
MC-Fluid: simplified and optimally quantified

Sanjoy Baruah Arvind Easwaran Zhishan Guo

Abstract—The fluid scheduling model allows for schedules
in which an individual task may be assigned a fraction of a
processor at each time instant. These assignments are subject to
the constraints that no fraction exceeds one and the sum of all
the assigned fractions do not exceed the sum of the computing
capacities of all the processors at any instant. An algorithm,
MC-Fluid, has recently been proposed for scheduling systems of
mixed-criticality implicit-deadline sporadic tasks under the fluid
scheduling model. MC-Fluid has been shown to have a speedup
bound no worse than (1 +

√
5)/2 or ≈ 1.618 for scheduling

dual-criticality systems.
We derive here a simplified variant of MC-Fluid called MCF,

that has run-time linear in the number of tasks. We prove that
this simplified variant has a speedup bound no worse than 4/3
for dual-criticality systems, and show that this implies that MC-
Fluid, too, has a speedup bound no worse than 4/3. We know
from prior results in uniprocessor mixed-criticality scheduling
that no algorithm may have a speedup bound smaller than 4/3,
allowing us to conclude that MCF and MC-Fluid are in fact
speedup-optimal for dual-criticality scheduling.

I. INTRODUCTION1

The MC-Fluid scheduling algorithm [4] was designed for

scheduling mixed-criticality implicit-deadline sporadic task

systems upon identical multiprocessor platforms. Given such

a task system, MC-Fluid determines a scheduling strategy

under the fluid scheduling model. This allows for schedules

in which individual tasks may be assigned a fraction ≤ 1 of

a processor (rather than an entire processor, or none) at each

instant in time, subject to the constraint that the sum of the

fractions assigned to all the tasks do not exceed the sum of

the computing capacities of all the processors at any instant.

MC-Fluid, as described in [4], restricts itself to consideration

of dual-criticality systems – there are two criticality levels

designated LO and HI. A task τi is characterized by the

parameters (χi, C
L
i , C

H
i , Ti), where χi ∈ {LO, HI} denotes

its criticality, CL
i and CH

i its LO and HI criticality WCETs,

and Ti its period. The objective is to schedule a system τ
comprising n such tasks upon m unit-speed processors in

a mixed-criticality correct (MC-correct) manner, where the

notion of MC-correctness is formally specified in Section II

(Definition 1). To do so, MC-Fluid seeks to determine execu-
tion rates θLi and θHi for each task τi such that the scheduling

algorithm depicted in Figure 1 constitutes an MC-correct

scheduling strategy for τ . Such values for the θLi ’s and θHi ’s

are derived in [4] by solving a convex optimization problem.

It is also shown in [4] that this approach has a speedup factor
no worse than (1 +

√
5)/2: if a given task system τ can be

scheduled in an MC-correct manner by an optimal clairvoyant

1Some familiarity is assumed here on the part of the reader with the mixed-
criticality scheduling model introduced by Vestal [7] and reviewed in, e.g. [3].
A brief introduction to this model is provided in the appendix.

• Each τi initially executes at a constant rate θLi . That is,

at each time-instant it is executing upon θLi fraction of a

processor (here, θLi is required to be ≤ 1).

• If a job of any task τi does not complete despite having

received CL
i units of execution (equivalently, having

executed for a duration (CL
i /θ

L
i)), then

– All LO-criticality tasks are immediately discarded,

and

– Each HI-criticality task henceforth executes at a

constant rate θHi (θHi , too, must be ≤ 1).

Fig. 1. The run-time scheduling strategy used by Algorithm MC-Fluid

scheduler upon an m-processor platform, then MC-Fluid will

successfully determine an MC-correct scheduling strategy for

τ upon an m-processor platform in which each processor is

faster by a factor of (1 +
√
5)/2.

This work. In this paper, we derive an algorithm called

MCF for computing the execution rates — i.e., the θLi ’s and

θHi ’s — that, we believe, is conceptually simpler than the

convex optimization technique used in [4]. We show that

Algorithm MCF has run-time linear in the number of tasks,

and a speedup bound of 4/3. We also evaluate our algorithm

via schedulability experiments, in which we compare it with

earlier-proposed algorithms for scheduling mixed-criticality

implicit-deadline sporadic task systems upon identical mul-

tiprocessor platforms.

Since fluid schedules are not always implementable upon

actual computing platforms, another algorithm, named MC-

DP-Fair, was also derived in [4] that transforms such a fluid

schedule into a schedule in which each task is assigned

either zero or one processor at each instant in time. MC-

DP-Fair continues to be valid for use in conjunction with

Algorithm MCF; hence in the remainder of this paper we

will not address the issue of constructing non-fluid schedules

any further. Instead, we will assume that the schedule con-

structed by Algorithm MCF is passed on to MC-DP-Fair to

be converted into a non-fluid schedule, just as the schedules

constructed by MC-Fluid were in [4].

Organization. The remainder of this paper is organized as

follows. We describe the system model, and introduce some

terminology and notation, in Section II. We describe Al-

gorithm MCF in Section III, prove its correctness in Sec-

tion IV, and derive its speedup bound of 4/3 in Section V.

In Section VI we prove that this improved speedup bound

of 4/3 is applicable to MC-Fluid as well, thereby improving

upon the bound derived in [4]. We have conducted some

2015 IEEE Real-Time Systems Symposium

1052-8725/15 $31.00 © 2015 IEEE

DOI 10.1109/RTSS.2015.38

327

2015 IEEE Real-Time Systems Symposium

1052-8725/15 $31.00 © 2015 IEEE

DOI 10.1109/RTSS.2015.38

327

2015 IEEE Real-Time Systems Symposium

1052-8725/15 $31.00 © 2015 IEEE

DOI 10.1109/RTSS.2015.38

327

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:29:33 UTC from IEEE Xplore. Restrictions apply.

schedulability experiments to compare the performance of

MCF with existing multiprocessor mixed-criticality scheduling

algorithms; we describe these schedulability experiments in

Section VII.

II. SYSTEM MODEL

A mixed-criticality (MC) implicit-deadline sporadic task

system τ consists of a finite specified collection of MC

implicit-deadline sporadic tasks, each of which may generate

an unbounded number of MC jobs.

