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Abstract—Mixed-criticality (MC) scheduling of sequential
tasks (with no intra-task parallelism) has been well-explored
by the real-time systems community. However, till date, there
has been little progress on MC scheduling of parallel tasks.
MC scheduling of parallel tasks is highly challenging due to
the requirement of various assurances under different criticality
levels.In this work, we address the MC scheduling of parallel
tasks of gang model that allows workloads to execute on
multiple cores simultaneously.Such a workload model represents
an efficient mode-based parallel processing scheme with many
potential applications. To schedule such task sets, we propose
a new technique GEDF-VD, which integrates Global Earliest
Deadline First (GEDF) and Earliest Deadline First with Virtual
Deadline (EDF-VD). We prove the correctness of GEDF-VD and
provide a detailed quantitative evaluation in terms of speedup
bound in both the MC and the non-MC cases. Specifically, we
show that GEDF provides a speedup bound of 2 for non-MC
gang tasks, while the speedup for GEDF-VD considering MC
gang tasks is

√
5 + 1. Experiments on randomly generated gang

task sets are conducted to validate our theoretical findings and
to demonstrate the effectiveness of the proposed approach.

Index Terms—Multi-core systems, Mixed Criticality, Real-time
scheduling, Speedup bound.

I. INTRODUCTION

Due to size, weight, and power considerations, there is a

trend that multiple tasks with different criticality levels (that

are subject to varying degrees of assurance/verification) share

a computing platform [1]. This type of system is commonly

known as a mixed-criticality (MC) system, where each task can

be associated with various execution budgets. During normal

operation, all tasks are scheduled according to their typical

execution budget. However, some critical tasks may exceed

their typical budget and need more resources to finish their

execution. In these scenarios, if the available resources are

not sufficient, the less critical task will be sacrificed to free up

the resources for accommodating the additional computational

requirements requested by the more critical ones.

Take an avionics software standard as an example, where

the ground control subsystems are more safety-critical than

ground communication and light controls. During the incident

of emergency (e.g., an accident), it is more important to

execute the safety-critical components rather than the other

∗Equal contribution.
∗∗ Corresponding author: zsguo@ucf.edu.

components. On the other hand, in normal condition, all

these components are required to perform smoothly (for more

details, refer to the Table 1.1 of [2], which demonstrates the

RTCA DO-178B avionics software standard). MC scheduling

has received considerable attention (refer to [3] for a thorough

and updated survey) as it brings significant improvements in

resource efficiency.

Note that safety-critical MC systems have tight correctness

requirements. These requirements can be verified by two

related but orthogonal perspectives: a priori verification and

run-time robustness [4]. Before run-time, a priori Verification

determines whether a system will behave correctly (or not)

during execution, while run-time robustness deals with unex-

pected system behavior at run-time. There are some debates in

terms of the applicability of MC into run-time robustness [5]

[6]. However, no criticism is valid on applying Vestal model

for a priori verification [4], which is the scope of our work.

Parallel Computing Workloads. Recent advances in parallel

computing allow executing a single piece of code simulta-

neously on multiple computing units. Such design provides

a much better capability of exploiting the benefits provided

by modern platforms. As a result, there is an urgent need

in handling workload models that allow intra-task parallelism

(i.e., parallel tasks). Parallel computing systems perform a

large number of computations and often need to interact

with their surroundings under real-time constraints, e.g., arms

system (RADAR). In these types of applications, a lot of

processors co-operate with each other, and these communi-

cations are timing critical. It is necessary for a system to have

both high performance and predictability; i.e., efficient control

that minimizes the introduced overhead, while responding to

external events (coming through sensors) in real-time. The

gang task model is a practical, widely used, and representative

workload model for intra-task parallelism [7], [8], [9] 1. In

gang scheduling, all threads of a task are grouped into a gang.

While executing, the whole group is concurrently scheduled

on distinct cores. Also, the gang task model is supported by

some widely used parallel computing programming standard

(e.g., OpenACC [10]), which is commonly used in the graphics

processing unit (GPU).

1[9] pointed out some fundamental flaws in [7].
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Existing Work. The real-time systems and parallel computing

communities have given considerable attention towards these

two directions: MC scheduling and scheduling of parallel
tasks. These two emerging trends bring in some critical and

exciting problems, and there is an emerging need in integrating

those two trends. There has been extensive research on the (a)

MC scheduling of sequential (i.e., non-parallel) tasks (refer to

the recent survey in [11], [3]) and (b) scheduling of parallel

tasks with a single-criticality level [7], [8], [9], [12], [13], [14].

Till date, very few efforts [15], [16], [17] have been made

towards the combined problem of MC scheduling of parallel

tasks. To our knowledge, none of these efforts has considered

mixed-criticality gang task scheduling on multi-core platforms.

Motivation Behind This Work. Multi-core platform enables

applications that require better energy efficiency, higher per-

formance, and real-time guarantees. The notion of MC systems

with the intra-task parallelism stems from many current trends.

For example, the number of cores fabricated on a chip is

increasing rapidly. Besides, the computational demand for

an individual task (with stringent timing requirements) is

rising, which makes it essential to consider the intra-task

parallelism. Furthermore, when safety-critical and non-safety-

critical tasks share a common computational platform, there is

an increasing demand to integrate functionality with different

levels of criticality. Such demand promotes the idea of MC

scheduling, i.e., combining various functionalities of varying

criticality levels onto the same computing platform.

Challenges. In gang task model, a task cannot start execution

until the number of available cores is no less than what is

required by it (i.e., a task’s degree of parallelism). This simple

constraint adds a huge restriction on real-time schedulability

and makes the problem highly challenging. We are aware

of only one known correct schedulability analysis [9] under

Global Earliest Deadline First (GEDF) for gang tasks. Besides,

integrating MC in gang scheduling scheme adds additional

challenges due to the dual notion of correctness. That is, in

the normal mode a task may have a utilization less than 1,

while in the critical mode the utilization could be much higher

than 1 [9]—schedulers do not know the exact behavior of each

task prior to run-time (non-clairvoyant). The scheduler must

be able to detect the critical condition early enough so that it

can allocate more resources to the more critical tasks to handle

this drastic change and still be able to meet the deadlines.

This research. In this paper, we study the real-time scheduling

of MC gang tasks on identical multi-core platforms. We

propose the first scheduling algorithm GEDF-VD (GEDF with

Virtual Deadline) for MC gang tasks. Our approach leverages

the synthesis of uniprocessor scheduling techniques such as

EDF-VD [18] as well as GEDF [9] that was designed for

non-MC gang tasks. To our knowledge, this is the first work

that studies the MC scheduling of the gang task model.

Specifically, we make the following contributions:

• We generalize the gang task model to the MC context by

incorporating required extensions and propose GEDF-VD

for the generalized model. We also conduct a utilization

based schedulability test and prove its correctness for-

mally.

