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Abstract

Time series models often deal with extreme events and anomalies, both prevalent
in real-world datasets. Such models often need to provide careful probabilistic
forecasting, which is vital in risk management for extreme events such as hur-
ricanes and pandemics. However, it is challenging to automatically detect and
learn to use extreme events and anomalies for large-scale datasets, which often
require manual effort. Hence, we propose an anomaly-aware forecast framework
that leverages the previously seen effects of anomalies to improve its prediction
accuracy during and after the presence of extreme events. Specifically, the frame-
work automatically extracts anomalies and incorporates them through an atten-
tion mechanism to increase its accuracy for future extreme events. Moreover, the
framework employs a dynamic uncertainty optimization algorithm that reduces
the uncertainty of forecasts in an online manner. The proposed framework demon-
strated consistent superior accuracy with less uncertainty on three datasets with
different varieties of anomalies over the current prediction models.

1 Introduction

Climate change is increasing the severity of natural disasters. Compared to the 1990s, natural disas-
ters quadrupled in terms of economic damage in the U.S. alone [1]. Time series forecasting during
the presence of such extreme events (e.g., hurricanes) is critical for resource allocation and resilience
planning [2, 3, 4].

Intuitively, the high accuracy and low uncertainty of the forecasts are critical insights for uncovering
the influence of external shocks and events on large-scale time series data [5]. To provide sustainable
economic development and resilience planning, it is crucial to understand how different industries
are influenced by and recover from such extreme events over time [6]. However, it remains a chal-
lenge to develop reliable and accurate prediction models as the real-world dataset often contains
anomalies that tend to be rare and random. Hence, it is crucial to develop a forecast model that can
leverage previously seen extreme events and anomalies for future forecasts.
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Although there have been considerable achievements in machine learning-based models, existing
methods tend to overlook anomalies’ special effects on real-world time series data. For instance,
LSTMs [7] address the vanishing gradient problem via gate mechanism and have the ability to
capture complex temporal dependencies [8]. Yet, Khandelwal et al. [9] show that even LSTMs have
a limited ability to capture long-term dependencies, and their awareness of context degrades as the
length of the input sequence increases. Consequently, making them inefficient to capture and learn
from rare occurrences or extreme events.

As an alternative, Li et al. [10] considered the use of transformers for time series prediction. Trans-
formers use a self-attention mechanism that allows each observation in the feature sequence to attend
independently to every other feature in the sequence. However, they have considerable computa-
tional and memory requirements that grow quadratically with respect to sequence length, making
it computationally rigorous to train large-scale data [10]. Such deficiency makes them computa-
tionally unsuitable for extreme events that often appear in longer sequences than the transformer’s
inputs. Moreover, it was not even clear from the design itself that transformers can be as effective
as RNNs, whereas Zaheer et al. [11] reported that the attention mechanism in transformers does not
even obey the sequence order of time steps which is essential for the time series domain. What is
more, non-transformer architectures (i.e., MLP) when designed and trained properly, can perform
competitively with transformers [12].

This lack of systematic strategy in handling anomalies and not providing predictions with non-
transparent uncertainty levels makes current forecasting methods unreliable during the presence of
extreme events. As a result, a key aspect of our knowledge in developing time series models for
critical moments of extreme events will remain a puzzle unless the long-term effects of anomalies
are well captured and utilized.

Contribution. This work proposes a novel and generalized anomaly-aware prediction framework,
AA-Forecast, which automatically extracts and uses anomalies to optimize its probabilistic forecast-
ing. Specifically,

• AA-Forecast extracts anomalies through a novel decomposition method and leverages them
through an attention mechanism designed to optimize its probabilistic forecasting during
extreme events. Also, AA-Forecast is able to perform zero-shot prediction for unseen time
series and does not suffer from quadratic computational time and memory complexity of
transformers.

• An online optimization procedure is proposed to minimize the prediction uncertainties of
AA-Forecast framework, which features applying the optimal dropout probability at every
time step during testing.

• Extensive experimental studies are conducted on three real-world datasets prone to extreme
events and anomalies. The comparisons with state-of-the-art models illustrate the higher
accuracy and less uncertainty in the AA-Forecast’s prediction.

2 Problem Formulation

In this study, we are interested in the task of time series forecast under the influence of extreme events
and anomalies. Mathematically, given a dataset D = {x(1),x(2), . . . ,x(K)} with K univariate time
series, x(k) = {x(k)

1 , x
(k)
2 , . . . , x

(k)
T } denotes a time series instance with length T , where x(k) ∈ RT .

