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Abstract—Energy-efficiency is a critical requirement for computation-intensive real-time applications on multi-core embedded

systems. Multi-core processors enable intra-task parallelism, and in this work, we study energy-efficient real-time scheduling of

constrained deadline sporadic parallel tasks, where each task is represented as a directed acyclic graph (DAG). We consider a

clustered multi-core platform where processors within the same cluster run at the same speed at any given time. A new concept named

speed-profile is proposed to model per-task and per-cluster energy-consumption variations during run-time to minimize the expected

long-term energy consumption. To our knowledge, no existing work considers energy-aware real-time scheduling of DAG tasks with

constrained deadlines, nor on a clustered multi-core platform. The proposed energy-aware real-time scheduler is implemented upon an

ODROID XU-3 board to evaluate and demonstrate its feasibility and practicality. To complement our system experiments in large-scale,

we have also conducted simulations that demonstrate a CPU energy saving of up to 67 percent through our proposed approach

compared to existing methods.

Index Terms—Parallel task, real-time scheduling, energy minimization, cluster-based platform, heterogeneous platform

Ç

1 INTRODUCTION

MULTI-CORE processors appear as an enabling platform
for embedded systems applications that require real-

time guarantees, energy efficiency, and high performance.
Intra-task parallelism (a task can be executed on multiple
cores simultaneously) enables us to exploit the capability of
the multi-core platform, and facilitates a balanced distribu-
tion of the tasks among the processors. Such a balanced dis-
tribution leads to energy efficiency [1]. Directed Acyclic
Graph (DAG) task model [2] is one of the most generalized
workload model for representing deterministic intra-task
parallelism. Recently, quite some effort has been spent on
developing real-time scheduling strategies and schedulabil-
ity analysis of DAG tasks, few to mention [2], [3], [4], [5],
[6], [7], [8].

There are several real-world application that uses the
DAG model. For example, the work in [3] studies problems
related to scheduling parallel real-time tasks, modeled as
DAG, on multiprocessor architectures. In a homogeneous
computing environment, a low-complexity compile-time
algorithm for scheduling DAG tasks is proposed in [9].

Another example would be systems that control asynchro-
nous devices, such as the local-area network adapters that
implement real-time communication protocols.

Since many of those applications are battery-powered,
considering energy-efficient approaches for designing such
a platform is crucial. Thanks to the fact that modern genera-
tion processors support dynamic voltage and frequency
scaling (DVFS), where each processor can adjust the voltage
and frequency at runtime to minimize power consumption,
per-core energy minimization becomes possible during run-
time. Despite the hardness of the problem [10], a significant
amount of work has considered power minimization for
non-parallel tasks on a multi-core platform (refer to [11] for
a survey). Regarding parallel tasks, Guo et al. studied
energy-efficient real-time scheduling for DAG tasks as an
early research effort [12]. They adopted the federated sched-
uling and task decomposition framework [2] for minimizing
system energy consumption via per-core speed modulation.
As the only step (that we are aware of) towards energy-
aware scheduling of real-time DAG tasks, they targeted an
exciting problem and laid some of the foundations of this
work. However, the attention of [12] is restricted to implicit
deadline tasks with a system model of per-core DVFS.

Unfortunately, per-core DVFS becomes inefficient as it
increases the hardware cost [13]. For balancing the energy
efficiency and the hardware cost, there is an ongoing trend
to group processors into islands, where processors in the
same island execute at the same speed. For example, a big.
LITTLE platform (e.g., ODROID XU-3 [14]) consists of high
performance (but power-hungry) cores integrated into ‘big’
clusters and low-power cores into ‘LITTLE’ clusters. Such a
platform executes several real-life applications with heavy
computational demands (e.g., video streaming [15]) in an
energy-efficient manner. Apart from the energy consump-
tion issue, a multi-core platform enables task execution with
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high-performance demand and tight deadlines, essential for
computation-intensive real-time systems, e.g., autonomous
vehicles [16].

Despite the urgent need, to our knowledge, no work has
been done that considered the energy-efficient scheduling
of DAG tasks in clustered multi-core platforms, where cores
form a group of frequency/voltage clusters. Such kind of
system balances the energy efficiency and hardware cost
compared to the traditional (with individual frequency scal-
ing feature) multi-core models. The scheduling problem
becomes highly challenging on such platforms because:

(i) The relationship between the execution time, fre-
quency, and the energy consumption is nonlinear,
making it highly challenging to minimize energy
consumption while guaranteeing real-time correct-
ness, i.e., none of the tasks miss their deadline.

(ii) Existing solution (e.g., [12]) relies on the assumption
that each processor can freely adjust its speed. That
solution performs poorly as the assumption is no
longer valid under a more realistic platform model
considered in this paper.

(iii) The speed of a cluster becomes unpredictable when
shared bymultiple taskswith sporadic release patterns.

Contribution. In this paper, we propose a novel technique
for energy-efficient scheduling of constrained deadline DAG
tasks in a cluster-based multi-core system. To the best of our
knowledge, no work has investigated the energy-efficient
scheduling of DAG tasks on such a cluster-based platform. It
is also the first work that has addressed the power awareness
issue considering constrained deadline DAG tasks. Specifi-
cally, wemake the following contributions:

� We consider a more practical cluster-based system
model where the cores must execute at the same
speed at any time instant within each cluster.

� To better handle constrained deadlines, one need to
capture the gaps between deadlines and upcoming
releases, as well as handling sporadic releases. Con-
sidering a continuous frequency scheme, we first
propose a novel concept of speed-profile to present the
energy-consumption behavior for each task as well
as each cluster, such that they could guide task parti-
tioning in an energy-efficient manner. An efficient
greedy algorithm is proposed to partition DAG tasks
according to the constructed speed-profiles.

� We propose an approach to creating the speed-profile
to adapt to the discrete frequency scheme. Also, we
extend our approach to apply to the heterogeneous
platform.

� To evaluate the effectiveness of our proposed tech-
nique, we implement it on the ODROID XU-3 board, a
representative multi-core platform for embedded sys-
tems [14]. The experiments report that our approach
can save energy consumption by 18 percent compared
to a reference approach. For larger-scale evaluation,
we perform simulations using synthetic workloads
and compare our technique with two existing base-
lines [12], [17]. The simulation results demonstrate
that our method can reduce energy consumption by
up to 66 percent compared to the existing ones under
the cluster-based platform setting.

Organization. The rest of the paper is organized as fol-
lows. Section 2 presents the workload, power, and platform
models, and the problem statement. Section 3, describes the
importance of creating a speed-profile for an individual task
and the whole cluster. Section 4 discusses the approaches to
create the speed-profile (considering both the continuous
and discrete frequency mode) for each task. In this section,
we also propose a greedy algorithm to allocate multiple
tasks in the same cluster. Sections 5 and 6 presents the
experimental and simulation results. Section 7 discusses
related work including a detailed comparison with our
existing work [12], [18]. Section 8 concludes this paper.

