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Abstract—A mixed criticality (MC) workload consists of
components of varying degrees of importance (or “criticalites”).
The problem of executing a MC workload, modeled as a
collection of independent implicit-deadline sporadic tasks exe-
cuting upon a preemptive uniprocessor, is considered. Suitable
scheduling strategies are devised for scheduling such systems
despite uncertainty and unpredictability in both the amount of
execution needed by the tasks, and the effective speed of the
processor. These scheduling strategies allow for simultaneously
making efficient use of platform resources and ensuring the
correctness of the more critical workload components at
greater levels of assurance.

I. INTRODUCTION

Special-purpose processors used in implementing safety-

critical systems are designed to be highly predictable, in

order that it be possible to provide tight bounds on the

worst-case run-time system behavior of the system to a

very high level of assurance, during system design time

itself. Such design-time predictability is essential for safety-

critical functionalities, but is difficult to achieve with Com-

mercial Off-The-Shelf (COTS) processors that are typically

engineered to provide good average-case performance rather

than worst-case guarantees and consequently exhibit con-

siderable (unpredictable) variation between their average-

case and their worst-case behaviors. To provide worst-

case guarantees upon such platforms requires worst-case

resource provisioning, which can lead to significant resource

under-utilization during run-time. One approach to over-

come such resource under-utilization is to implement the

safety-criticality functionalities alongside some less critical

functionalities, as part of a mixed-criticality (MC) workload,

upon a shared platform. Such an approach recognizes that

since safety-critical functionalities must have their correct-

ness demonstrated to very high levels of assurance, resources

need to be provisioned to the critical functionalities under

very conservative assumptions, which will lead to over-

provisioning. These over-provisioned resources are unlikely

to be actually needed during run-time, but can instead be

used to execute the less-critical functionalities.

This general idea has been very widely explored with

respect to dealing with variations in execution time of pieces

of code; in this paper, we additionally explore this idea with

respect to variations in the execution speed of processors.

WCET in mixed-criticality systems. The worst-case execu-

tion time (WCET) of a given piece of code upon a specified

platform denotes an upper bound of the duration of time

needed for it to execute. Determining the exact WCET of an

arbitrary piece of code is provably an undecidable problem.

Even when severe restrictions are placed upon the structure

of the code (e.g., loop bounds must be known at compile

time), sophisticated features found upon COTS processors

(such as multi-level cache, deep pipelining, speculative out-

of-order execution, etc.) are hard to analyze and make it ex-

tremely difficult to determine WCET precisely. A large body

of prior research on mixed criticality scheduling (see [9] for

a review of some of this work) has focused upon dealing

with the reality that different tools for determining WCET

bounds may be more or less conservative than each other:

a more conservative tool determines an upper bound on

the actual WCET of an input piece of code at a higher

level of assurance than a less conservative tool. The upper

bound determined by the more conservative tool is larger

– sometimes by several orders of magnitude – than the one

determined by the less conservative tool. Although it may be

necessary (for instance, mandated by a statutory Certification

Authority) to use a very conservative tool for validating the

correctness of safety-critical functionalities, less conserva-

tive tools should suffice for validating the correctness of less

critical functionalities. This is modeled by assigning each

job two WCET parameters – a larger, more conservative

one, and a smaller, less conservative one. Some of the jobs

are designated as being safety-critical; the remaining ones

are not safety-critical. The objective is to determine a run-

time scheduling strategy to ensure that (i) all jobs complete

by their deadlines if each job completes execution upon

having executed for no more than the smaller of its WCET

values; and (ii) the jobs designated as being safety-critical

continue to complete by their deadlines (although the non-

critical jobs may fail to do so) if some job does not complete

execution upon having executed for up to the smaller of its

WCET values, although each job does complete upon having

executed for the larger of its WCET values.

Varying-speed processors: context and motivation. The

take-away message from the discussion above may be sum-

marized as follows. In earlier times, safety-critical systems

were highly predictable, and WCETs could therefore be

determined very accurately; further, the WCETs were very

close to the actual execution times. Over time, increasing
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unpredictability/ non-determinism in both code and plat-

forms made it necessary to estimate WCETs, rather than

determine them precisely. These estimates could be more

or less conservative: while we may have a greater level of

assurance that a more conservative estimate is correct, it

requires that more resources be provisioned.

This narrative is now being repeated with respect to

processor speeds. CPU clock rates were derived entirely

from crystal-based oscillators and were therefore extremely

predictable and deterministic. However, the ongoing quest

for ever more powerful and energy-efficient processors is

yielding innovations that result in clocks with varying speed

during run-time. For example [8] describes a technique for

detecting whether signals are late at the circuit level within

a CPU micro-architecture, and if so to recover by delaying

the next clock tick so that logical faults do not propagate to

higher (i.e., the software) levels. Such run-time variation in

processor speed is further exacerbated with the increasing

trend towards Globally Asynchronous Locally Synchronous,

or GALS, circuit designs. In a GALS circuit, different parts

of the circuit are clocked separately using separate local

clocks, and signals propagate between the different syn-

chronous modules in an asynchronous manner. The overall

execution rate of the circuit is thus determined by the (highly

variable) delay of such asynchronous propagation. Asyn-

chronous processors [12] represent the logical extreme of

the GALS trend in that the pace of computation is governed

entirely by the time taken for signals to propagate. Such

asynchronous processors are known to be extremely energy-

efficient and fast, but highly non-deterministic. As GALS

and asynchronous processors become the most advanced

COTS processors, it is only to be expected that they will

increasingly come to be used in safety-critical embedded

systems [16]; when this happens, we must be able to deal

with run-time variations in the speeds of these processors

that are of a magnitude comparable to the variations we see

in the execution times of pieces of code on today’s advanced

COTS processors.

