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Abstract—A varying-speed processor is characterized by two
execution speeds: a normal speed and a degraded speed. Under
normal circumstances it will execute at its normal speed; condi-
tions during run-time may cause it to execute more slowly (but
no slower than at its degraded speed).

The problem of executing an integrated workload, consisting
of some more important components and some less important
ones, upon such a varying-speed processor is considered. It
is desired that all components execute correctly under normal
circumstances, whereas the more important components should
execute correctly (although the less important components need
not) if the processor runs at any speed no slower than its specified
degraded speed.

I. INTRODUCTION

Many safety-critical real-time systems have traditionally

been very carefully designed and implemented, upon highly

predictable and reliable special-purpose hardware. However,

two trends have recently emerged in safety-critical real-time

embedded systems: (i) the use of commodity (or commer-

cial off-the-shelf - COTS) hardware for implementing such

systems; and (ii) the move towards mixed-criticality imple-

mentations, in which functionalities of different degrees of

importance are implemented upon a shared platform.

Varying-speed CPUs. Special-purpose processors used in

implementing safety-critical systems are designed to be highly

predictable: given the specifications of the workload that

is to be executed upon such a processor, it is possible to

provide tight bounds on the worst-case run-time behavior of

the system during system design time itself, to a very high

level of assurance. Such design-time predictability is essential

for safety-critical functionalities, but is difficult to achieve with

COTS processors that are typically engineered to provide good

average-case performance rather than worst-case guarantees.

In this paper, we focus upon one aspect of guaranteeing real-

time performance upon such COTS processors: worst-case
execution time (WCET).

The WCET abstraction plays a central role in the analysis of

real-time systems. For a specific piece of code and a particular

platform upon which this code is to execute, the WCET of

the code denotes (an upper bound on) the amount of time the

code takes to execute upon the platform. Determining the exact

WCET of an arbitrary piece of code is provably an undecidable

problem. Devising analytical techniques for obtaining tight

upper bounds on WCET is currently a very active area of

research, and sophisticated tools incorporating the latest results

of such research have been developed (see [16] for an excellent

survey). WCET tools require that some assumptions be made

about the run-time behavior of the processor upon which

the code is to execute; for example, the clock speed of the

processor during run-time must be known in order to be able to

determine the rate at which instructions will execute. However,

conditions during run-time, such as changes to the ambient

temperature, the supply voltage, etc., may result in variations

in the clock speed — for instance, a system programmer may

use the userspace Linux command cpuspeed to configure a

system to reduce CPU clock speeds if the core temperature

gets too high. At the hardware level, too, innovations in

computer architecture for increasing clock frequency can lead

to variable-speed clocks during run-time: e.g., [5] describes

a recently-introduced technique for detecting whether signals

are late at the circuit level within a CPU micro-architecture,

and if so to recover by delaying the next clock tick so that

logical faults do not propagate to higher (i.e., the software)

levels.

In order to be able to guarantee that the values they compute

are correct under all run-time conditions, a WCET tool must

make the most pessimistic assumptions regarding clock speed:

that during run-time the clock speed takes on the lowest
possible value. If this lowest possible value is highly unlikely

to be reached in practice during actual runs, then a significant

under-utilization of the CPU’s computing capacity will be

observed during run-time.

Mixed-criticality systems. In safety-critical hard-real-time

systems, there is little that can be done about such under-

utilization of platform resources. But as stated above, another

increasing trend in embedded computing is the move towards

mixed-criticality (MC) systems, in which functionalities of

different degrees of importance or criticalities are imple-

mented upon a common platform. As a consequence the real-

time systems research community has recently devoted much

attention to better understanding the challenges that arise in

implementing such MC systems (see [6] for a review of some

of this work). The typical approach has been to validate the

correctness of highly critical functionalities under more pes-
simistic assumptions than the assumptions used in validating

the correctness of less critical functionalities. For instance, a

piece of code may be characterized by a larger WCET in the

more pessimistic analysis and a smaller WCET in the “normal”

(less pessimistic) analysis [15]. All the functionalities are

expected to be demonstrated correct under the normal analysis,

whereas the analysis under the more pessimistic assumptions

need only demonstrate the correctness of the more critical

functionalities.

In this paper we take a somewhat different perspective on

mixed-criticality scheduling: the system is analyzed only once,
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under a single set of assumptions. The mixed-criticality nature

of the system arises in the fact that while we would like

all functionalities to execute correctly under normal circum-

stances, it is essential that the more critical functionalities

execute correctly even under pathological conditions which,

while extremely unlikely to occur in practice, cannot be

entirely ruled out. To express this formally, we model the

workload of a MC system as being comprised of a collection

of real-time jobs — these jobs may be independent, or they

may be generated by recurrent tasks. Each job is characterized

by a release date, a worst-case execution time (WCET),

and a deadline; each job is further designated as being HI-

criticality (more important) or LO-criticality (less important).

We desire to schedule the system upon a single processor. This

processor is a varying-speed one, modeled as follows: while

under normal circumstances it completes at least one unit of

execution during each time unit (equivalently, it executes as a

speed-1, or faster, processor), it may at any instant lapse into

a “degraded” mode during which it can only complete fewer

than one, but at least s, units of execution during each time

unit, for some (known) constant s < 1. It is not a priori known

when, or whether, such degradation will occur1. We seek a

scheduling strategy that guarantees to complete all jobs by
their deadlines if the performance of the processor does not
degrade during run-time, while simultaneously guaranteeing
to complete all HI-criticality jobs if the processor does suffer
a degradation in performance.