• We prove that the speedup bound [19] for GEDF to gang

tasks in a non-MC platform is at most
(
2 − 1/(M +

1 − mini{mi})
)
, where M denotes the total number of

processor cores and mi denotes the degree of parallelism

of task τi. To our knowledge, this is the first speedup

bound result for GEDF scheduling of gang tasks.

• With the result from the previous step, we then derive a

speedup bound of
√
5+1 for GEDF-VD considering MC

gang tasks.

• Extensive simulations under randomly generated task sets

are conducted to demonstrate the real-time performance,

and effectiveness of the proposed algorithm in terms of

acceptance ratio which is defined as the ratio of the

number of schedulable task sets over the total number

of task sets.

Organization. The remainder of this paper is organized as

follows. Section II describes the task model, notations, and

preliminaries. Section III provides a detailed description of

our scheduling algorithm and prove its correctness. Section

IV derives the speedup bounds for the non-MC and MC

platform, under GEDF and GEDF-VD scheduling algorithms,

respectively. Simulation results are presented in Section V.

Section VI discusses related prior work. Section VII concludes

this paper and points out future research directions.

II. DUAL-CRITICALITY GANG TASK MODEL

In this work, we consider the problem of scheduling a task

set τ = {τ1, . . . , τn} of n independent implicit deadline (i.e.,

the period of a task is equal to its deadline) sporadic MC

gang tasks on M identical cores. In this model, each task

generates an infinite number of MC gang jobs (the jth job

of task τi is denoted as τi,j). To describe the dual-criticality

gang task model, first, we provide details on traditional non-
MC gang task model and MC sporadic sequential task model.
Then, by leveraging these two models, we generalize the gang

task model to the MC context. We restrict our attention to

dual-criticality because there are many unsolved issues for the

dual-criticality model, specifically in the parallel computing

domain. We consider this work as an important step towards

the multi-criticality systems.

Non-MC gang task model. In traditional non-MC gang

task model, each task τi is represented with a 4-tuple

(mi, ci, Ti, Di), where each job of τi requires access to mi

cores for at most ci time units to complete its execution, Ti is

the task period, and Di is the relative deadline. The relative

deadline Di specifies that for each of the released jobs τi,j (of

task τi), its deadline di,j = ri,j +Di, where ri,j denotes the

release time of τi,j [9]. The utilization ui of each task τi ∈ τ
is given by ui = (mici)/Ti and the overall system utilization

is: Usum =
∑

τi∈τ ui. Note that, it is possible that the value

of ui is larger than one, which is different from the traditional

sequential task model. Based on the scheduling flexibility, a

gang task τi can be categorized into three groups. A task τi
is said to be:
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• rigid, if mi is fixed a priori and does not change through-

out the execution,

• moldable, if mi is fixed during its activation and does not

change throughout the execution,

• malleable, if mi is not fixed and can be changed during

its execution by the scheduler.

In this work, we focus on the rigid task model.

MC sporadic task model. In a dual-criticality systems, the

criticality level of τi is represented by χi = {LO, HI}. The

worst case execution time (WCET) estimations of each task

is also represented by a tuple (cLO
i , cHI

i ) where cLO
i and cHI

i

represent the LO and HI-criticality WCETs respectively. cHI
i is

measured by a more pessimistic tool by considering all possi-

ble scenarios, while cLO
i is calculated using a less pessimistic

yet realistic tool. Collection of all LO- and HI-criticality tasks

in τ are denoted by τLO and τHI respectively. uLO
i and uHI

i

denotes the utilization of τi in LO- and HI-criticality mode

respectively, where uLO
i = cLO

i /Ti and uHI
i = cHI

i /Ti.

MC gang task model. By leveraging the above two mod-

els, in our work, we consider a workload model of MC

gang tasks, where each task τi is represented by a 6-tuple

(mi, χi, c
LO
i , cHI

i , Ti, Di), where

mi = number of cores required for τi.
χi = criticality level of each task τi and

χi ∈ {LO, HI}.
cLO
i (cHI

i ) = τ ′is WCET in LO(HI)-criticality mode.

Ti = minimum inter-arrival time between jobs.

Di = relative deadline.

If ∀τi,mi = 1, i.e., degree of parallelism for each gang

task is 1, our analysis (Section III and IV) will reduce to

the existing MC scheduling method designed for the sporadic

task model. We believe this is common for a restricted

special case of a more complex and expressive model. For

example, the directed acyclic graph (DAG) task model [13],

[14] is popular to represent intra-task parallelism. Many of the

existing schedulability analysis considering the DAG model

would also reduce to prior study for ordinary sporadic tasks

if the number of nodes of each DAG task is equal to 1.

Now, we generalize the utilization concepts to suit the MC

gang task model, which are analogous to the above-mentioned

concepts. Refer to the Example 1 for details.

U LO

LO

def
=

∑
τi∈τLO

mi × cLO

i /Ti,

U LO

HI

def
=

∑
τi∈τHI

mi × cLO

i /Ti,

U HI

HI

def
=

∑
τi∈τHI

mi × cHI

i /Ti

TABLE I: An MC gang task set with GEDF schedule shown in
Figure 1.

Task ID cLO
i cHI

i Ti χi mi

τ1 3 4 5 HI 3
τ2 3 3 10 LO 2
τ3 1 2 10 HI 2

Example 1. Consider the task-set τ = (τ1, τ2, τ3) in Table I.
For this task-set we derive the utilization as follows:
U LO

LO = τ LO
2 × m2/T2 = 0.6, U LO

HI = τ LO
1 × m1/T1 + τ LO

3 ×
m3/T3 = 2, and U HI

HI = τ HI
1 ×m1/T1 + τ HI

3 ×m3/T3 = 2.8.

Example 2. Consider the MC gang task set in Table I to be
scheduled in four cores. A GEDF schedule for this task set is
shown in Figure 1. The system starts at LO-criticality mode,
and all the tasks (τ1, τ2, τ3) will execute up-to CLO

i . At a mode
switch (t = 9), all LO-criticality tasks (τ2) are dropped, and
all HI-criticality tasks (τ1, τ3) will execute up-to CHI

i . Recall
that, mi is the degree of parallelism of τi. Hence, τ1 cannot
execute at t = 5 as it needs three cores to execute while
only two cores (P3 and P4) are idle. After a mode switch,
all HI-criticality jobs (including the ones which are currently
executing) will execute up-to their HI-criticality WCET.

Motivations behind this model. Some commonly used par-

allel computing programming standards (e.g., OpenACC [10])

support the gang task model. OpenACC is one of the parallel

computing programming standards used for the GPU architec-

ture which is a hot research topic (few to mention [20], [21],

[22]). GPU architecture is popular because of the features like

(1) highly threaded but low context switch latency architecture,

(2) high parallelism and (3) minimal dependency between data

elements, etc. Previous works on GPU scheduling considered

limited or no preemption policy [20], [21]. However, this

work is motivated by some recent attempts to incorporate

the preemptive support in GPUs. For example, a prototype

has been implemented and tested with preemptive support

(at the pixel level and the thread level) in a virtualized

environment in a recent work [23]. Its prototype is EDF based,

and enhanced with a bandwidth isolation mechanism (e.g.,

constant/total bandwidth servers [24]) for the graphics and

computing workloads. Also, the prototype is tested on a recent

NVIDIA Tegra-based system on a chip (SoCs) [25]. Since

some recent works study the preemptive support in the GPU

architecture, there is a need for a comprehensive study of gang

task scheduling using GEDF.