The research reported in this paper seeks to address this

uncertainty and run-time variation in processor speeds within

a framework similar to the one that was previously estab-

lished for dealing with uncertainty in WCETs. The general

idea is as follows. In order to be able to guarantee that

deadlines are met under all run-time conditions, conservative

analysis prior to run-time must make the most pessimistic

assumptions regarding clock speed: that during run-time

the clock speed takes on the lowest possible value. If this

lowest possible value is highly unlikely to be reached in

practice, then a significant under-utilization of the CPU’s

computing capacity will be observed during run-time. A

less conservative analysis, on the other hand, may assume a

less pessimistic (i.e., larger) lower bound on the clock speed

during run-time. Using such an assumption as the basis for

making resource-allocation decisions will likely lead to more

efficient usage of the CPU’s computing capacity during run-

time; however, there is a possibility that the actual processor

speed will fall below the lower-bound estimate used in the

analysis (thereby invalidating the conclusions drawn during

such analysis).

Related work. A large body of research on MC scheduling

has been conducted over the past 5-7 years — see [9]

for an excellent survey. Much of this work has focused

on scheduling MC systems in which multiple WCETs are

specified for each job or task; some (e.g., [2], [10], [6]) has

considered uncertainty in specifying minimum inter-arrival

durations for sporadic tasks. A recent paper [7] considered

MC systems that are specified as finite collections of inde-
pendent jobs, each characterized by a single WCET, that are

implemented upon varying-speed preemptive uniprocessors.

We are currently working on extending the results of [7]

to model the scheduling of finite collections of independent

jobs with each characterized by multiple WCETs.

This research. As discussed above, much prior work on MC

scheduling has separately considered uncertainty in (i) esti-

mating upper bounds on WCETs, and (ii) estimating lower

bounds on processor speed during run-time. In this paper, we

seek to integrate both these dimensions of uncertainty within

a single integrated framework, for MC systems comprised

of recurrent tasks. (Some related work, [7] in particular,

seeks similar unification but for the far simpler workload

model of collections of independent jobs. The techniques

that need to be developed, and the results obtained, are

strikingly different; the unified model thus exhibits the same

characteristics as the model of just multiple WCETs, where,

for example, the structure and properties of the MCEDF [20]

algorithm for scheduling collections of independent jobs

proved very different from those of the algorithm in [14]

for scheduling sporadic task systems.)

Organization. In Section II we propose a formal model

for representing MC systems comprised of recurrent tasks,

each of which is (i) designated as being of either high

or low criticality1, and (ii) characterized by two WCET

parameters, that are to execute upon a single preemptive

processor whose speed may vary during run-time. Different

scheduling strategies are possible depending upon whether

the varying-speed processor has a means or not of monitor-

ing during run-time what its actual speed is. In Sections III–

IV, we consider processors that do not possess such self-

monitoring capabilities; in Section V, we turn our attention

to processors that do. For all our algorithms we provide suffi-

cient schedulability conditions; for some, we also determine

speedup bounds. In addition to such theoretical analyses, we

1In common with much earlier work in MC scheduling we will, for the
most part, restrict our attention here to such dual-criticality systems. In
Section VII, we briefly discuss extending our work to systems that have
more than two criticality levels defined.
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have conducted schedulability experiments upon randomly-

generated workloads evaluating our different algorithms —

these experiments are reported in Section VI. We conclude

in Section VII by discussing extensions that we are currently

working upon, and by placing this work within a larger

context of mixed-criticality scheduling theory.

II. MODEL AND DEFINITIONS

A mixed-criticality (MC) implicit-deadline sporadic task

system τ is specified as a finite collection of MC implicit-

deadline sporadic tasks, each of which may generate an

unbounded number of MC jobs.

MC jobs. We will, for the most part, restrict our attention to

dual-criticality systems: systems with two distinct criticality

levels, which we denote as LO and HI. Each such dual-

criticality job is characterized by a 5-tuple of parameters:

Ji = (ai, di, χi, ci(LO), ci(HI)), where

• ai ∈ R+ is the release time, and di ∈ R+ the deadline.

We require that di ≥ ai.
• χi ∈ {LO, HI} denotes the criticality of the job. A HI-

criticality job is one that is subject to a higher level of

validation than a LO-criticality job.

• ci(HI) and ci(LO) specify estimates on the WCET of

Ji, made at greater and lesser levels of assurance. We

assume ci(LO) ≤ ci(HI).

System behavior. The MC job model has the following

semantics. Job Ji is released at time ai, has a deadline at

di, and needs some amount of execution γi. The value of

γi is not known beforehand, but only becomes revealed by

actually executing the job until it signals that it has com-

pleted execution. These values of γi for a given execution

of the system defines the kind of behavior exhibited by the

system during that execution. If each Ji signals completion

without exceeding ci(LO) units of execution, the system

exhibits LO-criticality behavior; if some job Ji does not

signal completion after executing for more than ci(LO) (but

proceeds for no more than ci(HI)) units of execution, the

system exhibits HI-criticality behavior. If any Ji does not

signal completion despite having executed for ci(HI) units,

the system exhibits erroneous behavior.

MC implicit-deadline sporadic tasks. Analogously to

traditional (non-MC) implicit-deadline sporadic tasks, an

MC implicit-deadline sporadic task τk is characterized by

a four-tuple (χk, Ck(LO), Ck(HI), Tk), with the following

interpretation. Task τk generates an unbounded sequence of

jobs, with successive jobs being released ≥ Tk time apart.