For every time step, the corresponding extreme events are aligned and labeled as covariates e(k) =

{e(k)
1 , e

(k)
2 , . . . , e

(k)
T }. Extreme events are considered as the influence of external events that promote

a dynamic occurrence within a limited time steps [13]. Specifically, e(k)
t ∈ R indicates the level

of extreme event (e.g., hurricane category) at time t, otherwise, e(k)
t = 0 indicates a non-extreme

event condition for periods outside of the event. To this end, we denote the data with extreme
events as a series of tuples x̂(k) ∆

= {(x(k)
1 , e

(k)
1 ), (x

(k)
2 , e

(k)
2 ), . . . , (x

(k)
T , e

(k)
T )}. Particularly, given

the previous τ observations x̂
(k)
t−τ+1:t = {(x(k)

t−τ+1, e
(k)
t−τ+1), (x

(k)
t−τ+2, e

(k)
t−τ+2), . . . , (x

(k)
t , e

(k)
t )},

we aim to model the conditional distribution of the next observation:

p(x
(k)
t+1 |x̂

(k)
t−τ+1:t; Φ), (1)
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Figure 1: Main components of AA-Forecast: (i) STAR Decomposition to automatically extract
essential features such as anomalies, (ii) an Anomaly-Aware Model to leverage such extracted
features, and (iii) a Dynamic Uncertainty Optimization to reduce the uncertainty of the network.
The final predicted series contains confidence intervals with the least uncertainty.

where Φ denotes the parameters of a nonlinear prediction model. We are also interested in reducing
the uncertainty of predictions in an online setting, whereas uncertainty of prediction can be viewed
as the variability of the distribution. Therefore, the optimization problem during the online settings
is defined as:

Φ∗on = argminΦ V
(
p(x

(k)
t+1 | x̂

(k)
t−τ+1:t; Φ)

)
, (2)

where V (·) represents the variability of the probability distribution and Φ∗on is the optimal online
parameters of the nonlinear prediction model that produces the least amount of uncertainty in each
time step.

3 AA-Forecast Framework

The proposed AA-Forecast framework consists of three main components. Section 3.1 proposes a
novel anomaly decomposition method that automatically extracts the anomalies and essential fea-
tures of the time series data. Then, the extracted anomalies are fed into an anomaly-aware model
detailed in Section 3.2. Specifically, it leverages an attention mechanism on anomalies and extreme
events to produce the distribution of the forecasts. To further reduce the forecast uncertainty in an
online manner, Section 3.3 proposes a dynamic uncertainty optimization algorithm.

3.1 STAR Decomposition

STAR decomposition is used as a strategy to not only extract the anomalies and sudden changes of
data but also decompose the complex time series to its essential components. Unfortunately, widely
popular decomposition method such as STL [14] does not extract anomalies. Although recent works
such as STR [15] and RobustSTL [16] are designed to be robust to the extreme effect of anomalies in
their decomposition, they are not used to explicitly extract anomalies from the residual component.

To alleviate these issues, we propose STAR decomposition that are decomposes the original time
series x(k) in a multiplicative manner to its seasonal (s(k)), trend (t(k)), anomalies (a(k)), and
residual (r(k)) components:

x(k) = s(k) × t(k) × a(k) × r(k) (3)

Such decomposition not only increases the dimensions of the original data but also supplies us with
the extracted anomalies. As shown in Figure 1, we begin the decomposition by approximating
the trend line t(k) with the locally weighted scatterplot smoothing (i.e., LOESS [17]). Then, we
divide the original data x(k) by the approximated trend line to derive the detrended time series1.

1We use the log transform of x(k) to handle the situation that specific values of original data are zero.
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We then partition the detrended time series into periods of cyclic sub-series where the cycle size is
determined by the time interval of the dataset. As an example, the cycle size for a monthly dataset
would be 12 (one year as a cycle). Then, we obtain the seasonal component (s(k)) by grouping the
detrended series in each period and deriving the average value of each period across the time series.
Subsequently, the residual component (r(k)) is derived by dividing the seasonal and trend segments
from the original series.