Now, we introduce some definitions and preliminaries which

will be frequently used in later sections of this paper.

Definition 1. (MC-correct schedule): Scheduling strategy
must ensure an MC-correct schedule, as defined below [17].
• If the system stays in normal condition (i.e., each task in the
system finishes execution within its LO-criticality WCET), all
tasks must meet their deadlines.
• If the system transits into a critical condition (i.e., there
exists a HI-criticality task executing beyond its LO-criticality
WCET), all HI-criticality tasks must meet their deadlines,
while LO-criticality tasks need not so.

Definition 2. (Executing/Non-Executing interval) An inter-
val [t1, t2) (where t1 < t2) is an executing interval for a
task τi if mi out of M cores are executing the current active
job released by τi throughout this interval. Otherwise, [t1, t2)
is a non-executing interval for τi. An illustrative example is
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τ1's Ex/
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Interval

τ2 τ3τ1

Mode Switch

τ1 is released here
but cannot execute

Job
Release

Fig. 1: A GEDF scheduling of the MC gang task-set from Table I and the executing (E)/non-executing (NE) intervals of τ1.

shown in Figure 1 by pointing the executing and non-executing
intervals for task τ1.

Definition 3. (Active/pending task) If there exists a task τi ∈
τ , such that it has a job τi,j where ri,j ≤ t < di,j . Here, ri,j
and di,j respectively denotes the release time and deadline of
τi,j , then τi is considered as an active task at time t. A job is
pending if it is released but not finished [9].

Definition 4. Maximum possible number of idle cores (Δi)
for a task τi refers to the maximum number of available cores
(that are not executing any job) at any time during τi’s non-
executing intervals in which it has a pending job [9].

Example 3. Let us consider a task-set τ = {τ1, τ2, τ3, τ4}
have to be scheduled on ten cores. Degree of parallelism for
these tasks are given as: m1 = 6, m2 = m4 = 4 and m3 = 3.
For this task-set, Δ1 = Δ2 = Δ4 = 3 and Δ3 = 2. This is
because τ1 cannot execute at time t (although it has a pending
job) if both τ2 (or τ4) and τ3 are executing at t. The degree of
parallelism for τ2 (or τ4) and τ3 is 4 and 3 respectively. So,
the maximum number of idle cores for τ1 is Δ1, where Δ1 =
10−(4+3) = 3. We can calculate the value of Δ2,Δ3 and Δ4

in the same approach (refer to Algorithm 1 in [9]).

System behavior and scope of this work. It is expected that

an MC system starts execution in normal mode. The system-

wide mode transition is triggered if a HI-criticality task τi has

received cumulative execution length beyond its LO-criticality

WCET and did not signal its finishing. Likewise the Vestal

model [1], after a mode switch, no LO-criticality tasks get any

service guarantee. After mode transition (from LO-criticality to

HI-criticality), at the first idle instant, the system switches back

to the LO-criticality mode again. All other scenarios (e.g., a

HI-criticality task runs for more than its HI-criticality WCET)

are considered as erroneous, where no guarantees will be made

and hence is not considered in this work.

III. GEDF-VD FOR DUAL-CRITICALITY SYSTEM

Now we describe our algorithm for the MC task systems

considering the GEDF-VD algorithm. In this work, we con-

sider an implicit deadline (So, we use the terms deadline and

period interchangeably) sporadic task systems on preemptive

identical multi-core platforms. We integrate an uniprocessor

MC scheduling technique (EDF-VD [18]) with a multiproces-

sor gang task scheduling technique (GEDF [9]) and derive

a new algorithm named GEDF-VD (Subsections III-A and

III-B). In our approach, we determine a scaling factor, which

scales the deadline of all HI-criticality tasks at LO-criticality

mode. This factor will be calculated in such a way that the

correctness of the system can be guaranteed at both LO- and

HI-criticality modes (Subsections III-C and III-D).

A. EDF-VD and GEDF-VD: An Overview
EDF-VD. In case of a mode switch (LO to HI), to generate an

MC-correct schedule (Definition 1), a scheduler must ensure

that all HI-criticality tasks meet their deadlines (while LO-

criticality tasks can be sacrificed). To guarantee this criterion,

a specific amount of CPU time must be reserved for those HI-

criticality tasks even if the system is running at LO-criticality

mode. This reservation of time can be achieved by shortening

the deadlines of HI-criticality tasks under normal mode—those

are virtual deadlines.

In EDF-VD, deadlines of all HI-criticality tasks are short-

ened by multiplying them with a scaling factor, and this mod-

ified deadline is called the virtual deadline. During run-time

(at LO-criticality mode), all HI-criticality tasks are executed

according to their virtual deadline, and all LO-criticality tasks
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execute with their actual/original deadlines according to EDF.

Upon a mode switch, only the HI-criticality tasks are executed

in EDF order with respect to their actual/original deadlines.

In the case of a LO- to HI-criticality mode-switch, a

HI-criticality task demands additional computational require-

ments. Setting a virtual deadline for the HI-criticality tasks

leaves enough time so that the extra workload can be finished

within their actual deadlines. If the virtual deadline is too short,

it increases the system density at normal (i.e., LO-criticality)

mode, while a large virtual deadline threats the schedulability

of the system after a LO- to HI-criticality mode switch. The

trick is to determine a balanced scaling factor x, such that the

correctness under both execution modes can be guaranteed.

[18] showed the steps to calculate the minimum x that guar-

antees the schedulability of all tasks in the system. They also

proved that by reducing the deadline for HI-criticality tasks at

LO-criticality mode, system schedulability can be improved.

Remark 1. In this work, we consider a completely different
Gang task workload model in a multi-core platform. As a
result, the approach to calculate the scaling factor x in [18],
as well as the schedulability test, are no longer applicable for
our case. We propose a novel approach to calculate a feasible
scaling factor x in this section.

GEDF-VD. Now, we provide an overview of our algorithm

(GEDF-VD) considering an implicit-deadline sporadic MC

gang task system τ to be scheduled on M identical cores.

The GEDF-VD algorithm starts by checking whether GEDF

can successfully schedule the regular task system. A regular

task system denotes that, all LO-criticality tasks will execute

up-to their LO-criticality WCET and all HI-criticality tasks

will execute up-to their HI-criticality WCET. It returns SUC-
CESS immediately if the regular task system is schedulable.