MC jobs. As stated in Section I, MC-Fluid [4] restricts itself

to consideration of dual-criticality systems and we will, for

the most part, do the same. The workload of such a dual-

criticality real-time system is assumed to consist of individual

jobs, each characterized by a 5-tuple of parameters: Ji =
(ai, di, c

L
i , c

H
i , χi), where

• ai ∈ R+ is the release time, and di ∈ R+ the deadline.

We require that di ≥ ai.
• cLi specifies a less conservative estimate, and cHi a more

conservative estimate, of the worst case execution time

(WCET) of job Ji. That is, we assume cLi ≤ cHi .

• χi ∈ {LO, HI} denotes the criticality of the job.

System behavior. The MC job model has the following

semantics. Job Ji is released at time ai, has a deadline at

di, and needs to execute for some duration γi. The value of

γi is not known beforehand, but only becomes revealed by

actually executing the job until it signals that it has completed

execution. These values of γi for a given run of the system

defines the kind of behavior exhibited by the system during

that run. If each Ji signals completion without exceeding cLi
units of execution, the system is said to have exhibited LO-
criticality behavior; if any job Ji signals completion after

executing for more than cLi but no more than cHi units of

execution, the system is said to have exhibited HI-criticality
behavior. If any job Ji does not signal completion despite

having executed for cHi units, the system is said to have

exhibited erroneous behavior.

MC implicit-deadline sporadic tasks. Analogously to tra-

ditional (non-MC) implicit-deadline sporadic tasks, an MC

implicit-deadline sporadic task τi is characterized by a four-

tuple (χi, C
L
i , C

H
i , Ti), with the following interpretation. Task

τi generates an unbounded sequence of jobs, with successive

jobs being released at least Ti time units apart. Each such

job has a deadline that is Ti time units after its release. The

criticality of each such job is χi, and it has LO-criticality and

HI-criticality WCET’s of CL
i and CH

i respectively.

An MC implicit-deadline sporadic task system is specified

as a finite number of such sporadic tasks.

Correctness criteria. We define an algorithm for scheduling

MC task systems to be correct if it is able to schedule any

system in such a manner that

• During all LO-criticality behaviors of the system, all jobs

receive enough execution between their release time and

deadline to be able to signal completion; and

• During all HI-criticality behaviors of the system, all HI-

criticality jobs receive enough execution between their

release time and deadline to be able to signal completion.

This is formally stated in the following definition:

Definition 1 (MC-correct): A scheduling strategy is MC-

correct if it ensures that

• During any run of the system in which it exhibits LO-

criticality behavior (i.e., each job of each task completes

upon executing for no more than the task’s LO-criticality

WCET), all jobs complete by their deadlines; and

• During any run of the system in which it exhibits HI-

criticality behavior (i.e., each job of each task completes

upon executing for no more than the task’s HI-criticality

WCET), all jobs of all the HI-criticality tasks complete

by their deadlines (while jobs of LO-criticality tasks may

fail to do so).

We now describe some notation that we will be using

throughout the reminder of this document. We will let τ denote

a collection of n dual-criticality implicit-deadline sporadic

tasks that are to be scheduled upon m unit-speed processors.

As a general rule, τ with a subscript (as in τi) denotes an

individual task in τ ; however, τH ⊆ τ (τL ⊆ τ , respectively)

denotes all the HI-criticality tasks (all the LO-criticality tasks,

resp.) in τ .

The superscripted notation XH and XL denote HI-criticality

and LO-criticality variants of the quantity X . Hence

• uL
i

def
= (CL

i /Ti) and uH
i

def
= (CH

i /Ti) denote the LO-

criticality and HI-criticality utilizations of task τi.
• MC-Fluid seeks to assign values to the execution-rate

variables {θLi }τi∈τ
⋃{θHi }τi∈τH . All these variables are

to be assigned values in the range [0, 1].
• Various system utilization parameters are defined for τ

as follows:

UL
L

def
=

∑
τi∈τL

uL
i

UL
H

def
=

∑
τi∈τH

uL
i

UH
H

def
=

∑
τi∈τH

uH
i

Hence the LO-criticality total system utilization of task-

system τ is
(
UL
L +UL

H), and its HI-criticality total system

utilization is UH
H .

III. ALGORITHM MCF

In this section we describe Algorithm MCF, our simplified

version of MC-Fluid [4]. Given a dual-criticality implicit-

deadline sporadic task system τ to be scheduled upon an

m processor platform, MCF, like MC-Fluid, seeks to assign

values to the θLi and θHi execution-rate variables such that

the run-time algorithm depicted in Figure 1 constitutes an

MC-correct scheduling strategy for τ . The manner in which

328328328

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:29:33 UTC from IEEE Xplore. Restrictions apply.

1) Define ρ as follows:

ρ← max
{(UL

L + UL
H

m

)
,
(UH

H

m

)
, max
τi∈τH

{
uH
i

}}
(1)

2) If ρ > 1 then declare failure; else assign values to the

execution-rate variables as follows:

θHi ← uH
i /ρ for all τi ∈ τH (2)

θLi ←
⎧⎨
⎩

uL
i θH

i

θH
i
−
(
uH
i
−uL

i

) , if τi ∈ τH

uL
i , else (i.e., if τi ∈ τL)

(3)

3) If ∑
τi∈τ

θLi ≤ m (4)

then declare success else declare failure

Fig. 2. Algorithm MCF

Algorithm MCF computes these θLi , θ
H
i values is depicted in

Figure 2; the steps are explained below.

Observe that (UL
L +UL

H) denotes the total system utilization

in LO-criticality behaviors, and UH
H the total system utilization

in HI-criticality behaviors. Hence for τ to be feasible on a

platform of m unit-speed processors, it is necessary that
(
UL
L+

UL
H

) ≤ m, UH
H ≤ m and uH

i ≤ 1 for each τi ∈ τH . The value

assigned to ρ (Expression 1) should therefore be ≤ 1 for any

feasible system. Informally speaking, the quantity (1− ρ) can

be thought of as representing the “slack” or excess capacity

in the system; we seek to exploit this slack by setting the

execution rates (the θLi ’s and θHi ’s) to be greater than the

utilizations (the ui’s).

If ρ is indeed ≤ 1, then the execution rates at HI-criticality

(the θHi ’s) for the HI-criticality tasks are set equal to their

HI-criticality utilizations uH
i scaled by a factor 1/ρ (Expres-

sion 2). The execution rates at LO-criticality (the θLi ’s) for

each LO-criticality task is set equal to the task utilization (uL
i),

while the θLi for each HI-criticality task is set according to

the formula given in Expression 3. The correctness of these

assignments will be formally proved in Section IV below.