Example 1: Consider the following collection of two jobs,

to be scheduled on a preemptive processor with normal speed

1 and degraded speed s = 1
2 :

Job Criticality Release date WCET Deadline
J1 LO 0 3 5
J2 HI 1 4 10

An Earliest Deadline First (EDF) [12] schedule for this

system prioritizes J1 over J2. This is fine if the processor

does not degrade: J1 executes over the interval [0, 3) and J2
over [3, 7), thereby resulting in both deadlines being met.

Now suppose that the processor were to degrade at some

instant within the time-interval [0, 10]: a correct scheduling

strategy should execute the HI-criticality job J2 to complete by

its deadline (although it may fail to execute J1 correctly). But

consider the scenario where the processor degrades to some

speed s′ < 4
7 , or ≈ 0.55) starting at time-instant 3: in the EDF

schedule J2 would obtain merely (10 − 3) × s′ < 4 units of

execution prior to its deadline at time-instant 10. We therefore

conclude that EDF does not schedule this system correctly.

An alternative scheduling strategy could instead execute

jobs as follows on a normal (speed-1) processor: J1 over the

interval [0, 1); J2 over [1, 3); J1 again, over [3, 5); and finally

J2 over [5, 7):

1We do however assume that the system is capable of self-monitoring: it
immediately knows if and when such degradation occurs. I.e., it has access to
some facility similar to the capabilities offered by the Linux cpufreq-info
command.

�
0 1 2 3 4 5 6 7 8 9 10

J1’s d’line

�

J2’s d’line

�J1
J2 J1

J2

If the processor degrades at any instant during this execution

then J1 is immediately discarded and the processor executes

J2 exclusively.

It may be verified, by exhaustive consideration of all pos-

sible instants at which the processor may degrade, that this

scheduling strategy will result in J2 completing by its deadline

regardless of when (if at all) the processor degrades to any

speed ≥ 1
2 , and in both deadlines being met if the processor

remains normal (or degrades at any instant ≥ 5).

Contributions and Organization. As mixed-criticality (MC)

systems increasingly come to be implemented upon com-

modity processors, we believe that it is imperative that real-

time scheduling theory understand how to implement these

systems to meet the twin goals of providing correctness
guarantees at high levels of assurance to the more critical

functionalities while simultaneously making efficient use of
platform resources. Commodity processors tend to execute at

varying speeds as ambient conditions change; in order to make

correctness guarantees at very high levels of assurance, it may

be necessary to consider the possibility that the processor

is executing at a very low speed. In this paper, we seek to

define a formal framework for the scheduling-based analysis of

MC systems that execute upon CPUs which may be modeled

as varying-speed processors. To this end, in Section II we

introduce a very simple model for MC systems, that allows

for the representation of systems consisting of a finite number

of independent jobs. In Sections III-IV we present, analyze,

and evaluate algorithms for the preemptive scheduling of

MC systems that can be represented using this model; in

Section V, we consider the problem when preemption is

forbidden. In Section VI, we consider a more general model

for MC systems: one that allows for the modeling of systems

comprised of recurrent tasks. We conclude in Section VII

by placing this work within the larger context of mixed-

criticality scheduling, and briefly enumerate some important

and interesting directions for further research.

Relationship to prior work. The years since Vestal’s seminal

paper in 2007 [15] have seen a large amount of research in

mixed-criticality scheduling. Much of this research considers a

model in which each job is characterized by multiple WCETs.

The results from this prior research can be directly applied

to our problem, in the following manner. Consider a job in

our setting that has WCET C and is being scheduled on a

varying-speed processor with normal speed 1 and degraded

speed s(s < 1). This job may be represented in the multiple-

WCET model as a job with a normal WCET of C and a more

pessimistic WCET of (C/s); if all jobs execute for no more

than their normal WCETs then all jobs should execute cor-

rectly, while if some jobs execute beyond their normal WCETs

(but no job executes beyond its more pessimistic WCET) then

only the more critical jobs are required to execute correctly.

It is not difficult to show that the algorithms proposed in
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prior work for scheduling MC systems with multiple WCET

specifications can be used to schedule this transformed system,

and that the resulting scheduling strategy correctly schedules

our (original) system upon the varying-speed processor. Hence,

all the problems considered in this paper could in principle

be solved by simply transforming to the earlier, multiple-

WCET, model, and applying the previously-proposed solution

techniques.

However, we show in this paper that we can actually do bet-

ter, since the problem we are considering here, of MC schedul-

ing on varying-speed processors, is simpler (from a computa-

tional complexity perspective) than the previously-considered

problem of MC scheduling with multiple-WCETs specified.

For instance, whereas determining preemptive uniprocessor

feasibility for a collection of independent MC jobs specified

according to the multiple-WCET model is known [4] to be NP-

hard in the strong sense, in Section III we present an optimal

polynomial-time algorithm for solving the same problem in

our model. For the case of implicit-deadline sporadic tasks on

preemptive uni-processors, a speedup bound of 4/3 had been

established [2] for the multiple-WCETs model, whereas we

again show an optimal (speedup-1) algorithm in Theorem 3

(Section VI) here.

A note. Although we have chosen to model the problem in

terms of real-time jobs executing on varying-speed processors,

the model (and our results) are also applicable to the transmis-

sion of time-sensitive data on potentially faulty communication

media. Specifically, they are particularly relevant to data-

communication problems in which time-sensitive data and

data-streams must be transmitted over potentially faulty com-

munications media which can provide a high bandwidth under

most circumstances but can only guarantee a lower bandwidth:

the high bandwidth would correspond to the normal processor

speed, and the lower bandwidth to the degraded speed. We

therefore believe that this work is relevant to problems of

factory communication, communication within automobiles or

aircraft, wireless sensor networks, etc., in addition to processor

scheduling of mixed-criticality workloads.