Otherwise, all HI-criticality tasks can execute up-to their LO-

criticality WCETs and their deadline is shortened (i.e., virtual

deadline) and set to T̂i = xTi, while all LO-criticality tasks

execute up-to their LO-criticality WCETs with their original

deadline. If any of the currently executing job (of a HI-

criticality task) executed beyond its LO-criticality WCET and

did not signal its completion by T̂i, the scheduler immediately

discards all currently active LO-criticality jobs. Also, the

deadline for all HI-criticality jobs is changed to their release

time plus their actual deadline. Subsection III-B provides a

detailed description of GEDF-VD algorithm.

B. GEDF-VD: A Detailed Description
In this subsection, we describe the GEDF-VD scheduling

approach in a two-phase process. First, we describe what

happens prior to run-time (denoted as a pre-processing phase).

In this phase, GEDF-VD determines whether (or not) it is

required to set a virtual deadline for the HI-criticality tasks.

A lower and an upper bound of the virtual deadline is also

calculated in this phase. Then, we discuss how the jobs are

scheduled at run-time (denoted as handling the dispatched jobs
at run-time). We present the pseudo-code for (the run-time part

of) GEDF-VD in Algorithm 1.

Algorithm 1: GEDF-VD (online part)

Input: A dual-criticality task-set τ = {τ1, τ2, . . . , τn} and a
feasible x.

1 /* Handling tasks at run-time */
2 Whenever a job is released by tasks τi at time instant t
3 if τi ∈ τHI then
4 di,j = t+ xTi;
5 end
6 if τi ∈ τLO then
7 di,j = t+ Ti;
8 end
9 Schedule all active jobs by GEDF according to dij’s.

10 if ∃τi,j ∈ τHI that is not finished by di,j at time t’ then
11 /* Mode Switch */
12 for ∀τi ∈ τHI do
13 di,j = di,j + (1− x)Ti

14 end
15 Discard all τi ∈ τLO

16 Schedule τ ′ = {τHI} by GEDF.
17 end

Pre-processing phase. In this phase, we perform a schedula-

bility test for ordinary (non-MC) GEDF to determine whether

(or not) it can successfully schedule: (i) all τi ∈ τLO up-to

their LO-criticality WCET (cLO
i ), and (ii) all τi ∈ τHI up-to

their HI-criticality WCET (cHI
i ). If the GEDF test fails, then,

for each HI-criticality task τi ∈ τHI, a virtual deadline T̂i is

computed (Step-2), and they execute up-to their LO-criticality

WCET (cLO
i ).

Step 1. We start by checking whether the task-set can be

successfully scheduled by GEDF. If so, then GEDF directly

schedules the system. Else, we modify the task deadlines (Step

2).

Step 2: An additional virtual deadline parameter T̂i is calcu-

lated for each HI-criticality task τi, where T̂i = xTi. A schedu-

lability test for GEDF-VD is provided next. Furthermore,

when the schedulability test is passed, x can be arbitrarily

chosen from the range [A,B] while GEDF-VD is guaranteed

to generate an MC-correct schedule, where A and B are

defined and can be easily calculated for any given system by

the following equations:

A = max{A1, A2}; (1)

A1 = max
i:τi∈τLO

{
U LO

HI

M −Δi − U LO
LO

}
; (2)

A2 = max
i:τi∈τ

{
miU

LO
HI + uLO

i (M −Δi −mi)

mi(M −Δi − U LO
LO )

}
; (3)

B = min
i:τi∈τHI

{
1− miU

HI
HI + uHI

i (M −Δi −mi)

mi × (M −Δi)

}
. (4)

A schedulability test for GEDF-VD. The following theorem

provides a sufficient schedulability test for GEDF-VD.
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Theorem 1. An MC gang task system is schedulable under
GEDF-VD upon M identical unit-speed processors if both
conditions hold:

U LO

LO < M −max
i
{Δi}, (5)

A ≤ B. (6)

We will prove this theorem later by proving Lemmas 1 and

2 in Subsections III-C and III-D.

Recall that, Δi < M for all i. Therefore, miU
LO
HI +uLO

i (M−
Δi−mi) = mi(U

LO
HI −uLO

i )+uLO
i (M−Δi) > 0, which with (5)

together implies A > 0; and also miU
HI
HI +uHI

i (M−Δi−mi) =
mi(U

HI
HI − uHI

i ) + uHI
i (M − Δi) > 0, which implies B < 1.

Thus, both (5) and (6) being true implies that 0 < A ≤ B < 1,

which guarantees that any x chosen from [A,B] must be a

valid scaling factor such that 0 < x < 1.

Run-time dispatch. Similar to GEDF, at any specific time

instant, a task with the earliest deadline gets the highest

priority. In case of ties, task with a smaller index is favored.

Let a binary variable ξ indicate the system-criticality level,

then consider the following two possible cases:

Case 1. System is at LO-criticality mode (ξ = 0), jth job of

task τi arrives at time t:

(i) If τi is a LO-criticality task, set the deadline as di,j = t+Ti,

else set di,j = t+ T̂i, where T̂i = xTi.

(ii) If any of the currently executing jobs executes for more

than cLO
i and does not signal completion, then the system

switches to the HI-criticality mode (Case 2).

Case 2. While the system is at HI-criticality mode (ξ = 1):

(i) Discard all LO-criticality tasks (or use background schedul-

ing).

(ii) Update the deadline for the currently active HI-criticality

jobs into release time (of these jobs) plus their actual relative

deadline.

(iii) For any future HI-criticality task τi that releases a job at

time t, the deadline is set to t+ Ti.

(iv) When there is an idle instant, switch to the LO-criticality

mode (Case 1)2.

C. Proof of Correctness at LO-Criticality Mode

In this subsection, we show that GEDF-VD and its schedu-

lability test given by Theorem 1 are able to guarantee MC

correctness at LO-criticality mode.

Lemma 1. If both (5) and (6) are true, GEDF-VD guarantees
that all LO-criticality tasks meet their deadlines and all
HI-criticality tasks meet their virtual deadlines during LO-
criticality mode.

2Note that HI-criticality mode exists for certification purposes. Such both
directions of mode switch should be unlikely events during run time. Please
also refer to the discussions about apriori verification and run-time robustness
in Section I.

Proof. According to Theorem 2 in [9], given any real-time

implicit deadline sporadic gang task system τ , GEDF can

schedule it successfully if

Usum ≤ (M −Δi)× (1− ui

mi
) + ui

⇐⇒ Usum ≤M −Δi + ui(1− M −Δi

mi
)

(7)

holds for all τi ∈ τ . The virtual deadline increases the utiliza-

tion of these HI-criticality tasks (and hence the whole system).

Note that, in the LO-criticality mode, each HI-criticality task

is scheduled by its virtual relative deadline xTi while each

LO-criticality task is scheduled by its actual deadline Ti.

Therefore, it is sufficient to view each LO-criticality task as a

sporadic task with utilization uLO
i and view each HI-criticality

task as a sporadic task with utilization uLO
i /x, in order to meet

every LO-criticality deadline and every HI-criticality virtual

deadline in LO-criticality mode. Then, for every i such that

τi ∈ τ , we discuss the two cases for M −Δi−mi. Therefore,

it suffice to evaluate (7) under such utilizations for every task

τi. We show this by two cases: 1) τi ∈ τHI, and 2) τi ∈ τLO.

