate a mode-switch. Recall
that:

1) τi is also released at LO-criticality mode;
2) a HI-criticality task τj initiates the mode-switch, where

τj ∈ τ \ {τi, τk}.
From the first assumption and the non-preemptive scheduling
policy, it is not possible for τk to start execution at LO-
criticality mode, while finish at HI-criticality mode. So, τk

must start and finish execution at LO-criticality mode, Finally,
we calculate the maximum blocking time as follows:

B(2)
i = max

τk∈lp(i)

(
cLO

k

sLO

)
− 1.

Subcase 2.2: The blocking task τk is released at LO-
criticality mode and initiates a mode-switch. Clearly, τk ∈ τ HI.
By the same reasoning as that for case 1 (12), we calculate
the maximum blocking time as follows:

B(3)
i = max

τk∈lpHI(i)

(
cLO

k

sLO

+ cHI
k − cLO

k

sHI

)
− 1.

Subcase 2.3: The blocking task τk is released at HI-
criticality mode. This case can be discarded, as τk will never
block τi. This is because, τi is released at LO-criticality mode,
and will start execution before τk ∈ lp(i).

To calculate the task execution time, recall that, τi is
released at LO-criticality mode and does not initiate the mode-
switch. Hence, τi can start execution only at the HI-criticality
mode. Otherwise, τi itself invokes a mode-switch or must
finish execution before the mode-switch (due to the non-
preemptivity), which contradicts our assumption. Hence, the
task execution time is

c(2)
i = cHI

i .

As τi starts execution only at the HI-criticality mode, τi can be
interfered by τj ∈ hep(i) at both LO and HI-criticality modes
(Subcase 2.1) or only at HI-criticality mode (Subcase 2.2). Let,
the mode-switch takes place at time t∗. The upper bound of
the interference is then

I(2)
i =

∑
τj∈hep(i)

⎡
⎣
(⌊

t∗

Tj
+ 1

⌋
× CLO

j

sLO

)

+
⎛
⎝
⎢⎢⎢⎣RTR

i − t∗ − CHI
i

sHI

Tj
+ 1

⎥⎥⎥⎦× CHI
j

sHI

⎞
⎠
⎤
⎦

and the response time R(2)
i

R(2)
i = max

(
B(2)

i , B(3)
i

)
+ C(2)

i + I(2)
i . (14)

Considering all the scenarios (i.e., case 1, Subcases 2.1, 2.2,
and 2.3) described above, we calculate RTR

i as

RTR
i = max

(
R(1)

i , R(2)
i

)
. (15)

Finally, we conclude that, a task-set τ is schedulable by our
algorithm if it satisfies the following condition.

1) For each LO-criticality task τi ∈ τ , max(RLO
i , RHI

i ) ≤ Di.
2) For each HI-criticality task τi ∈ τHI,

max(RLO
i , RHI

i , RTR
i ) ≤ Di; where, RLO

i , RHI
i and

RTR
i are calculated using (8), (10), and (15).

C. Computing the Minimum Speed

The role of the RTA in this article, as previously described
in Section II-C, is to find the minimum value for sLO given
fixed values for the WCETs in LO-criticality mode CLO

i , that
are in turn computed from pLO→HI. The minimum speed sLO

can be computed by inverting (15). However, due to the com-
plexity of the equation terms (especially due to the presence of
max operators), obtaining a closed-form solution for min sLO

is not possible. In addition, the values for sLO has to be in
the interval (0, sHI) from a theoretical standpoint, but in a real
system this choice is often limited: the hardware has usually a
finite and small number of operating points, i.e., DVFS possi-
ble settings [37], [51]. This justifies the possibility to explore
a finite number of sLO values, that produces a near-optimal
solution.
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IV. FROM PROBABILISTIC EXECUTION TIME TO AVERAGE

ENERGY CONSUMPTION

According to the output of the previously described RTA
and a fixed priority assignment protocol, it is possible to build
an ordered schedule of m periodic jobs {J1, J2, . . . , Jm} form-
ing a complete hyperperiod. Note that Ji ∈ {τj,k} ∀j, k where
τj,k is the definition of job according to Section II-A. The
notation change is necessary to highlight the job position in
the overall job schedule. Formally, we also assume that each
job has the same properties of its parent task, e.g., the WCET
CHI

i of the job Ji is the same value CHI
k of the task τk such

that Ji = τk,j for some k, j. Because all the jobs are periodic
and the scheduling is fixed-priority non-preemptive, the job
schedule is known at design-time and fixed. This restriction
allows us to perform the following energy analysis.