Finally, the assignment of execution rates is declared a

success if the θLi values that are assigned sum to no more

than the cumulative computing capacity of the platform.

A. An example

We now illustrate the manner in which Algorithm MCF

computes the θLi and θHi parameters via a simple example.

An example dual-criticality implicit-deadline sporadic task

system that is to be scheduled upon a 2-processor platform was

considered in [4]; this task system is reproduced in Table I.

For this task system,

ρ = max
{ .3 + .4 + .1 + .5

2
,
.8 + .7 + .1

2
,max{.8, .7, .1}

}

= max
{
1.3/2, 1.6/2, .8

}
= 0.8

Therefore tasks τ1, τ2 and τ3, get θHi values assigned as

follows:

θH1 =
0.8

0.8
= 1.0

θH2 =
0.7

0.8
= 0.875

and θH3 =
0.1

0.8
= 0.125

The assigned θLi values are as follows:

θL1 =
1.0× 0.3

1.0− (0.8− 0.3)
= 0.6

θL2 =
0.875× 0.4

0.875− (0.7− 0.4)
=

14

23
< 0.61

θL3 =
0.125× 0.1

0.125− (0.1− 0.1)
= 0.1

and θL4 = 0.5

Since

4∑
i=1

θLi <
(
0.6 + 0.61 + 0.1 + 0.5

)
= 1.81,

we conclude that the task system is indeed schedulable by

Algorithm MCF.

B. Run-time complexity

It should be evident that Algorithm MCF, as listed in

Figure 2, has run-time that is linear in the number of tasks in

τ . In one straightforward implementation strategy, the scaling

factor ρ can be computed in one pass through the task system;

the θHi and θLi values in a second pass; and the test to ensure

that the θLi values sum to no more than m in a third pass.

Ti CL
i CH

i χi uL
i uH

i

τ1 10 3 8 HI 0.3 0.8
τ2 20 8 14 HI 0.4 0.7
τ3 30 3 3 HI 0.1 0.1
τ4 40 20 20 LO 0.5 0.5

TABLE I
EXAMPLE TASK SYSTEM

329329329

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:29:33 UTC from IEEE Xplore. Restrictions apply.

IV. ALGORITHM MCF: PROOF OF CORRECTNESS

In Section III above, we presented Algorithm MCF, a linear-

time algorithm for computing execution rates at LO and HI

criticalities for a given dual-criticality implicit-deadline spo-

radic task system that is to be scheduled upon an m-processor

platform under the fluid scheduling paradigm. In this section,

we prove that this algorithm is correct: if Algorithm MCF

computes the execution rates without declaring failure for a

given task system τ , then the schedule resulting from using

these execution rates in the manner described in Figure 1 does

indeed constitute an MC-correct scheduling strategy. Our proof

proceeds in several steps.

1) First, we show that each execution rate is assigned a valid

value in Figure 2: a non-negative real number no greater

than one.

2) Next, we separately prove that the sum of the LO-

criticality and the HI-criticality execution rates assigned

in Figure 2 to all the tasks do not exceed the capacity of

the platform.

3) Third, we show that the θLi and θHi values assigned in

Figure 2 are no smaller than the corresponding uL
i ’s and

uH
i ’s — this ensures the correctness of the “steady-state”

behavior of the system at either criticality level.

4) Finally, we examine the system in the event that some job

does not signal completion despite having executed for

up to its LO-criticality WCET (which indicates that the

system is exhibiting a HI-criticality behavior rather than

a LO-criticality one); we show that the system behavior

is correct during the transition as well.

Putting the pieces together, we conclude (Theorem 1) that

Algorithm MCF is indeed correct.

§1: Assigned execution rates are all ≤ 1. Observe that ρ ≥
uH
i for all τi ∈ τ . It follows that θHi

def
= (uH

i /ρ) is always

≤ 1, as required. With regards to the θLi ’s, the value assigned

to θLi for each τi ∈ τL is equal to uL
i (and hence ≤ 1). We

show, in Lemma 1 below, that θLi ≤ θHi for each τi ∈ τH (i.e.,

the execution rate guaranteed to each HI-criticality task does

not decrease upon identification of HI-criticality behavior). It

follows thereby that the θLi variables are also assigned values

≤ 1.

Lemma 1: For each τi ∈ τH

θHi ≥ θLi (5)

Proof: By Equation 3, θLi for each τi ∈ τH is assigned a value
uL
i θH

i

θH
i
−
(
uH
i
−uL

i

) . This is ≤ θHi if

uL
i

θHi −
(
uH
i − uL

i

) ≤ 1

⇔ uL
i ≤ θHi −

(
uH
i − uL

i

)

⇔ uH
i ≤ θHi

which follows from the requirement that ρ be ≤ 1 (else, we

would have declared failure).

§2: Capacity constraints are met. Condition 4 ensures that

the assignment of values to the θLi variables does not exceed

the capacity of the m-processor platform; Lemma 2 below

shows that neither does the assignment of values to the θHi
variables.

Lemma 2: ∑
τi∈τH

θHi ≤ m (6)

Proof: It follows from Equation 1 that

ρ ≥ UH
H

m

⇔ UH
H

ρ
≤ m (7)

We use this inequality to conclude that

(∑
τi∈τH

θHi

)
=

(∑
τi∈τH

uH
i

ρ

)
=

(1
ρ

∑
τi∈τH

uH
i

)
=

(UH
H

ρ

)
≤ m

and Condition 6 is shown to hold.

§3: Assigned execution rates are (eventually) adequate.
Since ρ ≤ 1, it must be the case that

θHi
def
=

(uH
i

ρ

)
≥ uH

i (8)

That is, the execution rate assigned to each task in “steady

state” following a transition to HI-criticality behaviors is ade-

quate. Lemma 3 below asserts that the execution rate assigned

to each task in LO-criticality behaviors is also adequate.

Lemma 3: For each τi ∈ τ

θLi ≥ uL
i (9)

Proof: This is clearly true for each τi ∈ τL, since θLi = uL
i

for all such τi. To see that it is also true for each τi ∈ τH ,

observe that for each such τi,

θLi = uL
i ×

θHi
θHi −

(
uH
i − uL

i

)

≥ uL
i (Since (uH

i − uL
i) ≥ 0)

§4: Correct transition. Finally, we show that the θ-values

computed by Algorithm MCF ensure MC-correctness in HI-

criticality behaviors, by analyzing the point in time during

run-time at which it is detected that some job has executed

beyond its LO-criticality WCET.