Each job has a deadline Tk time units after its release. The

criticality of each job is χk, and it has LO-criticality and

HI-criticality WCET’s of Ck(LO) and Ck(HI) respectively.

Characterizing a varying-speed processor. A varying-

speed processor is characterized by a normal speed σ and a

degradation ratio ρ (ρ ≤ 1). The processor is said to exhibit

normal behavior provided its speed never falls below σ; if

its speed falls below σ but remains above ρ×σ at all times,

it exhibits degraded behavior. It is said to exhibit erroneous
behavior if its speed ever falls below ρ× σ.

A mixed-criticality instance I is specified as a finite

collection of MC tasks τ and a varying-speed processor

characterized by the two parameters σ and ρ.

Correctness criterion. We define an algorithm for schedul-

ing MC instances to be correct if it is able to schedule any

system such that

– During all LO-criticality behaviors of the system in which

the processor speed remains at or above σ, all jobs receive

enough execution between their release time and deadline to

signal completion; and

– During all HI-criticality behaviors of the system, all

HI-criticality jobs receive enough execution between their

release time and deadline to signal completion provided the

processor speed remains at or above ρ× σ.

That is, if the system exhibits LO-criticality behavior and

the processor exhibits normal behavior, then all deadlines

should be met; else, all HI-deadlines should be met (provided

neither the system nor the processor exhibits erroneous

behavior).

Note that if any job executes for more than its LO-

criticality WCET or the processor speed falls below σ, we

do not require any LO-criticality jobs (including those that

may have arrived before this happened) to complete by their

deadlines. This is a consequence of the nature of system

validation: informally speaking, the system designer fully

expects that the system will exhibit LO-criticality behavior

and the processor always execute at or above its normal

speed, and hence is only concerned that they behave as

desired under these circumstances. The validation process

for the more critical functionalities, on the other hand, allows

for the possibility that some jobs may exhibit HI-criticality

behavior and/ or the processor executes at a speed slower

than σ (but ≥ ρσ), and requires that all HI-criticality jobs

nevertheless meet their deadlines; however, such validation

is not concerned with the fate of the LO-criticality jobs.

Utilization parameters. The utilization of a (regular, i.e.,

non-MC) implicit-deadline sporadic task system denotes the

sum of the ratios of the WCETs to periods of all the tasks in

the system. We may define analogous concepts for mixed-

criticality sporadic task systems. Let τ denote a MC implicit-

deadline sporadic task system. For each of x and y in

{LO, HI}, we define a utilization parameter as follows:

Uy
x (τ) =

∑
τi∈τ∧χi=x

Ci(y)

Ti
. (1)

Thus for example, U LO
HI (τ) denotes the sum of the utilizations

of the HI-criticality tasks in τ , under the assumption that
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each job of each task executes for no more than its LO-

criticality WCET.

A clairvoyant scheduling algorithm is one that knows,

prior to scheduling an instance, (i) precisely how much

execution each job in the instance will require in order to

complete, and (ii) the precise manner in which the processor

speed will vary during run-time.

Definition 1 (optimal scheduling strategy): An optimal

scheduling strategy for MC instances possesses the property

that if it fails to maintain correctness for a given MC instance

I, then no non-clairvoyant algorithm can ensure correctness

for the instance I.

Run-time support. As stated above, we assume that the pro-

cessor speed may vary in an a priori unknown manner dur-

ing run-time. A self-monitoring processor is one that knows

its speed at each instant in time. Such a self-monitoring ca-

pability is not always available on asynchronous processors.

We therefore start out in Sections III-IV assuming that self-

monitoring is not available; later in Section V, we consider

systems that possess such self-monitoring capability. In both

cases, we do however assume the existence of accurate

clocks that can measure the amount of time that has elapsed.

That is, we assume that we can determine how long – i.e.,

for what duration – a job has executed, even though we may

not know how much execution it has accomplished in this

duration.

III. VDF-NM: NON SELF-MONITORING PROCESSORS

In this and the next section, we consider the scheduling of

MC implicit-deadline sporadic task systems upon processors

that do not possess the capability of self-monitoring. We

define an algorithm, VDF-NM (for Virtual-Deadline First

– Non-Monitoring) for scheduling such systems. VDF-NM

is motivated by, and hence quite similar to, the EDF-VD

algorithm that was proposed in [3], [4].

We start out with an overview describing the preprocess-

ing that is done by VDF-NM, and the manner in which it

makes run-time scheduling decisions. This is followed by

a proof of correctness, and some theorems characterizing

its performance. In Section III-A, we derive a quantita-

tive bound on VDF-NM’s worst-case performance via the

speedup metric, which is widely used in characterizing the

behavior of mixed-criticality scheduling algorithms.

Overview. Let τ denote the MC implicit-deadline sporadic

task system that is to be scheduled on a preemptive processor

with normal speed σ that is, without loss of generality,

assumed to be equal to one (i.e., σ ← 1), and degradation

ratio ρ. Prior to run-time, VDF-NM performs a schedu-

lability test to determine whether τ can be successfully

scheduled by it or not. If τ is deemed schedulable, then

an additional parameter, which we call a modified period
denoted T̂i, is computed for each HI-criticality task τi ∈ τ .

The algorithm for computing these parameters is described

τ = ∪ni=1{τi} to be scheduled on a varying-speed processor

with normal speed σ = 1 and degradation ratio ρ

1) Compute x as follows: x← ULO
HI (τ)

1−ULO
LO

(τ)

2) If
(
U HI

HI (τ)/(1− x) ≤ ρ
)

then
T̂i ← xTi for each HI-criticality task τi
declare success and return

else declare failure and return

Figure 1. VDF-NM: The preprocessing phase.

in pseudo-code form in Figure 1; this pseudo-code is proved

correct in Thms 1–2. Run-time scheduling is done according

to the Algorithm EDF, with virtual deadlines: deadlines that

VDF-NM computes (in a manner to be described below)

and assigns to jobs before handing them off to the EDF

scheduler. The EDF scheduler will then use these virtual

deadlines for the purpose of determining scheduling priority.