Case 1: τi ∈ τHI. In this case, using (7) as a result from [9],

we just need the following inequality to hold for any τi ∈ τHI.

U LO

LO +
U LO

HI

x
≤M −Δi +

uLO
i

x
(1− M −Δi

mi
)

⇐⇒ U LO
HI

x
+

uLO
i

x
(
M −Δi

mi
− 1) ≤M −Δi − U LO

LO

⇐⇒ miU
LO
HI + uLO

i (M −Δi −mi)

mi · x ≤M −Δi − U LO

LO

(8)

Notice that (5) implies

M −Δi − U LO

LO > 0 for all i such that τi ∈ τ , (9)

and (6) allows x ∈ [A,B] can be chosen so that x ≥ A, which,

by (1) and (3), implies

x ≥ miU
LO
HI + uLO

i (M −Δi −mi)

mi(M −Δi − U LO
LO )

for all i such that τi ∈ τ .

(10)

It is clear that (9) and (10) imply (8).

Case 2: τi ∈ τLO. In this case, using (7) as a result from [9],

we just need the following condition to hold for any τi ∈ τLO.

U LO

LO +
U LO

HI

x
≤M −Δi + uLO

i (1− M −Δi

mi
) (11)

Subcase 2.1: M − Δi − mi ≤ 0. In this case, M − Δi ≤
mi =⇒ 1− M−Δi

mi
≥ 0. Therefore, the following inequality

implies (11):

U LO

LO +
U LO

HI

x
≤M −Δi. (12)

Notice that (5) implies

M −Δi − U LO

LO > 0 for all i such that τi ∈ τ , (13)

and (6) allows x ∈ [A,B] can be chosen so that x ≥ A, which,

by (1) and (2), implies

x ≥ U LO
HI

M −Δi − U LO
LO

for all i such that τi ∈ τLO. (14)
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It is clear that (13) and (14) imply (11).

Subcase 2.2: M − Δi − mi > 0. In this case, M − Δi >

mi =⇒ 1 − M−Δi

mi
< 0. So,

uLO
i

x (1 − M−Δi

mi
) < uLO

i (1 −
M−Δi

mi
), as 0 < x < 1. Therefore, the following inequality

implies (11).

U LO

LO +
U LO

HI

x
≤M −Δi +

uLO
i

x
(1− M −Δi

mi
) (15)

By the same reasoning as that for Case 1, (15) always holds

because (9) and (10) are “for any τi ∈ τ” and both HI- and

LO-criticality tasks are included in the set τ . That is, (11) is

also true in Case 2.2 here.

Combining Cases 1 and 2 (the latter includes Subcases 2.1

and 2.2), the lemma follows. �

D. Proof of Correctness at HI-Criticality Mode
In this subsection, we show that GEDF-VD and its schedu-

lability test given by Theorem 1 are able to guarantee MC

correctness at HI-criticality mode.

Lemma 2. If both (5) and (6) are true, GEDF-VD guarantees
that all HI-criticality tasks meet their deadlines during HI-
criticality mode.

Proof. At the mode switch point from the lo- to HI-criticality

mode, a job from any task τi ∈ τHI must be either completed

or has a deadline at least (1 − x)Ti after this mode-switch

point; otherwise, an earlier time instant would have been the

mode switch point.

Afterwards, any job from any task τi ∈ τHI has at least

Ti > (1− x)Ti (as 0 < x < 1) time units from their releases

in the HI-mode to their corresponding deadlines.

Therefore, viewing each task τi ∈ τHI in the HI-criticality

mode as a sporadic task with utilization
uHI
i

(1−x) and using (7)

as a result from [9], the following inequality is sufficient to

ensure that all HI-criticality tasks meet their actual deadlines

during HI-criticality mode. For all i such that τi ∈ τHI,

mi× U HI
HI

(1− x)
≤ mi×(M−Δi)− uHI

i

1− x
×(M−Δi−mi) (16)

Notice that (6) allows x ∈ [A,B] can be chosen so that x ≤ B,

which, by (4), implies the following equation holds for all i
such that τi ∈ τHI:

x ≤ 1− miU
HI
HI + uHI

i (M −Δi −mi)

mi × (M −Δi)
(17)

Furthermore, Equation (17) is equivalent to Equation (16), as

0 < x < 1 and Δi < M . Thus, the lemma follows. �
Finishing up. We establish Theorem 1 by combining Lemma

1 and 2, and it serves as a sufficient schedulability test for

GEDF-VD to schedule MC gang task sets on M identical

processors. In addition, Figure 2 gives a high-level intuition

for validating Theorem 1, given that Lemma 1 and 2 have

been proven. Note that, we did leverage some insights (in our

analysis) from prior works on MC scheduling and that on gang

scheduling. However, our analysis is not a straightforward

combination of these earlier works due to the increased

0 1B

System schedulable at
LO-criticality mode

A

System schedulable at HI-criticality mode

System  schedulable at both
LO- and HI-criticality mode

Fig. 2: Any value of the scaling factor x, where A ≤ x ≤ B,

guarantees an MC-correct schedule.

complexity in our system model. For example, in the speedup

bound analysis for MC scheduling of ordinary sporadic tasks,

an individual task’s utilization is at most the speed of a pro-
cessor is a straightforward and necessary feasibility condition,

while it no longer holds for the gang tasks.

IV. SPEEDUP BOUND ANALYSIS

In this section, we evaluate the effectiveness of our al-

gorithm GEDF-VD based on speedup bound metric, which

is a widely accepted tool for evaluating the effectiveness

of multiprocessor scheduling algorithms [19]. We will first

provide the related definition and some existing results, and

then (in Subsection IV-A) will derive the speedup bound for

gang tasks under GEDF algorithm considering the non-MC
systems. This is the first speedup bound for (non-MC) gang

tasks under GEDF scheduling policy which lays the foundation

for deriving a speedup bound for MC gang tasks. Finally, in

Subsection IV-B, considering the MC sporadic gang tasks, we

prove a speedup bound for our proposed algorithm GEDF-VD.

Definition 5. (Speedup factor and speedup bound) For a
scheduler S, a speedup factor V (V ≥ 1) (also known as
resource augmentation factor) means that any task set that is
schedulable by an optimal scheduler on a platform of speed-
1 core will be schedulable by S on a platform of speed−V
core(s).

For a scheduler S, a speedup bound refers to the lower

bound of the speedup factor V achievable by it. A speedup

bound for a scheduler S provides an estimation of how far

the performance of S is from an optimal scheduler, the lower

the better.

Limitations. Our speedup factors results in this section rely

on the following assumption that

mi ≤ M + 1

2
for all τi ∈ τ, (18)

That is, the speedup factors results in this section apply only to

systems that satisfy the condition (18). Nonetheless, condition

(18) was not required for the schedulability test and analysis

in the last section, and therefore those schedulability results

apply to a wider range of MC gang task systems. In practice

condition (18) is often satisfied, because the number of cores

in the modern platforms is increasing.