Lemma 4: Let to denote the first time-instant at which some

job does not signal completion despite having executed for its

LO-criticality WCET. Any HI-criticality job that is active (i.e.,

that has been released but has not completed execution) at

time-instant to receives an amount of execution no smaller

than its HI-criticality WCET prior to its deadline.

Proof: Suppose that a job of HI-critiality task τi is active at

time-instant to. Let us suppose that it had arrived at time-

instant (to−w), were w is a positive number ≤ Ti; its deadline

is then at time-instant (to − w + Ti). Over the interval [to −

330330330

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:29:33 UTC from IEEE Xplore. Restrictions apply.

w, to), this job will have received an amount of execution

equal to θLi × w; since the job is still active, it must be the

case that

θLi × w ≤ CL
i

⇔ w ≤ CL
i

θLi
(10)

From the instant to to its deadline — i.e., over the interval

[to, to − w + Ti), of duration (Ti − w) — the job of τi will

execute at a rate θHi . Hence for this job to meet its deadline,

it is sufficient that

wθLi + (Ti − w)θHi ≥ CH
i

⇔ Tiθ
H
i − w(θHi − θLi) ≥ CH

i

⇐ Tiθ
H
i −

CL
i

θLi
(θHi − θLi) ≥ CH

i (By Inequality 10)

⇔ θHi −
uL
i

θLi
(θHi − θLi) ≥ uH

i

⇔ θHi −
uL
i θ

H
i

θLi
+ uL

i ≥ uH
i

⇔ θHi ≥ (uH
i − uL

i) +
uL
i θ

H
i

θLi

⇔ 1 ≥ uH
i − uL

i

θHi
+

uL
i

θLi
(11)

By Equation 3, for each τi ∈ τH we have

θLi =
uL
i θ

H
i

θHi −
(
uH
i − uL

i

)

⇔ θHi −
(
uH
i − uL

i

)
θHi

=
uL
i

θLi

⇔ 1− ((uH
i − uL

i

)
θHi

)
=

uL
i

θLi

⇔ uL
i

θLi
+

uH
i − uL

i

θHi
= 1

thereby establishing Condition 11 and completing the proof of

the lemma.

We are now ready to prove the correctness of Algo-

rithm MCF.

Theorem 1: Values assigned to the θHi and θLi variables

according to Equations 2-3 that satisfy Condition 4 constitute

an MC-correct fluid scheduling strategy.

Proof: Lemma 3 and Condition 4 together suffice to establish

correctness in any LO-criticality behavior. Similarly, Lemma 1,

in conjunction with Inequality 8 above establishes correctness

in “steady state” following transition to HI-criticality behavior.

And finally, Lemma 4 establishes that MC-correctness is also

preserved upon a transition from LO-criticality to HI-criticality

behavior.

V. ALGORITHM MCF: A SPEEDUP BOUND

It has previously been shown [4] that Algorithm MC-Fluid

has a speedup bound no worse than (1 +
√
5)/2; i.e., if a

given dual-criticality implicit-deadline sporadic task system

can be scheduled upon a particular multiprocessor platform

in an MC-correct manner by any algorithm (including an

optimal, clairvoyant, one), then it can be scheduled by MC-

Fluid upon a platform in which each processor is faster by a

factor (1+
√
5)/2 or approximately 1.618. We will prove here

a better (i.e., lower) speedup bound of 4/3 for Algorithm MCF.

Our approach towards developing this speedup bound of

4/3 is as follows. Observe that for a task system to be feasible

upon m speed-s processors, it is necessary that (UL
L + UL

H)
and UH

H for the system both be ≤ m× s, and that in addition

uH
i ≤ s for each task. It therefore follows that the scaling

factor ρ that is computed by Algorithm MCF (Expression 1

in Figure 2) for such a system is ≤ s. We will show below, in

Lemma 6, that if ρ ≤ 3/4 and the θHi , θLi values are computed

as specified in Expressions 2–3 of Figure 2, then the θLi ’s

so computed are guaranteed to sum to ≤ m and therefore

satisfy Condition 4 of Figure 2 (which in turn means that

the system is correctly scheduled by MCF on m unit-speed

processors). The speedup bound follows, by observing that

4/3 is the multiplicative inverse of 3/4.

First, a technical lemma.

Lemma 5: Let c denote any positive constant. The function

f(x)
def
=

x(c− x)
c
3 + x

is ≤ c
3 for all values of x ∈ [0, c].

Proof: This lemma is easily proved rigorously using standard

techniques from the calculus: taking the derivative of f(x)
with respect to x, we see that the only value of x ∈ [0, c]
where this derivative equals zero is x ← c/3. We therefore

conclude that f(x) takes on its maximum value over [0, c] for

some x ∈ {0, c/3, c}. Explicit computation of f(x) at each of

these values reveals that the value is maximized at x = c/3,

where it takes on the value c/3. (We skip the details of the

derivation here; for a visual depiction of f(x), it is plotted as

a function of x in Figure 3.)

Lemma 6: If ρ ≤ 3/4 and θHi , θLi values are as computed

by Algorithm MCF (in the manner specified in Expressions 2–

3 of Figure 2), then the θLi values so computed satisfy

Condition 4.

Proof: Let us first rewrite Condition 4 to an equivalent form

expressed in Condition 12 below.

∑
τi∈τ

θLi ≤ m

⇔
∑
τi∈τL

θLi +
∑

τi∈τH
θLi ≤ m

⇔ UL
L +

∑
τi∈τH

uL
i θ

H
i

θHi −
(
uH
i − uL

i

) ≤ m

331331331

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:29:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Plot of f(x) for c = 1 (made with the WolframAlpha R©
computational knowledge engine: https://www.wolframalpha.com/)

⇔ UL
L +

∑
τi∈τH

uL
i

(
1 +

uH
i − uL

i

θHi −
(
uH
i − uL

i

)
)
≤ m

⇔ UL
L +

∑
τi∈τH

uL
i +

∑
τi∈τH

uH
i − uL

i

θHi −
(
uH
i − uL

i

) ≤ m

⇔ UL
L + UL

H +
∑

τi∈τH

uL
i

(
uH
i − uL

i

)
θHi −

(
uH
i − uL

i

) ≤ m (12)

We will show, in the remainder of this proof, that if ρ ≤ 3/4
then Condition 12 is satisfied; this will serve to establish the

correctness of Lemma 6.

