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This work studies energy-aware real-time scheduling of a set of sporadic Directed Acyclic Graph (DAG) tasks

with implicit deadlines. While meeting all real-time constraints, we try to identify the best task allocation

and execution pattern such that the average power consumption of the whole platform is minimized. To our

knowledge, this is the first work that addresses the power consumption issue in scheduling multiple DAG

tasks on multi-cores and allows intra-task processor sharing. First, we adapt the decomposition-based frame-

work for federated scheduling and propose an energy-sub-optimal scheduler. Then, we derive an approxima-

tion algorithm to identify processors to be merged together for further improvements in energy-efficiency.

The effectiveness of the proposed approach is evaluated both theoretically via approximation ratio bounds

and also experimentally through simulation study. Experimental results on randomly generated workloads

show that our algorithms achieve an energy saving of 60% to 68% compared to existing DAG task schedulers.
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1 INTRODUCTION

Due to size and weight limitations in embedded systems, energy consumption is a cornerstone in
their design, especially for battery-operated ones. Energy-efficient and power-aware computing
therefore are gaining increasing attention in the embedded systems research. It is important due
to the market demand of increased battery life for portable devices. Moreover, reducing energy
consumption could lead to smaller power bills. Being motivated by this goal, there has been a
trend in embedded system design and development towards multi-core platforms. To better utilize
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the capacity of multi-core platforms, parallel computation (where an individual task executes in
multiple processors simultaneously) needs to be considered. For example, a recent study (Pagani
and Chen 2013) has shown that the energy consumption of executing certain workloads perfectly
distributed in two cores is significantly less than that of executing the same workload in one core
at double frequency.

In this article, we deal with workloads that are represented as DAGs—that are considered to be
one of the most representative models of deterministic parallel tasks (Baruah et al. 2012). There are
many existing works that focused on real-time scheduling of parallel tasks or their schedulability
analysis (Baruah et al. 2012; Bonifaci et al. 2013; Baruah 2014; Li et al. 2013, 2014). However, none
of them addressed the energy consumption issue.

Energy-Aware Real-Time Scheduling. In the design of embedded systems, energy minimiza-
tion is a prime requirement. Much work has been done on minimizing the energy cost with respect
to sequential tasks for multi-core systems (Fisher et al. 2009; Pagani and Chen 2013, 2014; Narayana
et al. 2016). Specifically, Pagani and Chen (2013) and Pagani and Chen (2014) present an energy ef-
ficient task partitioning scheme, where the cores are grouped in frequency islands. The authors in
Aydin and Yang (2003) considers both feasibility and energy-awareness while partitioning periodic
real-time tasks on a multi-core platform. For EDF scheduling, they show that if the workload is bal-
anced evenly among the processors, deriving optimal energy consumption and finding a feasible
partition is NP-Hard. To date, only a little work has been done for energy-aware real-time sched-
uling of parallel tasks. In general, minimizing energy/power consumption of a real-time system is
challenging due to the complex (non-linear) relationship between frequency, energy consumption,
and execution time of each task.

In this article, we study the scheduling of a set of sporadic DAG tasks with implicit deadlines on
a multi-core platform. To the best of our knowledge, this is the first work that addresses the power
consumption issue in scheduling multiple DAG tasks on multi-core. We assume that all the cores
that are assigned to a DAG task will always remain active, which leads to a non-negligible power
consumption. To reduce this effect, we allow intra- and inter-task processor sharing to remove
or reduce the number of lightly loaded cores. After merging, the cores that are not required can
be shut off completely. When the average case execution times are typically small compared to
the worst-case execution time (WCET), the cores will remain idle (in that case the active power
consumption will be minimized, please see the Power/Energy model described at Section 2). Specif-
ically, we make the following key contributions:

(i) We propose a power-consumption-aware scheduling algorithm for sporadic DAG tasks
with implicit deadlines.

(ii) Under the federated scheduling and task decomposition framework, our table-driven
scheduler is shown to be optimal in the sense of average power consumption (i.e., named
sub-optimal due to extra constraints included).

(iii) We propose an efficient processor merging technique that is widely applicable for energy-
efficiency improvements to most of the existing work on federated DAG task scheduling.
We formally prove the NP-completeness of the problem, propose an approximation algo-
rithm, and prove the upper bound of its approximation ratio.

(iv) Based on randomly generated workload, simulations are conducted to verify the theoret-
ical results and demonstrate the effectiveness of our algorithm.

The rest of this article is organized as follows. Section 2 presents the system model and
formally defines our problem. Section 3 adapts the task decomposition scheme and proposes an
(sub-)optimal federated scheduler based on segment extension and problem transformation (into a
convex optimization with linear inequality constraints). Section 4 relaxes the federated limitation
by presenting and analyzing techniques for intra-DAG and inter-DAG processor merging, so
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Fig. 1. A DAG τi with total execution timeCi = 18 and minimum inter-arrival separationTi = 12. It is a heavy

task sinceCi > Ti . The pathN 1
i → N

4
i → N

6
i is the critical path with minimum makespan of Li = 10 ≤ Ti .

Hence, τi may meet its deadline provided enough processors.

that energy consumption is further reduced. Section 5 implements gradient-based solvers and
compares the proposed method with state-of-the-art schedulers. Section 6 discusses related work
and Section 7 concludes the article.

2 BACKGROUND AND SYSTEM MODEL

We consider a multi-core platform of m identical cores to schedule a set of sporadic DAGs. The
task set is denoted by τ = {τ1,τ2, . . . ,τn }, where each task τi (1 ≤ i ≤ n) is represented as a DAG
with a minimum inter-arrival separation of Ti time units (often referred as the period). The nodes

in a DAG stand for different execution requirements while the edges represent the dependencies
among the corresponding execution requirements. A parallel task τi contains a total of ni nodes,

each denoted byN j
i (1 ≤ j ≤ ni ). The execution requirement of nodeN j

i is denoted by c j
i . A directed

edge from node N j
i to node N k

i (N j
i → N k

i ) implies that the execution of N k
i cannot start until

N j
i finishes for every instance (precedence constraints). N j

i , in this case, is called a parent of N k
i ,

while N k
i is a child of N j

i . The degree of parallelism Mi of a DAG task τi is the number of nodes
that can be simultaneously executed.

Each DAG τi has an execution requirement (i.e., work) of Ci which is the sum of the execution

requirements of all of its nodes; i.e., Ci =
∑ni

j=1 c
j
i . A critical path of a DAG task is a directed path

with the maximum total execution requirements among all other paths in the DAG. For τi , the
critical path length, denoted by Li , is the sum of execution requirements of the nodes on a critical
path. Thus, Li is the minimum makespan of τi , meaning that it needs at least Li time units even
when the number of coresm is unlimited.

Any two consecutive instances of task τi are separated by at least Ti time units—Ti is also the
relative deadline of the task as we only consider implicit deadlines. Since Li is the minimum exe-
cution time of task τi even on a machine with an infinite number of cores, the condition Ti ≥ Li

must hold for τi to be schedulable. A DAG is heavy if its execution requirement is greater than its
period (i.e., Ci > Ti ). A schedule is said to be feasible when all sub-tasks (nodes) receive enough
execution (up to their execution requirements) within Ti time units from their arrivals, while all
precedence constraints are satisfied. The aforementioned terms are illustrated in Figure 1.

Motivating Example: Now we present a simple but effective example that maps an actual
application to a DAG which is shown in Figure 2. In this figure, we present the partial work-flow
of an unmanned aerial vehicle (UAV) which is adopted from Siebert and Teizer (2014). Here, each
rectangular box denotes a sub-task (or node in the DAG) with their execution requirements (not
shown in the figure) and edges represent data dependencies among them. As described above, a
node cannot start execution until all of its parents are completed and some of the nodes can be
executed in parallel, e.g., Satellite and Remote Control.
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Fig. 2. Partial work-flow of a UAV system represented as a DAG.