A. Determining Mixture Distribution for pET

As part of the minimization problem, we assume in this
section to have selected a system-level probability pLO→HI, as
the probability of a HI-criticality job to overruns its CLO

i . The
value CLO

i is computed with the icdf of the pETi distribution:
CLO

i = F−1
Xi

(1 − pLO→HI), where Xi is the random variable
of the execution time distributed according to pETi. In the
task model we assumed that pETi, CLO

i , and CHI
i have been

computed for a processor speed of s = 1. According to the
linearity assumption of the execution time w.r.t. the processor
speed, we define the random variable XLO

i as the execution
time in LO-criticality mode of the ith task. The probabilistic
profile of its execution time is

pETLO
i = Tx

⎡
⎢⎣
⎛
⎝

sLO

1− pLO→HI

1− pLO→HI

⎞
⎠
�−1

� pETi

⎤
⎥⎦ (16)

where � is the symbol of Hadamard product3 and Hadamard
power,4 x is the column number of CLO

i in pETi and Tx is
the function that truncated the matrix from 3 × k to 3 × x
by removing the upper part. For LO-criticality tasks, x = k,
thus no truncation occurs. Similarly we define the probabilis-
tic execution time when the task starts in HI-criticality mode
pETHI

i and when it starts in LO-criticality but a mode switch
occurs to HI-criticality pETTR

i

pETHI
i =

⎛
⎝

sHI

1
1

⎞
⎠
�−1

� pETi (17)

pETTR
i = T ′x

⎡
⎢⎣
⎛
⎝

sHI

pLO→HI

pLO→HI

⎞
⎠
�−1

� pETi +
⎛
⎝

K · · · K
0 · · · 0
0 · · · 0

⎞
⎠
⎤
⎥⎦

(18)

where K = CLO
i /sLO − CLO

i , x is the column number of CLO
i

in pETi and T ′x is the function that truncated the matrix from
3× k to 3× (k− x) columns by removing the lower part. The

3Each element in the ith row of the left matrix is multiplied by the ith
number of the right vector; the output has the size of the matrix.

4Element-wise power operation; the output has the size of the vector.

Fig. 3. Probabilistic event tree of an HI-criticality job.

pETTR
i represents only the upper-part of the execution time,

i.e., after the transition to HI-criticality mode. This means that
it has already executed for a time period of length CLO

i /sLO

and the amount of work already completed is CLO
i .

Example 2: Given the task of Example 1 and choosing a
HI-mode switch probability pLO→HI = 0.05 with sLO = 0.5
and sHI = 1, the WCET for the LO-criticality mode will be
CLO

i = 12 and the probabilistic execution time in LO-criticality
mode is

pETLO
1 =

⎛
⎝

10 14 24
0.11 0.63 0.26
0.11 0.74 1

⎞
⎠.

The probabilistic execution time when the task starts HI-
criticality mode is equivalent to the original distribution
because sHI = 1

pETHI
1 = pET1 =

⎛
⎝

5 7 12 19 20
0.10 0.60 0.25 0.04 0.01
0.10 0.70 0.95 0.99 1

⎞
⎠.

And the probabilistic execution time after a transition of the
task from LO-criticality to HI-criticality is

pETTR
1 = pET1 =

⎛
⎝

31 32
0.8 0.2
0.8 1

⎞
⎠.

When the transition occurs, the task has already executed 12
amount of work in 24 time units, while 7 and 8 units remain
to be executed in HI-criticality mode, for a total of 31 and 32
units of time.

