
Vol:.(1234567890)

Real-Time Systems (2021) 57:268–301
https://doi.org/10.1007/s11241-021-09368-1

1 3

Mixed‑criticality real‑time scheduling of gang task systems

Ashikahmed Bhuiyan1  · Kecheng Yang2 · Samsil Arefin3 ·
Abusayeed Saifullah4 · Nan Guan5 · Zhishan Guo1

Accepted: 24 April 2021 / Published online: 23 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Mixed-criticality (MC) scheduling of sequential tasks (with no intra-task parallel-
ism) has been well-explored by the real-time systems community. However, till date,
there has been little progress on MC scheduling of parallel tasks. MC scheduling
of parallel tasks is highly challenging due to the requirement of various assurances
under different criticality levels. In this work, we address the MC scheduling of par-
allel tasks of gang model that allows workloads to execute on multiple cores simulta-
neously, as well as the change to degree of parallelism of a task upon a mode switch.
It represents an efficient mode-based parallel processing scheme with many poten-
tial applications. To schedule such task sets, we propose a new technique GEDF-
VD, which integrates Global Earliest Deadline First (GEDF) and Earliest Deadline
First with Virtual Deadline (EDF-VD). We prove the correctness of GEDF-VD and
provide a detailed quantitative evaluation in terms of speedup bound in both the MC
and the non-MC cases. Specifically, we show that GEDF provides a speedup bound
of 2 for non-MC gang tasks, while the speedup for GEDF-VD considering MC gang
tasks is

√

5 + 1 . Experiments on randomly generated gang task sets are conducted to
validate our theoretical findings and to demonstrate the effectiveness of the proposed
approach.

Keywords  Multi-core systems · Mixed criticality · Real-time scheduling · Speedup
bound

1  Introduction

Due to size, weight, and power considerations, there is a trend that multiple tasks
with different criticality levels (that are subject to varying degrees of assurance/veri-
fication) share a computing platform (Vestal 2007). This type of system is commonly

 *	 Zhishan Guo
	 zsguo@ucf.edu

Extended author information available on the last page of the article

http://orcid.org/0000-0002-4668-4247
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-021-09368-1&domain=pdf

269

1 3

Real-Time Systems (2021) 57:268–301	

known as a mixed-criticality (MC) system, where each task can be associated with
various execution budgets. During normal operation, all tasks are scheduled accord-
ing to their typical execution budget. However, some critical tasks may exceed their
typical budget and need more resources to finish their execution. Suppose the avail-
able resources are not sufficient in these scenarios. In that case, the less critical task
will be sacrificed to free up the resources for accommodating the additional compu-
tational requirements requested by the more critical ones.

Take an avionics software standard as an example, where the ground control sub-
systems are more safety-critical than ground communication and light controls. Dur-
ing the incident of emergency (e.g., an accident), it is more important to execute the
safety-critical components rather than the other components. On the other hand, in
normal condition, all these components are required to perform smoothly (for more
details, refer to the Table 1.1 of Li (2013), which demonstrates the RTCA DO-178B
avionics software standard). MC scheduling has received considerable attention
(refer to Burns and Davis (2013) for a thorough and updated survey) as it brings sig-
nificant improvements in resource efficiency.

Note that safety-critical MC systems have tight correctness requirements. These
requirements can be verified by two related but orthogonal perspectives: a priori
verification and run-time robustness (Baruah 2018). Before run-time, a priori verifi-
cation determines whether a system will behave correctly (or not) during execution,
while run-time robustness deals with unexpected system behavior at run-time. There
are some debates regarding MC’s applicability to run-time robustness (Ernst and Di
Natale 2016; Esper et al. 2015). Although an MC system has imitation from the per-
spective of a priori verification (which is our work scope), these criticisms usually
do not hinder the applicability of an MC system for its designed scope of a priori
verification (Baruah 2018).