2 SYSTEM MODEL, PROBLEM STATEMENT,
AND BACKGROUND

2.1 System Model and Problem Statement

Workload Model. We consider a set of sporadic parallel task
denoted by t ¼ ft1; . . . ; tng, where each ti 2 t ð1 � i � nÞ is
represented as a DAG with a minimum inter-arrival separa-
tion (i.e., period) of Ti time units, and a relative deadline of
Dið� TiÞ time units. An implicit deadline task has the same
relative deadline and period, i.e., Di ¼ Ti. As a DAG task,
the execution part of task ti contains a total of Ni nodes,
each denoted by N j

ið1 � j � NiÞ. A directed edge from N j
i

to N k
i ðN j

i ! N k
i Þ implies that execution of N k

i can start if
N j

i finishes for every instance (precedence constraints). In
this case, N j

i is called a parent of N k
i (N k

i is a child of N j
i). A

node may have multiple parents or children. The degree of
parallelism, Mi, of ti is the number of nodes that can be
simultaneously executed. cji denotes the execution require-

ment of node N j
i . Ci :¼

PNi
j¼1 c

j
i denotes the worst case exe-

cution requirement (WCET) of ti.

A critical path is a directed path with the maximum total
execution requirements among all other paths in a DAG. Li

is the sum of the execution requirements of all the nodes
that lie on a critical path. It is the minimum make-span of ti,
i.e., in order to make ti schedulable, at least Li time units
are required even when number of cores is unlimited. Since
at least Li time units are required for ti, the condition
Ti � Li (implicit deadline tasks) and Di � Li (constrained
deadline tasks) must hold for ti to be schedulable. A sched-
ule is said to be feasible if upon satisfying the precedence
constraints, all the sub-tasks (nodes) receive enough execu-
tion from their arrival times, i.e., Ci within Ti (implicit dead-
line) or Di (constrained deadline) time units. These terms
are illustrated in Fig. 2a.

Platform Model. We consider a clustered multi-core plat-
form, where processors within the same cluster run at the
same speed (frequency and supply voltage) at any given
time. Such additional restriction comparing to traditional
multi-core platform makes the model more realistic in
many senarios. For example, our experiment is conducted
on the ODROID XU-3 platform with one ‘LITTLE’ cluster of
four energy-efficient ARM Cortex-A7 and one ‘big’ cluster
of four performance-efficient ARM Cortex-A15. Note that
we do not restrict the hardware-dependent energy parame-
ters (e.g., a;b and g in the power model discussed below) to
be identical across different clusters—these parameters can
be derived using any curve-fitting method, e.g., [19].
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Energy Model.Assuming frequency (speed) of a processor
at a specific instant t is sðtÞ (in short, denoted as s), then its
power consumption P ðsÞ can be calculated as

P ðsÞ ¼ Ps þ PdðsÞ ¼ bþ asg : (1)

Here, Ps and PdðsÞ respectively denote the static and
dynamic power consumption. Whenever a processor
remains on, it introduces Ps in the system (due to leakage
current). Switching activities introduce PdðsÞ which is fre-
quency dependent and represented as asg . Here, the a > 0
depends on the effective switching capacitance [20]; g 2 ½2; 3�
is a fixed parameter determined by the hardware; b > 0 rep-
resents the static part of power consumption. From this
model, the energy consumption over any given period ½b; f�
is calculated asEðb; fÞ ¼ R f

b P ðsðtÞÞ dt.
Our motivation behind selecting this power model comes

from the fact that it complies with many existing works in
the community, few to mention [10], [12], [18], [20], [21],
[22], [23]. Beside this, recently this model was shown to be
highly realistic by showing its similarity with actual power
consumption [21]. Fig. 1 shows comparison between the
original power consumption results from [24] and the
power model in Equation (1).

Assumptions. In this paper, we make the following
assumptions: (i) we focus on CPU power consumption, and
(ii) Dynamic power management (DPM) is not considered.
Appendix B, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2020.2985701, provides the details behind
these assumptions, their impacts, and some hints to over-
come the drawbacks.

Problem Statement. Considering a constrained deadline
sporadic DAG task-set on a clustered multi-core platform,
we focus on finding a correct scheduling strategy, while the
CPU power consumption is minimized.

2.2 Background and Existing Concepts

In this section, we describe some existing concepts and tech-
niques for handling real-time parallel task scheduling, and
that constitute an initial step for our proposed work.

Task Decomposition. The well-known task decomposition
technique [2] transforms a parallel task ti into a set of
sequential tasks as demonstrated in Fig. 2b. Upon task
decomposition, each node N l

i 2 ti is converted into an indi-
vidual sub-task with its scheduling window (defined by its
own release time and deadline) and execution requirement
(cli). The allocation of release time and deadline respect all
the dependencies (represented by edges in the DAG). Con-
sidering that a task is allowed to execute on an unlimited
number of cores, starting from the beginning, a vertical line

is drawn at every time instant where a node N l
i starts or

ends. So the DAG is partitioned into several segments
which may contain single/multiple thread(s). Threads
assigned to the same segment share equal amount of execu-
tion length; e.g., N 3

i , N 4
i , and N 5

i all have 2-time units
assigned to the 3rd segment, as demonstrated in Fig. 2b.

Segment Extension. The deadline for each node via task
decomposition may be unnecessarily restrictive, e.g., the
decomposition of the DAG in Fig. 2a will restrict N 3

i within
the 2nd and 3rd segment. To eliminate such unnecessary
restriction and allow N 3

i to execute in the 4th segment, seg-
ment extension should be applied, e.g., the green rectangle
forN 3

i in the 4th segment in Fig. 2b.
Intra-Task Processor Merging. After applying task decom-

position and segment extension upon a DAG task ti, some
of these cores (where ti is allocated) can be very lightly
loaded. Those core cause massive leakage power consump-
tion in the long run and should be avoided when necessary.
Intra-task merging [12] seeks to merge those cores to gain
overall energy efficiency by reducing the total number of
active cores. For example, in Fig. 2b, the third core (execut-
ing N 5

i ) is lightly loaded, and thus it is better to merge
all the execution into the second core and shut it off
completely. Such a reduction on the number of active cores
minimizes leakage power consumption (see Equation (1)
and Fig. 2 in [12]) as well as the total number of clusters.

3 SPEED-PROFILE FOR TASK AND CLUSTER

This section discusses how different tasks share a cluster
where all processors in a cluster execute at the same speed.
When multiple tasks share a cluster, they may not align
well due to sporadic releases and different periods. In a
cluster-based platform, the processor having the maximum
speed dominates the others in the same cluster. Hence,
existing energy-saving techniques may perform poorly in a
cluster-based platform. To tackle this problem, we propose
a new concept called speed-profile. We provide the definition
of speed-profile and its motivation in Section 3.1. Section 3.2
describes how speed-profiles are handled when two tasks
are partitioned into the same cluster.

3.1 Speed-Profile for Each DAG

Interesting energy-saving techniques (e.g., segment exten-
sion) have been proposed in [12] for the implicit deadline
tasks. For the constrained deadline tasks, this technique
becomes incompetent because of the non-negligible idle gaps
between the task deadline and its next release. For example,
consider the task ti in Fig. 2b with Di ¼ 10 and Ti ¼ 12. Seg-
ment extension can stretch N 3

i to the end of the 4th segment
but cannot utilize the idle time of 2 units. Besides, the sub-

Fig. 1. Comparison of the power model (Equation (1)) with experimental
results in [24]. Here, a ¼ 1:76Watts=GHz3, g ¼ 3, and b ¼ 0:5 Watts.
This figure is adopted from [20].

Fig. 2. (a) A DAG, ti (b) transformed DAG ti after applying task decom-
position. Both of them are adopted from [12].
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optimal solution provided in [12] becomes non-convex (in a
convex function, we can find the global maximum or mini-
mum, for some variables of this function, which does not
hold for a non-convex function) in a cluster-based platform
(see Lemma 1).

Lemma 1. In a cluster-based platform, the convex optimization
problem constructed in [12] becomes non-convex.