Fig. 3 depicts the probability tree diagram for a generic HI-
criticality job Ji. In particular, at the beginning of the execution
of the job Ji, the system can be in LO-criticality mode or in HI-
criticality mode, respectively, with probability 1−pHI

i and pHI
i .

In the latter case, the job runs in HI-criticality mode and its
execution time is distributed according to the pETHI

i distribu-
tion. In the first case, the job starts to run in LO-criticality
mode and possibly switches to HI-criticality if it overruns
its CLO

i . This happens with the already defined probability
pLO→HI universally set for all tasks. The task execution time
is distributed in the LO-criticality part according to the pETLO

i
distribution, while after mode switch it is distributed accord-
ing to the pETTR

i distribution. Consequently, we can write the
probability mass function of the execution time of the ith job
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Algorithm 1: Estimation of the Probability for a Job to
Start in HI-Criticality Mode (pHI

i )

1 pHI
1 ← 0

2 pETconv ← pET∗1
3 for j← 2 to i− 1 do

� Compute probability for P(A ∩ C)

4 P(A) = pHI
j−1

5 P(A|C) = 1− F∗j−1

(
aj

∣∣∣⋃k<j(Xk > CPLO
k )

)

6 P(A ∩ C) = P(A)P(C|A)

� Compute probability for P(B ∩ C)

7 P(B) = P(Xj−1 ≥ CLO
i−1) = 1− FLO

j (CLO
j−1)

8 P(C) = P(
∑j−1

k Xj ≥ ai) = 1− F∗conv(aj)

9 P(B ∩ C) = P(B)P(C)

� Update variables
10 pHI

j = P(A ∩ C)+ P(B ∩ C)

11 pETconv ← convolute(pETconv, pET∗j )
12 end

starting to run in LO-criticality mode as the following mixture
of mass functions:

f LO+HIi (x) = (1− pLO→HI
)
f LO
i (x)+ (pLO→HI

)
f TR
i (x) (19)

where f LO
i (x) is the pmf of pETLO

i and f TR
i (x) is the pmf of

pETTR
i . This function includes both the case that Ji exceeds

its threshold and the case that it finishes before it.
To characterize the execution time distribution of Ji, we

need to know the probability that the job starts in HI-criticality
mode: pHI

i , which depends on the previously executed jobs. In
particular, since the pLO→HI is the same values for all tasks, it
depends on the number of previous HI-criticality jobs and the
probability of incurring in idle time (that would switch back
the system mode to LO-criticality). Informally, the probability
pHI

i can be written as

pHI
i = P[(A ∪ B) ∩ C] (20)

where the following events have been considered:
1) A: Ji−1 starts in HI-criticality mode;
2) B: Ji−1 exceeds CLO

i−1;
3) C: system not idle after Ji−1.

The events are not independent, but the probability pHI
i can

be computed incrementally as follows. Equation (20) can be
rewritten as pHI

i = P(A ∩ C)+ P(B ∩ C), as the events A and
B are disjoint (consequently, the probability of the union of
events is the sum of their probability). P(B) is always 0 if
the job is belonging to a LO-criticality task. The computation
of pHI

i is shown in Algorithm 1. The algorithm starts with
the fact (line 1) that the first job would run in LO-criticality
mode (any HI-criticality mode is reset to LO-criticality at the
end of the hyperperiod). From this, it is possible to compute
the pET LO+HI thanks to (19) and consequently compute the
cdf needed for P(A|C) (line 5). Then, P(B∩C) can be easily
computed as B and C are independent: the execution time of
each job is independent with the previous ones. To compute
C we need the distribution of the sum of execution time, that
is incrementally built using the convolution operator (line 11).