Let us assume henceforth that ρ ≤ 3/4. From the definition

of ρ (Expression 1), it follows that

UL
L + UL

H ≤ 3

4
m (13)

UH
H ≤ 3

4
m (14)

∀τi ∈ τH uH
i ≤ 3

4
(15)

Additionally, since θHi ← uH
i /ρ, it must hold that

∀τi ∈ τH θHi ≥
4

3
uH
i (16)

Let us use Inequalities 13–16 to further simplify Condi-

tion 12.

UL
L + UL

H +
∑

τi∈τH

uL
i

(
uH
i − uL

i

)
θHi −

(
uH
i − uL

i

) ≤ m

⇐ 3

4
m+

∑
τi∈τH

uL
i

(
uH
i − uL

i

)
θHi −

(
uH
i − uL

i

) ≤ m (By Ineq. 13)

⇐ 3

4
m+

∑
τi∈τH

uL
i

(
uH
i − uL

i

)
4
3u

H
i −

(
uH
i − uL

i

) ≤ m (By Ineq. 16)

⇔ 3

4
m+

∑
τi∈τH

uL
i

(
uH
i − uL

i

)
uH
i

3 + uL
i

≤ m

⇔
∑

τi∈τH

uL
i

(
uH
i − uL

i

)
uH
i

3 + uL
i

≤ m

4

⇐
(∑
τi∈τH

uH
i

3
≤ m

4

)
(By Lemma 5)

⇔
(1
3
UH
H ≤

m

4

)

⇐
(1
3
× 3

4
m ≤ m

4

)
(By Inequality 14)

⇔
(m
4
≤ m

4

)

and Lemma 6 is thereby proved.

It has previously been shown [1, Theorem 5] that no non-

clairvoyant algorithm for scheduling dual-criticality implicit-

deadline sporadic task systems can have a speedup factor

smaller than 4/3 even on uniprocessors (i.e., for m = 1);

below, we reproduce the example from [1] that bears witness

to this fact.

Consider the example task system τ = {τ1, τ2}, with the

following parameters, where ε is an arbitrary small positive

number.

τi χi CL
i CH

i Ti

τ1 HI 1 + ε 1 + ε 2
τ2 LO 1 + ε 3 4

This system is successfully scheduled by a clairvoyant sched-

uler upon a single processor (m = 1): EDF would meet all

deadlines in LO-criticality behaviors (since UL
L + UL

H ≤ 1),

while only jobs of τ2 would get to execute in HI-criticality

behaviors (and UH
H ≤ 1).

To see that τ cannot be scheduled correctly on a unit-speed

processor by any online scheduler, suppose both tasks generate

jobs simultaneously. It need not be revealed prior to one of

the jobs receiving (1 + ε) units of execution, whether the

behavior is going to be a LO-criticality or a HI-criticality one.

We consider two cases.

1) τ1’s job receives (1 + ε) units of execution before τ2’s

job does. In this case, the behavior is revealed to be

a HI-criticality one. But now there is not enough time

remaining for τ2’s job to complete by its deadline at time

instant 4.

2) τ2’s job receives (1+ε) units of execution before τ1’s job

does. In this case, the behavior is revealed to be a LO-

criticality one in that τ2’s job signals that it has completed

execution. But then, there is not enough time remaining

for τ1’s job to complete by its deadline at time 2.

We have thus shown that no non-clairvoyant algorithm can

schedule τ in an MC-correct manner. Based on the observation

that

max
{
UL
L + UH

L , UH
H , max

τi∈τH
{
uH
i

}}

exceeds 3/4 by an arbitrarily small amount, we conclude that

no non-clairvoyant algorithm for scheduling dual-criticality

implicit-deadline sporadic task systems can have a speedup

factor smaller than 4/3.

332332332

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:29:33 UTC from IEEE Xplore. Restrictions apply.

The speedup optimality of Algorithm MCF for dual-

criticality implicit-deadline task systems follows by combin-

ing the analysis in the above example with Lemma 6. A

speedup bound of 4/3 holds for Algorithm MCF and, by the

argument above, a smaller speedup is not possible for any
non-clairvoyant algorithm. This is formally expressed in the

following theorem:

Theorem 2: Algorithm MCF is speedup-optimal for

scheduling dual-criticality implicit-deadline task systems: it

has a speedup factor of 4/3, and no non-clairvoyant algorithm

may have a speedup factor lower than 4/3.

VI. MC-FLUID: AN IMPROVED SPEEDUP BOUND

It was shown in [4] that Algorithm MC-Fluid has a speedup

bound no worse than (1+
√
5)/2 (≈ 1.618) for dual-criticality

implicit-deadline sporadic task systems. We will now improve

this result, and show that MC-Fluid, like MCF, has a speedup

bound no worse than 4/3; this, in conjunction with the

example above showing that no on-line algorithm may have

a speedup bound smaller than 4/3, serves to establish the

speedup-optimality of MC-Fluid.

As we had stated in the introduction, MC-Fluid computes

the θLi and θHi execution rates for the tasks, and then uses the

run-time dispatcher listed in Figure 1 to schedule the system

during run-time. MC-Fluid first computes the θHi values for all

τi ∈ τH by solving a convex optimization problem, and uses

these θHi values to assigns values to the θLi variables exactly

as Algorithm MCF does (i.e., according to Equation 3, which

is reproduced below):

θLi ←
⎧⎨
⎩

uL
i θH

i

θH
i
−
(
uH
i
−uL

i

) , if τi ∈ τH

uL
i , else (i.e., if τi ∈ τL)

It is shown [4, Theorem 2] that the convex optimization

problem solved by MC-Fluid essentially computes θHi values

to satisfy the following inequalities:

∀i : τi ∈ τH : uH
i ≤ θHi (17)

UL
L + UL

H +
∑

τi∈τH

uL
i

(
uH
i − uL

i

)
θHi −

(
uH
i − uL

i

) ≤ m (18)

∑
τi∈τH

θHi ≤ m (19)

Lemma 7 below establishes a strong relationship between

Algorithm MCF and these inequalities: that for any task

system that is successfully scheduled by Algorithm MCF, there

is a solution to these inequalities (and the system is therefore

also successfully scheduled by Algorithm MC-Fluid).