Suppose that a job of task τi arrives at time-instant ta.

If χi = LO, then this job is assigned a virtual deadline

equal to ta + Ti whereas if χi = HI, it is assigned a virtual

deadline equal to ta+T̂i. If some job executes for a duration

exceeding its LO-criticality WCET without signaling that it

has completed execution, we know that either the system is

no longer exhibiting LO-criticality behavior, or the processor

is no longer exhibiting normal behavior (or both). In re-

sponse, the run-time scheduler immediately discards all LO-

criticality jobs2; subsequently, only HI-criticality jobs will

receive any execution. Subsequent execution of HI-criticality

tasks (including the jobs that are currently active) continue

to be done according to EDF. But the actual job deadlines

(arrival time plus period) are used.

Detailed description. As shown in Figure 1, VDF-NM first
computes a parameter x (the reason why x is assigned this
value is derived below – see Expression 4) and then assigns
values to the T̂i parameters for all HI-criticality tasks as
follows:

T̂i ← x× Ti. (2)

Theorem 1: The following condition is sufficient for
ensuring that VDF-NM successfully schedules all LO-
criticality behaviors of τ :

x ≥ U LO
HI (τ)

1− U LO
LO (τ)

. (3)

Proof: If EDF is able to schedule, upon a unit-speed (since

σ ≡ 1) processor, all LO-criticality behaviors of the task

system obtained from τ by replacing each HI-criticality task

τi by one with a reduced period, then it follows from the

sustainability [5] of uniprocessor EDF that EDF is able to

schedule all LO-criticality behaviors of τ upon a unit-speed

2An efficient implementation of such a run-time dispatcher may be
obtained using the technique described in [3, Sec. V-A], to have run-time
that is logarithmic in the number of tasks.
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processor as well. Note that scaling down the period of each

HI-criticality task by a factor x is equivalent to inflating its

utilization by a factor 1/x. Since the utilization bound of

EDF for implicit-deadline tasks is known to be equal to the

processor capacity [17], we therefore conclude that

(
U LO

LO (τ) +
U LO

HI (τ)

x
≤ 1

)
⇔

(
x ≥ U LO

HI (τ)

1− U LO
LO (τ)

)

is sufficient for ensuring that VDF-NM successfully sched-

ules all LO-criticality behaviors of τ .

Algorithm VDF-NM thus chooses for x the smallest value
such that Theorem 1 is satisfied:

x← U LO
HI (τ)

1− U LO
LO (τ)

. (4)

With this value of x, we now derive a sufficient condition

for ensuring that VDF-NM meets all HI-criticality deadlines

during all HI-criticality behaviors of τ :

Theorem 2: The following condition is sufficient for en-

suring that VDF-NM successfully schedules all HI-criticality

behaviors of τ :

U HI

HI (τ)/(1− x) ≤ ρ. (5)

Proof: Suppose that at some instant t∗ during run-time, the

scheduler detects that some job has executed for a dura-

tion exceeding its LO-criticality WCET without signaling

completion. It immediately discards all LO-criticality jobs,

re-assigns each active HI-criticality job a deadline equal to

its release time plus the original period of the task that

generated it, and assigns each future-arriving HI-criticality

job a deadline equal to its release time plus the period of

the task that generates it.

Since the modified relative deadline of a job of HI-

criticality task τi is equal to xTi (see Fig. 2), if this job

is active at time-instant t∗ its actual deadline must be at

least (Ti − xTi) or (1 − x)Ti time units in the future. The

utilization of task τi beyond time-instant t∗ is therefore no

greater than that of an implicit-deadline sporadic task with

execution requirement ci(HI) and period (1−x)Ti. Summing

over all HI-criticality tasks and using once again the fact that

EDF has a utilization bound equal to the processor capacity,

we conclude that
∑
χi=HI

ci(HI)

(1− x)Ti
≤ ρ ⇔ 1

1− x

∑
χi=HI

ci(HI)

Ti
≤ ρ

⇔ U HI

HI (τ)/(1− x) ≤ ρ

is a sufficient condition for VDF-NM to meet all HI-

criticality job deadlines upon the degraded processor of

speed ≥ ρ.

A. A speedup bound

Speedup bounds have been widely used for characterizing

the performance of mixed-criticality scheduling algorithms.

We now derive such a bound for VDF-NM.

Definition 2 (Speedup bound): An algorithm A is defined

to have a speedup bound b, where b is a positive real number

≥ 1, if any task system τ that can be correctly scheduled

by any hypothetical clairvoyant scheduling algorithm upon

a processor with normal speed σ and degradation ratio ρ, is

correctly scheduled by Algorithm A upon a processor with

normal speed b× σ and (the same) degradation ratio ρ.

It is evident that a smaller speedup bound is better – a

speedup bound of 1 means that the algorithm is optimal. We

will prove that VDF-NM has a speedup bound no larger than

φ, where φ is the famous mathematical constant (
√
5+1)/2

≈ 1.618 (known as the Golden Ratio).

We start out proving a sufficient schedulability condition:

Theorem 3: If τ satisfies

U LO

LO (τ) + min
(U HI

HI (τ)

ρ
,

U LO
HI (τ)

1− UHI
HI

(τ)

ρ

)
≤ 1, (6)

then it is successfully scheduled by VDF-NM.