Power/Energy Model. Let s (t ) (we are assuming continuous frequency scheme) denote the
main frequency (speed) of a processor at a certain time t . Then its power consumption P (s ) can be
modeled as:

P (s ) = Psta + Pdyn (s ) = β + αsγ , (1)

where Psta denotes the static power consumption that is introduced in the system due to the
leakage current and Pdyn (s ) denotes the active power consumption. Pdyn (s ) is introduced due to
the switching activities and it depends on the processor frequency. Pdyn (s ) can be represented as
αsγ where the constant α > 0 depends on the effective switching capacitance (Pagani and Chen
2013),γ ∈ [2, 3] is a fixed parameter determined by the hardware, and β > 0 represents the leakage
power (i.e., the static part of power consumption whenever a processor remains on). Clearly, the
power consumption function is a convex-increasing function of the processor frequency. By means
of dynamic voltage and frequency scaling (DVFS), it is possible to reduce Pdyn (s ) by reducing the
processor frequency. In this article, we focus on minimizing the active energy consumption (due
to Pdyn (s )) by means of DVFS. We also target to minimize the static power consumption (due to
Psta ) by reducing the number of processors by allowing intra-task processor sharing.

Note that static power consumption is partially related to frequency. It is mainly because highest
frequency (that can be used) can be margined by the voltage level that is inversely proportional to
the circuit delay. Such relationship is counted towards the dynamic part of the power consumption
by adopting a slightly largerγ value. Various platforms may take different values, yet the proposed
approach should work in general. Besides, we assume that each core can execute with any fre-
quency ranged between fmin to fmax , where, fmin ≥ critical frequencies1 (Pagani and Chen 2013).
Within this allowable frequency range [fmin − fmax ] we consider the upper bound of static energy
consumption. Hence we can consider that static energy consumption is fixed w.r.t. the frequency.

Assumptions behind this model: (i) Continuous frequency scheme is considered in this work.
However, compared to the system with discrete frequency scheme, this assumption does not af-
fect the applicability of our approach. This is because, at any time, a computed frequency can
be rounded up to the next discrete level. Specifically, if the step between the discrete levels is
fine-grained, a computed frequency can be rounded up to the next discrete level. State of the art
processors provide this feature. For example, ODROID XU-3 (ODROID XU-3 2013) board has a fre-
quency range of 200–1400MHz for the LITTLE cores and 200–2000MHz for the big cores with scale
steps of 100MHz. So our approach will provide almost the same energy efficiency in a platform
with discrete frequency scheme.

(ii) We assume per-core speed scaling, that is each core is able to set its operating frequency in-
dependently. Many of the existing platforms (e.g., ODROID XU-3 (2013)) group the cores into a
cluster where all cores in the same cluster execute at the same speed. Considering such cluster-
based platform makes the scheduling problem significantly complex as it makes the objective func-
tion (see Equation (9)) non-convex. In future, we aim to address the energy minimization problem
considering a cluster-based platform that is more realistic but comes with a tradeoff (complexity).
As the objective function will become non-convex in such a platform, it needs to be tackled in

1Optimal frequency to reduce the energy consumption (considering a negligible sleeping overhead).
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Fig. 3. Energy consumption for executing a job with 109 computation cycles under various γ values, where

α = 1.76W/GHzγ and β = 0.5W, according to Equation (2). The lowest points represent the most energy

efficient execution frequency (i.e., critical frequency).

an approach that differs significantly from this work. In this work, we have considered a model
without such correlation between the cores. However, it still leads to a significant contribution to-
wards energy optimization of scheduling parallel real-time task systems in a multi-core platform.

The energy consumption of any given period [b, f ] can be calculated as E (b, f ) =
∫ f

b
P (s (t ))dt ,

which is known as a nice approximation to the actual energy consumption of many known sys-
tems. Specifically, given a unit-amount of workload to be executed on a speed-s processor, the total
energy consumption is the integral of power over the period of length 1/s; i.e.,

E (s ) = (β + αsγ )/s = β/s + αsγ−1. (2)

Figure 3 shows how different values of γ (varying from 2 to 3) and processor speed s may affect the
total energy consumption to complete a certain (fixed) amount of computation. It is obvious that
execution under a speed much lower than the critical frequencies is extremely energy inefficient
(as leakage power becomes the major “contribution”). The power model we adapted complies with
much existing (and recent) work in the community, e.g., Aydin and Yang (2003), Xu et al. (2005),
Devadas and Aydin (2010), Pagani and Chen (2013, 2014), and Guo et al. (2017).

Problem Statement. Given a set of implicit-deadline sporadic parallel tasks to be scheduled
on a multi-core platform consisting of enough number of identical cores, we want to determine
a feasible scheduling strategy, while minimizing the overall power consumption for the assigned
processors. Here, by enough, we mean the number of available processors is no smaller than the
sum of the max degree of parallelism of the DAG tasks. Energy-optimal scheduling of parallel tasks
on multi-cores is NP-hard in the strong sense (Li 2012). Thus we do not expect to solve this energy
optimization problem optimally in this article. Instead, we will tackle this problem in the following
two steps:

• First, we restrict ourselves under the framework of federated scheduling and follow the
existing task decomposition framework (Saifullah et al. 2014) (Section 3), such that the NP-
hardness no longer holds. We identify an energy-sub-optimal table-driven scheduler under
those additional conditions.
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Fig. 4. Scheduling window constraints for all nodes in τi (in Figure 1) after task decomposition. Heremk
i de-

notes the degrees of parallelism at kth segment and the node-core mapping is M̄i = {1, 2, 2, 1, 3, 1}. Sched-

uling windows for the nodes are [1, 2], [1, 1], [2, 3], [3, 3], [3, 3], [4, 4] respectively. The average power con-

sumption under such settings is 3.33 Watts after extending each segment by a common factor ofTi/Li = 1.2.

• Then, based on the “sub-optimal” solution, we propose heuristics for merging the assigned
processors (Section 4) to further improve the overall energy efficiency when the unneces-
sary restrictions are removed.

Remark 1. Note that, after task decomposition is performed on any task τi , its maximum degree
of parallelism Mi can be known (refer to Figure 4). While scheduling τi , rather than considering
any fixed number of processors, we use Mi as the upper bound of its processor requirement. This
upper bound can be further improved by allowing intra-task merging discussed in Section 4.1.

3 ENERGY-SUB-OPTIMAL FEDERATED SCHEDULING FOR DAG TASKS

In this section, we restrict our focus on the federated scheduling of DAG tasks. Under the federated
approach to multi-core scheduling, each individual task is either restricted to execute on a single
processor (as in partitioned scheduling), or has exclusive access to all the processors on which
it may execute. Since each processor is dedicated to one DAG task, we can consider each task
individually, and try to minimize the energy consumption for a single DAG task (which is the goal
of this section).

Given a DAG task, we first apply the existing task decomposition (Saifullah et al. 2014) tech-
nique to transform a parallel task into a set of sequential tasks with scheduling window (for a
specific node it denotes the time frame from its release offset to its deadline) constraints for each
node (Section 3.1)—they are further relaxed into necessary conditions by segment extension (Sec-
tion 3.2). By variable substitution, we then transform the energy minimization problem into a
convex optimization problem with linear inequality constraints, which can be solved optimally

with gradient-based methods (Section 3.3).

3.1 Task Decomposition

Task decomposition is a well-known technique that simplifies the scheduling analysis of parallel
real-time tasks (Saifullah et al. 2014). In our approach, we adopt task decomposition as the first step
that converts each nodeN l

i of the DAG task τi to an individual sub-task τ l
i with a release offset (bl

i ),

deadline (f l
i ), and execution requirement (cl

i ). The release time and deadlines are assigned in a way
that all dependencies (represented by edges in the DAG) are respected. Thus the decomposition
ensures that if all the sub-tasks are schedulable then the DAG is also schedulable. For the sake
of completeness, we briefly describe how task decomposition works in this subsection with an
example (please refer to Section 4 of Saifullah et al. (2014) for more details).