II. MODEL

We start out considering a workload model consisting of

independent jobs; a model for representing recurrent tasks is

considered in Section VI. In our model, a mixed-criticality

real-time workload consists of basic units of work known as

mixed-criticality jobs. Each mixed-criticality (MC) job Ji is

characterized by a 4-tuple of parameters: a release date ai, a

WCET ci, a deadline di, and a criticality level χi ∈ {LO, HI}.
A mixed-criticality instance I is specified by specifying

• a finite collection of MC jobs J = {J1, J2, . . . , Jn}, and

• a varying-speed processor that is characterized by both a

normal speed (without loss of generality, assumed to be

equal to one) and a specified degraded processor speed
s < 1.

The interpretation is that the jobs in J are to execute on a

single shared processor that has two modes: a normal mode

and a degraded or faulty mode. In normal mode, the processor

executes as a unit-speed processor and hence completes one

unit of execution per unit time, whereas in degraded mode

it completes less than one, but at least s, units of execution

per unit time. The processor starts out executing at its normal

speed. It is not a priori known when, if at all, the processor

will degrade: this information only becomes revealed during

run-time when the processor actually begins executing at a

slower speed. We seek to determine a correct scheduling
strategy:

Definition 1 (correct scheduling strategy): A scheduling

strategy for MC instances is correct if it possesses

the property that upon scheduling any MC instance

I = (J = {J1, J2, . . . , Jn}, s),
• if the processor remains in normal mode throughout the

interval [mini{ai},maxi{di}), then all jobs complete by

their deadlines; and
• if the processor operates at or above its degraded speed

of s throughout the interval [mini{ai},maxi{di}), then

all jobs Ji with χi = HI complete by their deadlines.

That is, a correct scheduling strategy ensures that HI-criticality

jobs execute correctly regardless of whether the processor

executes in normal or degraded mode; LO-criticality jobs are

required to execute correctly only if the processor executes

throughout in normal mode.

In Section III below, we consider the problem of deter-

mining such correct scheduling strategies. In Section IV, we

consider an optimization version of this problem: given the

collection of MC jobs J , what is the smallest s such that

there is a correct scheduling strategy for the instance (J , s)?

III. PREEMPTIVE SCHEDULING

In this section we present efficient strategies for scheduling

preemptable mixed-criticality instances. We start out with a

general overview of our strategy. Given an instance I , prior

to run-time we will construct a scheduling table S(I), for use

while the processor is in normal (i.e., not faulty) mode. This

scheduling table will possess the property that each job Ji
receives ci units of execution over the interval [ai, di). During

run-time, scheduling decisions are initially made according

to this scheduling table. If at any instant it is detected that

the processor has transited to faulty mode, S(I) is no longer

used; instead, we immediately discard all LO-criticality jobs

and henceforth execute the (remaining) HI-criticality ones

according to EDF.

In the remainder of this section we present, and prove

the correctness of, a simple polynomial-time algorithm for

constructing these scheduling tables S(I) optimally. By op-
timal, we mean that if there is a correct scheduling strategy

(Definition 1 above) for an instance I , then the scheduling

strategy described above is a correct scheduling strategy with

the scheduling table we will construct.

We start out identifying the following (obvious) necessary

conditions for MC-schedulability:

Lemma 1: In order that a correct scheduling strategy exist

for MC instance I = (J , s), it is necessary that (i) EDF
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correctly schedule all the jobs in I on a speed-1 processor,

and (ii) EDF correctly schedule all the HI-criticality jobs in I
on a speed-s processor.

Given any instance I , it can be efficiently determined

whether I satisfies the necessary conditions of Lemma 1:

simply simulate the EDF scheduling of all the jobs in I upon

a unit-speed processor, and of the HI-criticality jobs in I
upon a speed-s processor. In the remainder of this section,

let us therefore assume that any instance under consideration

satisfies these necessary conditions. (I.e., any instance that fails

these conditions can obviously not have a correct scheduling

strategy, and is therefore flagged as being unschedulable.)

Given an MC instance I = ({J1, J2, . . . , Jn}, s) that

satisfies the conditions of Lemma 1, we now describe how to

construct a linear program (LP) such that a feasible solution

for this linear program can be used to construct scheduling

table S(I). Without loss of generality, assume that the HI-

criticality jobs in I are indexed 1, 2, . . . , nh and the LO-

criticality jobs are indexed nh+1, . . . , n. Let t1, t2, . . . , tk+1

denote the at most 2n distinct values for the release date

and deadline parameters of the n jobs, in increasing order

(tj < tj+1 for all j). These release dates and deadlines parti-

tion the time-interval
[
mini{ai},maxi{di}

)
into k intervals,

which we will denote as I1, I2, . . . , Ik, with Ij denoting the

interval [tj , tj+1).
To construct our linear program we define n× k variables

xi,j , 1 ≤ i ≤ n; 1 ≤ j ≤ k. Variable xi,j denotes the amount

of execution we will assign to job Ji in the interval Ij , in the

scheduling table that we are seeking to build.

The following n constraints specify that each job receives

adequate execution in the normal schedule:( ∑
j|tj≥ai ∧ di≥tj+1

xi,j

)
≥ ci, for each i, 1 ≤ i ≤ n (1)

while the following k constraints specify the capacity con-

straints of the intervals:

( n∑
i=1

xi,j

) ≤ tj+1 − tj , for each j, 1 ≤ j ≤ k (2)

Within each interval, the scheduling table will execute all

the HI-criticality jobs that are assigned execution within that

interval first, followed by all the LO-criticality jobs assigned

execution within that interval. That is, the interval Ij will

have a block of HI-criticality execution of duration
∑nh

i=1 xi,j ,

followed by a block of LO-criticality execution of duration∑n
i=nh+1 xi,j .