Proof: We consider two cases:

Case A: U LO
LO (τ) +

UHI
HI (τ)
ρ ≤ 1. In this case, consider

the regular (i.e., not mixed-criticality) task system obtained

by including all the LO-criticality tasks and, for each HI-

criticality task τi, a task with WCET equal to ci(HI)/ρ and

period equal to Ti. The utilization of this system is equal to

U LO

LO (τ) +
∑
χi=HI

ci(HI)/ρ

Ti
= U LO

LO (τ) +
U HI

HI (τ)

ρ
, (7)

which is assumed ≤ 1. It therefore follows that we can EDF-

schedule the original MC system with each HI-criticality

task’s HI-criticality WCET inflated by a factor 1/ρ to meet

all deadlines. Hence, all HI-criticality jobs will continue to

meet their deadlines even if the processor speed falls by as

much as a factor ρ.

Case B: U LO
LO (τ)+

UHI
HI (τ)
ρ > 1. For Inequality (7) to hold, it

must then be the case that

U LO

LO (τ) +
U LO

HI (τ)

1− UHI
HI

(τ)

ρ

≤ 1

⇔ U LO
HI (τ)

1− UHI
HI

(τ)

ρ

≤ 1− U LO

LO (τ)

⇔ U LO
HI (τ)

1− U LO
LO (τ)

≤ 1− U HI
HI (τ)

ρ

⇔ x ≤ 1− U HI
HI (τ)

ρ
(By Inequality (4))

⇔ U HI

HI (τ)/(1− x) < ρ

and τ is successfully scheduled by Algorithm VDF-NM

according to Theorem 2.

In Theorem 4 below, we will use Theorem 3 to prove that

VDF-NM has a speedup bound no greater than φ. But first,

we briefly enumerate some properties of φ that will be used

in this proof. Let Φ denote the multiplicative inverse of φ
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(i.e., Φ ≡ 1/φ).The following identities are easily validated

algebraically:

1) Φ2 +Φ = 1;

2) Φ/(1 + Φ) = Φ2.

Theorem 4: Algorithm VDF-NM has a speedup bound

that is no larger than φ.

Proof: We will show below that any MC task system τ that

can be correctly scheduled by an optimal algorithm on a

processor with normal speed Φ and degradation ratio ρ, is

correctly scheduled by VDF-NM on a processor with normal

speed 1 and the same degradation ratio. This establishes the

theorem since it shows that a processor that are faster by

a factor of 1/Φ (which is φ) is sufficient for VDF-NM to

correctly schedule τ .

Observe that any τ that is correctly scheduled by a

clairvoyant scheduler upon a processor with normal speed

Φ and degradation ratio ρ must necessarily satisfy

max
(
U LO

LO (τ) + U LO

HI (τ),
U HI

HI (τ)

ρ

)
≤ Φ, (8)

since its LO-criticality utilization (U LO
LO (τ)+U LO

HI (τ)) must be

≤ Φ and its HI-criticality utilization U HI
HI (τ) must be ≤ Φρ.

We will now show that any such task system is correctly

scheduled by VDF-NM upon a varying speed processor with

normal speed 1 and degradation ratio ρ.

Case A: U LO
HI (τ) ≥ ΦU LO

LO (τ). From Inequality (8), we have

U LO

LO (τ) + U LO

HI (τ) ≤ Φ

⇒ U LO

LO (τ)(1 + Φ) ≤ Φ

⇔ U LO

LO (τ) ≤
Φ

1 + Φ
⇔ U LO

LO (τ) ≤ Φ2. (See listed properties of φ above)

Consequently,

U LO

LO (τ) +
U HI

HI (τ)

ρ
≤

(
Φ2 +Φ

)
= 1.

And it follows from Theorem 3 that τ is scheduled correctly

by VDF-NM.

Case B: U LO
HI (τ) ≤ ΦU LO

LO (τ). Again Inequality (8) yields

U LO

LO (τ) + U LO

HI (τ) ≤ Φ

⇒ 1

Φ
U LO

HI (τ) + U LO

HI (τ) ≤ Φ

⇔ Φ+ 1

Φ
U LO

HI (τ) ≤ Φ

⇔ U LO

HI (τ) ≤ Φ
Φ

Φ+ 1
= Φ3.

The last equality holds since Φ/(Φ+1) = Φ2 – again see

listed properties of φ.

�
�

a t∗
�
d̂

�
d

�� x× Ti
�� (1− x)× Ti

Figure 2. A job of HI-criticality task τi that arrives at time a is assigned
a virtual deadline of d̂ = a + T̂i; its real deadline is at d = a + Ti. If a
criticality level change is observed at t∗ ≤ d̂, there is at least (1 − x)Ti

duration until the real deadline.

Using the above relationship, we have,

U LO

LO (τ) +
U LO

HI (τ)

1− UHI
HI

(τ)

ρ

= (Using the identity a
1−b ≡ a+ a b

1−b on the 2nd term)

U LO

LO (τ) + U LO

HI (τ) + U LO

HI (τ)
( U HI

HI (τ)/ρ

1− UHI
HI

(τ)

ρ

)

≤ (By Inequality (8),
UHI

HI (τ)
ρ ≤ Φ)

U LO

LO (τ) + U LO

HI (τ) + U LO

HI (τ)
( Φ

1− Φ

)

≤
(
U LO

LO (τ) + U LO

HI (τ)
)
+Φ3

( Φ

1− Φ

)

≤ Φ+ Φ3
( Φ

1− Φ

)
= 1.

And it follows from Theorem 3 that τ is successfully

scheduled by VDF-NM.