We adapt a slightly modified version of the approach used in Saifullah et al. (2014). First, we
perform the task decomposition using the techniques in Saifullah et al. (2014) as described below.
Assuming the execution of the task is on an unlimited number of cores, we draw a vertical line at
every time instant where a node starts or ends for each node starting from the beginning. These
vertical lines split the DAG into segments, and each segment consists of an equal amount of

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 5, Article 84. Publication date: September 2018.
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execution by the nodes that lie in the segment. Parts of different nodes in the same segment can
now be considered as threads of execution that run in parallel, and the threads in a segment can
start only after those in the preceding segment have finished their executions. Now we will say
that the resulting segmented structure of the task is converted into synchronous form and will
denote it as τ

syn
i . We first allot time to the segments and then add all times assigned to different

segments of a node to calculate its allocated time.
Since the minimum makespan, Li ≤ Ti , at the end of each period, there may be a slack where all

processors are idle (which is typically energy inefficient). We allocate such idle period uniformly by
multiplying each segment by a common factor ofTi/Li for task τi . Task decomposition provides its
processor assignmentMl

i (i.e., a node-to-processor mapping) and a scheduling window [bl
i , f

l
i ) on

top of it, in which each nodeN l
i of a task τi will be scheduled. The following example demonstrates

how task decomposition works.

Example 3.1. Consider task τi shown in Figure 1. First, we assign all the nodes with no parent
(N 1

i andN 2
i ) to separate processors. Then we continue to consider nodes only when all its parent

node(s) are assigned. As a result, the beginning of the node will be the latest finishing time of its
parent(s)—these are boundaries of the segments, denoted by vertical lines in Figure 4. Specifically,
if a node has a single parent, we can start to consider the node right after the finishing time of its
parent. For example, when N 2

i is completed, N 3
i is immediately assigned to the same processor

(as N 2
i is the only parent).

When a node has multiple parents, we consider the parent that has the latest finishing time. The
child node may be assigned to the same processor assigned to its parent with the latest finishing
time. For example, N 4

i has two parents N 1
i and N 2

i where N 1
i completes execution later. So N 4

i

is assigned to the same processor of N 1
i . Please note that a node may have multiple siblings such

that it may not always share the same processor with its latest finished parent node—under such
scenario, a new processor is allocated to the node. For example, the only parent ofN 5

i isN 1
i which

completes execution at t2
i . SoN 5

i would be able to execute in the same processor starting from the

third segment. ButN 5
i is assigned to a different processor as that specific processor at t3

i is already

“taken” by its sibling N 4
i .

3.2 Segment Extension

For a DAG task τi , the aforementioned task decomposition results in a mapping between a node
(N l

i ) and a processor (Ml
i ). One of the key issues with the task decomposition process is that

the identified scheduling window constraints for the nodes may not be necessary. Take the task
described in Figure 4 as an example, where Node N 3

i may execute in the 4th segment. However,

task decomposition requires that Node N 3
i must finish by the end of Segment 3, which is unnec-

essary. In this subsection, we describe a systematic way of eliminating such unnecessities so that
the boundary constraints for all nodes (bl

i ’s and f l
i ’s) are both necessary and sufficient.

Each DAG τi is first converted to a synchronous form denoted by τ
syn
i with techniques de-

scribed in Section 3.1. We use mk
i to denote the number of parallel threads in the kth segment of

τ
syn
i . We then apply Algorithm 1 to greedily extend the deadlines f l

i of each node N l
i , following

any topological order. Note that while performing task decomposition, a node starts execution im-
mediately when all of its predecessors finish execution. Thus the starting time bl

i cannot be moved
earlier—only fi ’s have room to be relaxed.

Task decomposition technique determines scheduling window constraints for the nodes which
are sufficient but may not be necessary. If segment extension is performed (using Algorithm 1) after
applying task decomposition, then scheduling window constraints become necessary and sufficient

(see Lemma 1). It may happen that for some particular DAG structure, Algorithm 1 fails to change
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Fig. 5. The segment-node mapping for τi (in Figure 1) after segment extension. Scheduling windows for the

nodes become [1, 2], [1, 1], [2, 4], [3, 3], [3, 3], [4, 4] respectively, which results in an average power consump-

tion of 3.08W. The height of each block represents the speed of the processor during each segment.

(i.e., expand) scheduling window for any node. However, it does not impact the schedulability of
the DAG. From this discussion, it should be clear that performing segment is not mandatory but
it is done to further reduce the energy consumption.

Please note that we have considered table-driven schedulers which usually pre-compute which
task would run when. This schedule is stored in a table at the time the system is designed or
configured. So what would be the size of the scheduling table for a given set of real-time tasks to
be run on a system? The answer is when a set of n tasks is to be scheduled, then the entries in
the table will replicate themselves after LCM (T1,T2 . . .Tn ), where LCM (T1,T2 . . .Tn ) is the hyper-
period for the tasks. However, while considering energy consumption we did not consider the
space complexity of the scheduling solutions.

Example 3.2. Consider again the DAG task τi shown in Figure 1. Our algorithm greedily extends
the ending segment f l

i of the nodes as much as possible in the topological order (i.e., increasing l ).
Using this approach, Node N 3

i can now execute in Segment 4 (dashed rectangle at Figure 5) and
the execution window for all the other nodes remain unchanged. Please note that the processor
assignmentMl

i for any nodeN l
i of a task τi remains unchanged in the segment extension process.

Lemma 1. Under the task decomposition and scheduling framework, after running Algorithm 1,

the timing constraints we set for each node in a DAG become necessary and sufficient.

Proof. First, we show that if task decomposition (done by Saifullah et al. (2014)) is considered
the timing constraints set for each node in a DAG is only sufficient. Then we prove that if the seg-
ment extension is applied after employing the task decomposition, it makes the timing constraints
necessary and sufficient.

On task decomposition, calculated scheduling window for each node satisfies all predecessor
constraints, without changing the deadline for the DAG and it completes the proof of sufficient
part. Now we prove that the timing constraints are unnecessary by proving a simple example.
Consider the task described in Figure 4 again. Task decomposition requires that Node N 3

i must
finish by the end of Segment 3, which is unnecessary, because it may execute in the fourth segment.

Now consider both task decomposition and segment extension are applied to a DAG. In that case,
the sufficient part is trivial. The scheduling window satisfies all predecessor constraints, while the
deadline for the DAG task does not change.

Assume the window after modification [bl
i , f

l
i ] for some nodeN l

i is not necessary; i.e., it can be
further extended. Then it must be one of the following two cases:

• An earlierbl
i still satisfies all predecessor constraints, which is impossible since it is the time

all parents are finished.
• A later f l

i is possible, which contradicts with Lines 5–7 of Algorithm 1 as it is already the
starting point of its child, or the deadline of the whole DAG. �

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 5, Article 84. Publication date: September 2018.
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ALGORITHM 1: Segment Extension

Input: A DAG task τi , scheduling windows after decomposition [bl
i , f

l
i ] for any node N l

i ∈ τi .

Output: Extended segment window [bl
i , f

l
i ) for each node N l

i ∈ τi .

Assume that all nodes N l
i are ordered topologically, such that predecessor constraint may only occur

between N l
i −→ N

l ′
i when l < l ′;

for each node N l
i ∈ τi do

if node N l
i has successor node(s); i.e., ∃l ′,N l

i −→ N
l ′
i then

f l
i ← min

l ′ |N l
i −→N

l ′
i
{bl ′

i } − 1;

end

else

f l
i ← last segment of τ

syn
i ;

end

end

3.3 Problem Transformation

After task decomposition and segment extension, we have identified the scheduling window
[bl

i , f
l

i ] for each nodeN l
i , and there is no overlap for any two windows (for different nodes) on the

same processor. A natural question arises: Given a specific node (job) with a pre-determined sched-

uling window on a dedicated processor, what is the most energy-efficient execution (speed) pattern?

Theorem 2. The total energy consumption (assuming processor remains on)
∫ a+Δ

a
s (t )γdt is min-

imized in any scheduling window [a,a + Δ] of length Δ when execution speed remains the same; i.e.,

s (t ) ≡ C/Δ, where C =
∫ a+Δ

a
s (t )dt is the (given) task demand in the window.