Lemma 7: If Algorithm MCF (Figure 2) computes θHi and

θLi values for a given dual-criticality implicit-deadline sporadic

task system τ without declaring failure, then the θHi values

so computed satisfy Inequalities 17–19 (and τ is therefore

successfully scheduled by MC-Fluid as well).

Proof: Let us suppose that Algorithm MCF (Figure 2) com-

putes θHi and θLi values for a given dual-criticality implicit-

deadline sporadic task system τ without declaring failure.

Since ρ, as computed by Expression 1 of Figure 2, must be

≤ 1, it follows that θHi
def
= uH

i /ρ is ≤ uH
i and Inequality 17 is

satisfied for all τi ∈ τH .

Since ρ ≥ UH
H /m, it follows that

ρ ≥ UH
H

m

⇔ ρ ≥
∑

τi∈τH uH
i

m

⇔ m ≥
∑

τi∈τH uH
i

ρ

⇔ m ≥
∑

τi∈τH

uH
i

ρ

⇔ m ≥
∑

τi∈τH
θHi

and Inequality 19 is also satisfied.

It remains to show that Inequality 18 is satisfied as well.

Observe that

UL
L + UL

H +
∑

τi∈τH

uL
i

(
uH
i − uL

i

)
θHi −

(
uH
i − uL

i

)

= UL
L +

∑
τi∈τH

(
uL
i +

uL
i

(
uH
i − uL

i

)
θHi −

(
uH
i − uL

i

)
)

= UL
L +

∑
τi∈τH

(uL
i θ

H
i − uL

i

(
uH
i − uL

i

)
+ uL

i

(
uH
i − uL

i

)
θHi −

(
uH
i − uL

i

)
)

= UL
L +

∑
τi∈τH

(uL
i θ

H
i

θHi −
(
uH
i − uL

i

)
)

= UL
L +

∑
τi∈τH

θLi

=
∑
τi∈τL

θLi +
∑

τi∈τH
θLi

=
∑
τi∈τ

θLi

which is indeed ≤ m, according to Inequality 4.

Thus, Lemma 7 above shows that any task system that is

successfully scheduled by Algorithm MCF is also successfuly

scheduled by MC-Fluid. Earlier (Section V), we had seen

that Algorithm MCF successfully schedules any system upon

m unit-speed processors, that is successfully scheduled upon

m speed-3/4 processors by an optimal clairvoyant scheduler.

This fact, in conjunction with the earlier result that no on-

line algorithm may have a smaller speedup factor, immediately

yields:

Theorem 3: The speedup factor of MC-Fluid is 4/3.

VII. EXPERIMENTS

In this section we use experiments to evaluate the schedu-

lability of Algorithm MCF, and compare it with existing

multiprocessor algorithms for mixed-criticality systems. (We

thank Saravanan Ramanathan and Jaewoo Lee for sharing

access to their simulation framework.) These algorithms in-

clude MC-Fluid [4], global fpEDF [5], global fixed-priority [6]

333333333

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:29:33 UTC from IEEE Xplore. Restrictions apply.

and partitioned EDF [2], which we respectively denote as

MC-Fluid, GLO-EDF, GLO-FP and PART-EDF. In terms of

the speed-up factor, Section V shows that both MCF and

MC-Fluid have an optimal speed-up of 4/3. This speed-up

is significantly better than the best known speed-up bounds

for GLO-EDF (1 +
√
5) and PART-EDF (8/3) 2. In terms

of schedulability, the experiments presented below show that

MCF clearly outperforms GLO-EDF, GLO-FP and PART-

EDF under all the scenarios that were considered. It has

been shown in [4] that MC-Fluid is an optimal execution-

rate assignment algorithm; i.e., if a set of θLi ’s and θHi ’s

exist for a specified dual-criticality implicit-deadline sporadic

task system that constitutes an MC-correct fluid scheduling

strategy, then MC-Fluid is guaranteed to find at least one such

assignment. Algorithm MCF, on the other hand, provides no

such guarantee, although it is speedup-optimal. That is, there

exist task systems for which MC-Fluid can find execution-

rates that ensure MC-correctness, whereas MCF fails to do

so. MCF in fact trades this optimality in rate assignment

for simplicity; it uses a strategy with run-time that is linear

in the number of tasks, whereas MC-Fluid uses a convex

optimization framework with run-time that is quadratic in

the number of tasks. The schedulability experiments below

show that the drop in schedulability for Algorithm MCF when

compared to MC-Fluid is relatively small when compared to

the other algorithms.

A. Taskset generation procedure

We generate random tasksets using a procedure similar

to the one adopted in previous studies (e.g., [5], [4]). Let

UB = max{(UL
L + UL

H)/m,UH
H /m} denote the upper bound

for normalized total system utilization in both LO- and HI-

criticality behaviors. Note that UB ≤ 1 is a necessary

condition for the feasibility of any dual-criticality implicit-

deadline sporadic taskset on an m-processor platform. Besides

UB and m, the other important parameters in generating a

dual-criticality taskset include the total number of tasks and the

proportion of HI-criticality tasks. We control the former using

a bound on the maximum individual task utilization (umax),

while for the latter we use a probability measure (PH). The

following sets of values are considered in our experiments for

these taskset parameters.

• Number of processors: m ∈ {2, 4, 8, 16}.
• Normalized utilization bound: UB ∈
{0.1, 0.15, 0.2, . . . , 1.0}.

• Probability for a task to be HI-criticality: PH ∈
{0.0, 0.2, . . . , 1.0}.

• Maximum individual task utilization: umax ∈
{0.1, 0.2, . . . , 1.0}.

Thus, in all we consider 8, 360 different combinations of the

above taskset parameters. For each combination of values, we

generate 10, 000 different tasksets and evaluate their schedula-

bility. Each taskset is generated using the procedure described

in Figure 4, wherein each parameter is drawn at random

2There is no known speed-up bound for the GLO-FP algorithm.

1) Task period Ti is an integer drawn from the range

[20, 300].
2) The ratio Ri = uH

i /uL
i is a real number drawn from the

range [1, 4].
3) A real number Pi is drawn from the range [0, 1]. If Pi <

PH , then χi = HI. Otherwise, χi = LO.

4) Task utilization ui is drawn from the range [0.02, umax].
If χi = LO, then uL

i = ui. Otherwise, uH
i = ui and

uL
i = uH

i /Ri. In both the cases, CL
i is set to �uL

i × Ti
and CH

i is set to �uH
i × Ti.