Parallel computing workloads Recent advances in parallel computing allow
executing a single piece of code simultaneously on multiple computing units or a
set of threads to execute on multiple processors concurrently. Such design provides
a much better capability of exploiting the benefits provided by modern platforms.
As a result, there is an urgent need in handling workload models that allow intra-
task parallelism (i.e., parallel tasks). Parallel computing systems perform a large
number of computations and often need to interact with their surroundings under
real-time constraints, e.g., arms system (RADAR). In these types of applications, a
lot of processors co-operate with each other, and these communications are timing
critical. It is necessary for a system to have both high performance and predictabil-
ity; i.e., efficient control that minimizes the introduced overhead, while responding
to external events (coming through sensors) in real-time. In this work, we consider
the gang scheduling, where all threads of a task are grouped into a gang, and during
execution, the whole group is concurrently scheduled on distinct cores. The gang
task model is a practical, widely used, and representative workload model for intra-
task parallelism (Alahmad and Gopalakrishnan 2019; Dong and Liu 2017; Goossens
and Richard 2016; Kato and Ishikawa 2009). Also, the gang task model is supported
by some widely used parallel computing programming standards [e.g., openacc
(2017)], which is commonly used in graphics processing unit (GPU).

270	 Real-Time Systems (2021) 57:268–301

1 3

Existing work The real-time systems and parallel computing communities have
given considerable attention towards these two directions: MC scheduling and
scheduling of parallel tasks. These two emerging trends bring in some critical and
exciting problems, and there is an emerging need in integrating those two trends.
There has been extensive research on the (a) MC scheduling of sequential (i.e., non-
parallel) tasks (refer to the recent survey in Burns and Davis 2018, 2013) and (b)
scheduling of parallel tasks with a single-criticality level (Kato and Ishikawa 2009;
Goossens and Richard 2016; Dong and Liu 2017; Andersson and de Niz 2012;
Bonifaci et al. 2013; Li et al. 2014). Till date, very few efforts (Liu et al. 2014;
Baruah 2016; Li et al. 2017) have been made towards the combined problem of MC
scheduling of parallel tasks. To our knowledge, none of these efforts has considered
mixed-criticality gang task scheduling on multi-core platforms.

Motivation behind this work Multi-core platform enables applications that
require better energy efficiency, higher performance, and real-time guarantees.
The notion of MC systems with the intra-task parallelism stems from many current
trends. For example, the number of cores fabricated on a chip is increasing rapidly.
Besides, the computational demand for an individual task (with stringent timing
requirements) is rising, which makes it essential to consider the intra-task parallel-
ism. Furthermore, when safety-critical and non-safety-critical tasks share a common
computational platform, there is an increasing demand to integrate functionality
with different criticality levels. Such demand promotes the idea of MC scheduling,
i.e., combining various functionalities of varying criticality levels onto the same
computing platform.

In this work, we study the mixed-criticality gang task scheduling, and the fault-
tolerant systems would be a promising application for such study. A fault-tolerant
system often follows the mixed-criticality model (Burns and Davis 2013). If a fault
is identified in such a system, it is recovered via various recovery techniques, e.g.,
exception handling, recovery blocks, and task replication. Some extra work has to
be undertaken upon identifying a fault, which leads to the abandonment or delay of
some less critical works. The impact of a fault in such a system ranges from no vis-
ible effect to an entire system crash. To overcome these faults, the ASTEROID pro-
ject is proposed (a cross-layer fault-tolerance solution for the mixed-criticality plat-
form) that detects errors and recovers the system in different software and hardware
layers (Döbel et al. 2012; Engel and Döbel 2012). Considering such a cross-layer
platform, a recent work in Rambo and Ernst (2017) proposed a replica-aware co-
scheduling (with Strict Priority Preemptive protocols) for a mixed-criticality system
that improves the system performance. They have considered the replicas as a gang
that is activated concurrently on multiple cores.

Challenges In gang task model, a task cannot start execution until the number of
available cores is no less than what is required by it (i.e., a task’s degree of paral-
lelism). This simple constraint adds a huge restriction on real-time schedulability
and makes the problem highly challenging. We are aware of only one known correct
schedulability analysis (Dong and Liu 2017) under Global Earliest Deadline First
(GEDF) for gang tasks. Besides, integrating MC in gang scheduling scheme adds
additional challenges due to the dual notion of correctness. In the normal mode, a
task may have a utilization less than 1, while in the critical mode, the utilization

271

1 3

Real-Time Systems (2021) 57:268–301	

could be much higher than one Dong and Liu (2017). Such a change in the utiliza-
tion adds significant complexity in speedup bound analysis (Baruah et al. 2015a) .
For example, in the speedup bound analysis for MC scheduling of ordinary sporadic
tasks, an individual task’s utilization is at most the processor’s speed is a straight
forward and necessary feasibility condition. At the same time, it no longer holds for
the gang tasks. Besides, the scheduler does not know the exact behavior of each task
before run-time (non-clairvoyant). Hence, the scheduler must be able to detect the
critical condition early enough to allocate more resources to the more critical tasks
to handle this drastic change and still be able to meet the deadlines.