Proof. We define p (t ) = s (t )/C , then p (x ) is a probability density function (PDF) over [a,a + Δ];
i.e., ∫ a+Δ

a

p (t )dt = 1. (3)

As a result, ∫ a+Δ

a

s (t )γdt =

∫ a+Δ

a

(C · p (t ))γdt

{re-arranging}

=
Cγ

Δγ−1
·
(

1

Δ

∫ a+Δ

a

(Δ · p (t ))γ dt

)

{Jensen’s Inequality (Chandler 1987), the convexity of function xγ

when 2 ≤ γ ≤ 3 and x ≥ 0, and p (x ) being a PDF}

≥ Cγ

Δγ−1

(∫ a+Δ

a

p (t )dt

)γ

{From Equation (3)}

=
Cγ

Δγ−1

{Definition of integrating a constant function}

=

∫ a+Δ

a

(C
Δ

)γ

dt .
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Thus, the minimal total energy consumption in the specified interval
∫ a+Δ

a
s (t )γdt can be

achieved when speed s (t ) remains constant (C/Δ) throughout the interval [a,a + Δ]. �

According to Theorem 2, executing all segments with a uniform speed yields minimum possible
power consumption under such framework. Hence we can assume that the speed of any processor

does not change within a segment. Let Sk
j denote the speed of processor j in the kth segment (exe-

cuting nodeN l
i ), and tk

i denote the length of the segment. The objective is to determine the length

of each segment tk
i (≥ 0) and its execution speed Sk

j (≥ 0) such that total power consumption is

minimized.
The first set of constraints guarantees the real-time correctness that each node N l

i receives

enough execution within its designated window [bl
i , f

l
i ) on its assigned processorMl

i ; i.e.,

∀l ,N l
i ∈ τi :

f l
i∑

k=bl
i

tk
i S

k

Ml
i

≥ ci,l . (5)

We need one more set of inequalities to bound the total length for all segments of each DAG by
its period:

∀i,
∑

k

tk
i ≤ Ti . (6)

Any non-negative speed assignment and segment length setting that satisfy the constraints
described in Equations (5) and (6) yield a correct schedule that all nodes receive enough execution
in their specified scheduling windows (that satisfy all predecessor constraints). Based on these
constraints, we would like to add our objective for minimizing average energy consumption per
period:

Minimize{t k
i ,S

k
j }
MiβTi +

ζi∑
l=1

f l
i∑

k=bl
i

tk
i α (Sk

Ml
i

)γ ,

where Mi is the degree of parallelism (and also the number of processors assigned to the task) and
ζi is the total number of segments assigned to DAG task τi (determined in the previous step). Since
the constraints represented in Equation (5) are non-convex quadratic inequalities, it is in general
computationally intractable to solve in polynomial time. We transform this problem into a convex
optimization by substituting some variables.

Remark 2. According to Theorem 2, executing all segments with a uniform speed yields mini-
mum possible power consumption. If any segment of any core remains idle (scheduling window
for any node does not fall at that segment), then we consider that the execution speed for that
segment is 0.

Remark 3. In this article, we are assuming that the time required to finish a task is exactly
equaled to their WCET. However, it may happen that some of the tasks may finish early than their
WCET. In that case, some of the cores (that are assigned to that tasks) may remain idle for some
time. In this work, we did not consider that the cores can switch into a deep sleep state during the
idle time. Entering into the deep sleep state costs additional energy consumption and it is not ben-
eficial if the idle time slot is less than a certain threshold. By remaining idle we mean that one or
more cores are active but not executing any task. It helps to reduce the active power consumption
(i.e., Pd (s ) in Equation (1)). It would lead to the further minimization of the total power consump-
tion (refer to the Power/Energy model described at Section 2). So our model actually provides the
upper bound of the energy consumption.
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Replacing speed with period lengths and executions. Fortunately, Theorem 2 provides us
the basis to get rid of part of the variables. Since all nodes are executed at constant speeds within
their scheduling windows, given the total length of each assigned segments (i.e., scheduling win-
dow), the execution speed of any given node can be determined. As a result, the energy con-
sumption to finish this node can also be calculated. That is, given a node N l

i with total execution

requirement of cl
i , to be executed on segments between bl

i and f l
i , we have

∀k ∈ [bl
i , f

l
i ], Sk

Ml
i

= cl
i /
���
�

f l
i∑

j=bl
i

t j
i

���
�
, (7)

which means although a node may be executed in consecutive segments ∀k ∈ [bl
i , f

l
i ], the speed

remains constant throughout the scheduling window and can be represented by a function of ex-

ecutions cl
i and segment lengths t j

i . Substituting Equation (7) into the second term of the objective
function, we have

ζi∑
l=1

f l
i∑

k=bl
i

tk
i α (Sk

Ml
i

)γ =

ζi∑
l=1

���
�

f l
i∑

k=bl
i

tk
i α (cl

i )γ ���
�

f l
i∑

j=bl
i

t j
i

���
�
−γ ���
�

{moving unrelated terms out of the summations}

= α

ζi∑
l=1

���
�
���
�

f l
i∑

j=bl
i

t j
i

���
�
−γ ���

�
f l
i∑

k=bl
i

tk
i

���
�

(cl
i )γ ���

�
{combining similar terms}

= α
∑

l |Ml
i=j

c
γ

l

���
�

f l
i∑

k=bl
i

tk
i

���
�

1−γ

.

(8)

Thus, the original optimization problem can be equivalently transformed into the following one
with only tk

i as variables,

Minimize{t k
i }

MiβTi + α
∑

l |Ml
i=j c

γ

l
(
∑f l

i

k=bl
i

tk
i )1−γ

Subject to ∀i,∑k t
k
i ≤ Ti , (9)

∀i, tk
i ≥ 0.

Lemma 3. The objective function (according to Equation (9)) is a convex function.

Proof. Since leakage power consumption remains constant (which is convex), we will prove
that the dynamic part of the energy consumption function is convex:

E (τ ) =
∑

1≤i≤n

C
γ
i (<αi ,τ>)1−γ . (10)

Here τ refers to a k-dimension positive vector, in which each element is positive and refers
to the length of a specific segment of a DAG task. αi is a binary vector, in which each element
αi, j ∈ {0, 1} identifies if the node is selected for the segment. |αi | ≥ 1 since at least one segment
must be assigned. <αi ,τ> refers to the inner-product of the two vectors,Ci refers to a non-negative
constant, and γ ∈ [2, 3]. Thus the energy consumption is modeled as E (τ ) – a function over the
time-allocation τ ∈ Rk

+.
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Fig. 6. The sub-optimal segment length assignment for power efficiency of the sample task τi (in Figure 1),

with an average power consumption of 2.94W. The height of each block represents the speed of the processor

during each segment.

We prove the convexity of E (τ ) when τ ∈ Rk
+ with the following four steps:

(1) We name f (τ ) = <α ,τ> as a function of inner-product of τ with any binary vector α and
|α | ≥ 1. Obviously, this function is a linear function over τ and should be both convex and
concave. Further, given τ ∈ Rk

+, we have f (τ ) > 0. Thus we can conclude f (τ ) is a positive

concave function.
(2) According to page 3-3 of Boyd and Vandenberghe (2004), xp is convex when x > 0 and

p ≤ 0. Thus, when γ ∈ [2, 3] (i.e., −2 ≤ 1 − γ ≤ −1) and x > 0, the function д(x ) = x1−γ

should be a non-increasing convex function.
(3) According to pages 3–17 of Boyd and Vandenberghe (2004), if д(x ) is a non-increasing

convex function and f (τ ) is a concave function over ∀τ ∈ Rk
+, then д( f (τ )) is a convex

function over ∀τ ∈ Rk
+.

(4) The function E (τ ) and fi (τ ) could be written as

E (τ ) =
∑

1≤i≤n

C
γ
i д( fi (τ )), (11)

fi (τ ) = (<αi ,τ>). (12)

AsC
γ
i is non-negative, E (τ ) could be considered as the non-negative-weighted sum of con-

vex functions (i.e., д( fi (τ ))), and E (τ ) is a convex function. �

Theorem 4. Any gradient-based method (e.g., fmincon (Fmincon 2018) in Matlab) would lead to

sub-optimal power consumption under federated scheduling scheme with task decomposition.

Proof. The sub-optimality comes from three facts:

• The objective function is convex as it is a sum of several convex (including linear) functions
of the variables tk

i (detailed proof in Lemma 3).
• The linear equality constraints are necessary and sufficient (Lemma 1) for real-time schedu-

lability and predecessor conditions from the input DAG task.
• The variables tk

i are sufficient to represent a possible optimal scheduler regarding power
consumption; i.e., it is safe to assume uniform speed during each segment (Theorem 2). �

Figure 6 shows the sub-optimal segment length assignment for the given task τi .