5) Repeat the above steps as long as max{(UL
L +

UL
H)/m,UH

H /m} ≤ UB . Once this condition is violated,

discard the task that was generated last.

6) If the resulting taskset satisfies the condition max{(UL
L +

UL
H)/m,UH

H /m} > UB − 0.05, then accept the taskset

and exit the procedure. Otherwise, discard the taskset and

repeat the above steps.

Fig. 4. Procedure for generating a single taskset

from an uniform distribution. This procedure ensures that

the normalized system utilization of the generated taskset is

between UB−0.05 and UB . This is reasonable because in our

experiments we consider values of UB that are incremented

in steps of 0.05.

For each taskset, we evaluate its schedulability under the

five different scheduling algorithms mentioned above. We

regard the taskset as schedulable under MCF (likewise MC-

Fluid) if an execution-rate assignment that ensures MC-

correctness is found by the respective algorithms. For the

other algorithms, we determine taskset schedulability using

tests presented in the respective cited references.

B. Results

In this section we present two sets of results from the experi-

ments. For a specific scheduling algorithm and m,UB , PH and

umax values, let acceptance ratio denote the fraction out of

10, 000 generated tasksets that are deemed to be schedulable

by the algorithm. This metric provides a comparison across

the different algorithms when the taskset parameters are fixed.

In Figure 5 we plot the acceptance ratio for each scheduling

algorithm against varying values of m and UB , with PH

and umax fixed at 0.5 and 0.9 respectively. To evaluate the

algorithms for different values of PH and umax, we also

plot the weighted acceptance ratios in Figure 6. This metric

denotes the fraction of schedulable tasksets weighted by the

normalized utilization bound UB . That is, for a given value

of PH and umax, if AR(UB) denotes the acceptance ratio of

a scheduling algorithm for normalized utilization bound UB ,

then the weighted acceptance ratio for a set S of UB values

is given as

W (S) =

∑
UB∈S(AR(UB)× UB)∑

UB∈S UB
. (20)

Note that in computing AR(UB) tasksets scheduled on

334334334

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:29:33 UTC from IEEE Xplore. Restrictions apply.

(a) m = 2 (b) m = 4

(c) m = 8 (d) m = 16

Fig. 5. Comparison of acceptance ratios for different number of processors

(a) Varying probability for a task to be HI-criticality (PH) (b) Varying upper bound for individual task utilization (umax)

Fig. 6. Comparison of weighted acceptance ratios

335335335

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:29:33 UTC from IEEE Xplore. Restrictions apply.

different number of processors can be considered, and further

W (S) gives more importance to acceptance ratios of tasksets

that are harder to schedule, i.e., tasksets with larger values of

UB . Hence it is an effective metric to combine the impact of

parameters m and UB on acceptance ratios.

As shown in Figure 5, MCF outperforms GLO-EDF, GLO-

FP and PART-EDF by a considerable margin, for all the taskset

parameter combinations considered in these experiments. This

performance gap continues to widen for increasing m. Also,

both MCF and MC-Fluid have almost 100% schedulabil-

ity when UB ≤ 0.75 for all the cases. This is expected

because both of them have an optimal speed-up bound of

4/3(= 1/0.75). For larger values of UB , the performance

of MCF drops below that of MC-Fluid, and this gap widens

with increasing m and UB . This is also expected because,

as discussed above, MC-Fluid is an optimal rate assignment

strategy, whereas MCF trades this optimality for a simpler and

more time-efficient strategy.

In Figure 6(a) we compare the weighted acceptance ratio

of the algorithms for varying values of probability PH , with

umax fixed at 0.9. The performance of all the algorithms is

better at the extremes when PH is either small or large. This is

reasonable because at these extremes the generated tasksets are

comprised of either only LO-criticality or only HI-criticality

tasks. Further, it can be seen that both MCF and MC-Fluid

continue to outperform all the other algorithms irrespective of

the value of PH .

In Figure 6(b) we compare the weighted acceptance ratio

of the algorithms for varying values of maximum utilization

umax, with PH fixed at 0.5. The performance of MCF and

MC-Fluid are more or less independent of umax, that of

PART-EDF decreases significantly for large values of umax,

while that of GLO-EDF and GLO-FP increases gradually with

increasing umax. PART-EDF is expected to perform poorly

for tasksets with large individual task utilization, because

partitioning is harder for such tasksets. On the other hand, the

increase in performance of GLO-EDF and GLO-FP is mainly a

side-effect of the reduced pessimism in schedulability tests due

to fewer number of tasks. This reduced number of tasks also

explains why the gap in the performance between MCF and

MC-Fluid marginally decreases with increasing umax. MCF,

which assigns rates using the same proportional value of ρ for

all the HI-criticality tasks, is more sensitive to the number of

tasks in the taskset than MC-Fluid that assigns independent

rates.

The performance of MCF and MC-Fluid primarily de-

pends on UB (as demonstrated in Figure 5), and the ra-

tio of HI- to LO-criticality utilization Ri (
def
= uH

i /uL
i). The

larger this ratio, the more challenging it is to find a rate

assignment that can ensure MC-correctness, especially dur-

ing a behavior switch. To confirm this dependency we

conducted experiments that measure the impact from vary-

ing range values for Ri. We considered the range val-

ues {[1, 1.5], [1, 2], [1, 2.5], [1, 3], [1, 3.5], [1, 4]}, with PH and

umax fixed at 0.5 and 0.9 respectively. Figure 7 presents a

plot of the weighted acceptance ratios for varying range values

Fig. 7. Comparison of weighted acceptance ratios for varying uH
i /uL

i ranges

(since the lower bound for the ranges is always 1, the x-axis

in Figure 7 denotes only the upper bound for the ranges).

The performance of both MC-Fluid and MCF decreases with

increasing range upper bound, thus confirming our hypothesis.

VIII. SUMMARY

We have derived and proved the correctness of Algo-

rithm MCF, an algorithm for the fluid scheduling of dual-

criticality implicit-deadline sporadic task systems upon iden-

tical multiprocessor platforms. We have shown that Algo-

rithm MCF may be implemented very efficiently to have a

run-time that is linear in the number of tasks in the system,

and that it has a (tight) speedup bound equal to 4/3. Our

speedup bound result improves upon the prior state of the

art (a speedup bound of (1 +
√
5)/2, or ≈ 1.618, for the

Algorithm MC-Fluid in [4]); in addition, we show that the

4/3 bound applies to Algorithm MC-Fluid as well.