Note that the anomaly component (a(k)) can be considered as the oddities of the dataset, which
do not follow the extracted trend or seasonal components. Intuitively, anomalies are spread out
through residual components, which also contain noise and other real-world effects. To distinguish
the anomalies from residual components, statistical metrics such as mean and variance are not the
appropriate measure as they are highly sensitive to the severity level of anomaly values. As one
expects, the severity of the anomalies can change the mean and variance values which are unwanted.
To resolve this issue, we leverage the median of the residuals, which is immune to the severity of
the outliers in the residual components. Next, we define robustness score ρ(k)

t for each observation
at time t as:

ρ
(k)
t =

|r(k)
t − ṙ(k)|√∑T
t=1 |r

(k)
t −ṙ(k)|

T−1

(4)

where ρ(k)
t stands for the strength of the anomalies, r(k)

t is the residual at time step t and ṙ(k) is the
median of the residuals. Note that the larger ρt indicates that a drastic change has occurred in the
trend and seasonal components. We then extract the anomalies from residuals as below:

a
(k)
t =

{
1, ρ

(k)
t < ρ

(k)
c

r
(k)
t , ρ

(k)
t > ρ

(k)
c

(5)

where ρ(k)
c is the constant threshold given by the value of a robustness score ranked in the p-value

0.052 while the values of elements in ρ(k) are ranked in descending order from large to small.
Notably, when the value of the anomaly component (a(k)) deviates further from the value 1, it
indicates an abrupt change in the trend and the seasonal component (no sign of anomalies). On the
contrary, when both anomaly and residual values are equal 1 (r(k)

t = 1 and a
(k)
t = 1), it indicates that

the observed signal at time t explicitly follows the trend and seasonal component. Note that such
important information might not be automatically inferred when additive decomposition methods
are being used. This is due to the fact that the values of residual components can differ from one
dataset to another which requires manual effort in their detection.

A sample result of anomaly decomposition is shown in the left-most part of Figure 1, where the
observed time series data is decomposed into its seasonal, trend, anomalies, and residual compo-
nents respectfully. Each of these components holds essential information about the characteristics
of the time series and will be leveraged to train the forecast model. To this end, we concatenate the
derived decomposed vector of time series with the input, which includes the observed time series
and its labeled extreme event. Specifically, STAR decomposition concatenates the original time se-
ries to x̃(k) = (x(k), e(k), s(k), t(k),a(k), r(k)) which can be leveraged by the anomaly-aware model
described in the next section.

3.2 Anomaly-Aware Model

The Anomaly-Aware model is designed to explicitly incorporate extracted anomalies a(k) and ex-
treme event covariates e(k) into the prediction. As these features are rare in the whole time series,
feeding them directly into a regular RNN like LSTM [7] can be potentially ignored during the train-
ing of the model. Note that the extracted anomalies and previously experienced external events hold
valuable information regarding the effect of extreme events that should be handled carefully.

Recent robust prediction models rely on the LSTMs or transformers architecture to provide robust-
ness in their prediction. Even though LSTMs are designed to obtain long-term dependencies, their

2Adopted based on the choice of the p-value (0.05) which is used as a standard level of statistical signifi-
cance.
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capacity to pay different degrees of attention to sub-window features within large time steps is in-
adequate [11]. As an example, Khandelwa et al. [9] showed that even though the LSTM model can
have an effective sequence size of 200 observations, they are only able to sharply distinguish the
50 closest observations. This indicates that even LSTMs struggle to capture long-term dependen-
cies. On the other hand, conventional transformers suffer from quadratic computation and memory
requirements, which limits their ability to process long input sequences. Even though such mem-
ory bottlenecks have been improved by using sparse-attention algorithms [10], their performance
improvement is not significant compared to a full-attention mechanism for real-world datasets [18].
Given that extreme events and anomalies are rare and can appear at very long distances from each
other, it is computationally infeasible to increase the input sequence to provide attention to all pre-
viously seen anomalies and extreme events.

To address such problems, one must pay attention to all of the anomalies and extreme events through-
out the dataset, no matter how far they have occurred. Intuitively, due to their rare nature, they hold
greater importance in learning, given that the trend and seasonal patterns are often easier to predict
by statistical or deep learning models. Ergo, we developed a novel attention mechanism explicitly
for extreme events and anomalies, which are considered the crucial time steps of time series data
and often cause the biggest error in prediction.

Architecture Design of AA-Model. LSTMs and GRUs are suitable for predicting the recurring pat-
terns with a fairly low computational time and memory complexity which suffer from the quadratic
complexity of full-attention transformers. However, we enhance the long-term dependencies of these
models through an attention mechanism that retains the effect of anomalies and extreme events for
future predictions. Such a decision in architecture allows the model not only to be computationally
feasible for handling large-scale datasets but also to take the critical moments of extreme events and
anomalies into consideration.