IV. VDF-NM+: A PRAGMATIC IMPROVEMENT

The top-level idea behind Algorithm VDF-NM is essen-

tially this: determine the smallest scaling factor x < 1
such that the system with HI-criticality deadlines scaled by

a factor x remains EDF-schedulable in LO-criticality be-

haviors, and then determine whether shrinking HI-criticality

deadlines in this manner will allow all HI-criticality dead-

lines to be guaranteed meet in the event of a HI-criticality

behavior being identified (see Figure 2 above). Both the LO-

criticality and the HI-criticality schedulability testing is done

via the utilization-based EDF schedulability test. For the LO-

criticality schedulability testing, each HI-criticality task τi is

modeled as a task with WCET ci(LO) and period xTi; for

HI-criticality schedulability testing, it is modeled as a task

with WCET ci(HI) and period (1− x)Ti.

Although this approach is correct (as was shown in

Section III above) it can be pessimistic. This fact was

earlier observed, for the case of multiple WCETs but a

single processor speed, in [14], which proposed an approach

that required the determining of a separate scaling fac-

tor for each HI-criticality task. Since this can prove very

computation-intensive, it was recently suggested [19] that

the HI-criticality tasks be partitioned into two categories and

a different scaling factor be applied to each.

The algorithm we advocate in this section, Algorithm

VDF-NM+, takes a different approach to reducing pes-

simism: for the purposes of doing the schedulability anal-
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yses, model the HI-criticality tasks as constrained-deadline
(rather than implicit-deadline) tasks [18]. More specifically,

for each HI-criticality task τi,

• For LO-criticality schedulability analysis, model it as a

constrained-deadline task with WCET ci(LO), relative

deadline xTi, and period Ti;

• For HI-criticality schedulability analysis, model it as a

constrained-deadline task with the parameters3 WCET

ci(LO), relative deadline (1− x)Ti, and period Ti.

Although EDF-schedulability analysis of constrained-

deadline sporadic task systems is NP-hard [13], polynomial-

time approximation schemes (PTAS’s) are known (see,

e.g., [1]) that can solve this problem in efficient polynomial

time to any desired degree of accuracy. We have therefore

implemented the following method for computing the scal-

ing factor x that is used by VDF-NM:

1) Use binary search over the range (0, 1) to determine,

to any desired degree of accuracy, the smallest value of

x for which the constrained-deadline task system

∪χi=LO{(ci(LO), Ti, Ti)}
⋃
∪χi=HI{ci(LO), xTi, Ti}

is EDF-schedulable.

2) For the value of x determined above, check whether

the constrained-deadline task system

∪χi=HI{ci(HI), (1− x)Ti, Ti}
is EDF-schedulable. If so, use this value of x as the

scaling factor in Step 2 of Fig. 1; else, declare failure.

This is clearly a strict improvement over the method for

computing the scaling factor used in Step 1 of Fig. 1, in the

sense that the value of x computed can only be smaller, and

hence failure will be declared for fewer systems. (Since the

binary search procedure may terminate without checking the

value of x computed in Equation 4, we should additionally

test the value of x computed in Equation 4 to ensure strict

dominance over the approach of Figure 1.) The speedup

bound of φ therefore continues to hold for the improved

algorithm as well. We have conducted extensive schedulabil-

ity experiments on randomly-generated workloads to explore

the amount of improvement achieved by this pragmatic

improvement; the outcomes of these experiments is reported

in Section VI. Across all the experiments that we conducted,

it appears that this simple pragmatic improvement to VDF-

NM’s schedulability testing provides between one-half to

two-thirds the benefits, in terms of enhanced schedulability,

that is obtained by implementing the MC system upon

more powerful self-monitoring processors (as discussed in

Section V below).

3Although it may not be immediately obvious that this is an accurate
modeling of the worst-case workload of the HI-criticality task upon the iden-
tification of HI-criticality behavior, tabulating the processor demand [11]
of the HI-criticality task, and of the task modeled using these parameters,
over different interval-lengths should demonstrate their equivalence.

V. VDF-WM: SELF-MONITORING PROCESSORS

If the processor upon which an MC implicit-deadline

sporadic task system is being implemented knows the rate

at which it is executing during each instant of run-time, it

is possible to design a scheduling algorithm to exploit such

knowledge. We now define such an algorithm, VDF-WM

(for Virtual-Deadline First – With Monitoring). In terms

of run-time behavior, VDF-WM differs from the algorithm

VDF-NM described in Section III above only in that while

the trigger for VDF-NM to drop LO-criticality jobs and

revert to original deadlines was that some job executes for a

duration exceeding its LO-criticality WCET without signal-

ing that it has completed execution, the trigger for VDF-WM

is that some job executes for a duration exceeding its LO-

criticality WCET without signaling that it has completed

execution (as with VDF-NM) or the processor speed is
observed to fall below its normal value of σ.

The pre runtime processing phase for VDF-WM is very

similar to VDF-NM (Figure 1). In particular, Step 1 is iden-

tical — the same scaling factor x = U LO
HI (τ)/(1 − U LO

LO (τ))
is computed. However, the acceptance test – Step 2 of the

pseudo-code – is different: VDF-WM checks to determine

whether the value of x computed in Step 1 satisfies

xU LO

LO (τ) + U HI

HI (τ) ≤ ρ. (9)

Since the scaling factor x used by VDF-WM is the same

as the one used by VDF-NM, Theorem 1 continues to hold

and VDF-WM is therefore seen to schedule all LO-criticality

behaviors correctly. In Theorem 5 below, we prove that all

HI-criticality behaviors are also scheduled correctly:

Theorem 5: The following condition is sufficient for

ensuring that VDF-WM successfully schedules all HI-

criticality behaviors of τ :

xU LO

LO (τ) + U HI

HI (τ) ≤ ρ. (10)

Proof: Suppose that VDF-WM cannot meet all deadlines in

all HI-criticality behaviors of τ . Let I denote a minimal

instance of jobs released by τ , on which a deadline is

missed. Without loss of generality, assume that the earliest

job-release in I occurs at time zero, and let tf denote the

instant of the (first) deadline miss — since (as argued above)

Theorem 1 holds for VDF-WM this must be the deadline

of a HI-criticality job, in a HI-criticality behavior. Let t∗

denote the time-instant at which HI-criticality behavior is

first flagged (i.e., the first instant at which some job executes

for more than its LO-criticality worst-case execution time

without signaling that it has completed execution).