Proof. The following set of constraints ensure the real-time
correctness for each nodeN l

i 2 ti, i.e.,N l
i receives enough

time to finish execution within its scheduling window

8l : N l
i 2 ti ::

Xdli
j¼bl

i

tcjsi;j � c
N l

i
i : (2)

We introduce the following inequalities to bound the
total length for all segments in task ti

XZ
j¼1

tcj � Ti: (3)

Any value of execution speed and segment length
ensures real-time correctness if Equations (2) and (3) are
respected. However, the work in [12] considered that the
execution speed of a node, N l

i, is constant within its
scheduling window (from bli to dli), and can be repre-
sented by a function of nodes execution requirement and
its scheduling window. Also, the work in [12] considered
that a single DAG executes at a time, and, hence the exe-
cution speed of a node is not affected by the execution
speed of other nodes (of other tasks). In this work, we
consider the cluster-based platform, and the execution
speed of a node depends on the execution speed of other
nodes (of other tasks) in the same cluster. As a result, we
cannot express the execution speed of a node as a func-
tion of its execution requirement, resulting in quadratic
inequality constraints (Equation (2)). This makes the opti-
mization problem non-convex. tu
Due to the characteristics of a clustered platform, at each

instant, all cores in a cluster must execute at the speed of the
fastest one. If these tasks are not well aligned (concerning
their execution speed), the cluster as a whole will perform
poorly (w.r.t. energy efficiency). Assigning tasks with simi-
lar speed shape on the same cluster may not be an energy
efficient option (due to their sporadic releases pattern).
Fig. 3 and Example 1 demonstrates one such scenario.

Example 1. In this example, we describe how the sporadic
arrival pattern of a task influences the energy efficiency of
the whole cluster. Consider two tasks t1 and t2 with the
predefined necessary speed of execution on two process-
ors each, to be partitioned on to the same cluster (of four
processors). Fig. 3a shows the synchronous release case,
where the whole cluster could run at 0 speed between
[3,4) and [7,8). While Fig. 3b shows the scenario when t1’s
initial release is delayed by one-time unit, where the
whole cluster will need to run at a higher speed (of 0.8)
most (75 percent) of the time and thus consumes more
energy.

In this example, from t2’s perspective, direct energy
reduction with existing per-task WCET based techniques

may not help much, as it may be another task dominating
the speed of the whole cluster most of the time. The criti-
cal observation is that, due to the extra restriction of the
more realistic platform model, the speed of a cluster is
determined by the heavier DAG running on it, as well as
how synchronous are the releases, which could be
entirely random. Moreover, even a task finishes its execu-
tion early (say, t2 requires no execution over [5,7)), we
may not be able to reduce the cluster speed at all.

To address this issue, we propose a novel concept of
speed-profile to capture the energy consumption behavior
of all possible alignment scenarios.

Definition 1. The Speed-profile of a task describes the percent-
age/likelihood of all possible speeds that the task may execute at
over a period. It is a random variable S with an associated prob-
ability function (PF) fSðsÞ ¼ PðS ¼ sÞ, where s is a speed
from the finite set of possible speeds, and fSðsÞ represents the
portions of the time (likelihoods) when it is running at speed s.

Example 2. Let us consider a task ti with Ti ¼ 15 executing
at a speed of 0.6 for 5 time units (not necessarily to
be continual), and at a speed of 0.5 for the rest of
the time. The speed-profile of the task is thus Si ¼

0:6 0:5
5=15 10=15

� �
¼ 0:6 0:5

0:33 0:67

� �
. At any specific time, t,

there is about 33 percent probability that the cores are run-
ning at the speed of 0.6 unit and about 67 percent probabil-
ity that the cores are running at the speed of 0.5 unit.

It is evident that from another task’s point of view, the
speed-profile provides probabilistic information on how the
task of interest would restrict the lower bound to the speed of
the cluster over time. As the alignment of releases between
any two tasks is unknown, we assume in the future analysis
that any phase difference is of equal chance over the long run.

Remark 1. The speed-profile Si of a given task ti remains
the same for an initial phase (release offset) fi � 0.
Regarding inter-task combinations, we assume uniform
distribution for the phase of any task; i.e., fi � U ½0; TiÞ.
Section 4.1 details the calculation for task speed-profile.

Here, we describe the calculation of the cluster speed-profile
when two tasks are combined on to the same cluster.

Fig. 3. When two tasks t1 and t2 with fixed speed patterns each are par-
titioned on to the same cluster, the resultant speed pattern (t12) of the
cluster may vary for their (t1 and t2) different release offsets. In order to
satisfy platform model restrictions while guaranteeing the correctness,
the processors (of the same cluster) must run at the maximum/larger of
the two individual speeds at each instant.
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3.2 Speed-Profile for the Cluster

As stated earlier, the property of the clustered platform and
sporadic arrival pattern of a task makes the exact speed of
the cluster unpredictable at a specific time instant (see Fig. 3
and Example 1). As a result, when two tasks ti and tj (with
speed-profiles) are being considered allocating to the same
cluster, we need to construct the merged speed-profile of
the cluster (executing them both). To perform such calcula-
tion, we introduce a special � operator that takes the maxi-
mum of the two profiles on a probability basis.1

Definition 2. The special operator � operates on two (or more)
random variables X and Y. During this operation, each entry
X i 2 X is compared with each entry Yj 2 Y and the value Zij

is calculated as Zij ¼ maxðX i;YjÞ, with a combined (multi-
plied) probability. If there are multiple occurrences of an entry,
all of them are merged into a single entry, and their associated
probability are summed together.

Example 3. Let Si ¼ 6 5
0:4 0:6

� �
, Sj ¼ 6 2

0:4 0:6

� �
. Then

Si � Sj ¼ 6 6 6 5
0:16 0:24 0:24 0:36

� �
¼ 6 5

0:64 0:36

� �
:

Note that we allocate two different DAGs (with same/
different periods) to the same cluster. The speed-profile
indicates how long a DAG executes at different speeds
within its deadline, i.e., the probability that a DAG executes
at a specific speed. The task’s period becomes irrelevant as
speed-profile is a probability-based measurement. Once ti
and tj are allocated to the same cluster, we use Sij to denote
the speed-profile of the cluster (see Example 3).

In summary, energy minimization in a cluster-based
platform is challenging because of sporadic release pattern
and the idle gaps between a task deadline and its period. To
tackle these problems, we have introduced the concept of
speed-profile for both an individual task and a cluster
where multiple tasks can be allocated.

4 TASK PARTITIONING ALGORITHM

The ultimate goal of the paper is to partition all DAGs into
clusters, such that overall platform energy consumption is
minimized. Recall that on a clustered multiprocessor plat-
form, at a given instant, all processors in the same cluster
must execute at the same speed. Due to this property of a
cluster-based platform, if two tasks that are not well-aligned
(in terms of execution speed) are allocated to the same cluster,
it will result in reduced energy efficiency. So, we have pro-
posed the concept of speed-profiles (refer to Section 3) which
is a tool to measure the potential long-term energy saving of a
cluster when partitioning any pair of DAGs into this cluster.
So far we have discussed the importance of the concept of
speed-profile but did not mention how to create them given a
DAG task, which is the focus on Section 4.1. Then, Section 4.4
describes the task-to-cluster partitioning algorithm.

4.1 Creating the Speed-Profile of a Task

Given a DAG task ti, we provide two approaches to create
the speed-profile Si.