Given the past τ time steps of observations as x̃t:t−τ+1
3, we derive the hidden states of an RNN that

deals with vanishing gradient problem (e.g., LSTM or GRU) as:

ht:t−τ+1 = RNN (x̃t:t−τ+1) , (6)
where ht is the hidden layer of RNN at time step t. Note that we are only giving attention to anoma-
lies and extreme events which are naturally rare and belong to a small population of observations.
Moreover, both could have different impacts on the prediction and based on the type of dataset, can
be challenging to model. Hence, we design the attention mechanism to automatically incorporate
extreme events and anomalies during their occurrence:

J = {t ∈ Z+|et 6= 0 ∨ at 6= 1}, (7)

where J is the set of time steps including two possible circumstances: presence of extreme events
covariates (et 6= 0) or anomalies (at 6= 1). We then gather all the previous hidden states of the
RNNs for all critical time steps in J and regularize them by the weights generated from the attention
layer as vt which follows:

vt = tanh(w>αht + bα), ∀t ∈ J (8)
where wα and bα are the attention layer’s weight and bias. Then, we derive the attention weights of
all previous values as:

αt = Softmax (v1, v2, . . . , vt) , ∀t ∈ J (9)
where αt is the attention weight at the critical time steps. The generated attention weights are then
used in the AA-Forecast layer as:

At =

{
ht, ∀t 6∈ J∑
t∈J αt · ht, ∀t ∈ J

(10)

where the attention values are only calculated in the presence of anomalies and extreme events as
shown in Figure 2. The value of the next time step is calculated through a dense layer:

yt+1 = wd(At:t−τ+1) + bd, (11)

where wd and bd are the weights and biases of the dense layer. To train the network, we minimize
the prediction loss L which is defined as follows:

Φ∗off = argminΦ L (FΦ(x̃), y) , (12)
3To reduce the ambiguity of the AA-Forecast layer, we are omitting the superscript (k) from this section
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Figure 2: Left: AA-Model Architectures. Right: Dynamic dropout µt determines the optimal
probability of dropout at each time step during the online settings (i.e., inference). The output ŷ
consists of a distribution of predicted test values. The dropout optimization improves the certainty
and accuracy at each time step t by determining how relevant the previous hidden state is for the
next time step prediction.

where FΦ is the anomaly-aware model and y is the training label, which is the ground truth of the
next time step prediction. Note that Φ∗off represents the optimal model parameters after the offline
training phase.

3.3 Dynamic Uncertainty Optimization

Although Monte Carlo (MC) dropout [19] probability is treated as a static hyperparameter in pre-
vious studies [20, 21], it plays an important role in the prediction outcome and can be leveraged
to reduce the uncertainty of the prediction during the testing phase [22]. Therefore, we rely on an
automatic selection mechanism for the optimal dropout in online settings. Such selection is based
on the uncertainty of the prediction produced during the testing phase (Figure 2).

Note that the model’s uncertainty is desired to be the lowest and as stable as possible in real-world
settings. Therefore, it is essential to optimize further the uncertainty of the model prediction both
during the offline training and online testing phase. Specifically, we apply a dropout operation after
every AA-Forecast layer with a specific probability (p).

AA-Forecast not only reports the prediction distribution but also provides the point prediction (av-
erage of the distribution) and the prediction uncertainty (variability of the distribution). Specifi-
cally, by producing M forecast for every time step in an online manner (test data x̃∗) from the
previously trained model FΦ(x̃), we obtain M outputs y∗ as a from the prediction distribution{
y∗(1), . . . , y

∗
(M)

}
. Then, the average of the distribution is calculated as ȳ∗ = 1

M

∑M
m=1 y

∗
(m).

We represent uncertainty as to the variability of the prediction distribution —- the standard deviation
(SD) of the probability distribution of future observations conditional on the information available
at the time of forecasting. We further optimize the uncertainty of the framework by deriving the
optimal dropout probability p at each time step. We derive the prediction error for the probability
p between 0 and 1 with 0.1 increments. Notably, without such probability (i.e., p = 0) the model
prediction deviates from probabilistic forecasting and does not provide a level of uncertainty in
its prediction for each time step. The optimal uncertainty µt is then reported when it results in a
minimal variance (i.e., SD) of the predicted values, thereby reducing the prediction uncertainty to
its minimum during the testing phase. To this end, the prediction uncertainty is formulated as:

σ2 (FΦ(x̃∗)) =

√√√√ 1

M

M∑
m=1

(
y∗(m) − ȳ∗

)2

. (13)
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Algorithm 1 Psuedecode for AA-Forecast

Input: data x̃(k) = (x(k), e(k), s(k), t(k),a(k), r(k))
1: Initialize parameters Φ
2: for k = 1 to Ktrain do
3: Sample (x̃k, yk) from training data:
4: for b = 1 to B do
5: Φe+1← Φe - ξ·∇ L(FΦ(x̃k), yk)
6: Update the optimal parameters:

Φ = argminΦL(FΦ(x̃k), yk)
7: end for
8: end for
9: Dynamic Uncertainty optimization: Φ∗ ← Φ

10: for δ = 0.1 to 0.9 increment by 0.1 do
11: Update the optimal uncertainty:

Φ∗ = argminΦV(FΦ(xk))
12: end for

Algorithm 1 presents the pseudocode for AA-Forecast. Specifically, we sample (x̃k, yk) as a driv-
ing example which includes extracted anomalies a(k) and extreme events r(k). Next, we train the
model by maximizing the overall prediction accuracy. Upon testing, the network leverage dynamic
uncertainty optimization further optimizes the prediction uncertainty automatically in online testing
so that it would not require any further training.