This research In this paper, we study the real-time scheduling of MC gang tasks
on identical multi-core platforms. We propose the first scheduling algorithm GEDF-
VD (GEDF with Virtual Deadline) for MC gang tasks. Our approach leverages the
synthesis of uniprocessor scheduling techniques such as EDF-VD (Baruah et al.
2012) as well as GEDF (Dong and Liu 2017) that was designed for non-MC gang
tasks. To our knowledge, this is the first work that studies the MC scheduling of the
gang task model. Specifically, we make the following contributions:

•	 We generalize the gang task model to the MC context by incorporating exten-
sions on both the execution time and the degree of parallelism dimensions , and
propose GEDF-VD for the generalized model. We also conduct a utilization
based schedulability test and prove its correctness formally.

•	 We prove that the speedup bound (Baruah et al. 2015a) for GEDF to gang tasks
in a non-MC platform is at most

(

2 − 1∕(M + 1 −mini{mi})
)

 , where M denotes
the total number of processor cores and mi denotes the degree of parallelism of
task �i . To our knowledge, this is the first speedup bound result for GEDF sched-
uling of gang tasks.

•	 With the result from the previous step, we then derive a speedup bound of
√

5 + 1 for GEDF-VD considering MC gang tasks.
•	 Extensive simulations under randomly generated task sets are conducted to dem-

onstrate the real-time performance and effectiveness of the proposed algorithm
in terms of acceptance ratio, which is defined as the ratio of the number of sched-
ulable task sets over the total number of task sets.

Organization The remainder of this paper is organized as follows. Section 2
describes the task model, notations, and preliminaries. Section 3 provides a detailed
description of our scheduling algorithm and prove its correctness. Section 4 derives
the speedup bounds for the non-MC and MC platform, under GEDF and GEDF-VD
scheduling algorithms, respectively. Simulation results are presented in Sect. 5. Sec-
tion 6 discusses related prior work. Section 7 concludes this paper and points out
future research directions.

272	 Real-Time Systems (2021) 57:268–301

1 3

2 � Dual‑criticality gang task model

In this work, we consider the problem of scheduling a task set � =
{

�1,… , �n
}

 of
n independent implicit deadline (i.e., the period of a task is equal to its deadline)
sporadic MC gang tasks on M identical cores. In this model, each task generates an
infinite number of MC gang jobs (the jth job of task �i is denoted as �i,j ). To describe
the dual-criticality gang task model, first, we provide details on traditional non-MC
gang task model and MC sporadic sequential task model. Then, by leveraging these
two models, we generalize the gang task model to the MC context. In this work, we
restrict our attention to dual-criticality model, and consider it is an important step
towards the multi-criticality systems.

Non-MC gang task model In traditional non-MC gang task model, each task �i
is represented with a 4-tuple (mi, ci, Ti,Di) , where mi is the degree of parallelism and
each job of task �i requires access to mi cores for at most ci time units to complete its
execution, Ti is the task period, and Di is the relative deadline. In gang scheduling,
each task is consists of multiple threads (referred to as a gang), and each thread of
the same task occupies a processor for the same time quantum (Kato and Ishikawa
2009; Dong and Liu 2017). Hence, in the time-space, the execution requirement of
any job �i,j ∈ �i can be represented as an mi × ci rectangle. The relative deadline Di
specifies that for each of the released jobs �i,j (of task �i ), its deadline di,j = ri,j + Di ,
where ri,j denotes the release time of �i,j (Dong and Liu 2017). The utilization ui
of each task �i ∈ � is given by ui = (mici)∕Ti , and the overall system utilization is:
Usum =

∑

�i∈�
ui . Note that, it is possible that the value of ui is larger than one, which

is different from the traditional sequential task model. Based on the scheduling flex-
ibility, a gang task �i can be categorized into three groups. A task �i is said to be:

–	 rigid, if mi is fixed a priori and does not change throughout the execution,
–	 moldable, if mi is fixed during its activation and does not change throughout the

execution,
–	 malleable, if mi is not fixed and can be changed during its execution by the sched-

uler.