It should be evident that any scheduling table generated in

this manner from xi,j values satisfying the above (n + k)
constraints will execute all jobs to completion upon a normal

(non-degraded) processor. It now remains to write constraints

for specifying the requirements that the HI-criticality jobs com-

plete execution even in the event of the processor degrading

into faulty mode. We observe that the worst-case scenarios

occur when the processor transits to degraded mode at the very

beginning of a contiguous block of HI-criticality execution in

the scheduling table, since that would leave the maximum

Given MC instance ({J1, J2, . . . , Jn}, s), with job release-dates and
deadlines partitioning the time-line over [mini{ai},maxi{di}) into
the k intervals I1, I2, . . . , Ik
Determine values for the xij variables, i = 1, . . . , n, j = 1, . . . , k
satisfying the following constraints:

• For each i, 1 ≤ i ≤ n,( ∑
j|tj≥ai ∧ di≥tj+1

xi,j

)
≥ ci (1)

• For each j, 1 ≤ j ≤ k,

( n∑
i=1

xi,j

)
≤ tj+1 − tj (2)

• For each �, 1 ≤ � ≤ k, for each m, � < m ≤ (k + 1)

( ∑
i:(χi=HI)∧(di≤tm)

(m−1∑
j=�

xi,j

))
≤ s(tm − t�) (3)

Fig. 1. Linear program for constructing the scheduling tables

amount of HI-criticality execution remaining to be done on

the degraded processor. For each �, 1 ≤ � ≤ k, we represent

the possibility that this transition occurs at the start of the

interval I� in the following manner:

(i) Suppose that the fault occurs at time-instant t�; i.e., the

start of the interval I�. Henceforth, only HI-criticality

jobs will be executed; furthermore, these will be executed

according to preemptive EDF.

(ii) Hence for each tm ∈ {t�+1, t�+2, · · · , tk+1}, constraints

must be introduced to ensure that the cumulative remain-

ing execution requirement of all HI-criticality jobs with

deadline at or prior to tm can complete execution by tm
on a speed-s processor.

(iii) This is ensured by writing a constraint

( ∑
i:(χi=HI)∧(di≤tm)

(m−1∑
j=�

xi,j

)) ≤ s(tm − t�) (3)

To see why this represents the requirement stated in (ii)

above, note that for any job Ji with di ≤ tm,(∑m−1
j=� xi,j

)
represents the remaining execution require-

ment of job Ji at time-instant t�. The outer summation

on the LHS is simply summing this remaining execution

requirement over all the HI-criticality jobs that have

deadlines at or prior to tm.

(iv) A moment’s thought should convince the reader that

rather than considering all tm’s in {t�+1, t�+2, · · · , tk+1}
as stated in (ii) above, it suffices to only consider those

that are deadlines for some HI-criticality job.

(v) The Constraints (3) above only prevent missed deadlines

after t� when the (degraded) processor is continually

busy over the interval between t� and the missed dead-

line; what about deadline misses when the processor is
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Ji ai ci di χi

J1 0 3 5 LO

J2 0 c2 d2 HI

J3 3 1 5 HI �

�

�

0 1 2 3 4 5 d2

J1

J2

J3

� �

� �

� �

�
0 1 2 3 4 5 6 7 8 9 10

I1 I2 I3

J2 J1 J3 J1 J2

(a) (b) (c)

Fig. 2. Illustrating Example 2. The jobs are listed in (a), and depicted graphically in (b). The scheduling table that is constructed is depicted in (c).

not continually busy over this interval (and the RHS of

the inequality of Constraints (3) therefore does not reflect

the actual amount of execution received)? We point out

that for such a deadline miss to occur, it must be the case

that there is a subset of HI-criticality jobs – those with

release dates and deadlines between the last idle instant

prior to the deadline miss and the deadline miss itself –

that miss their deadlines on a speed-s processor. But this

would contradict our assumption that the instance passes

the necessary conditions of Lemma 1, i.e., all the HI-

criticality jobs together (and therefore, every subset of

these jobs) execute successfully on a speed-s processor.

Given a solution to this linear program, we construct a

scheduling table that assigns job Ji an amount xi,j of exe-

cution during the interval I�, for each pair (i, �); in I�, HI-

criticality execution is performed before LO-criticality execu-

tion – the jobs may be executed in any order within each

criticality level. During run-time, scheduling decisions are

initially made according to this scheduling table. If a processor

failure is detected, the table is no longer used; instead, all LO-

criticality jobs are discarded and the remaining HI-criticality

jobs are executed acording to EDF.

The entire linear program is listed in Figure 1; we now

illustrate the construction of such a linear program by means

of a simple example.

Example 2: We will consider a MC instance I consisting of

three jobs with parameters as depicted in Figure 2(a), with c2’s

value left unspecified for now, and d2 assumed to be larger

than 5. The release dates and deadlines of these three jobs

define three intervals: I1 = [0, 3); I2 = [3, 5); I3 = [5, d2), as

illustrated in Figure 2(b).