Note that the network’s predictions during the testing phase cannot benefit from the supervised
training. However, the control of variability is possible and ensures that the prediction uncertainty
is minimal in each step of future predictions, regardless of whether the labels are provided or not.
Additionally, the algorithm testing time complexity is similar to other RNN-based models due to
the use of dynamic uncertainty optimization during the test phase solely. This allows the model to
provide the least amount of uncertainty during the presence of anomalies or extreme events where
critical online decisions are being made.

Dynamic Dropout Probability

E
rr

o
r

Figure 3: Effects of dynamic uncertainty optimization on prediction error and uncertainty during the
occurrence of an anomaly. The method automatically selects the optimal probability that yields the
lowest uncertainty.

As an example, Figure 3 shows that the optimal uncertainty results can occur when the standard
deviation is the lowest. Intuitively, the network at p = 0.5 shows the highest confidence in its pre-
diction (i.e., the lowest uncertainty) where unnecessary neurons are dropped out from the network.
Therefore, the network automatically selects and reports the p = 0.5 probability as the best choice
for this time step in the testing phase.
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4 Experiments

This section reports multiple experiments comparing the proposed AA-Forecast framework with
baseline models using different types of large-scale time series datasets.

4.1 Dataset and Experimental Settings

Three real-world time series with diverse structures and domains are gathered4. The detailed de-
scription and data collection procedure are as follows:

• We provide a new spatio-temporal benchmark dataset (Hurricane), which is suited for
forecasting during extreme events and anomalies. The dataset is gathered through the
Florida Department of Revenue which provides the monthly sales revenue (2003-2020) for
the tourism industry in the 67 counties of Florida which are prone to annual hurricanes. We
further enriched and aligned the raw time series with the history of hurricane categories for
each region upon impact. More precisely, the hurricane category indicates the maximum
sustained wind speed which can result in catastrophic damages [23].

• The second dataset (COVID-19) showcases the changes in the number of employees based
on one million employees active in the US during the COVID-19 pandemic and is gath-
ered from Homebase [24]. We further enriched the data with the state-level policies as an
indication of extreme events (e.g., the state’s business closure order).

• The third dataset (Electricity) is a publicly available benchmark dataset that contains
the electricity consumption of 370 consumers on an hourly basis from 2011 to 2014. Note
that this benchmark dataset is anonymized and does not contain extreme event labels, yet
AA-Forecast is able to automatically extract the anomalies, indicating abrupt changes in
trend and seasonality.

Table 1: Summary statistics of the datasets.

Dataset Hurricane COVID-19 Electricity
Time step Monthly Daily Hourly
# Unique time series 9,876 15,312 370
# Observation 9,876 15,312 11,952,480
# Train 7,900 12,250 9,561,984
# Test 1,975 3,062 2,390,496
# Regions 48 50 370
# Extreme events 88 100 -
# Anomalous points 102 124 672

We propose two sets of experiments for all baseline models. The first experiment follows a standard
80-20 dividing of the dataset to training and testing sets and τ = 12 for window length. The second
experiment evaluates the zero-shot prediction capability of the model based on various window
search ranges in {3, 6, 12, 24}, and thus is more applicable for real-world settings when the newly
added time series cannot train on a newly added time series. Hence, the second experiment evaluates
the prediction accuracy of all models on a set of completely unseen time series.

The models are implemented using Python 3.7 and tested on a cloud workstation with two Intel Xeon
2.3 GHz CPUs, 64 GB RAM, and one Nvidia Tesla A100 GPU. We conduct a grid search over all
tunable hyperparameters on the held-out validation set for baseline methods and our framework.
To provide a fair evaluation, all baseline models benefit from the essential features extracted by
AA-Forecast except the ARIMA model which does not benefit from multidimensional features.
Moreover, future known information is not included in all the models.

We kept training to 40 iterations for all experiments. The reported values are the average of the
observed error five times during the test stage. The hyperparameters of all baseline methods are
tuned based on a grid search.

4All datasets are publicly available at https://github.com/ashfarhangi/AA-Forecast
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Table 2: Hyperparameters of AA-Forecast used for each dataset.