Approach A: Considering the Maximum Speed from all the
Cores. Upon applying the task decomposition, segment
extension, and intra-task processor merging techniques
(Section 2), some vital information (e.g., the speed of a core
at a specific time and number of cores required) becomes
available. This information plays a role to calculating the
speed-profile Si of task ti. At any time instant t, we consider
the maximum speed from all the cores available. It ensures
the sufficient speed so that even the heaviest node can finish
execution within its scheduling window (defined after task
decomposition). We consider constrained deadline (i.e.,
Di � Ti), so the task must have to finish by Di and rest of
the time (Ti �Di) it remains idle. For each segment j 2 ti,
(summation of the length of these segments is equal to Di),
we create a pair ðsi;j; pi;jÞ. For the jth segment, si;j and pi;j
respectively denote the maximum execution speed and the
probability that the cluster will run at this speed. Let, M
cores are allocated to ti. At jth segment, we calculate si;j
and pi;j as follows:

si;j ¼ max
k�M
fsi;j;kg; pi;j ¼

tcj
Ti

:

Here, si;j;k denotes the speed of kth core at jth segment and
tcj is the length of jth segment. The speed-profile Si will be

Si ¼ si;1 si;2 	 	 	 si;z 0
pi;1 pi;2 	 	 	 pi;z ðTi �DiÞ=Ti

� �
:

The last pair reflects the fact that the core remains idle for
the (Ti �Di) time units at the end of each period.

Example 4. Consider a task ti with Ti ¼ 15, Di ¼ 12 and
Ci ¼ 6:5. Let, the task is partitioned into three segments
of length 5, 7 and 3 time units respectively, where the pro-
cessor is executing at a (maximum) speed of 0.6 in the first
segment, speed of 0.5 in the second segment, and remain
idle in the third segment The speed-profile is

Si ¼ 0:6 0:5 0
0:33 0:47 0:2

� �
:

Note that, if a cluster contains a single task ti, then Si also
represents the cluster speed-profile. If ti and tj (or more
tasks) are executing on the same cluster, then the technique
described in Section 3.2 needs to be applied before making
any choices. The greedy choosing approach for task parti-
tion is detailed in Section 4.4.

Approach B: A Single Speed Throughout. Theorem 4 of [12]
shares a valuable insight: The total energy consumption
(assuming processor remains on) is minimized in any scheduling
window when execution speed remains uniform (the same)
throughout the interval.Motivated by it,2 we propose another
approach of selecting a single speed for a DAG task (job)
during the whole duration from its release until its deadline.

1. Although the appearance of the proposed operator is identical
to [25], the calculation is quite different. This is due to the “larger value
dominating” nature of the platform model considered in this paper.

2. Note that [12] considered that the speed remains constant within a
scheduling slot for each processor. Also, they assumed per core speed
scaling and calculated the speed within each scheduling slot through a
convex optimization method. This paper considers the clustered plat-
form where the objective function becomes non-convex (see Lemma 1)
and thus the existing approach is inefficient.
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In this approach, we consider the maximum workload
(or the execution requirement) from all the cores available
and determine the aggregated workload. Upon dividing the
aggregated workload by the deadline, we get the desired
single speed. Let M cores be allocated to task ti. At jth seg-
ment, the execution requirement of the kth core is denoted
by wi;j;k, which is calculated as follows:

wi;j;k ¼ si;j;k 
 tcj:

We determine the maximum execution requirement as
follows:

wi;j ¼ max
k�M
fwi;j;kg:

Let Z denotes the total number of segments in ti. The maxi-
mum total workload wi and the desired single speed si is
calculated using the following equations:

wi ¼
XZ
j¼1

wi;j; si ¼ wi

Di
: (4)

Other than the idle pair ð0; ðTi �DiÞ=TiÞ, we consider a sin-
gle speed throughout the deadline so only a single pair
ðsi; piÞ is required, where si ¼ wi=Di and pi ¼ Di=Ti.

Example 5. Consider the task described in Example 4
(Ti ¼ 15, Di ¼ 12 and Ci ¼ 6:5). It must finish 6.5 unit of
workloads within 12-time units. Using this approach its
speed-profile is

Si ¼ 0:54 0
0:8 0:2

� �
:

Lemma 2. If a task ti executes according to the speed-profile Si,
it guarantees real-time correctness.

Proof. It has been observed in [12] that the following con-
straint guarantees the real-time correctness

8l : N l
i 2 ti ::

Xdli
k¼bl

i

tckS
Ml

i
k � c

N l
i

i : (5)

Here, bli and dli denotes the release time and deadline of

N l
i,Ml

i denotes the node-to-processor mapping and S
Ml

i
k

is the speed of the processor (where N l
i is allocated) at

kth segment. Unlike to [12], at any time instant t, we
choose either the maximum speed from all the cores run-
ning on the same cluster (Approach A) or a single speed
that can guarantee the maximum execution requirement
for the whole duration up to ti’s deadline (Approach B).
So, at any time instant, the cluster speed is larger or
equals to the speed of any individual core. Considering
Equations (2) and (5) we can deduce that

8l : N l
i 2 ti ::

Xdli
k¼bl

i

tcksi;k �
Xdli
k¼bl

i

tckS
Ml

i
k � c

N l
i

i :

So,we conclude that Executing a taskwith speed according
to the speed-profile Si guarantees real-time correctness. tu

An Efficient Approach for Implicit Deadline System. By
adopting simple modification in Equation (4), it is possible
to apply the process mentioned above for the implicit dead-
line tasks also. The workload wi should be divided by the
period instead of the deadline. We consider the same speed
through the task period, so only a single pair ðsi; piÞ is
required, where si ¼ wi=Ti and pi ¼ 1.

Example 6. Now we create the speed-profile for the task
described in Examples 4 and 5 considering implicit dead-
line. So it has Ti ¼ Di ¼ 15 and Ci ¼ 6:5. Let’s assume
that it is executed at a speed of 0.6 for 5-time units, at a
speed of 0.35 for 10-time units. According to Approach A,
the speed-profile is

Si ¼ 0:6 0:35
0:33 0:67

� �
;

and according to Approach B, the speed-profile is

Si ¼ 0:43
1

� �
:

4.2 Discretization of the Speed-Profile

In Section 4.1, we have described two approaches to create
the speed-profile for an individual task. While creating the
speed-profiles, those approaches assume a continuous fre-
quency scheme. From a practical point of view, discrete fre-
quency mode should be preferred over the continuous
frequency mode, because a real platform supports only a set
of frequencies. Now, we describe the technique to discretize
all the speeds available in a speed-profile (assuming that
the speed-profile is already created).

Suppose, we execute a task ti (and its speed-profile is Si)
in a real-platform, and this platform supports only those
speeds available on a speed-set Z. Note that the content of
Z is dependent on the platform. For example, ODROID XU-
3 supports a frequency range of 200-1400 MHz (LITTLE
cluster) and 200-2000 MHz (big cluster) with scale steps of
100 MHz). Now, for each entry si;j 2 Si, we find the mini-
mum speed Zk 2 Z, where Zk � si;j. Once, we find an
appropriate Zk; we set the value of si;j as si;j ¼ Zk.