4 PROCESSOR SHARING: EFFICIENCY IMPROVEMENT

Task decomposition transforms the parallel task into a set of sequential tasks. The process tries
to maximize the degree of parallelism (i.e., assigning as many processors to each DAG task as
possible). However, some of these processors may be lightly loaded with poor energy efficiency as
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Fig. 7. The execution pattern for τi (in Figure 1) after merging Processors 2 and 3, where NodesN 3
i andN 5

i
will share Processor 2 (i.e., execute under EDF) within time window [4.81, 7.59) at a higher execution speed.

The average power consumption is further reduced to 2.80W. The height of each block represents the speed

of the processor during each segment.

the leakage power consumption becomes the majority cost (as demonstrated in Figure 3). Thus the
solution derived in Section 3 is only sub-optimal and can be further improved if we allow merging
the lightly loaded processors into a single one, such that leakage power is reduced (see Figure 7).

In this section, we deal with this issue and further improve the overall energy efficiency of our
scheduler by merging the workloads assigned to different processors onto a single one. Specifically,
in Section 4.1, we merge processors that have been assigned to the same DAG task. In this step,
each DAG task is handled individually and the resulting processor-node/DAG assignment remains
in the federated scheduling framework. However, in this subsection, we have assumed that each
processor to be merged only once. That is we only allow the combination of two processors that
have never been part of any merging previously. In Section 4.2, this constraint is relaxed and we
allow merging three or more processors into one. In Section 4.3, we discuss the importance (to
improve the overall energy efficiency of our scheduler) of applying any gradient-based method
to calculate the optimal segment length after an intra-DAG processor merging. In Section 4.4, we
further extend the technique for inter-DAG processor merging.

Remark 4. Normally, the effect of task migrations and context switches is not considered while
deriving schedulability test for real time tasks. We are also ignoring the effects of these phenomena.

4.1 Merging Processors Assigned to the Same DAG

Federated scheduling of DAG tasks provides isolation among tasks during execution, such that
inter-task interference as well as context switch delays remain small during runtime. In this sub-
section, we stay in the federated scheduling framework and only consider potential merges among
processors of the same DAG.

Given a DAG task τi with a federated task-to-processor assignment j =Mk
i , the processor ex-

ecution speeds Sk
j for each segment, segment lengths tk

i , and the period Ti . For any processor j
assigned to this DAG, its original power consumption can be calculated as

Pj = β +
∑

k

tk
i

Ti
(Sk

j )γ . (13)

Any pair of processors {j, j ′} share the same period and segment information as they are as-
signed to the same DAG task. As a result, the new execution speed for each segment (when
merged together) will simply be the sum of the two old ones; i.e., S l

j + S
l
j′ , and the average power

consumption for this new processor can be calculated as

Pj, j′ = β +
∑

k

tk
i

Ti
(Sk

j + S
k
j′ )

γ . (14)
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Fig. 8. The equivalence of the MPS problem and the MIS problem, where (a) shows a DAG of four proces-

sor assignments with potential power savings for merging each pair of the processors, and (b) shows its

equivalent expression with vertices representing all edges in (a) and edges representing the mutual exclusive

constraints.

The pairwise potential power saving can be calculated directly by

Pj, j′ = Pj + Pj′ − Pj, j′ . (15)

With the pairwise potential power saving, the Maximization of Power Saving (MPS) problem
we are dealing with in the section can be described as follows:

• Given the potential power savings (PMi×Mi
) for merging each pair of the Mi processors, we

wish to find a list of mutual exclusive processor-pairs {(p1,p
′
1), . . . , (pN ,p

′
N )}(N ≤ Mi/2),

such that the total power saving Pi =
∑N

j=1 Ppj ,p
′
j

is maximized.

Theorem 5. The MPS problem is NP-Complete.

Proof. MPS is in NP as it takes linear time to verify whether a given solution satisfies the mutual
exclusion constraints. The NP-Hardness comes from the reduction of a well-known NP-Complete
problem: Maximum Independent Set (MIS). An independent set is a set of (weighted) nodes in a
graph that no two of which are adjacent. For each node in the graph of MIS, we can construct an
edge with same weight in the graph of MPS, and adjacency of those edges (whether or not they
share a node) in MPS can be determined by the adjacency of the edges in the graph of MIS; i.e.,
each edge in MIS corresponds to a node in MPS (see Figure 8). Since this polynomial (linear)-time
mapping maintains the adjacency relationship of weighted nodes (in MIS) or edges (in MPS), a
solution of MIS (a subset of nm non-adjacent nodes with maximum total weight) will correspond
to a solution of MPS (nm non-adjacent edges with maximum total weight), and vice versa. �

Example 4.1. Take the processor assignment in Figure 8 as an example, where four processors
are assigned to a DAG task. The weight Pi, j for each edge represents the potential power saving
when merging processors i and j, calculated from Equation (15). The edge {2, 4} is missing since
merging these two processors will lead to higher power consumption (i.e., P2,4 < 0). For each
vertex in Figure 8(b), there is a corresponding edge with the same weight in Figure 8(a), and vice
versa. A feasible subset of edges in Figure 8(a) (e.g., {1, 4} and {2, 3}) corresponds to a subset of
vertices in Figure 8(b) (e.g., E1,4 and E2,3) that none of the two are directly connected by an edge.

For this example, we could choose to merge Processors 1&2 and 3&4 (with a gain of 1.1W), 1&4
and 2&3 (with a gain of 1.7W) or 1&3 (with a gain of 0.1W). Although obviously the second option
is leading to the optimal solution, we need to explore all combinations to find that out (Theorem 5
already shows the intractability). As a result, instead of seeking for the global optimal solution for
merging, here we choose to greedily select (see Step 2 below) the pair with the maximum gain in
each step.
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Now we describe the key steps of our proposed processor merging method:

(1) For each pair of processors {j, j ′} of the (same) DAG, calculate the potential power savings
Pj, j′ for merging them together according to Equation (15).

(2) Greedily choose the pair {j, j ′} of processors with the maximum power saving Pj, j′ , and
merge them together by updating P′ value(s) of the nodes on j ′ to j. The merged nodes
will be executed on processor j under EDF, with given per-segment (fixed) speed settings.
Note that EDF is an optimal uni-processor scheduler for sporadic task systems, and thus
will guarantee temporal correctness as far as cumulative capacity remains the same.

(3) Remove the two processors (and also the new one, see Remark 4) from the candidate pool,
by updating elements in the jth row, the j ′th row, the jth column, and the j ′th column of
the power saving matrix P into 0.

(4) If there are no positive elements in P, then return the updated mapping P′, else go to
Step 2 (i.e., merging two un-touched processors may lead to further energy savings).

Although the MIS problem in general cannot be approximated to any constant factor in poly-
nomial time (unless P = NP) (Bazgan et al. 2005), fortunately, each edge in the original figure can
be joint with at most 2(Mi − 2) other edges, which indicates that the degree of each vertex in the
graph after problem transformation is upper bounded by 2(Mi − 2). Thus we have the following
approximation ratio bound.

Theorem 6. The greedy approach has an approximation ratio no greater than (2Mi − 2)/3, where

Mi ≥ 3 is the total number of processors before merging of DAG task τi ; i.e., the degree of parallelism

of the task.

Proof. Since we only allow a processor to be considered in one pair in each round, the graph
resulted from the reduction in Theorem 5 is a (2Mi − 4)-regular graph; i.e., the degree of each
vertex cannot exceed 2Mi − 4. According to Theorem 5 in Halldórssonz and Radhakrishnan (1997),
the greedy algorithm achieves an approximation ratio of (2Mi − 2)/3. �

Remark 5. Note that when Mi = 2, there are only two processors in the candidate pool,
and the decision is straightforward—based on whether merging them can lead to lower power
consumption.

Remark 6. As already mentioned in Section 2, we consider a continuous frequency scaling and,
at any segment, the computed frequency can be rounded up to the next discrete mode. Initially, it
may seem that increasing the speed (by stepping up to the next level) give more room to perform
inter-core merging. However, the speed at any segment depends on the workload at this segment
and its sub-optimal length which is calculated through a gradient-based method. So rounding up
the frequency to its next level may break the sub-optimality and may not yield better energy
efficiency.