Since there are three jobs in I (n = 3), Constraints (1) of

the LP will be instantiated to the following three inequalities,

specifying that all three jobs receive adequate execution in

the scheduling table S(I) to execute correctly on a normal

(non-degraded) processor:

x11 + x12 ≥ 3

x21 + x22 + x23 ≥ c2

x32 ≥ 1

There are also three intervals I1, I2, and I3. Constraints 2 of

the LP will therefore yield the following three inequalities,

specifying that the capacity constraints of the intervals are

met:

x11 + x21 + x31 ≤ 3

x12 + x22 + x32 ≤ 2

x13 + x23 + x33 ≤ d2 − 5

It remains to instantiate the Constraints 3, that were intro-

duced to ensure correct behavior in the event of processor

degradation. These must be separately instantiated to model

the possibility of the processor degrading at the start of each of

the three intervals I1, I2 and I3. We consider these separately:

• Fault at the start of I1. In this case, Constraints 3 is

instantiated twice: once each for tm = 5 and tm = d2:

x31 + x32 ≤ (5− 0) s(
x21 + x22 + x23

)
+

(
x31 + x32 + x33

) ≤ (d2 − 0) s

• Fault at the start of I2. In this case, too, Constraints 3

is instantiated once each for tm = 5 and tm = d2:

x32 ≤ (5− 3) s(
x22 + x23

)
+

(
x32 + x33

) ≤ (d2 − 3) s

• Fault at the start of I3. In this case, Constraints 3 is

instantiated just once, for tm = d2:

x33 ≤ (d2 − 5) s

(We note that there are nine variables and eleven constraints

in this particular example.)

Continuing this example, suppose that c2 and d2 were 3 and

10 respectively, and s was equal to 1/2. A possible solution

to the LP would assign the xij variables the following values:
⎡
⎣

x11 x12 x13

x21 x22 x23

x31 x32 x33

⎤
⎦ =

⎡
⎣

2 1 0
1 0 2
0 1 0

⎤
⎦

As a consequence, the scheduling table would be as depicted in

Figure 2(c). We can easily see that this scheduling table yields

a correct scheduling strategy: observe that there are three

contiguous blocks of HI-criticality execution: [0, 1), [3, 4), and

[5, 7), and consider the possibility of the processor degrading

at the start of each:

• If the processor failed during [0, 1), then J2 can execute

over [0, 3) and [5, 8), while J3 can execute over [3, 5).
Both HI-criticality jobs would meet thus their deadlines

on the speed-0.5 processor.

• If the processor failed during [3, 4), then J3 would

execute over [3, 5). J2 will have completed one unit of
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execution prior to the processor failing, and therefore

need two additional units of execution. This it will obtain

by executing over [5, 9) on the speed-0.5 processor. If

the processor failed during [5, 7), then J2 will have

completed one unit of execution prior to the processor

failing. It needs two more units, which it will obtain by

executing over [5, 9) on the speed-0.5 processor.

We thus see that the solution of the LP does indeed yield a

feasible scheduling strategy.

Bounding the size of this LP. It is not difficult to show that

the LP of Figure 1 is of size polynomial in the number of jobs

n in MC instance I:

• The number of intervals k is at most 2n− 1. Hence the

number of xi,j variables is O(n2).
• There are n constraints of the form (1), and k constraints

of the form (2). The number of constraints of the form (3)

can be bounded from above by (k × nh), since for each

� ∈ {1, . . . , k}, there can be no more than nh tm’s

corresponding to deadlines of HI-criticality jobs. Since

nh ≤ n and k ≤ (2n− 1), it follows that the number of

constraints is O(n) +O(n) +O(n2), which is O(n2).

Since it is known [10], [9] that a linear program can be solved

in time polynomial in its representation, it follows that our

algorithm for generating the scheduling tables for a given MC

instance I takes time polynomial in the representation of I .

IV. AN OPTIMIZATION PROBLEM

Given a collection J of MC jobs and a degraded processor

speed s, in Section III above we described how to obtain a

correct scheduling strategy for the MC instance (J , s). We

now consider an optimization version of this problem: given

the collection of MC jobs J , what is the smallest s such that

there is a correct scheduling strategy for the instance (J , s)?
Lemma 1 gives us a lower bound: s can be no smaller than the

speed of the slowest processor upon which the HI-criticality

jobs in J would be correctly scheduled by EDF. But is this

lower bound tight? The following example illustrates that it is

not:

Example 3: Consider the following three MC jobs:

Ji ai ci di χi

J1 0 2 2 LO

J2 0 1 4 HI

J3 2 1 4 HI

It is evident that

• all three jobs are schedulable on a unit-speed processor

(execute J1 over [0, 2), J2 over [2, 3), and J3 over [3, 4)),
and

• J2 and J3 are schedulable on a speed- 12 processor (exe-

cute J2 over [0, 2), and J3 over [2, 4)).

Hence MC instance ({J1, J2, J3}, 1
2 ) satisfies the necessary

conditions of Lemma 1. However, there is no (non-clairvoyant)

scheduling strategy that can execute this instance correctly:

consider the run-time behavior in which the processor operates

in normal mode over [0, 2).

• If J1 did not execute exclusively over the interval [0, 2),
then it misses its deadline at time-instant 2. The processor

remains in normal mode.

• If J1 did execute exclusively over the interval [0, 2), then

the processor enters degraded mode at time-instant 2.

In either case, the instance was not correctly scheduled despite

satisfying the necessary conditions of Lemma 1.

It turns out that a slight modification to the linear program of

Figure 1 can be used to determine the smallest speed s: we

simply add the objective function

minimize s

to our linear program of Figure 1. That is, our modified linear

program computes those values of the xi,j parameters that

yield a scheduling strategy guaranteeing to meet all deadlines

on a unit-speed processor, and HI-criticality jobs’ deadlines

when the degraded speed is the smallest possible; this smallest

speed is the desired solution to the optimization version of our

MC scheduling problem.

We have implemented this optimization algorithm, and have

conducted simulation experiments on randomly-generated MC

instances to try and gain some insight into the tradeoffs

involved in MC scheduling upon varying-speed processors.

We now describe these empirical investigations.

Workload generation. Each randomly-generated MC instance

is characterized by four parameters:

1) n, the total number of jobs in the instance.

2) uall, a measure of the computational load of the instance.

This is equal to the sum of the WCETs of all the jobs in

the instance, normalized by the duration of time spanned

by their scheduling windows2.