Example 7. Consider a task ti with the same speed-profile
from Example 4. Let us assume that we will execute ti in
a platform where Z ¼ f0; 0:2; 0:4; 0:55; 0:75, and 1g, i.e.,
this platform supports only six discrete speeds, and all
the speeds are normalized w.r.t. the maximum speed sup-
ported by this platform. Considering the speed-profile Si
(from Example 4) and the speed-set Z, we find that:

(a) si;1 � fZ5 and Z6g
(b) si;2 � fZ4;Z5 and Z6g, and
(c) si;3 � fZ1;Z2;Z3;Z4;Z5 and Z6g.
Now, we choose the minimum Zk 2 Z such that

Zk � si;j. So, we assign Z5 to si;1; Z4 to si;2; and Z1 to si;3.
Now, the updated (i.e., discretized) speed-profile becomes

Si ¼ 0:75 0:55 0
0:33 0:47 0:2

� �
:

Theorem 1. When a task executes with its discretized speed-pro-
file, it guarantees that the task will not miss the deadline.
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Proof. We have shown in Lemma 2 that a task ti will not
miss the deadline if executed according to its speed-pro-
file Si. If we discretize ti’s speed-profile and execute ti
according to this speed-profile, then the task still guaran-
tees the real-time correctness. This is because any speed
si;j of the discretized speed-profile is greater than or equal
to si;j when it was continuous. tu

4.3 Handling Platform Heterogeneity

In this section, we discuss a specific type of multi-core plat-
form with diverse computing abilities: heterogeneous
multi-core platform. We first discuss different types of het-
erogeneous platforms, and then explain how our proposed
techniques can be extended to handle heterogeneity. In a
heterogeneous platform, different cores have different
computational capabilities. In terms of speed, Funk defined
a widely-accepted classification of the heterogeneous plat-
form [26] as follows, where the speed of the processor
denotes the work completed (while executing a task) in a
single-time unit by this processor.

(i) Identical multiprocessors: On Identical multiproces-
sors, all tasks are executed at the same speed on any
processor;

(ii) Uniform multiprocessors: On Uniform multiproces-
sors, all the tasks execute at the same speed if allo-
cated on the same processor, but at a different speed
on different processors. So, the execution speed of a
task depends on the processor where the task is
allocated.

(iii) Unrelated multiprocessors: On Unrelated multiproces-
sors, execution speeds of different tasks may vary on
the same processor, i.e., a task’s execution speed
depends on both the task itself and the processor
where it is allocated.

In a heterogeneous platform, each core is designed with a
different computational capability, and an efficient task-to-
core mapping improves the system resource efficiency. In
the context of energy efficiency, two major directions have
been mentioned in [27] for any heterogeneous platform:

(i) Find an appropriate core/cluster for task mapping to
reduce the overall power consumption of the whole
platform.

(ii) Deploy energy-aware scheduling techniques on each
core/cluster to reduce power consumption.

Our proposed approach covers both directions. First, we
use speed profile to identify efficient core/cluster to task
mapping and then try to reduce the overall cluster speed as
much as possible. It works for an identical heterogeneous
platform (a.k.a., homogeneous multiprocessor) as task-to-
core mapping does not impact energy consumption much.

Now, we extend our approach to apply to the uniform
heterogeneous platform by modifying the parameters in
the power model in Equation (1), i.e., setting different
a;b; and g values for the ‘big’ and ‘LITTLE’ cluster. Under
such consideration, different clusters no longer share the
same power model, and the same task may have different
execution requirements on different clusters. We report the
estimated values of a;b; and g in Table 1. These parameters
are adopted from [15]. The work in [15] estimated these
parameters for the ODROID XU-3 board using the real
power measurements along with a curve fitting method.
They have also assumed that there is another contributor to
the total power consumption of a cluster, i.e., the “uncore”
power consumption (reported in Table 2). The “uncore”
power consumption introduced in the system from some
components other than a processor, e.g., a shared cache.
Similar to the dynamic power consumption, the “uncore”
power consumption also depends on the processor fre-
quency. However, unlike the dynamic power consumption,
there is always some “uncore” power consumption as long
as the cluster remains on (even if there is no workload on a
processor).

Considering all the parameters from Tables 1 and 2, we
bring the following modification in Equation (1)

P ðsÞ ¼ Npbþ asg þ PsðfÞ: (6)

Here, Np denotes the number of cores per cluster, and PsðfÞ
denotes the “uncore” power consumption.

We have a different power model for the “big” and the
”LITTLE” cluster, but we still don’t know what the basis of
assigning a task to a cluster is. Recall that, while creating
the speed-profile, some vital information (e.g., the speed of
a core at a specific time) were known to us (Section 4.1). If
the execution speed of a task is greater than a certain thresh-
old at any point from its release to its deadline, then we
assign this task to the big cluster. Else, we assign this task to
the LITTLE cluster. For the platform we consider (ODROID
XU-3), we set the threshold to 0.7. It is the ratio of the maxi-
mum speed supported by the big cluster and the LITTLE
cluster (see Table 2).

4.4 Task Partition: Greedy Merging With
Speed-Profiles

We are now equipped with tools (speed-profiles) to mea-
sure the potential long-term energy saving of a cluster
when partitioning any pair of DAG tasks into it. This sub-
section describes the scheme for selecting pair by pair so
that the total number of clusters can be significantly smaller
than the total number of tasks.

TABLE 1
Estimated Parameters for Different Cluster of

an ODROID XU-3 Board

Cluster Type bðWÞ aðW=MHzgÞ g

big 0.155 3.03
10�9 2.621
LITTLE 0.028 2.62
10�9 2.12

This table is adopted from [15].

TABLE 2
The “Uncore” Power Consumption for Different Cluster

of an ODROID XU-3 Board

Freq(GHz) 2 1.8 1.6 1.4 1.2 1.0

big cluster(W) 0.8 0.528 0.39 0.309 0.244 0.182
Freq(GHz) 1.4 1.2 1.0 0.8 0.6 0.4
LITTLE cluster(W) 0.04 0.04 0.04 0.04 0.04 0.04

This table is adopted from [15].
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Let, we decide for each taskwhether it should be allocated
on a LITTLE or a big cluster using the technique described in
Section 4.3. To select a (task) pair that will share the same
cluster, we greedily choose the pair that provides maximum
power saving, as depicted in Algorithm 1. Note that we
allow the pairing of two DAGs that are not merged previ-
ously. Also, if any task usesmore cores thanwhat is available
in a cluster, that task cannot bemergedwith that cluster.

Algorithm 1. Greedy Merging

1: Input: Task-set t, with speed-profile Si (computed using
approach A or approach B) for each task

2: Output: Speed-profile ~S (with processor power saving).
3: �S; ~S  ;" All the possible/selected speed-profiles
4: for i ¼ 1 to n do
5: for j ¼ iþ 1 to n do
6: Sij  Si � Sj; �S  �S [ Sij;
7: end for
8: end for
9: while 9Sxy 2 �S and Sxy provides non-zero power saving do
10: Sxy  the pair from �S with maximum power saving
11: ~S  ~S [ Sxy
12: for k ¼ 1 to n do
13: �S  �S � Skx � Sxk � Sky � Syk
14: end for
15: end while
16: return ~S.

Algorithm 1 creates two empty lists �S and ~S that will
contain all the possible and selected speed-profiles (Line 3).
Lines 4–8, calculate all the possible speed-profiles and insert
them into �S. We greedily select a pair of DAGs that provide
the maximum power saving (calculated using Equations (6)
and (10) from [12]) and update the list �S by removing the
pair from any further merging (Lines 9–15). The list ~S is also
updated by adding the selected pair (Line 11). We conclude
by returning the updated list ~S (Line 16).

Theorem 2. Executing a task with a speed according to the clus-
ter speed-profile guarantees real-time correctness.