4.2 Multiple Merging among the Processors Assigned to the Same DAG

In the previous subsection, we have described the technique of merging processors assigned to
the same DAG to reduce the total number of processors (by means of merging two lightly loaded
processors onto one). So far we have assumed that each processor should be merged only once.
However, allowing multiple merging to any specific processor can further increase the energy
saving. We are relaxing the assumption of only one merge per processor and in this section, we
will describe the technique of multiple merging. Here are the key steps of our proposed intra-DAG
processor merging (multiple times) method:
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(1) For each pair of processors {j, j ′} of the (same) DAG, calculate the potential power savings
Pj, j′ for merging them together according to Equation (15).

(2) If there is no positive element in P, then return with no power saving, else go to Step 3.
(3) Greedily choose the pair {j, j ′} of processors with the maximum power saving Pj, j′ , and

merge them together by updating P′ value(s) of the nodes on j ′ to j. The merged nodes
will be executed on processor j under EDF, with given per-segment (fixed) speed settings.
Note that EDF is an optimal uni-processor scheduler for sporadic task systems, and thus
will guarantee temporal correctness as far as cumulative capacity remains the same.

(4) Remove the two processors (and also the new one, see Remark 4) from the candidate pool
by updating elements in the jth row, the j ′th row, the jth column, and the j ′th column of
the power saving matrix P into 0.

(5) If there is no positive elements in P, then go to Step 6, else go to Step 3 (i.e., merging two
un-touched processors may lead to further energy savings).

(6) Let M ′ be the total number of merges conducted in Steps 1 to 4, where M ′ ≤ Mi/2 (Mi =

the total number of processor allocated to τi ). Update Mi as Mi ← Mi −M ′.
(7) Repeat Steps 1 to 4.

4.3 Calculating Optimal Segment Length after the Intra-DAG Processor Merging

In Section 3.3, we have discussed the technique to optimally determine the segment length for a
DAG task τi and in Section 4.1, we have described the processor merging technique among the
same DAG task. We already know from Theorem 4 that any gradient-based method would lead
to sub-optimal power consumption under federated scheduling scheme with task decomposition.
Now we will show that if we re-apply any gradient-based method to calculate segment length
after applying the intra-DAG processor merging it will further reduce the power consumption
(more details can be found in Section 5). Once we solve the optimization problem mentioned in
Section 3.3, for each node N l

i we have the information regarding its execution speed within its
scheduling window. As all the processors assigned to the same DAG share the same period and
segment information, after merging the new execution speed for each segment will simply be
the sum of the two old ones. We consider that the DAG τi is reduced to τ ′i after a merge. The
consecutive time windows where the speed remains same will be considered under the same node
(according to Theorem 2). As we have the updated information regarding the execution speed of
τ ′i within its scheduling window it is easy to calculate the execution time for each node as well.

Example 4.2. Figure 9 shows how the DAG τi from Figure 1 is modified after intra-task processor
sharing. For this specific task τi (see Figure 7) nodeN 3

i andN 5
i share processor 2. In this case, we

will consider that the nodeN 3
i and the nodeN 5

i jointly form a new nodeN 35
i . The remaining part

of nodeN 3
i (which is executing within time window [7.59,12)) will be considered as another node.

Now we have a changed DAG τ ′i where each node N l
i has some execution requirements and

predecessor constraints. After merging we did not change the segment length. As we are merging
two different processors into one, the execution requirement at specific segment changes. So it is
worth calculating the segment length of the DAG τ ′i . To determine the sub-optimal segment length

tk
i , we will use any gradient based (e.g., fmincon (Fmincon 2018) in Matlab) method because:

• The objective function still remains convex as it is the sum of multiple convex functions of
the variables tk

i ; and
• The linear equality constraints are necessary and sufficient (Lemma 1) for real-time schedu-

lability and predecessor conditions from the modified DAG task.

Figure 10 shows the sub-optimal segment length assignment for the modified DAG (which is
achieved by merging the lightly loaded processors) τ ′i .
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Fig. 9. The modification bought into τi (from Figure 1) after merging processors 2 and 3, where nodes N 3
i

andN 5
i will share processor 2 (i.e., execute under EDF) within time window [4.81, 7.59) at a higher execution

speed. Prior to merging, the predecessor constraint wasN 2
i → N

3
i andN 1

i → N
5
i . To respect this constraint

both the nodes N 1
i and N 2

i will be considered as the parent of the newly formed node N 35
i .

Fig. 10. The sub-optimal segment length assignment (after merging Processors) for power efficiency of the

sample task τi . Again, the height of each block represents the speed of the processor during each segment.

4.4 Merging Processors Assigned to Different DAGs

The merging process described in the previous subsections may significantly reduce the total num-
ber of lightly loaded (energy-inefficient) processors. However, due to the federated scheduling lim-
itation, one (or more) lightly loaded processor(s) for each DAG may still not get paired with just
because it (they) cannot find a good “partner” that was assigned the same DAG task. In this sub-
section, we further select the lightest loaded unmerged processors of each DAG (after intra-DAG
merging) as a candidate, and perform inter-DAG merging under a similar approach; i.e., calculate
all pairwise energy savings and greedily merge the pairs with maximum possible power saving.

Note that different tasks may have different periods, release patterns (sporadic), and execution
patterns (segment lengths after decomposition), such that we cannot simply cumulate the execu-
tion speeds with Equation (14) when calculating the new speed pattern for power consumption
upon inter-DAG merging. In this section, we propose a fast algorithm to estimate the average en-
ergy consumption of the two processors from two different DAG tasks after merging them into
one processor, with (potential) unsynchronized release.

With respect to the unknown phase difference between the two DAGs, we assume that all phases
are equally likely to occur, and model the speed patterns of them as two random processes Si (t )
and Sj (t ), where t ∈ [0,+∞). The power consumption of the merged processor at time instant t is:

ei, j (t ) = β + α · (Si (t ) + Sj (t ))γ . (16)

The expectation of ei, j (t ) over t ∈ [0,+∞) is

E

(
ei, j (t )

)
= β + α · E

(
(Si (t ) + Sj (t ))γ

)
{The values of S1 (t ) and S2 (t ) are finite}

= β + α
∑

s ∈S1,2

s · p (s ),
(17)
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where S1,2 is the (finite) set of values that (S1 (t ) + S2 (t ))γ can possibly take, which can be calcu-
lated as

S1,2 =
{
(sl

1 + s
l ′
2 )γ |1 ≤ l ≤ M1, 1 ≤ l ′ ≤ M2

}
,

and p (s ) refers to the probability of the value s ∈ S1,2; i.e.,

p (s ) =
∑

1≤l ≤M1

∑
1≤l ′ ≤M2

1

M1M2
· δ (s, (sl

1 + s
l ′
2 )γ ).2

The key to calculating average power consumption is to identify all the possible execution
speeds (sum of a pair of speeds, each of which is selected from the set of possible execution speeds
of the two processors being merged) and the likelihood (or joint distribution) of this speed to oc-
cur according to the original execution patterns. We calculate the average power consumption,
because in a real-time system energy saving scheme for the average behavior (while guaranteeing
the worst case requirements) seems more beneficial in terms of energy saving.

Remark 7. Federated scheduling may cause non-negligible resource waste. For example, a heavy
task with utilization 1.1 needs at least 2 cores exclusively allocated to it. An approach known as
Semi-Federated Scheduling proposed recently in Jiang et al. (2017), to solve the above resource
waste problem. We plan to consider this approach for minimizing energy consumption in a mul-
ticore platform.

5 SIMULATION STUDY

In this section, we use experiments to evaluate the power efficiency of the proposed mechanisms,
and compare them with existing algorithms for DAG task systems.