We currently restrict our attention to the rigid task model. This model suits various
applications that use parallelism, some of which are implemented using the mes-
sage-passing approach and tools like MPI.

MC sporadic task model In a dual-criticality systems, the criticality level of �i is
represented by �i = { lo , hi } . The worst case execution time (WCET) estimations
of each task is also represented by a tuple (c lo

i
, c hi

i
) where c lo

i
 and c hi

i
 represent the

lo and hi-criticality WCETs respectively. c hi
i

 is measured by a more pessimistic tool
by considering all possible scenarios, while c lo

i
 is calculated using a less pessimistic

yet realistic tool. Collection of all lo- and hi-criticality tasks in � are denoted by � lo
and � hi respectively. u lo

i
 and u hi

i
 denotes the utilization of �i in lo- and hi-criticality

mode respectively, where u lo
i

= c lo
i
∕Ti and u hi

i
= c hi

i
∕Ti.

273

1 3

Real-Time Systems (2021) 57:268–301	

MC gang task model By leveraging the above two models, in our work, we con-
sider a workload model of MC gang tasks, where each task �i is represented by a
7-tuple (m lo

i
,m hi

i
,�i, c

lo
i
, c hi

i
, Ti,Di) , where

m lo
i
(m hi

i
) = degree of parallelism of task �i in lo(hi) criticality mode, and

m lo
i

≤ m hi
i

.
�i = criticality level of each task �i and �i ∈ { lo , hi }

c lo
i
(c hi

i
) = �′

i
 s WCET in lo(hi)-criticality mode, and c lo

i
≤ c hi

i
.

Ti = minimum inter-arrival time between jobs.
Di = relative deadline.

In this model, a task �i occupies m lo
i
(m hi

i
) processors for c lo

i
(c hi

i
) time quantum at

lo(hi)-criticality mode. Note that, if ∀�i,m lo
i

= m hi
i

= 1 , i.e., degree of parallelism
for each gang task is 1, our analysis (Sects. 3 and 4) will reduce to the existing MC
scheduling method designed for the sporadic task model. We believe this is common
for a restricted special case of a more complex and expressive model. For example,
the directed acyclic graph (DAG) task model (Bonifaci et al. 2013; Li et al. 2014)
is popular to represent intra-task parallelism. Many of the existing schedulability
analysis considering the DAG model would also reduce to prior study for ordinary
sporadic tasks if the number of nodes of each DAG task is equal to 1.

Now, we generalize the utilization concepts to suit the MC gang task model,
which are analogous to the above-mentioned concepts. Refer to the Example 1 for
details.

Example 1  Consider the task-set � = (�1, �2, �3) in Table 1. For this task-set we
derive the utilization as follows:

U
lo

lo
= c

lo

2
× m

lo

2
∕T2 = 0.6,U lo

hi
= c

lo

1
× m

lo

1
∕T1 + c

lo

3
× m

lo

3
∕T3 = 2, and U hi

hi

= c
hi

1
× m

hi

1
∕T1 + c

hi

3
× m

hi

3
∕T3 = 3.6.

Example 2  Consider the MC gang task set in Table 1 to be scheduled in four cores.
A GEDF schedule for this task set is shown in Fig. 1. The system starts at lo-crit-
icality mode, and all the tasks ( �1, �2, �3 ) will execute up-to C lo

i
 . Recall that, m lo

i
 is

the degree of parallelism of �i in lo-criticality mode. Hence, �1 cannot execute at
t = 5 as it needs three cores to execute while only two cores ( P3 and P4 ) are idle.
At a mode switch ( t = 9 ), all lo-criticality tasks ( �2 ) are dropped, and all hi-criti-
cality tasks ( �1, �3 ) will execute up-to C hi

i
(at m hi

i
 cores). After a mode switch, all

U lo
lo

def
=

∑

�i∈� lo

m lo
i

× c lo
i
∕Ti,

U lo
hi

def
=

∑

�i∈� hi

m lo
i

× c lo
i
∕Ti,

U hi
hi

def
=

∑

�i∈� hi

m hi
i

× c hi
i
∕Ti

274	 Real-Time Systems (2021) 57:268–301

1 3

hi-criticality jobs (including the ones which are currently executing) will execute
up-to their hi-criticality WCET.