Parameter Hurricane COVID-19 Electricity
Batch size 128 64 64
Learning rate 1× 10−5 3× 10−5 5× 10−5

Weight decay 1× 10−6 1× 10−5 1× 10−4

Number of epochs 40 40 40
Static dropout 0.5 0.4 0.6

4.2 Methods for Comparison

The baseline methods for comparison include:

• ARIMA [25]: A traditional autoregressive integrated moving average method for time se-
ries prediction and often used as a baseline.

• AE-LSTM [26]: An LSTM network that uses an autoencoder for deep feature extraction
and provides a deterministic prediction.

• SARIMAX [27]: An autoregressive model that can handle seasonality and exogenous fea-
tures of time series.

• UberNN [8]: An LSTM-based model that uses Monte Carlo dropout to provide uncertainty
and is able to extract deep features of time series through autoencoders.

• TSE-SC [28]: was recently proposed as a Transformer-based Deep Learning model that
can forecast abrupt changes accurately. (i) STAR Decomposition to automatically ex- tract
essential features such as anomalies, (ii) an Anomaly-Aware Model to leverage such ex-
tracted features, and (iii) a Dynamic Uncertainty Optimization to reduce the uncertainty of
the network. The final predicted

• AA-Forecast (LSTM) is our proposed model with LSTM cells.

• AA-Forecast (GRU) is our proposed model with GRU cells.

4.3 Metrics
For providing a comprehensive evaluation, we adopted three different evaluation metrics. The first
evaluation metric is the Continuous Ranked Probability Score (CRPS), which evaluates probabilistic
forecasting. Formally defined as CRPS =

∫∞
−∞(F (y)− 1(y − ŷ))2 dy where F is the cumulative

distribution function of its forecast distribution and 1 is the Heaviside step function. We also report

the root mean square error (RMSE). Formally defined as RMSE =

√
1
N

∑N
i=1

(
yt,(i) − ŷt,(i)

)2
where yt is the mean of the predicted distribution at time t and ŷt is the observed value at time t.
The third evaluation metric is the standard deviation (SD) that is correlated to the uncertainty of the

prediction and is denoted as SD =

√
1
N

∑N
i=1

(
yt,(i) − ỹt

)2
where ȳ is the mean of the predicted

distribution.

4.4 Experimental Results

We provide two comprehensive comparisons and evaluations of the proposed AA-Forecast frame-
work: the aforementioned 80-20 testing where 20% of the data are unseen, as well as the testing on
zero-shot prediction where the whole time series is unseen. In both cases, we calculate the CRPS,
RMSE, and SD. Lastly, we provided an ablation study to discuss the effectiveness of different AA-
Forecast components.

The 80 − 20 testing. We first used the ‘older’ 80% of each time series in training and tested the
accuracy of prediction on the rest of 20%. Table 3 reports the loss of the networks under such 80−20
testing, where the SD of AA-Forecast (GRU) method is lower than all baseline methods, showing
the model’s high confidence in the forecasts.

Among the baseline methods, UberNN and TSE-SC have shown good accuracy but suffer from
higher SD (uncertainty) compared to the AA-Forecast (LSTM-GRU) models. Considering that the
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Table 3: Performance comparison of our proposed framework and baseline models under 80 − 20
testing.

Dataset
Methods Metrics Electricity COVID-19 Hurricane
ARIMA [25] CRPS 1.150 0.103 0.761

RMSE 1.520 0.114 0.802
SD 0.225 0.011 0.106

AE-LSTM [26] CRPS 0.895 0.086 0.531
RMSE 1.296 0.087 0.576
SD 0.215 0.009 0.102

SARIMAX [27] CRPS 0.911 0.098 0.532
RMSE 1.285 0.108 0.578
SD 0.195 0.009 0.093

UberNN [8] CRPS 0.633 0.071 0.442
RMSE 1.015 0.081 0.453
SD 0.134 0.007 0.073

TSE-SC [28] CRPS 0.583 0.062 0.384
RMSE 0.983 0.072 0.423
SD 0.146 0.007 0.092

AA-Forecast CRPS 0.546 0.059 0.237
(LSTM) RMSE 0.949 0.068 0.274

SD 0.095 0.003 0.060
AA-Forecast CRPS 0.493 0.063 0.216
(GRU) RMSE 0.894 0.073 0.253

SD 0.081 0.003 0.051

extracted features are available for all the baseline methods, we believe the higher uncertainty of
SD is due to their static dropout probability that is constant for all time steps. Therefore, the
two proposed models, AA-Forecast (LSTM-GRU), consistently outperform state-of-the-art meth-
ods. Considering all three evaluation metrics, AA-Forecast (GRU) is the best-suited framework for
our dataset as it provides higher accuracy and confidence.