Once the value pHI
i is recursively computed, we can com-

pute the final mixture of probability mass distribution of the
execution time of the job Ji that takes in account any system
mode conditions and switches

f ∗i (x) = (1− pHI
i

)
f LO+HIi (x)+ pHI

i f HI
i (x). (21)

B. Average Energy Consumption

In our assumptions, the energy consumption of a job is a
function ε(x, s), where x is the execution time and s the pro-
cessor speed. This function can be either linear or superlinear
(which is the case for almost all existing energy models). To
compute the average energy from the probabilistic information,
it is sufficient to apply the energy function to each element
of the first rows of pETLO

i , pETHI
i , and pETTR

i , with respec-
tively s = sLO for the first and s = sHI for the last twos,
obtaining 3 new probabilistic energy profiles pECLO

i , pECHI
i ,

and pECTR
i . The energy analysis is performed by recomput-

ing (19) and (21) using the new matrices pEC·i. Consequently,
the final f ∗i (x) function becomes the statistical distribution of
energy. From this distribution we can compute the expected
value of the energy E[ε] =∑ x · f ∗i (x) that is, in turn, used as
optimization cost function in (3).

The computational complexity of the energy analysis is
mainly dominated by the convolution operator in line 11 of
Algorithm 1. The perfect convolution has exponential com-
plexity, however, state-of-the-art approximated solutions exist
with complexity O(m log m) where m is the number of columns
of the previous pET matrices. Algorithm 1 is executed for each
job, so the overall complexity is O(n ·m log m), where n is the
number of jobs. Even if the value of n is not necessarily small,
the analysis is performed at design-time, it has no overhead
at run-time, and the scheduler is very simple.

C. Complete Example

To better clarify the whole probabilistic algorithm, we
describe in this section a toy, but complete, example. Let us
consider a simple task-set composed of one HI-criticality task
and two LO-criticality tasks τ̄ = {τ1, τ2, τ3} with the following
characteristics:

τ1 =
(
15, CLO

1 , 6, pET1, HI
)

τ2 = (30, 5, //, pET2, LO)

τ3 = (30, 3, //, pET3, LO)

and the following probabilistic profiles5:

pET1 =
⎛
⎝

3 6
0.95 0.05
0.95 1

⎞
⎠, pET2 =

⎛
⎝

2 5
0.95 0.05
0.95 1

⎞
⎠

pET3 =
⎛
⎝

1 3
0.95 0.05
0.95 1

⎞
⎠.

We set pLO→HI = 0.05 and sHI = 1. We compute the
LO-criticality WCETs for the HI-criticality task: CLO

1 = 3.
The minimum speed computed according to Section III is

5Please note that this is an abuse of notation for pETi, because its suffix i
refers to the job and not to the task. However, as subsequently presented, the
first three jobs J1, J2, J3 correspond to the three tasks τ1, τ2, τ3.
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sLO = 0.7. Then, we obtain—similarly to Example 2—the
three probabilistic profiles in LO-criticality mode

pETLO
1 =

⎛
⎝

30/7

1
1

⎞
⎠, pETLO

2 =
⎛
⎝

20/7 50/7

0.95 0.05
0.95 1

⎞
⎠

pETLO
3 =

⎛
⎝

10/7 30/7

0.95 0.05
0.95 1

⎞
⎠.

Since sHI = 1, the HI-criticality profiles are equivalent to the
original ones: pETHI

i = pETi. Regarding the probabilistic pro-
file for transitions, it is defined for the HI-criticality task only
(because LO-criticality tasks cannot generate a mode switch)

pETTR
1 =

⎛
⎝

6+ 30/7− 3
1
1

⎞
⎠ =

⎛
⎝

51/7

1
1

⎞
⎠.

We consider a rate monotonic (RM) scheduler with hyper-
period H = 30. The schedule is then: {J1, J2, J3, J4} ∈
{τ1, τ2, τ3, τ1}. The Algorithm 1 can now be used to obtain the
final probabilistic time profile. The simplicity of the example
allows us to explain step-by-step the solution:

1) pHI
1 = 0: the first job starts for sure in LO-mode;

2) pHI
2 = pLO→HI: referring to (20), the event B is not pos-

sible because J2 belongs to a LO-criticality task; C is
always verified because the arrival times of J2 and J3
are the same and the scheduler is work conserving;