Note that gang tasks cannot be scheduled on uniprocessor

platforms due to their natures of the mandatory parallel

processor access request. Therefore, in order to compare with

a potential optimal scheduler on a uniprocessor, we propose
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a De-ganging transformation between a multiprocessor gang

task set and a corresponding Liu-and-Layland (LL) task set:

• De-ganging: Given a gang task set τ = {τ1, ..., τn},
for each task τi = {mi, ci, Ti}, construct mi LL tasks

{τ ′(1)
i , ..., τ

′(mi)
i }, each with the same execution length

and period, i.e., τ
′(j)
i = {ci, Ti} for any j = 1, ...,mi.

For mapping of the other way around, any deganged LL

task set can be clustered into n groups, where there are

mi tasks from the ith group sharing the same execution

time ci and the same period Ti, resulting in a gang task

τi = {mi, ci, Ti} of the same “total” utilization. The

extension to MC task set is trivial—treat ci as a vector

and maintain the values during the transfer.

A moment thought should convince the reader that it suffices

to restrict our attention to the de-ganged LL task set when

deriving the speedup bound, as the de-ganged LL task set

being schedulable is necessary for the corresponding gang task

set to be schedulable. This transformation does not change the

overall set utilization and thus do not change the utilization-

based necessary schedulability conditions (i.e., basis of the

speedup proofs). Throughout the proofs in this section, the

following Greek letters will be used frequently:

ψ = M/(2− 1

M
);

φ =

√
5 + 1

2
(i.e., golden ratio);

Φ =

√
5− 1

2

(19)

A. Speedup Bound for Gang Tasks under GEDF

In this subsection, we derive the speedup bound (shown in

Theorem 2) for the algorithm GEDF considering the non-MC
gang task set τ , executing on V-speed cores. This is the first

speedup bound result for gang task under GEDF scheduling.

This analysis lays the basis for deriving the speedup bound

for the proposed MC gang task scheduler.

Theorem 2. Given any de-ganged task set that is schedulable
on a speed-M uni-processor, the corresponding gang task set
will pass the schedulabililty test of GEDF upon a M -core
system, each of speed V = 2− 1/(M + 1−mini{mi}).

Proof. Because 1 ≤ mi ≤M for any i, we know that for all

τi ∈ τ ,

V = 2− 1

M + 1−mini{mi}
≥ 2− 1

M + 1−mi

=
2M + 1− 2mi

M + 1−mi
;

(20)

From feasibility of the LL task set on a speed-M unipro-

cessor, we have Usum ≤M . So,

(20) =⇒ V ≥ Usum +M + 1− 2mi

M + 1−mi

⇐⇒ Usum

V ≤M − (mi − 1) +
(2mi −M − 1)

V
⇐⇒ mi

Usum

V ≤ miM −mi(mi − 1) +
mi

V (2mi −M − 1)

=⇒ mi
Usum

V ≤ miM −mi(mi − 1) +
ui

V (2mi −M − 1)

[ui ≤ mi, 2mi −M − 1 ≤ 0]
(21)

The condition 2mi−M−1 ≤ 0 is equivalent to (18); while

ui ≤ mi is true for any gang task because the utilization of

each gang task τi is ui = mi(ci/Ti), where ci ≤ Ti. Note

that ui can also be viewed as the total utilization of the mi

de-ganged LL tasks that correspond to the gang task τi. Again,

de-ganging preserves the utilization of the set. From Equation

(21):

mi
Usum

V ≤ miM − (mi − 1)mi + (mi − 1)
ui

V +
ui

V (mi −M)

=⇒ mi
Usum

V ≤ miM − (mi − 1)(mi − ui

V )− ui

V (M −mi)

=⇒ mi
Usum

V ≤ miM −Δi(mi − ui

V )− ui

V (M −mi)

[From Definition 4: 0 ≤ Δi ≤ mi − 1]

= mi(M −Δi)− (M −Δi −mi)
ui

V [re-arrange]

= (M −Δi)(mi − ui

V ) +mi
ui

V [re-arrange]

=⇒ Usum

V ≤ (M −Δi)(1− ui

miV ) +
ui

V
[divide mi on both sides, re-arrange], for all i

(22)

The equation above implies that the Corresponding gang set

is GEDF schedulable on M speed-V processors (Theorem 2

in [9]). Note that the last step is true because under speed

of V , all utilizations in the test should be treated as the ones

under speed 1 divided by V , in order to apply the original

schedulability test under a speed-1 platform. �

Theorem 2 indicates that the speedup factor of the GEDF

schedulability test in Theorem 2 of [9] (for gang task set) is

no greater than V = 2 − 1/(M + 1 − mini{mi}). Because

1 ≤ mi ≤M for any i, V ≤ 2− 1
M . Therefore, the following

corollary follows directly from Theorem 2.

Corollary 1. Given any de-ganged task set that is schedulable
on a speed-M uni-processor, the corresponding gang task set
will pass the schedulability test of GEDF upon a M -core
system, each of speed (2− 1

M ).

Furthermore, scaling all speeds by a factor of 1/(2 − 1
M )

lead to the following corollary.

Corollary 2. Given any de-ganged task set that is schedulable
on a speed-ψ uni-processor, the corresponding gang task set
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will pass the schedulability test of GEDF upon M unit-speed
processors, where ψ = M/(2− 1

M ).

B. Speedup Bound for Gang Tasks under GEDF-VD
The previous subsection proved the speedup bound for

non-MC task under GEDF. We now brings MC and virtual

deadlines into the picture, and derive the speedup bound for

MC gang task set τ under GEDF-VD. From the definitions of

φ and Φ in Equation (19), the following properties hold:

1 + Φ = φ =
1

Φ
(23)

Φ+ Φ2 = 1 (24)

Theorem 3. Given any de-ganged MC task set that is schedu-
lable on a speed-(ψ ·Φ) uniprocessor, the corresponding MC
gang task set will be schedulable under GEDF-VD upon M
unit-speed processors, where ψ = M/(2− 1

M ) and Φ =
√
5−1
2 .

Proof. The de-ganged MC task set being schedulable on a

speed-(ψ · Φ) uni-processor implies

max{U LO

LO + U LO

HI , U
HI

HI } ≤ ψ · Φ. (25)

We proceed the rest of this proof in two cases.

Case 1: U LO
HI ≥ Φ ·U LO

LO . By (25) and the condition of Case 1,

ψ · Φ ≥ U LO

LO + U LO

HI ≥ (1 + Φ)U LO

LO

=⇒ U LO

LO ≤
Φ

1 + Φ
· ψ = Φ2 · ψ. [by (23)]

Then, by the above and (25),

U LO

LO + U HI

HI ≤ Φ2 · ψ +Φ · ψ = ψ. [by (24)]

Thus, no virtual deadline needs to be set at all. Both HI- and

LO-criticality tasks are scheduled by GEDF according to their

actual deadlines on M unit-speed processors. By Corollary 2,

no deadline will be missed.