Zero-shot prediction. Table 4 demonstrates the zero-shot prediction abilities for the selected mod-
els. Both AA-Forecast (LSTM-GRU) predictions follow the observed time series in general. The
prediction errors are comparably low during the presence of extreme events (i.e., hurricanes). This
is mainly due to the anomaly attention mechanism developed to further reduce the prediction error
during extreme events. Moreover, extracted anomalies from STAR decomposition led to the recall
of the hurricane effects on previously seen regions, thus providing predictions for unseen time se-
ries data with a lower error given the presence of anomalies. Figure 4 showcases a sample of these
predictions for each model where for every time step, the prediction uncertainty is the least.

Figure 4: Zero-shot prediction for hotel tax sales of Collier County, Florida, U.S. Both variations of
AA-Forecast are concatenated for demonstration.
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Table 4: Performance comparisons of zero-shot prediction abilities of models using ten randomly
selected counties’ sales tax data where they have not been used in training entirely.

Input time window
Methods Metrics 3 6 12 24
ARIMA [25] CRPS 0.893 0.891 0.861 0.831

RMSE 0.934 0.932 0.922 0.872
SD 0.119 0.1154 0.115 0.113

AE-LSTM [26] CRPS 0.663 0.661 0.651 0.601
RMSE 0.708 0.706 0.696 0.646
SD 0.115 0.112 0.111 0.109

SARIMAX [27] CRPS 0.664 0.662 0.662 0.602
RMSE 0.714 0.712 0.712 0.652
SD 0.106 0.102 0.102 0.100

UberNN [8] CRPS 0.547 0.545 0.535 0.485
RMSE 0.585 0.583 0.573 0.523
SD 0.086 0.082 0.082 0.08

TSE-SC [28] CRPS 0.766 0.764 0.754 0.704
RMSE 0.795 0.793 0.783 0.733
SD 0.105 0.102 0.101 0.099

AA-Forecast CRPS 0.362 0.361 0.351 0.301
(LSTM) RMSE 0.406 0.404 0.394 0.344

SD 0.073 0.071 0.069 0.067
AA-Forecast CRPS 0.348 0.346 0.336 0.286
(GRU) RMSE 0.385 0.383 0.373 0.323

SD 0.064 0.060 0.062 0.058

Given that the network did not train on the selected time series directly, it’s able to transfer its
knowledge from previously seen extreme events (i.e., the effect of cat 4 hurricanes) and provide
more accurate prediction when not provided with such ability.

4.5 Ablation Study

In this section, we provide an extensive analysis of the performance of AA-Forecast, as well as the
impact of each component on the performance of AA-Forecast. The results are shown in Table 5
where we removed each component and reported the changes in accuracy and uncertainty.

Influence of anomaly-aware decomposition. To demonstrate that the anomaly-aware decomposi-
tion can aid in improving the time series prediction, we fed the input series to the prediction model
directly. This modification results in the worst performance in our ablation study. Note that AA-
Forecast (GRU) still benefits from dynamic dropout optimization and extreme event labels, and the
predicted uncertainty is optimized. However, the accuracy of AA-Forecast prediction (GRU) drops
because of the limited number of features, indicating that the neural network does not have a strong
ability to capture complex and nonlinear information. This can highlight the role of auxiliary fea-
tures such as decomposed anomalies and extreme events for forecasting.

Influence of uncertainty optimization. We also used a static dropout throughout the experiments
at every time step, which caused a substantial increase in SD. Uncertainty optimization of dropout
plays a critical role in reducing the uncertainty of the forecast intervals. Such modification also
caused a higher error in the forecast, which is the model’s inability to forecast with higher confi-
dence.

Influence of anomaly attention. We conducted experiments to demonstrate the effectiveness of
anomaly-awareness through the network’s attention mechanism. Specifically, we directly fed the
extreme events and anomalies without the anomaly-attention mechanism described in Section 3.2.
Such change makes limits AA-Forecast’s knowledge about hurricanes and the severity of their ef-
fects. As an example, in Figure 5 (right), the results show that the network’s error during the presence
of harder-to-predict time points (anomalies and extreme events) weakens. Thus, removing the at-
tention mechanism for anomalous/extreme event points of the dataset will reduce the performance
of the model during the critical months of extreme events such as hurricanes. Simply relying on
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Table 5: Ablation study on AA-Forecast (GRU) model using the sales tax dataset to show the effec-
tiveness of its components.