We now introduce some notation for the remainder of this

proof:

1) For each i, 1 ≤ i ≤ n, let ηi denote the amount of

execution over the interval [0, tf ] that is needed by jobs

in I that are generated by task τi.
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2) For each i, 1 ≤ i ≤ n, let ui(χ) denote the quantity

Ci(χ)/Ti. (That is, ui(LO) denotes τi’s LO-criticality

utilization, and ui(HI) denotes its HI-criticality utiliza-

tion).

3) Let J1 denote the job with the earliest release time

amongst all those that execute in [t∗, tf ). Let a1 denote

its release time, and d1 its deadline. (Note that a1 ≤ t∗.)
Lemma 1: All jobs that execute in [t∗, tf ) have deadline

≤ tf .

Proof: Suppose not. Consider the latest instant t′ in [t∗, tf )
when a job with deadline > tf executes. Only those jobs

in I that have release time ≥ t′ and deadline ≤ tf are

sufficient to cause a deadline miss; this contradicts the

assumed minimality of I .

It immediately follows that d1, the deadline of the job J1,

is ≤ tf .
Lemma 2: Any LO-criticality task τi has

ηi ≤ ui(LO)
(
a1 + x(tf − a1)

)
. (11)

Proof: No LO-criticality job will execute after t∗. For it to

execute after a1, it must have a deadline no larger than J1’s

virtual deadline, which is (a1 + x(d1 − a1)). Therefore, no

LO-criticality job with deadline > (a1 + x(tf − a1)) will

execute after a1.

Suppose that some LO-criticality job with deadline >
(a1+x(tf −a1)) were to execute, at some time < a1. Let t′

denote the latest instant at which any such job executes. This

means that at this instant, there were no jobs with effective

deadline ≤ (a1 + x(tf − a1)) awaiting execution. Hence

by considering only those jobs in I that have release times

≥ t′, the instance (with this LO-criticality task removed) also

misses a deadline; this contradicts the assumed minimality

of I .

Lemma 3: Any HI-criticality task τi has

ηi ≤ ui(LO)

x
a1 + (tf − a1)ui(HI). (12)

Proof: We consider separately the cases when τi does not

have a job with release time ≥ a1, and when it does.

Case A: If τi does not release a job at or after a1. We claim

that each job of τi has a virtual deadline ≤ (a1+x(tf−a1)).
To see why this is so, consider some job with a virtual

deadline > (a1 + x(tf − a1)), and let t′ denote the latest

instant at which this job executes. All jobs in I that have

release times ≥ t′ also miss a deadline; this contradicts the

assumed minimality of I .

Since each job has a virtual deadline ≤ (a1+x(tf −a1)),
their actual deadlines are all ≤ a1

x + (tf − a1). Therefore,

their cumulative execution requirement is at most

a1
x
ui(LO) + (tf − a1)ui(LO)

≤ a1
x
ui(LO) + (tf − a1)ui(HI).

Case B: If τi releases a job at or after a1. Let ai denote the

first release ≥ a1. The cumulative execution requirement of

all jobs of τi is at most

aiui(LO) + (tf − ai)ui(HI)

≤ (Since a1 ≤ ai and ui(LO) ≤ ui(HI))

a1ui(LO) + (tf − a1)ui(HI)

≤ (Since x ≤ 1)
a1
x
ui(LO) + (tf − a1)ui(HI).

Let us sum the cumulative demand of all the tasks over

[0, tf ):
∑

χi=LO

ηi +
∑
χi=HI

ηi

≤
∑

χi=LO

ui(LO)
(
a1 + x(tf − a1)

)

+
∑
χi=HI

a1
x
ui(LO) + (tf − a1)ui(HI)

= a1
(
U LO

LO (τ) +
U LO

HI (τ)

x

)

+(tf − a1)(xU
LO

LO (τ) + U HI

HI (τ))

≤ (By choice of x [Eqn. 3], (U LO
LO (τ) +

ULO
HI (τ)

x
) ≤ 1)

a1 + (tf − a1)(xU
LO

LO (τ) + U HI

HI (τ)).

Since the amount of computation available on the processor

is t∗+ρ(tf−t∗) and a1 ≤ t∗, it follows from the infeasibility

of this instance that

a1 + (tf − a1)(xU
LO

LO (τ) + U HI

HI (τ)) > a1 + ρ(tf − a1)

⇔ (tf − a1)(xU
LO

LO (τ) + U HI

HI (τ)) > ρ(tf − a1)

⇔ xU LO

LO (τ) + U HI

HI (τ) > ρ.

Taking the contrapositive, it follows that (xU LO
LO (τ) +

U HI
HI (τ) ≤ ρ) is sufficient to ensure HI-criticality schedu-

lability by VDF-NM, as is claimed in this theorem.