Proof.Wehave shown in Lemma 2 that a task ti will notmiss
the deadline if executed according to its speed-profile Si. If
ti share a cluster with another task tj and executes accord-
ing to themerged (i.e., cluster) speed-profile Sij, then it still
guarantees the real-time correctness, because Sij � Si
holds at any time instant. tu

Remark 2. For n tasks, the time complexity to generate all
possible speed-profiles, �S, is Oðn2ZÞ, where Z is the maxi-
mum number of segments of all DAGs in the set after
decomposition (related to the structure and size of the
DAGs). Algorithm 1 greedily choose a speed-profile by
iterating through S and then update, which takes Oðn2Þ
time as well. Thus the total complexity of the proposed
method is Oðn2Þ.
In summary, we have proposed twomethods (Section 4.1)

to create the speed-profile for a constrained-deadline DAG.
We also show that if a task executes according to the speed-
profile, it ensures real-time correctness. According to the
techniques provided in Section 3, we could evaluate and
compare all potential pairs of the combination by calculating

the cluster speed-profile after merging. Finally, Section 4.4
discussed how to use these speed-profiles to find suitable
partners to share a cluster greedily.

5 SYSTEM EXPERIMENTS

In this section, we present experimental results conducted
on an ODROID XU-3 board. The platform runs on Ubuntu
16.04 LTS with Linux kernel 3.10.105. It is fabricated with
Samsung Exynos5422 Octa-core SoC, consisting of two
quad-core clusters, one ‘LITTLE’ cluster with four energy-
efficient ARM Cortex-A7 and one ‘big’ cluster with four per-
formance-efficient ARM Cortex-A15. Four TI INA231 power
sensors are integrated onto the board to provide real-time
power monitoring for the A-7 and A-15 clusters, GPU, and
DRAM. An energy monitoring script, emoxu3 [28], is used
to log energy consumption of the workloads.

DAG Generation. In this experiment, we generate two task
sets each with 300 DAGs, and use the widely used Erdos-
Renyi [29] method to generate a DAG. We tune a parameter
p, that denotes the probability of having an edge between
two nodes. In this experiment, we set p to 0.25 generate
DAGs with an uncomplicated structure. If a disconnected
DAG is generated, we add the fewest number of edges to
make it connected. For experimentation, we have consid-
ered arbitrary task periods, and it is determined using
Gamma distribution [30]. We set the periods with Ti ¼ Liþ
2ðCi=mÞð1þ Gð2; 1Þ=4Þ [2]. Here, Li is the critical path length
of ti, calculated according to the definition of Li (refer to
Section 2).

After generating the topology of each DAG of a set, we
partition them into two subsets according to the proposed
approach, one to the “big” and the other one to the “LITTLE”
cluster, and measure the energy consumption over the
hyper-period of all DAGs. We use rt-app [31] to emulate
the workload for each node. rt-app simulates a real-time
periodic load and utilizes the POSIX threads model to call
and execute threads. For each thread, an execution time
needs to be assigned. In this experiment, for each node,
we randomly select an execution time ranged between
½300 ms; 700 ms�. rt-app itself has a latency that varies ran-
domly between 13� 150 ms per thread. Therefore, we add
the maximum latency of rt-app, i.e., 150 ms, to the execution
time of each thread from an analytical point of view.

DAG Scheduling. We use the Linux built-in real-time
scheduler sched_FIFO to schedule the DAGs. Compared
to the other system tasks, DAGs are assigned with higher
priorities so that they can execute without interference. Our
approach is also applicable to other preemptive schedulers
which feature the work-conserving property.

Frequency Scaling. According to the frequency/speed-
profile (Section 4), we use cpufreq-set program (from
cpufrequtils package) to change the system’s frequency
online. We use the ODROID XU-3 board, where scaling-
down (up) the frequency of the big cluster takes at most
60 ð40Þ ms, respectively. On the LITTLE cluster, both the
operation takes at most 15 ms. Due to this delay, the hyper-
period of all DAGs becomes large (230s, in this experiment).
We detail the reasons behind this delay in Appendix B.2,
available in the online supplemental material.

The Reference Approach. Since no work has studied the
same problem considered in this paper, we do not have a
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direct baseline for comparison. So, we propose a reference
approach based on the studies for energy-efficient schedul-
ing of sequential tasks [32]. They assigned an operational
frequency to each task, and at run-time, schedule them
according to their frequency. In this reference approach, we
compute an operational frequency for each DAG. This fre-
quency stretches out execution length of these DAGs as
much as possible without violating their deadlines. As
stated earlier, the reference approach executes the DAGs
with the same partition, but without the merging techniques
proposed in Section 4.

Results. The experimental results are plotted in Figs. 4
and 5. In these figures, we show (i) the energy consumption
over the hyper-period (230s), where the three lines show the
energy consumption of the big and LITTLE cluster, and the
total system; and (ii) frequency variation during the run-
time, where the diamond and star marks denote the opera-
tional frequency of the big and the LITTLE cluster at a spe-
cific time instant, respectively. Note that the GPU and
DRAM also contribute the energy consumption of the total
system. Hence, the total energy consumption is a bit higher
than the summation of the contribution of the big and the
LITTLE cluster, but it is observed that there is a negligible
difference for the energy consumption of GPU and DRAM
between the two approaches. Besides, it is worth noticing
that this energy consumption also accounts for energy con-
sumption of the operating system.

Table 3 summarizes the comparison of the experimental
results, where the energy consumption of the two clusters
and the total system is presented, and the energy saving
from our approach is given. As can be seen, our approach

consumes 312J and 32J on the big and the LITTLE cluster,
respectively. Comparing to the reference approach, we save
energy consumption by 20 and 16 percent. In total, our
approach saves energy consumption by 18 percent.

The result can be justified as the reference approach
changes the frequency for each DAG, while ours have a
fine-grained frequency adjustment at each segment
(Section 4.1), and could scale down the frequency if
required. Fig. 6 presents the frequency occurrence probabil-
ity of two clusters which is recorded per second by emoxu3.
We observe that within the same time interval the reference
approach has a higher probability to execute at a higher fre-
quency, while our approach is more likely to execute at the
lower frequencies, thus reducing the energy consumption.

Remark 3. Each heavy DAG (Ci > Ti) needs two or more
cores while executing and the ODROID XU-3 board con-
tains four cores per cluster. So, in this experimental setup,
we can not execute more than four heavy DAGs at a time.
Such a restriction is not applicable to the light DAGs
(Ci � Ti). We also consider that a heavy DAG cannot be
allocated in multiple clusters.

6 SIMULATIONS

For large-scale evaluation, we perform simulations and
compare the results with existing baselines. We generate
DAGs using the Erdos-Renyi method (Section 5). We con-
sider two types of task periods; (a) harmonic periods, where
the task period Ti is enforced to be an integral power of 2.
We define Ti as Ti ¼ 2a, where a is the minimum value
such that 2a � Li, where Li is the critical path length of ti(b)
arbitrary periods, Ti is determined using Gamma distribution
(see Section 5).

We compare our approaches with some existing baselines
studied in [12], [17], [33]. Total power consumption by our
approach and by these baselines are calculated using

Fig. 4. The energy consumption and the frequency variation of our pro-
posed approach on ODROID XU-3.

Fig. 5. The energy consumption and the frequency variation of the refer-
ence approach on ODROID XU-3.