Generation of workloads. Our DAG generator follows the Erdos-Renyi method (Cordeiro
et al. 2010) with a given number of nodes. For the harmonic period case, the periods are multiples
of each other (Saifullah et al. 2014) by enforcing them to be powers of 2. Specifically, we find the
smallest value χ such that Li ≤ 2χ and set Ti to be 2χ . Regarding the arbitrary period case, we
use Gamma distribution (Gamma Distribution 2018) to generate a random parameter, and set the
period asTi = Li + 2(ci/m) (1 + Γ(2, 1)/4) (according to Saifullah et al. (2014)). Power consumption
is calculated using Equation (1) and the value of α , β and γ are set to 1.76, 0.5, and 3, respectively.

5.1 Experiment under Single Merging of Processors

Here compare the power consumption by varying two parameters: (i) task periods (densities) (Sec-
tion 5.1.1) and (ii) number of nodes in each DAG task (Section 5.1.2). Under each parameter setting,
we randomly generate 100 different DAG task sets, each consisting of 5 DAG tasks. Note that, we
could report the energy consumption over a hyper-period for each task set. However, reporting
energy consumption over a hyper-period for each task set will not be a fair comparison as tasks
are randomly generated and their periods and hyper-periods vary a lot. To ensure a fair compar-
ison, we have divided such energy consumption (in Joule) over a hyper-period by the length of
the hyper-period (in seconds), such that the reported data represents average power consumption
(in watts) on the y-axis. We compare the average power consumption of the following scheduling
algorithms:

• Federated scheduling with task decomposition, where each node is executed as soon as
possible under full speed (Saifullah et al. 2014), denoted by D-Saifullah;

• Federated scheduling with task decomposition (length of each segment is further extended
uniformly according to their loads) (Saifullah et al. 2014), denoted by UniExt_D-Saifullah;

2δ (s, (s l
1 + s l ′

2 )γ ) = 1 if s = (s l
1 + s l ′

2 )γ , and = 0 elsewise.
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Fig. 11. Power consumption comparisons for task sets for various settings under single merging.

• Federated scheduling with task decomposition, where lengths of segments are determined
by the proposed convex optimization (Section 3.3);

• Energy-sub-optimal federated scheduling with task decomposition, where lengths of seg-
ments are determined by convex optimization (Section 3.3) after performing segment ex-
tension (Section 3.2);

• Federated scheduling with intra-DAG processor merging (Section 4.1);

5.1.1 Varying Task Periods (or Utilization). Here we vary the minimum inter-arrival separation
for each task, such that the average utilization of a set is controlled. We vary the period in an
allowable range (Li ≤ Ti ≤ Ci ) by assigning Ti as Li + (1 − k ) (Ci − Li ), where k ∈ [0, 1] is named
as the utilization of the task—note that this is different from the normal utilization definition for
sequential tasks. We fix the number of nodes within each DAG task as 30, and show the average
power consumption in Figure 11(a).

The first thing we notice from Figure 11(a) is that the average energy consumption increases
as the average utilization of the set increases (due to decreasing of the period). This phenomenon
makes sense as higher utilization would lead to tighter real-time restrictions, which lead to less
room for our segment length optimization.

As shown in Figure 11(a), stretching each segment would lead to significant power savings
compared to finishing them at full speed and leaving the processor idle for some portion of time
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(matching Theorem 2). Comparing to the existing uniform stretching for all segments of each
DAG task, our convex optimization-based methods would find a better execution pattern in terms
of power efficiency. We also found that segment extension is helpful in removing unnecessary
constraints for finding better execution patterns.

It is easy to tell that the improvements to the average power consumption are huge when apply-
ing the processor merging techniques (see Section 4). The improvement is larger when utilization
of the task is high. On average, our proposed methods (including segment extension and intra-DAG
merging) are leading to a reduction of the power consumption ranging from 29.2% to 40.5%.

5.1.2 Varying Numbers of Nodes in a DAG Task. Now we vary the number of nodes within
each DAG without changing the period. In this set of comparisons, we consider both harmonic
(reported in Figure 11(b)) and arbitrary periods (reported in Figure 11(c)) for a set. For each setting
of parameters, we randomly generate 100 task sets with various number of nodes (10 to 55, with an
increment of 5) and report the average performances of the power consumption over the 100 sets.

First, we observe similar improvements in energy efficiency with the proposed techniques when
the number of nodes vary, comparing to the previous set of experiments (with fixed number of
nodes and varying task utilization). Specifically, the intra-DAG merging technique (refer to Sec-
tion 4.1) leads to a reduction in the power consumption for at least 27.29% (34.27%) for harmonic
(arbitrary) periods, (compared to the result of convex optimization with segment extension dis-
cussed in Section 3.3), while the average power savings are 28.23% and 37.80%.

Second, when comparing curves in Figures 11(b) and (c), we observe that task sets with harmonic
periods typically result in lower energy consumption compared to arbitrary periods (under same
task utilization and number of nodes per task).

Finally, from the reported performances, we did not observe significant dependencies between
the power consumption and the number of nodes for the DAG tasks. This indicates that the pro-
posed methods are robust to various settings of parameters and combination of DAG tasks.

5.2 Experiment under Multiple Merging of Processors

In this subsection, we show the improvement in power consumption using our proposed technique
of multiple merging among the processors. We compare our results with a simple baseline that was
studied in Zhu et al. (2004). This baseline approach was not designed for energy-efficient parallel
scheduling. It studied a greedy slack stealing scheduling (GSS) approach for energy minimization
for an application consisting of inter-dependent sequential tasks. While those dependencies among
the tasks were represented by a DAG, the model consists of a single DAG and does not consider
recurrent tasks. We can consider that approach for scheduling one DAG. As the work in Zhu et al.
(2004) did not consider parallel task and we consider this work as a baseline to compare with our
work, to provide a fair comparison it is required to modify the power and system models and the
graph model used in Zhu et al. (2004).

Regarding the power model, first, Zhu et al. (2004) did not consider the processor static power
dissipation which is considered by our model (refer to Equation (1)). Second, Zhu et al. (2004) con-
sidered two real processor models, (a) the Transmeta model and the (b) Intel XScale model (refer to
Subsection 2.3 in Zhu et al. (2004)). Both of them provide a set of voltage/speed levels. But in our
model, we have considered continuous frequency scheme. So while executing the GSS algorithm
proposed in Zhu et al. (2004), we use the energy model used in Equation (1). We will assume that
whenever a processor is introduced in the system it always remains on. We will also consider min-
imum inter arrival separation (i.e. period) for a DAG. We make these assumptions to incorporate
the static power consumption according to Equation (9).

Regarding the graph model, Zhu et al. (2004) considered three different kinds of vertices: com-
putation nodes, AND nodes, and OR nodes (refer to Subsection 2.1 in Zhu et al. (2004)). Here the
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computation nodes are labeled by two attributes, ci and ai , which denotes the maximum and aver-
age computation requirement for the corresponding node. AND nodes and OR nodes do not have
any such attributes. An AND node can be executed after all of its predecessors finish execution.
Similarly, all of its successors can start execution after it finishes execution. But for the OR nodes,
it depends on only one of its predecessors. Similarly only one of its successors depends on this
node. However, in our work, we have considered only the computation nodes with only one at-
tribute, their worst-case execution time. To provide a fair comparison, we change the graph model
used in Zhu et al. (2004) according to ours. So we will consider the DAG where each node will

be considered as a computation node. Instead of two, there will be only one attribute c j
i which

denotes maximum computation requirement for the node N j
i . We also consider the precedence

constraints among the computation nodes. Note that we have conducted our evaluation consider-
ing the homogeneous platform. However, some nice recent works have considered energy-aware
DAG scheduling in heterogeneous platform (Mei et al. 2014) and noble DAG scheduling algorithms
(Pathan et al. 2018; Rho et al. 2017). We plan to compare our approach with these works in future.
In this subsection, we will evaluate the performance of the technique proposed by us and the tech-
nique proposed in Zhu et al. (2004) based on power consumption. Like the previous subsection, we
will vary two parameters (i) task periods (utilization) (Section 5.1.1) and (ii) number of nodes in
each DAG task (Section 5.1.2) and will use the same set of DAGs. In this subsection, we compare
the average power consumption considering the following schemes:

• No Power Management (where every task executes at full speed)
• Greedy Slack Stealing (GSS) algorithm, denoted by GSS-Zhu;
• Federated scheduling with intra-DAG processor merging (each processor to be merged only

once) (Section 4.1)
• Federated scheduling with intra-DAG processor merging (each processor can be merged

multiple times) (Section 4.2)
• Recalculation of the segment lengths later to the intra-DAG processor merging, where

lengths of segments are determined by the proposed convex optimization (Section 4.3)
• Shared scheduling with inter-DAG processor merging (Section 4.4);

5.2.1 The Effect of Varying Task Periods (or Utilization). Here we have compared the perfor-
mance of intra-DAG processor merging (only one merge), intra-DAG processor merging (multiple
merges), inter-DAG processor merging, and the recalculation of the segment lengths after apply-
ing the intra-DAG processor merging by varying the minimum inter-arrival separation for each
task as described in Section 4. We use the same settings, the number of nodes within each DAG
task is 30. We show the average power consumption in Figure 12(a).