We have thus established the correctness of Algo-

rithm VDF-WM: by Theorem 1 the value assigned to

x ensures the correctness of all LO-criticality behaviors

whereas Theorem 5 guarantees the correct scheduling of all

HI-criticality behaviors.

VI. EXPERIMENTAL EVALUATION

We have conducted a series of schedulability experiments

to evaluate the relative effectiveness of the three scheduling

strategies VDF-NM, VDF-NM with the pragmatic improve-

ment (henceforth referred to as VDF-NM+), and VDF-WM

in guaranteeing to correctly schedule MC implicit-deadline

sporadic task systems. Our experiments were conducted

upon randomly-generated task systems that were gener-

ated according to a minor modification of the workload-

generation algorithm introduced by Guan et al. [15]. The
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Figure 3. Example outcome of schedulability experiments, for parameters
[UL, UU ] = [0.02, 0.2]; [TL, TU ] = [5, 50]; [ZL, ZU ] = [1, 4];P =
0.5, ρ = 0.8. The lowest line represents VDF-NM, the middle line
represents VDF-NM+, and the top line represents VDF-WM.

input parameters for our workload generation algorithm are

as follows:

• Ubound: The desired value of the larger of LO-

criticality and HI-criticality utilization of the task sys-

tem: max
(
U LO

LO (τ) + U LO
HI (τ), U

HI
HI (τ)

)
.

• [UL, UU ]: Utilizations are uniformly drawn from this

range; 0 ≤ UL ≤ UU ≤ 1.

• [TL, TU ]: Task periods are uniformly drawn from this

range; 0 < TL ≤ TU .

• [ZL, ZU ]: The ratio of the HI-criticality utilization of a

task to its LO-criticality utilization is uniformly drawn

from this range; 1 ≤ ZL ≤ ZU .

• P : The probability that a task is a HI-criticality task;

0 ≤ P ≤ 1.

To generate a task system for a given combination of

parameter values, the task-generation algorithm repeatedly

adds tasks to an initially empty system until the utilization

bound is met (see [15]). We considered a fairly large number

(several hundreds) of different combinations of parameter

values. A sample outcome is depicted graphically in Figure 3

— the fraction of systems that were determined to be

schedulable is depicted on the y-axis as a percentage, and the

system utilization Ubound on the x-axis. Each data-point was

obtained by randomly generating 1000 task systems, testing

each for schedulability according to all three algorithms, and

calculating the percentage of systems deemed schedulable

by each algorithm.

Although we do not claim that our experiments are

comprehensive enough in coverage to enable us to draw

authoritative conclusions, they do point to some pretty

convincing trends. It was very evident in all our experiments

that VDF-NM+ consistently exhibits noticeably superior

performance over VDF-NM; i.e., the pragmatic improve-

ment to the EDF-schedulability test of VDF-NM that was

described in Section IV seems to provide significant benefit.

Also, VDF-WM consistently exhibits noticeable improve-

ment over VDF-NM+, indicating that self-monitoring in

processors, if available, can be exploited to ensure con-

siderable enhancement of schedulability. We do not feel

comfortable making quantitative claims about the degree of

such improvement based on our experiments since this is

necessarily influenced by the nature of our random workload

generator, but instead simply report our observations.

– All three algorithms were optimal for system utilization

values that were no larger than about three-fifths times ρ.

(This is as expected, given the speedup bound of φ ≈ 0.61
derived in Section III-A which holds for all three algo-

rithms.) The percentage of schedulable systems falls off

sooner, and more rapidly, for VDF-NM than for VDF-NM+,

which in turn falls off more rapidly than for VDF-WM.

– Across all the simulation experiments that we conducted

across a wide range of parameters, it appears that the simple

pragmatic improvement to VDF-NM’s schedulability testing

that was implemented in VDF-NM+ provides between one-
half to two-thirds the improvement that the more powerful

platform capabilities of self-monitoring exploited in VDF-

WM provides, with larger improvement ratios occurring at

smaller system utilizations.

VII. SUMMARY AND CONCLUSIONS

We have considered here the scheduling of mixed-

criticality implicit-deadline sporadic task systems in the face

of uncertainty in both (i) the amount of execution required by

the tasks, and (ii) the rate at which the processor upon which

the tasks are executing is able to complete work. A good deal

of research has recently been done addressing uncertainty

in execution amounts; however, dealing with uncertainty in

processor speeds is relatively less understood. Given the

emergent trend towards incorporating asynchronous com-

ponents in advanced modern processors, we believe this is

a shortcoming of current MC scheduling research that this

work seeks to address. We have accordingly

• proposed a formal model for representing mixed-

criticality systems that are comprised of a finite col-

lection of independent implicit-deadline tasks executing

upon a varying-speed preemptive processor;

• separately considered the situations where the processor

is self-monitoring – knows the rate at which it is

executing work – or not;

• designed scheduling algorithms, and associated schedu-

lability tests, for MC scheduling upon both kinds of

processors; and

• evaluated these algorithms both theoretically and

via schedulability experiments on randomly-generated

workloads.
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The fundamental difference of the varying-speed mixed-

criticality model and classic multi-WCET one is that if

processors can monitor their speed, one can notice speed-

dropping much earlier than the resulting potential low-

criticality WCET violation. This is one of the main moti-

vations for improvement over current state of art on mixed-

criticality scheduling upon constant-speed processors.

Primarily for ease of exposition, we have restricted the

discussion in this paper to dual-criticality systems. All of our

techniques extend in a straightforward manner to systems

with more than two criticality levels defined, although it is

not yet clear whether our theoretical analyses are also easily

extendible – we plan to explore this as future work. Also

as future work, we will seek to extend our results to more

general recurrent real-time workload models, as well as to

multiprocessor platforms.
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