3) γ, the expected fraction of jobs that are of HI criticality.

4) ζ, the expected number of jobs with scheduling windows

that overlap (cover) each time instant. A value ζ = 1
suggests that there are no overlaps between the scheduling

windows of any pair of jobs, while ζ = n means that all

jobs have the same release date and deadline).

With values specified for these four parameters, the individual

jobs comprising the instance are generated randomly according

to a procedure that is described in detail in the appendix.

Experiments and Observations. We generated a total of

30,000 MC workload instances, for various different combina-

tions of the four parameters described above. For each instance

that we generated, we also computed two load 3 parameters —

its HI-criticality load (loadHI) and its total load (loadALL). Our

observations are depicted in graphical form in Figures 3-4.

2The scheduling window of a job is the duration between the job’s release
time and its deadline.

3See, e.g. [13, p. 81] for the definition of the load, or loading factor,
of a collection of jobs; it is known that the load is equal to the speed of
the smallest processor upon which such a collection can be scheduled using
preemptive EDF. For our instances, the HI-criticality load is the load of only
the HI-criticality jobs in the instance, whereas the total load is the load of all
the jobs in the instance.
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Fig. 3. Degraded speed as a function of HI-criticality load

In both graphs of Figure 3, the x-axes represent the HI-

criticality load of the MC instance under consideration. The

y-axis of the left graph represents the degraded speed s that the

instance can tolerate, as computed by our optimization algo-

rithm. By Lemma 1 the loading factor of the HI-criticality jobs

is a lower bound on the degraded speed for which a correct

scheduling strategy may exist — this lower bound is depicted

as a dotted line in this graph, while the y-axis of the right graph

represents the amount by which the computed degraded speed

s exceeds this lower bound. Although we do not claim that our

simulations are extensive or comprehensive enough to draw

conclusions with absolute certainty, the evidence presented

in these graphs does indicate that the actual minimum speed

(as computed by our linear program) for which the typical

randomly-generated MC instance is correctly schedulable, is

very close to the lower bound implied by Lemma 1.

Figure 4 depicts the relationship between the total load

of the instance, and the amount by which the computed

degraded speed s exceeds the lower bound of Lemma 1.

It is not surprising that s tends to diverge from the lower

bound with increasing loadALL: the intuition behind this is that

since the contribution of the LO-criticality jobs to loadALL also

increases, LO-criticality jobs leave fewer time demands for the

HI-criticality jobs to “extend” in degraded mode.

V. NON-PREEMPTIVE SCHEDULING

Recall that the scheduling strategy we adopted in Section III

above is as follows. Given an instance I , we construct a

scheduling table S(I). During run-time scheduling decisions

are initially made according to this table. If at any instant it

is detected that the processor has transited to faulty mode,

the scheduling strategy is immediately switched: henceforth,

only HI-criticality jobs are executed, and these are executed

according to EDF. Such a scheduling strategy requires that

the job that is executing at the instant of transition can be

preempted, and hence is not applicable for non-preemptive
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Fig. 4. Degraded speed as a function of total load

systems. In this section, we consider the problem of scheduling

non-preemptive mixed-criticality instances.

Non-preemptivity mandates that each job receive its execu-

tion during one contiguous interval of time. Let us suppose

that a LO-criticality job is executing when the processor expe-

riences a degradation in speed. We can specify two different

kinds of non-preemptivity requirements:

1) This LO-criticality job does not need to complete – it may

immediately be dropped.

2) This LO-criticality job cannot be preempted and discarded

– it must complete execution despite that fact that the

processor has degraded and this job’s completion is not

required for correctness.

Although the first requirement – that the LO-criticality job

may be dropped – may at first glance seem to be the more

reasonable one, implementation considerations may favor the

second requirement. For instance, it is possible that the LO-
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criticality job had been accessing some shared resource within

a critical section, and preempting and discarding it would leave

the shared resource in an unsafe state.

It has long been known [11] that the problem of scheduling

a given collection of independent jobs on a single non-

preemptive processor (that does not have a degraded mode) is

already NP-hard in the strong sense [11]4. Since our mixed-

criticality problem, under either interpretation of the non-

preemptivity requirements, is easily seen to be a generaliza-

tion, it is also NP-hard. In fact, although determining whether

an instance of (regular, not MC) jobs that all share a common

release time can be non-preemptively scheduled on a fixed-

speed processor is easily solved in polynomial time by EDF,

it turns out that even this restricted problem is NP-hard for

MC scheduling.

Theorem 1: It is NP-hard to determine whether there is

a correct scheduling strategy for scheduling non-preemptive

mixed-criticality instances in which all jobs share a common

release date.

Proof Sketch: By transformation from the partitioning prob-

lem [7]; details omitted.

VI. RECURRENT TASKS

In Sections III and V above, we have considered mixed-

criticality (MC) systems that can be modeled as finite col-

lections of jobs. However, many real-time systems are better

modeled as collections of recurrent processes that are specified

using, e.g., the sporadic tasks model [12], [14]. In this section,

we briefly consider this more difficult problem of scheduling

mixed-criticality systems modeled as collections of sporadic

tasks. As with traditional (i.e., non MC) real-time systems,

we will model a MC real-time system τ as being comprised

of a finite specified collection of MC recurrent tasks, each

of which will generate a potentially infinite sequence of MC

jobs. We restrict our attention here to implicit-deadline MC
sporadic tasks. Each task is characterized by a 3-tuple of pa-

rameters: τi = (Ci, Ti, χi), with the following interpretation.