Similar to the phenomenon we have noticed before (Figure 11(a)) the average energy consump-
tion is directly proportional to the average task utilization. The results in Figure 12(a) indicate
that our scheduling algorithm is superior to the GSS. Total energy consumption by the intra-DAG
processor merging (only one merge) is significantly less than the GSS, which is further reduced
by allowing multiple merging and recalculating the optimal segment length after merging. In par-
ticular, the energy consumption by the intra-DAG processor merging (only one merge) is at least
44.85% less than the GSS. It is easily observable that the improvements to the average power con-
sumption are huge when our convex optimization-based methods find a better execution pattern
after intra-DAG processor merging (only one merge) and the improvement is larger when the
utilization of the task is high. This phenomenon makes sense as the objective function described
in Equation (9) does not lose its convexity after intra-DAG processor merging. So, re-applying a
gradient-based method for determining sub-optimal segment length assignment (after merging
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Fig. 12. Power consumption comparisons for task sets for various settings under multiple merging.

Processors) yields a better result in further reducing the power consumption. On average, it leads
to a reduction of the power consumption ranging from 59.41% 63.09%.

5.2.2 Varying Numbers of Nodes in a DAG Task. Now we will show the comparison of the above-
mentioned algorithms by varying the number of nodes (from 10 to 55, with an increment of 5).
We randomly generate 100 task sets and report the average power consumption over the 100 sets.
Again we will consider both harmonic (reported in Figure 12(b)) and arbitrary periods (reported
in Figure 12(c)).

Again, the improvements observed in energy efficiency with our proposed techniques under
varying number of nodes are similar to that in the previous set of experiments (varying task uti-
lization with a fixed number of nodes). Figures 12(b) and (c) suggest that both versions (single and
multiple) of intra-DAG processor merging performs significantly better than the GSS algorithm.
Intra-DAG processor merging results in at least 23.3% (single merge) and 25.05% (multiple merges)
lower energy consumption compared to the GSS for the harmonic periods. When considering the
arbitrary periods, this reduction becomes 42.22% (single merge) and 45.83% (multiple merges). If
the gradient-based methods is considered to find a better execution pattern after intra-DAG pro-
cessor merging (single merge), then it brings further improvements in energy consumption. On
average, for the harmonic task periods, it leads to a reduction of the power consumption ranging
from 27.8 to 52.94% and for the arbitrary task periods the range is 53.55 to 68.22%. All these results
indicate that our proposed techniques outperform the GSS algorithm in terms of energy efficiency.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 5, Article 84. Publication date: September 2018.



Energy-Efficient Real-Time Scheduling of DAG Tasks 84:23

Finally, Figures 12(b) and (c) report that the task sets with harmonic periods result in lower
energy consumption compared to the task sets with arbitrary periods. Also, for the DAG task sets,
we have observed that there are no significant dependencies between the energy consumption and
the number of nodes.

6 RELATED WORK

The work that deals with schedulability tests for various scheduling policies on parallel task model
is already mentioned in Section 1. None of them has considered power/energy consumption issues.
In addition, much work has been done in energy/power consumption minimization for sequential
tasks. Bini et al. discuss the problem of finding an optimal solution for a system with discrete speed
levels for a set of periodic/sporadic tasks (Bini et al. 2009). They have considered both EDF and
Fixed-Priority (FP) scheduling policies. Jejurikar has considered non-preemptive tasks to deal with
shared resources (Jejurikar 2005). Chen et al. and Liu et al. presents an energy-efficient design for
heterogeneous multiprocessor platform in Chen et al. (2009) and Liu et al. (2012), respectively. No
previous work considers parallel task model.

For parallel task models, several results are obtained on schedulability tests under various sched-
uling policies in Baruah et al. (2012), Bonifaci et al. (2013), and Baruah (2014). Bonifaci et al. (2013)
prove a speedup bound of (2 − 1/m) for Earliest Deadline First (EDF) and (3 − 1/m) for Deadline
Monotonic (DM), respectively, where m is the number of processors. For global EDF scheduling,
these techniques are further generalized (Baruah 2014) with an improved pseudo-polynomial time
sufficient schedulability test. Analysis of federated and global EDF scheduling is performed in Li
et al. (2013, 2014). Processor-speed augmentation bounds for both preemptive and non-preemptive
real-time scheduling on multi-core processors are derived in Saifullah et al. (2014). The work in
Baruah et al. (2015) studies global EDF scheduling for conditional sporadic DAG tasks, which is
an extension to the normal sporadic DAG task model. Certain conditional control-flow constructs
(such as if-then-else constructs) can be modeled using the conditional sporadic DAG task model.
Despite those nice preliminary work on the schedulability analysis of parallel tasks, none of them
addresses the energy/power consumption issue.

Actually, intra-task parallelization and power consumption issues have not yet received suffi-
cient attention. Zhu et al. have considered power-aware scheduling for graph-tasks (Zhu et al.
2002). The work in Zhu et al. (2004) proposed the greedy slack stealing algorithm that is able to
deal with the task represented by AND/OR graphs. It proves the correctness of the proposed al-
gorithm in terms of meeting the applications time constraint considering it is executing on an
N-processor system. Through simulation, it has also analyzed the performance of the algorithm
in terms of processor energy saving and showed that the GSS is able to achieve some energy effi-
ciency. However, that work considered the scheduling of only a single DAG and the DAG was not
periodic/recurrent. For dependent tasks, Chen et al. (2014) provides techniques that combine dy-
namic voltage and frequency scaling (DVFS) and dynamic power management, where each core in
the platform can be switched on and off individually. For block-partitioned multi-core processors
(where cores are grouped into blocks and each block has a common power supply scaled by DVFS),
energy efficiency is investigated in Qi and Zhu (2011). The authors in Paolillo et al. (2016) consider
power-aware policy for scheduling parallel hard real-time systems, where the multi-thread pro-
cessing is used. Paolillo et al. (2014) considers dealing with parallel tasks under Gang scheduling
policy, where all parallel instances of a task use a processor in the same window. The authors in
Xu et al. (2012) have considered energy minimization for frame-based tasks (i.e., same arrival time
and a common deadline for all the tasks) with implicit deadlines. Similar frame-based model is
considered in Guo et al. (2011), where precedence constraints can be specified among the tasks.
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As mentioned previously, no existing work allows intra and inter-task processor sharing when
considering the (more general) sporadic DAG task workload model.

7 CONCLUSION

This article studies the scheduling of a set of sporadic DAGs with implicit deadlines. Upon guaran-
teeing real-time correctness, we try to minimize the overall power consumption of the platform. A
power-sub-optimal scheduler is proposed under the condition of federated scheduling and task de-
composition. Achieving the optimal solution for the more general (non-federated) case is shown to
be NP-Complete. Based on the solution under federated scheduling, a greedy heuristic is proposed
to further improve the power efficiency, with proved upper bound of the approximation ratio. To
our knowledge, this is the first work in the real-time systems community that considers power
issues for scheduling recurrent DAG tasks. This work only considers implicit deadline tasks, while
in future, we plan to extend the study for the constrained deadline. Such extension is not trivial, as
the processor may have to remain idle due to the gap between the deadline of a job and the release
of its successor, leading to energy inefficiency. Also, we plan to validate our algorithmic findings
on an actual platform, so that we could have a better understanding of the relationship between
the predicted energy savings and the actual measurements on a state-of-the-art platform.
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