Motivations behind this model Some commonly used parallel computing pro-
gramming standards [e.g., openacc (2017)] support the gang task model. OpenACC
is one of the parallel computing programming standards used for GPU architecture.
Recently, there has been extensive research on GPU architecture (few to mention
Capodieci et al. 2018; Elliott et al. 2013; Xiao and Feng 2010; Yang et al. 2018).
GPU architecture is popular because of the features like (1) highly threaded but low
context switch latency architecture, (2) high parallelism and (3) minimal depend-
ency between data elements, etc. Previous work on GPU scheduling considered lim-
ited or no preemption policy (Elliott et al. 2013; Xiao and Feng 2010). However, this
work is motivated by some recent attempts to incorporate the preemptive support
in GPUs. For example, a prototype has been implemented and tested with preemp-
tive support (at the pixel level and the thread level) in a virtualized environment in
a recent work (Capodieci et al. 2018). Its prototype is EDF based, and enhanced

P4

P3

P2

P1
0 4 8 12 16 202 6 10 14 18

C3
LO

C3
HI

C1
LO

C2
LO C1

HI

E NE E NE E

1's Ex/
Non-Ex
Interval

2 31

Mode Switch

1 is released here
but cannot execute

Job
Release

Fig. 1   A GEDF scheduling of the MC gang task-set from Table 1 and the executing (E)/non-executing
(NE) intervals of �

1

Table 1   An MC gang task set
with GEDF schedule shown in
Fig. 1

Task ID c
lo

i
c
hi

i
T
i

�
i m

lo

i
m

hi

i

�
1

3 4 5 hi 3 4
�
2

3 3 10 lo 2 2
�
3

1 2 10 hi 2 2

275

1 3

Real-Time Systems (2021) 57:268–301	

with a bandwidth isolation mechanism (e.g., constant/total bandwidth servers (Spuri
and Buttazzo 1994) for the graphics and computing workloads. Also, the prototype
is tested on a recent NVIDIA Tegra-based system on a chip (SoCs) (nvidia 2017).
Since some recent work study the preemptive support in the GPU architecture, there
is a need for a comprehensive study of gang task scheduling using GEDF.

Now, we introduce some definitions and preliminaries which will be frequently
used in later sections of this paper.

Definition 1  (MC-correct schedule) Scheduling strategy must ensure an MC-correct
schedule, as defined below (Li et al. 2017).

•	 If the system stays in normal condition (i.e., each task in the system finishes
execution within its lo-criticality WCET), all tasks must meet their dead-
lines.

•	 If the system transits into a critical condition (i.e., there exists a hi-criticality
task executing beyond its lo-criticality WCET), all hi-criticality tasks must
meet their deadlines, while lo-criticality tasks need not so.

Definition 2  (Executing/Non-Executing interval) An interval [t1, t2) (where t1 < t2 )
is an executing interval for a task �i if mi out of M cores are executing the current
active job released by �i throughout this interval. Otherwise, [t1, t2) is a non-execut-
ing interval for �i . An illustrative example is shown in Fig. 1 by pointing the execut-
ing and non-executing intervals for task �1.

Definition 3  (Active/pending task) If there exists a task �i ∈ � , such that it has a job
�i,j where ri,j ≤ t < di,j . Here, ri,j and di,j respectively denotes the release time and
deadline of �i,j , then �i is considered as an active task at time t. A job is pending if it
is released but not finished (Dong and Liu 2017).

Definition 4  Maximum possible number of idle cores � lo
i

 ( � hi
i

 ) for a task �i refers to
the maximum number of available cores (that are not executing any job) at any time
in lo (hi-criticality mode) during �i ’s non-executing intervals in which it has a pend-
ing job (Dong and Liu 2017).