TABLE 3
Summary of Experimental Results

Ours (J) Ref (J) Energy Saving (%)

big cluster 312 389 20
LITTLE cluster 32 38 16
Total 387 472 18

Fig. 6. Frequency occurrence probabilities.
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Equation (6). As mentioned earlier, [12] considered per-core
DVFS, i.e., each core individually is an island of the cluster-
based platform. For a fair comparison, according to the
scheduling policy of [12], when a task is allocated on some
cores at any time instant t, we choose the maximum speed
among all these cores. We consider [12] as a baseline because
that work is closely related to ours. Although they have con-
sidered per-core DVFS and restrict their attention only to
implicit deadline tasks, the task and the power model are
same. Besides, although this work and [12] propose different
approaches to power saving, the initial (preparation) steps of
both approaches are based on commonly known techniques
like task decomposition, taskmerging, etc.

The work in [17] studied a greedy slack stealing (GSS)
scheduling approach considering inter-dependent sequential
tasks. It considered theDAGmodel to represent dependencies
among the tasks. In GSS, the slack (unused time in actual com-
putation requirement of a task) is reclaimed by one task by
shifting others towards the deadline. They did not consider
repetitive tasks; hence it can be regarded as scheduling a sin-
gle task. Besides this, the power and graphmodel used in [17]
is different from ours. To ensure a fair comparison,we execute
the GSS algorithm using the power model in Equation (1) and
assume that once introduced in the system; a processor
remains active.We also consider aminimum inter-arrival sep-
aration for a DAG. That work considered three different kinds
of nodes: AND, OR, and Computation nodes (Section 2.1 in
[17]). A computation node has both the maximum and aver-
age computation requirement. To comply with our work
where the focus in energy reduction while guaranteeing
worst-case temporal correctness, we execute the GSS algo-
rithm considering only the computationnodeswith theirmax-
imum computation requirement. We made all the changes in
order to provide a fair comparison. Despite these differences,
we chose [17] as a baseline because they studied a GSS
approach for energy minimization. They considered the inter-
dependent sequential tasks and their dependencieswas repre-
sented by aDAG,which is similar to our taskmodel.

We also consider [33] as a baseline because this work
considered scheduling a set of independent periodic appli-
cations, where each application is modeled as a DAG. They
proposed an approach for energy minimization combining
the DVFS and the DPM policy. Similar to [12] and [17], the
work in [33] considered per-core DVFS.

We compare power consumption by varying two param-
eters for each task: task periods (utilization) and the number of
nodes. We randomly generate 25 sets of DAG tasks and com-
pare the average power consumption.

Notations of Referenced Approaches. For the task partition-
ing step, either we randomly choose any two and allocate
them to the same cluster, or greedily choose the ones with
lowest speed as proposed. Regarding speed-profile calcula-
tion, there are also two options (Approaches A and B in
Section 4.1). Combining these options in two steps lead to
four baselines: MaxSpeed_Greedy, SingleSpeed_Greedy, Max-
Speed_Random, SingleSpeed_Random. Also, three baselines
mentioned above are included for comparison:

� Federated schedulingwith intra-task processormerging
[12], denoted by Fed_Guo;

� GSS algorithm [17], denoted by GSS_Zhu.

� DVFS and DPM combination [33], denoted by
com_Chen.

6.1 Uniform Heterogeneous Platform With
a Continuous Frequency Scheme

In this section, considering the uniform heterogeneous plat-
form and a continuous frequency scheme, we report the
power consumption comparison for different approaches
mentioned earlier. Under such a platform, different clusters
no longer share the same power model and we use the
power model described in Equation (6). We present the
power comparison results in an identical heterogeneous
platform (from [34]) in Appendix A, available in the online
supplemental material.

6.1.1 Constrained Deadline Task

Here, we report the power consumption under the scheme
for constrained deadline tasks mentioned in Section 4. We
evaluate the efficiency of our proposed method by changing
two parameters; task period (utilization) and the number of
nodes in the task.

Effect of Varying Task Periods (Utilization).Here we control
the average task utilization through varying the task period.
In order to make the task schedulable, the critical path
length Li of task ti should not exceed its deadline Di. We
vary the period in a range (Li � Ti � Ci). The parameter Li

and Ci are measured once the DAG is generated according
to the technique described in Section 5. We also use the fol-
lowing equation (according to [12]) to ensure that the value
of Ti satisfies the range (Li � Ti � Ci)

Ti ¼ Li þ ð1� kÞðCi � LiÞ: (7)

Here, k 2 [0, 1] is task utilization. As we are considering the
constrained deadline tasks, Di is randomly picked from the
range (Li � Di � Ti). The results are presented in Fig. 7a.
Note that when any parameter (e.g., number of nodes in a
DAG, task utilization) changes, savings in energy randomly
vary within a small range and we consider the minimum
value among them. The results indicate a proportional rela-
tionship between the average power consumption and aver-
age task utilization. It happens because a higher task
utilization imposes tighter real-time restrictions. It restricts
(refer to Fig. 2b) the space for the segment length optimiza-
tion. In this experiment, the number of nodes is fixed to 30.
Fig. 7a shows that SingleSpeed_Greedy approach performs
better for a higher utilization value. On average, the Single-
Speed_Greedy approach leads to a power saving of at least
30.23 and 60.2 percent compared to Fed_Guo and GSS_Zhu
approaches, respectively. In SingleSpeed_Greedy approach, a
task executes with a single speed throughout the deadline.
During the task partitioning step, a suitable partner (with
similar speed-profile) leads to energy efficiency. However,
for the other approaches task speed may vary throughout
the deadline. In that case, evil alignment and a significant
variation in the speed may reduce energy efficiency (see
Fig. 3 and Example 1).

Effect of Varying the Numbers of Nodes. Now we vary the
number of nodes (10 to 55) (Ti is fixed) and report the aver-
age power consumption. We report the average power con-
sumption for harmonic deadline tasks in Fig. 7b and
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arbitrary deadline tasks in Fig. 7c.We observe that the power
consumption pattern does not change that much, i.e., Single-
Speed_Greedy approach outperforms other approaches
especiallywhen the number of nodes (in each DAG) are high,
35 or higher. Specifically, under harmonic task periods, the
SingleSpeed_Greedy incurs 40.19 and 65.9 percent less power
on average compared to Fed_Guo and GSS_Zhu; under arbi-
trary task periods, the savings potential are 33.43 and 61.96
percent, respectively.

6.1.2 Implicit Deadline Task

Effect of Varying Task Periods (Utilization). Using previous
setup ( Section 6.1.1), We observe that the average energy

consumption is directly proportional to the average task
utilization.

Fig. 8a shows that SingleSpeed_Greedy approach performs
better for a higher utilization value and on average, saves at
least 35.21 and 62.52 percent compared to Fed_Guo and
GSS_Zhu approaches, respectively.

Effect of Varying the Numbers of Nodes. Figs. 8b and 8c report
the average power consumption for the harmonic and arbi-
trary deadline tasks, respectively.We observe that the Single-
Speed_Greedy approach outperforms other approaches
when the number of nodes (in each DAG) are high. Under
harmonic task periods, the SingleSpeed_Greedy incurs 44.84
and 67.55 percent less power on average compared to

Fig. 7. Power consumption comparison between different approaches for the constrained deadline tasks considering a continuous frequency scheme
on the uniform heterogeneous platform.

Fig. 8. Power consumption comparison between different approaches for the implicit deadline tasks considering a continuous frequency scheme on
the uniform heterogeneous platform.

Fig. 9. Power consumption comparison between different approaches for the constrained deadline tasks considering a discrete frequency scheme on
the uniform heterogeneous platform.
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Fed_Guo and GSS_Zhu; under arbitrary task periods, the
savings potential are 42.33 and 67.19 percent, respectively.