Task τi generates a potentially infinite sequence of jobs, with

successive jobs being released at least Ti time units apart. Each

such job has a criticality χi, a WCET Ci, and a deadline that

is Ti time units after its release. The quantity Ui = Ci/Ti

is referred to as the utilization of τi. An implicit-deadline
MC sporadic task system is specified by specifying a finite

number τ = {τ1, τ2, . . . , τn} of such sporadic tasks, and the

degraded processor speed s < 1 (as with MC instances of

independent jobs, it is assumed that the normal processor

speed is one). Such a MC sporadic task system can potentially

generate infinitely many different MC instances (collections of

jobs), each instance being obtained by taking the union of one

sequence of jobs generated by each sporadic task.

If unbounded preemption is permitted, then the scheduling

problem for implicit-deadline MC sporadic task systems on

uniprocessors is easily and efficiently solved in an optimal

4Indeed, it seems that it is difficult to even obtain approximate solutions to
this problem, to our knowledge, the best polynomial-time algorithm known [1]
requires a processor speedup by a factor of 12.

manner. We first derive (Theorem 2) a necessary condition for

the existence of a correct scheduling strategy. We then present

a scheduling strategy, Algorithm preemptive-MC, and prove

(Theorem 3) that it is optimal.

Theorem 2: A necessary condition for MC sporadic task

system (τ, s) to be schedulable by a non-clarivoyant correct

scheduling strategy is that

1) the sum of the utilizations of all the tasks in τ is no larger

than 1, and

2) the sum of the utilizations of the HI-criticality tasks in τ
is no larger than s.

Proof: It is evident that the first condition is necessary in

order that all jobs of all tasks in τ complete execution by

their deadlines upon a normal processor, and that the second

condition is necessary in order that all jobs of all the HI-

criticality tasks in τ complete execution by their deadlines

upon a degraded (speed-s) processor.

In order to derive a correct scheduling strategy, we first ob-

serve that using preemption we can mimic a processor-sharing
scheduling strategy, in which several jobs are simultaneously

assigned fractional amounts of execution with the constraint

that the sum of the fractional allocations should not exceed

the capacity of the processor. (This is done by partitioning the

time-line into intervals of length Δ where Δ is an arbitrarily

small positive number, and using preemption within each such

interval to ensure that each job that is assigned a fraction f
of the processor capacity gets executed for a duration f ×Δ
within this interval.)

Consider now the following processor-sharing scheduling

strategy:

Algorithm preemptive-MC.
1) Initially (i.e., on the normal –non-faulty– processor),

assign a share Ui of the processor to each task τi during

each instant that is active5.

2) If the processor transits to degraded mode at any instant

during run-time, immediately discard all LO-criticality

tasks and execute the HI-criticality tasks according to

EDF.

Theorem 3: Algorithm preemptive-MC is an optimal cor-

rect scheduling strategy for the preemptive uniprocessor

scheduling of MC sporadic task systems.

Proof: Let τ denote a MC implicit-deadline sporadic task

system satisfying the necessary conditions for schedulability

that have been identified in Theorem 2.

It is evident that Algorithm preemptive-MC meets all dead-

lines if the processor operates at its normal speed, since the

processor-sharing schedule ensures that each job of each task

τi receives exactly Ci units of execution between its release

date and its deadline.

Suppose that the processor degrades at some time-instant

to. If we were to immediately discard all LO-criticality tasks,

the second necessary schedulability condition of Theorem 2

ensures that there is sufficient computing capacity on the

5A task is defined to be active at a time-instant t if it has released a job
prior to t and this job has not yet completed execution by time t.
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degraded processor to continue a processor-sharing sched-

ule in which each HI-criticality task τi with an active job

receives a share Ui of the processor. The correctness of

Algorithm preemptive-MC now follows from the existence of

this processor-sharing schedule, and the optimality property of

preemptive uniprocessor EDF.

If preemption is forbidden, then scheduling of MC sporadic

task systems becomes a lot more challenging. As with the

collections of independent jobs (Theorem 1), this problem,

too, can be shown to be highly intractable.

VII. CONTEXT & CONCLUSIONS

In this paper we have presented the findings of our initial re-

search into scheduling mixed-criticality systems upon variable-

speed uniprocessors. While we expect that these processors

are very likely to execute at unit speed (or faster) during

run-time, we can only guarantee at a high level of assurance

that they will execute at some speed s < 1. Upon such a

processor, the scheduling objective is to ensure that all jobs

complete in a timely manner if the processor speed is one,

while simultaneously ensuring that more critical jobs complete

in a timely manner even if the processor speed falls to as low

as s.

The research reported in this paper can be extended in

several directions. An obvious extension would be to more
than just two criticality levels. Such an extension gives rise

to some interesting questions concerning, e.g., tradeoffs: does

the processor speed at which a processor is deemed to have

degraded one criticality level impact on the processor speed

at which it will degrade further criticality levels? If so, what

are the factors that the system designer should keep in mind

in deciding what the criteria are for deeming a degradation in

processor performance?

The optimization problem considered in Section IV seeks

to determine the smallest processor speed for which the HI-

criticality workload can be guaranteed. A different optimiza-

tion problem may fix this speed, and instead seek to determine

the smallest speed at which the run-time dispatcher would be

forced to abandon the LO-criticality jobs.

We have assumed here that a platform “knows” its execution

speed at each instant during run-time; specifically, that the

scheduling algorithm knows when the processor speed falls

below a certain threshold. It would be particularly interesting

and important to derive algorithms for scheduling mixed-

criticality systems upon platforms that do not have such

self-awareness; such scheduling algorithms would need to

guarantee that all jobs meet their deadlines upon a normal

processor and that all HI-criticality jobs meet their deadlines

on a degraded processor, without knowing during run-time

whether the processor is normal or degraded. We have obtained

some initial results [8] concerning MC scheduling on such

non-monitoring platforms, but much remains to be done.