Case 2: U LO
HI < Φ ·U LO

LO . By (25) and the condition of Case 2,

ψ · Φ ≥ U LO

LO + U LO

HI > (
1

Φ
+ 1)U LO

HI

=
1 + Φ

Φ
· U LO

HI =
1

Φ2
· U LO

HI . [by (23)]

That is,

U LO

HI < Φ3 · ψ. (26)

Then, we have

U LO

LO +
U LO

HI

1− U HI
HI /ψ

= U LO

LO + U LO

HI + U LO

HI ·
U HI

HI /ψ

1− U HI
HI /ψ

≤ U LO

LO + U LO

HI + U LO

HI ·
Φ

1− Φ
[U HI

HI ≤ ψ · Φ by (25)]

= U LO

LO + U LO

HI + U LO

HI ·
Φ

Φ2
[by (24)]

< ψ · Φ+ Φ3 · ψ · Φ

Φ2
[by (25) and (26)]

= (Φ + Φ2)ψ [rearrange] = ψ, [by (24)]

which is concluded as

U LO

LO +
U LO

HI

1− U HI
HI /ψ

< ψ. (27)

In this case, one could take x =
ULO

HI

ψ−ULO
LO

as the scaling factor to

set the virtual deadlines for HI-criticality tasks. Because the de-

ganged task set is schedulable on a speed-(ψ ·Φ) uniprocessor,

U LO
LO ≤ ψ · Φ, which implies x > 0, as Φ < 1, ψ > 0, and

U LO
HI > 0. On the other hand, U LO

HI < Φ · U LO
LO in Case 2, so

x =
U LO

HI

ψ − U LO
LO

<
Φ · U LO

LO

ψ − U LO
LO

≤ Φ · ψ · Φ
ψ − ψ · Φ =

Φ2

1− Φ
= 1. [by (24)]

Thus, in this case, 0 < x < 1 is guaranteed under this

particular setting and therefore this x can always be used as

the scaling factor to set the virtual deadlines for GEDF-VD.

Then, we first show that all LO-criticality tasks meet their

actual deadlines and all HI-criticality tasks meet their virtual
deadlines during the LO-criticality mode.

U LO

LO +
U LO

HI

x
= U LO

LO + ψ − U LO

LO = ψ.

By Corollary 2, the above equation implies that, using GEDF-

VD to schedule the gang task set on M unit-speed processors,

all LO-tasks meet their actual deadlines and all HI-tasks meet

their virtual deadlines during the LO-mode. Next, we show

that all HI-criticality tasks, including any carryover (HI-) jobs

across the mode-switch point, meet their actual deadlines

during the HI-criticality mode.

Because the virtual deadlines are set as x · Ti for each HI-

criticality task τi, every HI-criticality job including the one

triggering the mode switch will have at least (1 − x)Ti time

units to finish its at most CHI
i execution and to release its next

job. It suffices to consider the schedulability when replacing

each HI-criticality task in the HI-criticality mode by a implicit-

deadline sporadic task with period (1−x)Ti and execution CHI
i .

It can be done by checking their total utilization

∑
τi∈τHI

CHI
i

(1− x)Ti
=

U HI
HI

1− x
.

On the other hand, by (27), we have

U LO
HI

ψ − U LO
LO

< 1− U HI

HI /ψ,

and 1− x > U HI
HI /ψ holds since we set x =

ULO
HI

ψ−ULO
LO

. Thus,

U HI
HI

1− x
<

U HI
HI

U HI
HI /ψ

= ψ.

By Corollary 2, the above equation implies that, using GEDF-

VD to schedule the gang task set on M unit-speed processors,

all HI-criticality tasks, including any carryover (HI-) jobs

across the mode-switch point, meet their actual deadlines

during the HI-criticality mode. Thus, it concludes the proof

and the theorem follows. �
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Finally, we can easily use Theorem 3 to derive a speedup

bound for GEDF-VD to schedule MC gang task sets on

identical processors, as stated in the following theorem.

Theorem 4. If any potentially optimal algorithm can schedule
a MC gang task set on M unit-speed processors, GEDF-VD
is able to schedule the same MC gang task set on M speed-
(
√
5 + 1) processors.

Proof. Theorem 3 directly implies that:

If any potentially optimal algorithm can schedule a

MC gang task set on M speed-(ψ·Φ/M) processors,

GEDF-VD is able to schedule the same MC gang

task set on M unit-speed processors.

This is because for a MC gang task set to be schedulable

on M speed-(ψ · Φ/M) processors, it is necessary for its

corresponding de-ganged MC task set to schedulable on a

speed-(ψ·Φ) uniprocessor. Note that, by definitions: ψ = M
2− 1

M

and Φ =
√
5−1
2 , the following statement is true:

If any potentially optimal algorithm can schedule

a MC gang task set on M speed-( 1
2− 1

M

·
√
5−1
2 )

processors, GEDF-VD is able to schedule the same

MC gang task set on M unit-speed processors.

Scaling the speed unit up by (2− 1
M )

√
5+1
2 (please note that√

5−1
2 ·

√
5+1
2 = 1), the above statement can be re-written as:

If any potentially optimal algorithm can schedule

a MC gang task set on M unit-speed processors,

GEDF-VD is able to schedule the same MC gang

task set on M speed-(2− 1
M )

√
5+1
2 processors.

Since (2− 1
M )

√
5+1
2 <

√
5 + 1, the theorem follows. �

V. EVALUATION

In this section, we evaluate the performance of GEDF-VD

through simulation results. As our work is the first to propose

MC gang task scheduling, there is no perfect baseline for

comparison. We have performed many experiments by varying

different factors to observe the efficiency of our algorithm.

A. Experimental Setup
Workload generation. We generate MC gang tasks based on

the following parameters.

• M : The number of processor cores.

• mmin,mmax,mavg : The minimum, maximum, and average

value for m (i.e., degree of parallelism), respectively. We

generate the task set by varying these three parameters, where

mmin,mmax ∈ [1,M ] and mmin ≤ mavg ≤ mmax.

• Uavg : The average utilization for the task set. We have

varied Uavg value from 0.05×M to 0.95×M with 0.05×M
difference at each step.

• PHI = 0.5: The probability of a task τi ∈ τHI.