3) pHI
3 = pLO→HI: the considerations of the previous step

are valid also for J3;
4) pHI

4 = 0.000125, as subsequently explained.
To compute pHI

4 we should have computed the pET∗ and then
the convolution of them, to obtain the probability P(C), i.e.,
there is no idle time after J3. For the sake of this example,
this probability could be easily computed by the following
reasoning: J4 can start in HI-mode only if J1 switched to HI-
mode (with probability 0.05) and there is no idle time after
J3. This happens when both J2 and J3 runs until their WCET
5 and 3: the probability of this event is 0.05 · 0.05 = 0.0025.
Then, pHI

4 = 0.05 · 0.0025 = 0.000125. Assuming, for sim-
plicity, that ε(x, s) = x, we compute the average energy
per job

E1[·] =
∑

x

x
(
0.95f LO

1 (x)+ 0.05f TR
1 (x)

)

E2[·] =
∑

x

x
(
0.95f LO

2 (x)+ 0.05f HI
2 (x)

)

E3[·] =
∑

x

x
(
0.95f LO

3 (x)+ 0.05f HI
3 (x)

)

f LO+HI
4 (x) = 0.95f LO

4 (x)+ 0.05f TR
4 (x)

E4[·] =
∑

x

x
[
(1− 0.000125)f LO+HI

4 (x)

+ 0.000125f HI
4 (x)

]
.

For example, the first term is computed as

E1[·] = 30/7(0.95 · 1+ 0.05 · 0)+ 51/7(0.95 · 0+ 0.05 · 1)

= 4.44.

Fig. 4. Schedulability ratio based on the RTA (see Section III-B) with a
different sLO values. In this experiment, we use the following fixed parameters:
[Ud, Uu] = [0.02, 0.2]; [Td, Tu] = [5, 50]; [Zd, Zu] = [1, 4];P = 0.5.

The total average energy is then the sum of the individual
energy components

E[ε] = E1 + E2 + E3 + E4

= 4.44+ 3.02+ 1.54+ 4.39 = 13.39.

V. EVALUATION RESULTS

In this section, we report the evaluation result of our algo-
rithm. In Section V-A, we report the schedulability ratio, i.e.,
the ratio of scheduled task-sets over the total number of task-
sets, of our algorithm for fixed values of sLO. Section V-B,
instead, describes the energy analysis. It shows the benefit on
energy consumption of introducing probabilistic information
and the choice of pLO→HI and sLO. To simplify the experi-
mental evaluation, without loosing generality, we considered
sHI = 1, i.e., the maximum achievable speed in HI-criticality
mode is set at the maximum processor speed.

A. Schedulability Ratio

In this section, we report the performance of our algorithm
w.r.t. the schedulability ratio. We conduct the experiments on
a randomly generated task-set, and use the workload gener-
ation model proposed in [24]. We use the following input
specifications to generate the workload.

1) Ubound: The upper bound of the system utilization.
2) [Td, Tu]: The range of the minimum interarrival period

of a task, i.e., 0 < Td ≤ Ti ≤ Tu.
3) [Ud, Uu]: The range of the utilization ui (of τi). We use

ui to obtain execution time of τi in the LO-criticality
mode, i.e., ∀τi∈τ : CLO

i = ui×Ti, where, 0 < Ud ≤ ui ≤
Uu ≤ 1.

4) [Zd, Zu]: The range of the ratio of HI and LO-criticality
WCET, here 1 ≤ Zd ≤ Zu.

5) P: The probability of being a HI-criticality task.
In these experiments, we computed the schedulability ratio

of our scheduling algorithm for different values of sLO (rang-
ing from [0.5,0.9]) and Ubound (ranging from [0.4, 1.0]).
Figs. 4 and 5 report that the schedulability ratio (for any sLO

value) decreases with the increase in system utilization, which
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Fig. 5. Schedulability ratio based on the RTA with a different sLO values. In
this settings, we use [Zd, Zu] = [1, 8], while other parameters remain same
as Fig. 4.

matches with our RTA. Most of all task-sets are schedulable
when Ubound is lower than 0.5, while most of the task-sets
become not schedulable when utilization approaches 1. In this
experiment, the selection of sLO does not depend on the task-
set itself but it has been fixed at different levels. This reduces
the schedulability ratio, but it is implicitly solved by the inner
optimization problem. As presented in the next section, the
optimization problem helps also in improving the schedul-
ing ratio, by selecting the best value for sLO that guarantees
schedulability.