In this paper, we have considered the possibility of the

processor transitioning from normal to faulty mode. It is

likely in practice that a faulty processor may resume normal

operation after some duration in faulty mode; were this to

happen, it would be desirable to have the system recover from

the fault and resume the execution of LO-criticality jobs. De-

vising scheduling strategies that achieve this requires careful

consideration of models of desired behavior, in order to come

up with appropriate quantitative metrics that a scheduling

strategy may seek to optimize.

The preemptive scheduling strategies presented in Sec-

tions III-IV of this paper are designed for a model of execution

that assumes that preemptions incur no cost, and therefore

make no attempt to bound the number of such preemptions. We

are currently working on scheduling strategies that continue to

allow preemptions to occur, but seek to bound their number.

It would be interesting to integrate the model we are

proposing here with other mixed-criticality models: what if

we were to have multiple WCET’s specified in addition to
variable-speed processors?
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APPENDIX: WORKLOAD GENERATION FOR SIMULATION

EXPERIMENTS

Recall that each generated workload instance is characterized

by the four parameters (n, uall, γ, ζ), with n denoting the

number of jobs, uall a measure of the computational load, γ
the expected fraction of HI-criticality jobs, and ζ the expected

number of jobs with scheduling windows covering each time

instant. With these four parameters specified, the individual

jobs are generated as follows:

§1: Release dates. We model job arrivals by a (memoryless)

Poisson process. I.e., we generate (n − 1) independent and

identically distributed random variables xi according to the

exponential distribution with λ = 1. The first job is assigned

release date zero (a1 := 0); subsequent release dates are

assigned values as ai+1 := ai + xi.

§2: Deadlines. We follow the procedure suggested in [3] and

model relative deadlines (the duration between release date and

deadline) as independent and identically distributed random

variables drawn from the log-uniform distribution (exponential

of uniform distribution U [bl, bu]).
To obtain the desired values we chose bl ← 0 and bu to be

the solution to the equation ebu − ζbu − 1 = 0 (the equation

is solved numerically using the Newton-Raphson method), so

that expectation for the log-uniform distribution is E(c) =
(ebu−ebl)/(bu−bl) = ζ. Since in expectation, a job is released

every (λ = 1) time unit[s], and will have a scheduling window

of duration ζ time units, the expected number of jobs with

scheduling windows covering each time instant approaches ζ
with increasing n.

§3: Criticality Level. Each job is assigned criticality HI with

probability γ (and hence, criticality LO with probability (1−
γ)).
§4: Worst Case Execution Time (WCET). Once all the release

dates and deadlines have been assigned, we can determine

the total duration of time covered by all the jobs’ scheduling

windows — this is equal to the latest deadline minus the

duration of those intervals that do not lie within any scheduling

window. Let Lact denote this duration. The parameter uall

characterizing this workload now determines the cumulative

WCETs of all the jobs:
∑

i ci = σ := uallLact.

An additional straightforward restriction on the WCET of

each job is that it cannot exceed the relative deadline of the

job. Let d′i denote the relative deadline of the i’th job. Our

method generates WCET one by one in increasing order of

relative deadline: In the generation of the i’th WCET ci,
given c1, ..., ci−1, the following two inequalities may provide

a tighter bound:

ci ≥ σ −
i−1∑
j=1

cj −
n∑

j=i+1

d′j

ci ≤ σ −
i−1∑
j=1

cj .

It is evident that if either of these equations is violated, the

sum of all the WCETs will not equal σ no matter what values

the remaining cj take in their respective ranges [0, d′j ], j =
i+ 1, ..., n.

Thus for each of i = 2, ..., n− 1, the bound for generating

the WCET should be

ci ≥ lb(ci) := max{0, σ −
i−1∑
j=1

cj −
n∑

j=i+1

d′j}

ci ≤ ub(ci) := min{d′i, σ −
i−1∑
j=1

cj}

The bound of c1 is simpler, with lb(c1) = max{0, σ −∑n
j=2 d

′
j} and ub(c1) = d′1; and cn is set equal to σ −∑n−1

j=1 cj . Note that we will only discuss how to randomly

generate c1, ..., cn−1 properly in the following, thus i will only

take values from 1 to n− 1.

Although we have determined upper and lower bounds on

each ci value, we cannot simply choose the ci’s uniformly

in the calculated range [lb(ci), ub(ci)]. In order to ensure an

unbiased random generation, the expectation (i.e., the mean

value) of each WCET needs to be fixed, and may not be

(lb(ci) + ub(ci))/2. Here we assume the sum of the WCETs,

which equals σ, is to be shared “fairly” according to relative

deadlines. In this context, fairness would dictate that the

jobs with longer relative deadline d′i gets a relatively larger

expectation of WECT ci. More precisely, we desire that the

expected values E(Ci) of the WCET’s – the ci values – satisfy

E(ci) = σ ×
(
d′i/

( n∑
i=1

d′i
))

We have chosen the beta distribution to generate these random

values ci within the computed ranges [lb(ci), ub(ci)] and the

desired expected value E(ci). One the parameters of beta

distribution is fixed to be α(ci) = 2, and the other is given by

β(ci) = 2×
(ub(ci)− E(ci)

E(ci)− lb(ci)

)

Since the beta distribution generates random values over

[0, 1] with expectation value of α/(α + β) = (E(ci) −
lb(ci))/(ub(ci) − lb(ci)), we need to scale the values into

the ranges [lb(ci), ub(ci)] by multiplying by (ub(ci)− lb(ci))
and adding lb(ci). This ensures that the expectation of ci is

(E(ci)− lb(ci))/(ub(ci)− lb(ci))× (ub(ci)− lb(ci)) + lb(ci)
which is equal to E(ci) as desired.
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