6.2 Uniform Heterogeneous Platform With
a Discrete Frequency Scheme

In this section, we report the power consumption com-
parison for the (previously mentioned) approaches con-
sidering the uniform heterogeneous platform and a
discrete frequency scheme. Under such a platform, we
discretize the frequency using the technique described in
Section 4.2.

6.2.1 Constrained Deadline Task

Here, we consider the constrained deadline tasks and report
their average power consumption by changing two parame-
ters: task period (or utilization) and the number of nodes.

Effect of Varying Task Periods (Utilization). Similar to the
Figs. 7a, and 8a, we observe that the (i) average energy con-
sumption is directly proportional to the average task utiliza-
tion. (ii) SingleSpeed_Greedy approach consumes less power
than other approaches (see Fig. 9a).

Effect of Varying the Numbers of Nodes. We vary the num-
ber of nodes (10 to 55) and report the average power con-
sumption for harmonic (arbitrary) deadline tasks in Fig. 9b
(Fig. 9c). Similar to the Figs. 7 and 8, we observe that the (i)
Performance of SingleSpeed_Random, SingleSpeed_Greedy,
MaxSpeed_Greedy, and MaxSpeed_Random does not vary that
much for a small number of nodes (typically 10 to 25) per
DAG. (ii) SingleSpeed_Greedy approach performs better (i.e.,
consume less power) than other approaches when the num-
ber of nodes per DAG is high.

6.2.2 Implicit Deadline Task

Now, we report the average power consumption using the
same setup as described in Section 6.2.1, i.e., (a) for a fixed
number of nodes (30) per task, change their utilization
value, and (b) vary the number of nodes (10 to 55) per task,
while keeping Ti fixed. We report the average power con-
sumption in Fig. 10. From this figure, we observe that the (i)
Performance of SingleSpeed_Random, SingleSpeed_Greedy,
MaxSpeed_Greedy, and MaxSpeed_Random does not vary that
much for a smaller task utilization or when the number of
nodes per DAG is small (typically 10 to 35). (ii) Single-
Speed_Greedy approach performs better (i.e., consume less

power) compared to the other approaches when the number
of nodes per DAG is high.

7 RELATED WORK

Muchwork has been done aimed at energy-efficient schedul-
ing of sequential tasks in a homogeneous multi-core plat-
form (see [11] for a survey). Considering the mixed-
criticality task model and varying-speed processors, the
works on [23], [35], [36], [37], [38] proposed an approach to
handle the energy minimization problem. The work in [27],
[39], [40], [41], [42], [43] presented an energy-efficient
approach for the heterogeneous platform. Considering the
real-time tasks in clustered heterogeneous platforms, the
work in [39] studied the partitioned EDF scheduling policy,
while [42] proposed an optimal task-coremapping technique
that is fully-migrative. Considering the heterogeneousmulti-
core platform, a two-phase algorithm was proposed by [27].
In the first phase, they proposed a tasks-core allocation
approach with the aim of reducing the dynamic energy con-
sumption, while the second phase seeks for a better sleep
state to reduce the leakage power consumption. A low over-
head, DVFS-cum-DPM enabled energy-aware approach,
HEALERS, was proposed by [43]. However, none of them
considered the intra-task parallelism. Considering a clus-
tered heterogeneous MPSoC platform, a migrative cluster
scheduling approachwas proposed by [15]. In this approach,
run-time migration (within different cores in the same clus-
ter) for a task is allowed to improve resource utilization. The
work in [44] studied the technique to utilize the parallelism
in a hard real-time streaming application (represented as a
Synchronous Data Flow (SDF) graph) in a clustered hetero-
geneous platform.

Till date, considering both the intra-task parallelization
and power minimization has received less attention. A
greedy slack stealing algorithm is proposed in [17] that deals
with task represented by graphs but did not consider the
periodic DAGs. Assuming per-core DVFS, [33] provided the
technique to combine DVFS and DPM. Considering the real-
time jobs (represented as aDAG) in cloud computing systems
and in a heterogeneous multi-core platform, the work in [45],
[46] studied a QoS-aware and energy-efficient scheduling
strategy. They proposed a scheduling policy that utilizes per-
core DVFS. With the aim of improving energy-efficiency in a
heterogeneous real-time platform, [47] proposed a combined

Fig. 10. Power consumption comparison between different approaches for the implicit deadline tasks considering a discrete frequency scheme on the
uniform heterogeneous platform.
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approach considering the approximate computation and bin
packing strategy. [48] investigated the energy awareness for
cores that are grouped into blocks, and each block shares the
same power supply scaled by DVFS. Benefits of (in terms of
power saving) intra-task parallelism is proven theoretically
in [1]. Considering the fork-join model, [49] reported an
empirical evaluation of the power savings in a real test-bed.
Based on level-packing, [50] proposed an energy efficient
algorithm for implicit deadline tasks with same arrival time
and deadline.

None of these works allows intra-task processor sharing
considering the sporadic DAG task model. The recent work
in [12], [18] is most related to ours. However, these works
are significantly different from ours w.r.t the task model,
platform, real-time constraints (deadlines), solution techni-
ques, and the evaluation. First, the work in [12] considered
a simplified model where only one DAG task executes at a
time, while the work in [18] extends this work by allowing
inter-task processor sharing. However, both of these works
assumed that the number of cores are unlimited. Second,
Both the works in [12], [18] assumed per-core speed scaling.
However, many of the existing platforms (e.g., ODROID
XU-3) do not support such speed scaling—speeds of pro-
cessors under the same cluster must execute at the same
speed. As the number of cores fabricated on a chip
increases, per-core speed scaling design is less likely to be
supported due to the inefficiency on hardware levels [13].
Third, Both of these works have studied only the implicit
deadline tasks and did not consider the constrained deadline
tasks. Hence, the non-negligible idle gaps between the task
deadline and its next release remain un-utilized. Finally, the
evaluations in [12], [18] were done based on simulations
without any implementation on a real platform.

8 CONCLUSION

In this paper, we have studied real-time scheduling of a set
of implicit and constrained deadline sporadic DAG tasks.
We schedule these tasks on the cluster-based multi-core
platforms with the goal of minimizing the CPU power con-
sumption. In a clustered multi-core platform, the cores
within the same cluster run at the same speed at any given
time. Such design better balances energy efficiency and
hardware cost and appears in many systems. However,
from the resource management point of view, this addi-
tional restriction leads to new challenges. By leveraging a
new concept, i.e., speed-profile, which models energy con-
sumption variations during run-time, we can conduct
scheduling and task-to-cluster partitioning while minimiz-
ing the expected overall long-term CPU energy consump-
tion. To our knowledge, this is the first work that has
investigated energy-efficient scheduling of DAGs on clus-
tered multi-core platform. Also, no work considered
energy-aware real-time scheduling of constrained deadline
DAG tasks.

We have implemented our result on an ODROID XU-3
board to demonstrate its feasibility and practicality. We
have also complemented our system experiments on a
larger scale through realistic simulations that demonstrate
an energy saving of up to 57 percent through our proposed
approach compared to existing methods. In this work, we

have restricted our attention mainly to the CPU power con-
sumption. In the future, we plan to consider other compo-
nents that may affect the total power consumption, e.g.,
cache misses, context switches, I/O usage, etc. We also plan
to study the effect of tasks sporadic release patterns (to the
overall power consumption) and propose a task reallocation
scheme.
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