• R = 4: Denotes the maximum ratio of uHI
i to uLO

i . uHI
i is

generated uniformly from [uLO
i , R× uLO

i ].
At first, for a specific value of n (number of tasks per task

set), we generate the m values for each task. m is uniformly

generated from [mmin,mmax] range in a way so that the

TABLE II: Acceptance ratio for different amount of tasks

generated under various average utilization

Uavg →
# of tasks↓ 2 2.5 3 3.5 4 4.5 5 5.5 6

8 100 100 97 59 5 5 4 3 1
12 100 99 94 65 2 2 2 0 0
16 100 100 98 50 0 0 0 0 0

average m for all tasks remains equal to mavg . Next, for a

specific value of average utilization Uavg, we calculate the

average utilization ua
i for each task by following the log-

normal distribution. Note that, for n number of gang tasks,

there are total
∑n

i=1 mi = mavg × n amount of single task

instances in each task set. For the sake of a proper distribution,

we extend the UUniFast algorithm [26] for Gang task. We use

log-normal distribution over
∑n

i=1 mi task instances similarly

as UUnifast, but for a single task, we take the average of all

of its instances as the task’s average utilization. The values of

uLO
i is uniformly generated from [

2×ua
i

R+1 , u
a
i ] so that the value

of uHI
i is always in the range [uLO

i , R× uLO
i ].

Simulation setup. We performed the simulation for average

utilization ranging from 0.05M to 0.95M with a step size of

0.05M . For each average, 100 task sets ( each with 10 tasks)

are generated.

B. Evaluation Results

We execute a set of gang tasks under our proposed algorithm

by varying different parameters. We present the simulation

results for various scenarios in Figure 3, 4, 5, and in Table II,

and report the percentage of the acceptance ratio (the ratio of

the number of schedulable task sets over the total number of

task sets) for each case.

Effect of changing the degree of parallelism in a range with
lower difference. In this set of experiments, for M = 8, we

vary a task’s degree of parallelism (m) in a different range.

Here, difference between the upper and lower bound in each

range is kept equal. The acceptance ratio under varying degree

of parallelism is reported in Figure 3. This figure indicates

that in boundary cases (where the degree of parallelism is

very low or very high) acceptance ratio changes proportionally

with respect to the degree of parallelism. This behavior can be

explained with the help of Equations (8) and (16). When m
increases or decreases by a large amount, acceptance ratio will

increase or decrease respectively. However, for a small change

of m, acceptance ratio may not change proportionally. This is

because, the schedulability conditions provided by Equations

(8) and (16) are also effected by the maximum number of idle

cores (Δi) which is dependent on m.

Effect of changing the total number of cores. In Figure 4, we

report the acceptance ratio of the task set by varying the num-

ber of cores in the system, M . In this set of experiments, we set

a value for mavg which is uniformly generated from a range of

[M2 , 3M
4 ]. Simulations are conducted for M = 4, 8, 16 and 32

and the average utilization is weighted with respect to the value
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Fig. 3: Acceptance ratio for GEDF-VD in an 8-core platform

under same ranges of degrees of parallelism.
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0 2 4 6 8
0

20

40

60

80

100

Average utilization

Ac
ce

pt
an

ce
 R

at
io

 %

m=2.5
m=3.5
m=4.5
m=5.5

Fig. 5: Acceptance ratio for GEDF-VD in an 8-core platform

under different mavg .

of M . Figure 4 shows that the acceptance ratio is not affected

by different values of M and remains almost unchanged.

Effect of changing number of tasks per task set. In this

set of experiments, we have randomly generated 100 task sets

with 8, 12 and 16 tasks per task set (with Uavg changing from

2 to 6 with a step size of 0.5) and report the acceptance ratio

in Table II. From the reported data, it is clear that acceptance

ratio of the task set is not affected by the number of tasks

per set. This result indicates the effectiveness of our proposed

algorithm under varying number of tasks in a task set.

Effect of changing mavg value. In Figure 5, we show the

acceptance ratio by varying mavg in an 8-core platform.

This result demonstrates that there may not be any direct

relationship between mavg and the acceptance ratio.

VI. RELATED WORK

Since Vestal’s first proposal [1] of MC workload model,

much work has focused on scheduling MC tasks (refer to

Burns et al. [3] for a survey). For the uniprocessor platforms,

many algorithms were proposed based on both fixed priority

(e.g., Li et al. [27], Baruah et al. [28]) and dynamic priority

scheduling( e.g., Easwaran et al. [29]). On the other hand,

numerous MC scheduling algorithms were proposed for multi-

processor platforms [30], [31], [32], [33], [34]. Considering the

multiprocessor platforms, Lee et al. [30] and Baruah et al. [31]

proposed fluid-based MC models, and a semi-partitioned based

scheme is proposed by Awan et al. [33].

Considering different parallel tasks models (e.g., syn-

chronous task model [12], DAG model [13], [14], [35], [36],

[37] and gang models [7], [8], [9]) there have been a number

of works that have provided the energy efficiency technique,

schedulability analysis, and the speedup bound (i.e., resource

augmentation bound) for various scheduling strategies. For

synchronous tasks under GEDF scheduling, Andersson et

al. [12] proved a resource augmentation bound of 2 with

constrained deadlines tasks. Considering DAG tasks (with

arbitrary deadlines) under GEDF, Li et al. [38] and Bonifaci

et al. [13] simultaneously proved a resource augmentation

bound of 2. Bonifaci et al. [13] also showed the bound to

be 3 under global rate-monotonic scheduling. For implicit

deadline DAG tasks under federated scheduling, a resource

augmentation bound of 2 is showed by Li et al. [14]. Kato et

al. [7] introduced gang task scheduling based on global EDF.

Dong et al. [9] proposed a schedulability analysis based on lag-

based reasoning. Few other related works, such as Goossens

et al. [39] provided schedulability tests for fixed task-priority

scheduling of real-time periodic gang tasks. Another notable

work by Goossens et al. [8] proposed a DP-Fair based schedul-

ing of periodic gang tasks and proved a speedup bound which

is no larger than (2− 1/m).

Although a good number of works studied MC scheduling

and parallel tasks scheduling individually, very few works [15],

[16], [17], [40] studied the scheduling of MC parallel tasks.

Rambo et al. [40] proposed a replica-aware co-scheduling

approach (that is a combination of strict priority preemptive

(SPP) policy and gang scheduling policy) for mixed-critical

systems. Baruah et al. [16] and Li et al. [17] proposed the

MC scheduling of DAG models, while Liu et al. [15] proposed

the MC scheduling of synchronous task model. Unlike these

works, we consider the gang task model, where a task cannot

execute if the number of available cores is less than its degree

of parallelism. This constraint makes the scheduling problem

highly challenging.
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VII. CONCLUSION
Parallel computing with real-time constraints is gaining

popularity due to its broad applicability and system efficiency.

WCET measurements are pessimistic due to increased uncer-

tainty. So, there is an emerging need to introduce MC into

parallel computation models and system designs. In this work,

we leverage two existing algorithms (EDF-VD and GEDF)

to schedule MC gang tasks efficiently. We derive the first

speedup bound for GEDF schedulability of (non-MC) gang

tasks and further derived the bound for GEDF-VD of MC

gang tasks. This work is an initial step of more substantial

efforts in bringing richer system modeling and analysis into

the emerging need in many applications for parallel computing

and MC. In the future, by ensuring the a priori verification,

we plan to consider run-time robustness, with moldable or

malleable models for MC gang tasks. Also, we plan to evaluate

our results (in this paper) by implementations on applicable

hardware platforms.
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