Time window
AA-Forecast (GRU) Metrics 3 6 12 24

w/o STAR Decomposition CRPS 0.493 0.446 0.445 0.457
RMSE 0.512 0.464 0.463 0.494

SD 0.074 0.071 0.070 0.070
w/o Uncertainty Optimization CRPS 0.429 0.431 0.43 0.367

RMSE 0.466 0.471 0.467 0.404
SD 0.088 0.088 0.087 0.083

w/o Anomaly Attention CRPS 0.379 0.380 0.367 0.317
RMSE 0.416 0.417 0.404 0.354

SD 0.067 0.067 0.063 0.061
AA-Forecast (GRU) CRPS 0.348 0.346 0.336 0.286

RMSE 0.385 0.383 0.373 0.323
SD 0.064 0.060 0.060 0.058
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Figure 5: Influence of anomaly attention on hurricanes. Two Category 4 hurricanes (Wilma and
Irma) have caused similar annual sales losses. Anomaly-attention activation occurs during the
presence of extreme events which makes it computationally efficient compared to the full-attention
mechanism in transformers.

the previously seen dataset will not allow the network to handle external events and sudden changes
effectively.

4.6 Discussion

Interpretation. The benefits of providing optimal uncertainty in prediction are twofold: first, it
provides a systematic way to aid in resource allocation. Second, it further prepares the domain for
interventions. For example, if one region receives more catastrophic extreme events, the resources
can be transferred to that region. Moreover, government and industries can provide better-informed
interventions and decisions (e.g., financial aid relief during COVID-19). As shown in the ablation
study, including additional features such as extreme events and anomalous points can improve accu-
racy and better prime the model to handle predictions than deviate from trend or seasonality. More-
over, as shown in Figure 5 without proper attention to these points, they result in a large amount of
error in forecasting. Given that such critical moments are of high importance during extreme events
such as natural disasters, the performance of the model during critical time steps can be improved.
Hence, it is essential to provide a thorough learning objective in our time series models to not only
improve the overall performance but take critical moments into more consideration. Furthermore,
allowing the model to provide its level of uncertainty establishes transparency and builds a level of
trust for the users.

Limitations & future directions. Although the dynamic dropout mechanism guarantees the least
uncertainty in predictions, it cannot provide guarantees to do the same for prediction accuracy.
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This is due to the randomness nature of the dropout which we left as a future work where the
dropout can appear for a predetermined distribution of the neurons. Therefore, maximizing the
useful information contained in the multidimensional model serves to predict time series in extreme
events. When it is not available, it’s more reasonable to suggest methods that extract potential critical
time steps such as anomalous points (e.g., STAR decomposition).

5 Related Works

Anomalies in time series data often produce a high variance of uncertainty prediction that is difficult
to predict, thus becoming a challenge for reliable model design [8, 29]. To provide a more reliable
forecast during the presence of anomalies, probabilistic forecasting methods are often studied, which
can report a level of uncertainty [30].

The majority of Bayesian Neural Networks in probabilistic forecasting requires specific training and
optimization methods and require additional model parameters that result in a larger amount of com-
putation. Hence, MC dropout is preferred due to its practicability and its out-of-the-box solution [8].
Applying standard dropout to Bayesian Neural Networks often results in poor performance on ac-
count of dropout noise preventing the network from maintaining long-term memory [31]. Gal and
Ghahramani [19] proposed the MC dropout, in which the dropout can be interpreted as a sampling
method that is equivalent to a variational approximation of a deep Gaussian process. MC dropout
that is used for recurrent layers has proved to be successful and is commonly used in practice by
applying dropout to recurrent connections in a way that can preserve long-term memory [31]. In pre-
vious studies, static MC dropout was used throughout their experiments, which suffers the model’s
robustness toward the effect of anomalies. Given that probabilistic models still require an overall
great accuracy of their forecasts, optimizing the uncertainty in prediction intervals remains a chal-
lenging question

6 Conclusion

We propose an anomaly-aware time series prediction framework, namely AA-Forecast, to capture
and leverage the effect of extreme events and anomalies for the time series prediction task. It features
a novel anomaly decomposition method that also extracts the essential features of the data. We
also proposed an anomaly-aware model to leverage the extracted anomalies through an attention
mechanism. Moreover, we reduced the uncertainty of the network without any further training so
that the prediction uncertainty is minimal through the testing state. We compare our framework with
several statistical and deep learning models using three real-world time series datasets. The results
show that the AA-Forecast framework outperforms these models in prediction error and uncertainty.
For future work, the prediction performance could be further improved if we target specific groups of
neurons (e.g., the neurons containing unnecessary details of the time series dynamics) for dynamic
dropout optimization.
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