Our speedup bound results establish that Algorithm MCF is

the “best” algorithm to use for constructing fluid schedules for

dual-criticality implicit-deadline sporadic task systems upon

multiprocessor platforms, for systems satisfying the property

that the ρ parameter (defined as in Equation 1) is ≤ 3/4. Ad-

ditionally, our schedulability experiments indicate that while

Algorithm MC-Fluid is slightly superior to Algorithm MCF

for task systems with ρ > 3/4 (in the sense that there are

such task systems schedulable by MC-Fluid but not by MCF),

the difference is indeed very slight. Based upon the superior

run-time computational complexity of MCF as well as its

intuitive simplicity, we therefore recommend the following

strategy for the multiprocessor scheduling of dual-criticality

implicit-deadline sporadic task systems:

1) First, apply Algorithm MCF to construct a schedule.

2) If Algorithm MCF fails but ρ ≤ 1, then apply Algo-

rithm MC-Fluid.

As mentioned in the introduction, the outputs of both MCF and

MC-Fluid are execution rates for a fluid schedule; the process

of converting the resulting fluid schedule into a non-fluid one

may be accomplished by Algorithm MC-DP-Fair [4].

336336336

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:29:33 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENTS

This research was supported in part by NSF grants CNS

1115284, CNS 1218693, CNS 1409175, and CPS 1446631,

AFOSR grant FA9550-14-1-0161, ARO grant W911NF-14-1-

0499, and a grant from General Motors Corp.

REFERENCES

[1] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie. The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems. In Pro-
ceedings of the 2012 24th Euromicro Conference on Real-Time Systems,
ECRTS ’12, Pisa (Italy), 2012. IEEE Computer Society.

[2] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin. Mixed-criticality
scheduling on multiprocessors. Real-Time Systems, 50(1):142–177, 2014.

[3] A. Burns and R. Davis. Mixed-criticality systems: A review. Available at
http://www-users.cs.york.ac.uk/˜burns/review.pdf,
2013.

[4] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee. MC-
Fluid: Fluid model-based mixed-criticality scheduling on multiprocessors.
In Real-Time Systems Symposium (RTSS), 2014 IEEE, pages 41–52, Dec
2014.

[5] H. Li and S. Baruah. Global mixed-criticality scheduling on multipro-
cessors. In Euromicro Conference on Real-Time Systems (ECRTS), pages
166–175, July 2012.

[6] R. M. Pathan. Schedulability analysis of mixed-criticality systems
on multiprocessors. In Euromicro Conference on Real-Time Systems
(ECRTS), pages 309–320, July 2012.

[7] S. Vestal. Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In Proceedings of the Real-Time
Systems Symposium, pages 239–243, Tucson, AZ, December 2007. IEEE
Computer Society Press.

APPENDIX

THE VESTAL MODEL: MOTIVATION

In mixed criticality (MC) systems, functionalities of differ-

ent degrees of importance (or criticalities) are implemented

upon a common platform. It may be the case that more critical

functionalities are required to have their correctness validated

to a higher level of assurance than less critical functionalities.

For example, consider the worst-case execution (WCET) pa-

rameters of pieces of code; these parameters are widely used

prior to run-time for validating timing properties of a system.

For validating the timing correctness of critical functionalities

it is desirable to use WCET parameters that are obtained

using extremely conservative tools (for example, ones based

on static code-analysis), while less critical functionalities are

often validated using (less conservative) measurement-based

WCET tools. Based on this fact, Vestal [7, page 239] observed

that “the more confidence one needs in a task execution time

bound [...] the larger and more conservative that bound tends

to become.” He proposed that each piece of code therefore

be characterized by multiple WCET parameters, which are

obtained by analyzing the (same) piece of code using different

WCET-analysis methodologies. The system is then subject to

multiple independent analyses, each using a different set of

WCET estimates and seeking to validate different correctness

properties. We illustrate the essence of Vestal’s idea via a

simple (contrived) example.

Example 1: Consider a real-time workload comprising two

jobs J1 and J2 that is to be implemented on a single preemp-

tive processor, with job J1 being more critical than J2. Both

jobs have a release time at time 0; J1’s deadline is at time

5 and J2’s at time 10. Let us suppose that the WCET of J1,

determined by a more conservative WCET tool, is equal to 5,

while the WCET of J2, determined using a less conservative

WCET tool, is equal to 6. Since the sum of these WCETs

exceeds the duration between the jobs’ arrival and the latest

deadline, conventional scheduling techniques cannot schedule

both jobs to guarantee completion by their deadlines. However,

Vestal observed in [7] that

• with regards to validating the more critical functionality

only (e.g., from the perspective of a certification process),

it may be irrelevant whether the less critical job J2
completes on time or not; and

• the value of 5 that is assigned to J1’s WCET parameter

may be deemed too pessimistic for validating less critical

functionalities.

Let us suppose that the WCET of J1 is estimated once again,

this time using the less pessimistic WCET-determination tool;

J1’s WCET is determined by this tool to be equal to 3 (rather

than 5). If we were now to schedule the jobs by assigning J1
greater priority than J2,

• In validating the more critical functionalities, we would

determine that J1 completes by time-instant 5 and hence

meets its deadline.

• The validation process responsible for less critical func-

tionalities determines that J1 completes by time-instant

3, and J2 by time-instant 9. Thus they both complete by

their deadlines.

We thus see that the system is deemed as being correct in

both analyses, despite our initial observation that the sum of

the relevant WCETs (5 for J1; 6 for J2) exceeds the duration

between the jobs’ common release time and the latest deadline.

Example 1 above encapsulates the idea behind Vestal’s

mixed-criticality model, that

• certain aspects of a system’s behavior cannot be known

precisely prior to run-time, and must therefore be esti-
mated for the purposes of system analysis prior to run-

time;

• for mixed-criticality systems, it may make sense to con-

struct multiple models of the entire system, these different

models being made under more or less conservative

assumptions (so that we can have greater or lesser levels

of assurance that the models do indeed bound the actual

run-time behavior of the system); and

• it suffices to validate the correctness of the entire system

under the less [least] conservative model, but of only

the more critical parts of the system under the more

conservative model[s].

This idea — that the same system, represented using more

and less conservative models, may be demonstrated to satisfy

different correctness criteria for different functionalities — has

been widely explored since first proposed by Vestal [7]; see,

e.g., [3] for a review.

337337337

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:29:33 UTC from IEEE Xplore. Restrictions apply.