B. Energy Optimization

Simulation Parameters: In order to perform the simu-
lation, we selected the NXP i.MX6 SABRE board, for
which the energy function and the relation voltage-frequency
is known [37]. The speed is assumed proportional to
the frequency6 (see Section II-A). The considered energy
function is

ε(x, s) = x
(

aC · V2f + Pleak

)

aC = 3.4 · 10−10, Pleak = 0.052

V2f =
(

0.95+ 0.0005
f − 396 · 106

106

)2

· f

where f is the frequency computed as f = s ·max_freq, aC has
been experimentally obtained, V2f comes from [37] and Pleak
has been taken from the SoC datasheet. The selected values
for exploration are pLO→HI ∈ [0.01; 0.50] and sLO ∈ [0.5; 0.9].
The considered fixed priority assignment algorithm is RM.

Results: Fig. 6 depict the exploration of 10 random task-sets
by varying pLO→HI, i.e., the results of the external optimization
algorithm. Fig. 6(a) refers to a total utilization of U = 0.25
and Fig. 6(b) refers to a total utilization of U = 0.50. The fig-
ures show the schedulability and the amount of energy saved

6This is not necessarily true in architectures with variable timing instruc-
tions. However, in this case, the workload would play a key role in the
definition of the energy function, as also in the WCET analysis. In any case,
the presence of variable instructions timing would not invalidate our analysis,
but it would add excessive verbosity without adding any innovative content.

Fig. 6. Energy of the 10 datasets analyzed with our framework, depicted
by the energy loss percentage w.r.t. the minimum found for each dataset. The
(pLO→HI, sLO) couples with the minimal energy consumption are showed on
the right columns. (a) U = 0.25. (b) U = 0.50.

w.r.t. the minimum energy consumption of each dataset. When
utilization is low, the task-sets are schedulable for any value
of pLO→HI (with only one exception for task-set 1). Instead,
when the utilization increases, it is possible to notice that
pLO→HI represents a critical choice to the schedulability: the
schedulability for U = 0.50 increases to 90% compared to
the range of 50%–70% from Figs. 4 and 5. The choice of
pLO→HI, as expected, also impacts on energy optimization.
The optimization function is clearly nonconvex and numer-
ical methods are necessary. Some choices of pLO→HI are very
far from the optimal, for example, dataset 1 in the U = 0.25
case, the value pLO→HI = 0.24 leads to a energy consumption
value 1.79 times larger than the optimal value at pLO→HI = 0.4.
For other task-sets, like 6–9 in Fig. 6(a), the saved energy is
instead small. No direct relationship can be derived w.r.t. the
sLO value: increasing utilization requires a larger sLO, but no
general conclusions can be drawn for a fixed utilization value.

Similarly to the previous experiments, we run a simulation
with 2500 task-sets by varying the utilization in the range
(0, 1]. The analysis carries out the optimal value for pLO→HI

that corresponds to the minimal energy. Then, this value is
compared to the baseline of randomly select pLO→HI. The
improvements on energy consumption corresponds to 10.0%
on average and 46.4% on maximum energy saved values.

Lesson Learnt: Previous works usually assumed given the
value of LO-criticality WCET CLO

i , or fixed to a given
proportion of the HI-criticality WCET. However, when energy
plays a role in the analysis, that choice is critical to reach
the optimality. This is especially evident when DVFS mech-
anism is used to reduce the power consumption during the
LO-criticality mode of the system, because the choice of
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sLO impacts on both schedulability and energy consumption.
Choosing these values to optimize the energy for the average-
case (the most common) is nontrivial. Our approach optimized
the energy consumption by selecting the best value for pLO→HI,
and consequently the value of CLO

i , and the best value of sLO,
obtaining a significant value of saved energy.

VI. RELATED WORK

To date, a significant amount of works studied the energy
minimization scheduling technique considering both the paral-
lel and sequential real-time tasks, in a non-MC platform, few
to mention [11], [12], [15], [17], [26]–[28], [41]. On the other
hand, extensive research has been done on real-time schedul-
ing of the MC task model considering both the sequential and
parallel workload model (e.g., [4]–[6], [14], [20], [29], and
[34]), without considering the energy-awareness.

The majority of the above-mentioned works considered the
EDF-VD scheduling policy, while Lee et al. [33] proposed
the MC-Fluid model. In this model, each task receives a
share (dependant on its criticality level) of the available
resources. They also proposed MCDP-Fair, an implementable
(on a real hardware platform) variant of the MC-Fluid.
Considering the dual-criticality platform, Baruah et al. [8]
proposed MCF, which provided an improved speedup bound
of no greater than 1.33. However, all these above-mentioned
models received criticism (from Ernst and Di Natale [21] and
Esper et al. [22]) of being impractical and unable to maintain
the run-time robustness. Also, a vast majority of the existing
works have another limitation, upon a system mode-switch,
no service guarantee is provided to any of the LO-criticality
tasks [9], [10], [16], [21], [25]. Some recent works [7], [32],
[36] proposed the imprecise MC (IMC) model, that pro-
vides degraded service to the LO-criticality tasks even after
a mode-switch.

Little work has been done [30], [40], [42] that consid-
ered both energy awareness and MC scheduling. All these
papers assumed that all LO-criticality tasks are dropped after
a mode-switch. The recent work in [13] proposed the tech-
nique to provide a full-service guarantee to all LO-criticality
tasks (even after a mode switch) and most related to this work.
However, it is also based on the pessimistic assumption that
all the tasks will execute up to their WCET (at the corre-
sponding system criticality level) and did not consider the
probabilistic information to derive the LO-criticality execution
time thresholds.

VII. CONCLUSION

The traditional MC model is criticized as it provides no
service guarantee to the LO-criticality tasks in HI-criticality
mode. Some recent efforts have been made to fully or partially
accommodate LO-criticality tasks after a system mode-switch,
but made a pessimistic assumption that all the tasks execute
up to their WCET, at their respective criticality levels. In
this work, we consider the precise scheduling of MC tasks
and integrate the probabilistic-based prediction strategy (of
the task execution time) and the DVFS scheme to minimize
energy consumption. To our knowledge, no work considers

the probabilistic-based prediction strategy to minimize energy
consumption in an MC platform. We propose the RTA of our
algorithm under a fixed priority non-preemptive scheduler. We
also evaluate our algorithm via simulation on randomly gener-
ated workloads and report energy saving up to 46% w.r.t. the
pessimistic choice of LO-criticality WCET commonly made
by previous works.

Applicability to Real Systems: Despite this article is highly
theoretical, the deployment of this approach is straightforward.
In fact, both scheduling and probabilistic analyses are per-
formed offline and a well-known fixed-priority scheduler is
used at run-time, minimizing the impact on software develop-
ment and integration. The probabilistic profiles are obtained
by measuring the execution time of the tasks directly on the
real platform, while the WCET is computed with a state-of-
the-art static timing analysis tool. Even if our analysis does
not take into account scheduling and DVFS-change overheads,
the number of frequency changes is upper-bounded to only
one time per HI-criticality job. Assuming that the overheads
are small compared to the execution time of the tasks, they
can be simply added to the tasks WCET, without a significant
impact on the solution optimality.

Future Works: This work may trigger several future research
directions. Here, we restrict our attention to the uniproces-
sor platform and dual-criticality levels. We plan to extend our
work to adopt the multiprocessor platform and to consider
multicriticality levels. Another research direction includes the
study of how to apply the analysis to variable priority and/or
preemptive schedulers, e.g., Earliest Deadline First. This may
include an on-board implementation of our algorithm to mea-
sure the actual energy savings and to study online reactive
algorithms. Such algorithms can potentially tune the schedul-
ing parameters at run-time in order to reach the optimal energy
consumption even in the case when external factors modify the
initial assumptions.
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