Example 3  Let us consider a 4-core platform and task set � = {�1, �2, �3} from
Table 1. At lo-criticality mode, the degree of parallelism for these tasks are given
as: m lo

1
= 3 , m lo

2
= m lo

3
= 2 . For this task set, the maximum possible number of

idle cores at lo-criticality mode is: � lo
1

= 2, � lo
2

= � lo
3

= 1 . This is because �1 can-
not execute at time t (even when it has a pending job) if �2 or �3 is executing at t. The
degree of parallelism for �2 (or �3 ) is 2. So, the maximum number of idle cores for
�1 is �1, where �1 = 4 − 2 = 2 . We can calculate the value of �2 and �3 in the same
approach (refer to Algorithm 1 in Dong and Liu (2017)). At hi-criticality mode,
degree of parallelism for these tasks becomes: m hi

1
= 4 , m hi

2
= m hi

3
= 2 , and the

maximum possible number of idle cores will be: � hi
1

= 2, � hi
2

= � hi
3

= 0.

276	 Real-Time Systems (2021) 57:268–301

1 3

System behavior and scope of this work It is expected that an MC system
starts execution in normal mode. The system-wide mode transition is triggered
if a hi-criticality task �i has received cumulative execution length beyond its lo-
criticality WCET and did not signal its finishing. Like the Vestal model (Ves-
tal 2007), after a mode switch, no lo-criticality tasks get any service guaran-
tee. After mode transition (from lo-criticality to hi-criticality), at the first idle
instant, the system switches back to the lo-criticality mode again. All other sce-
narios (e.g., a hi-criticality task runs for more than its hi-criticality WCET) are
considered as erroneous, where no guarantees will be made and hence is not
considered.

3 � GEDF‑VD for dual‑criticality system

Now we describe our algorithm for the MC task systems considering the GEDF-
VD algorithm. In this work, we consider implicit deadline (So, we use the terms
deadline and period interchangeably) sporadic task systems on identical multi-
core platforms. We integrate an uniprocessor MC scheduling technique [EDF-
VD (Baruah et al. 2012)] with a multiprocessor gang task scheduling technique
[GEDF (Dong and Liu 2017)] and derive a new algorithm named GEDF-VD
(Sects. 3.1 and 3.2). In our approach, we determine a scaling factor, which scales
the deadline of all hi-criticality tasks at lo-criticality mode. This factor will be
calculated in such a way that the correctness of the system can be guaranteed at
both lo- and hi-criticality modes (Sects. 3.3 and 3.4).

3.1 � EDF‑VD and GEDF‑VD: an overview

EDF-VD In case of a mode switch (lo to hi), to generate an MC-correct schedule
(Definition 1), a scheduler must ensure that all hi-criticality tasks meet their dead-
lines (while lo-criticality tasks can be sacrificed). To guarantee this criterion, a
specific amount of CPU time must be reserved for those hi-criticality tasks even
if the system is running at lo-criticality mode. This reservation of time can be
achieved by shortening the deadlines of hi-criticality tasks under normal mode—
those are virtual deadlines.

In EDF-VD, deadlines of all hi-criticality tasks are shortened by multiplying
them with a scaling factor, and this updated deadline is called the virtual dead-
line. During run-time (at lo-criticality mode), all hi-criticality (lo-criticality)
tasks are executed according to their virtual (actual) deadline, according to the
EDF order. Upon a mode switch, only the hi-criticality tasks are executed in the
EDF order w.r.t their actual/original deadlines.

In the case of a lo- to hi-criticality mode-switch, a hi-criticality task demands
additional computational requirements. Setting a virtual deadline for the hi-crit-
icality tasks leaves enough time to finish the extra workload within their actual
deadlines. If the virtual deadline is too short, it increases the system density at

277

1 3

Real-Time Systems (2021) 57:268–301	

normal (i.e., lo-criticality) mode. In contrast, a large virtual deadline threatens
the schedulability of the system after a lo- to hi-criticality mode switch. The trick
is to determine a balanced scaling factor x, such that the correctness under both
execution modes can be guaranteed. Baruah et al. (2012) showed the steps to cal-
culate the minimum x that guarantees the schedulability of all tasks in the system.
They also proved the improvement in system schedulability by reducing the dead-
line for hi-criticality tasks at lo-criticality mode.

Remark 1  In this work, we consider a completely different Gang task workload
model in a multi-core platform. As a result, the approach proposed by Baruah et al.
(2012) to calculate the scaling factor x, as well as the schedulability test, are no
longer applicable for our case. We propose a novel approach to calculate a feasible
scaling factor x in this section.

GEDF-VD Now, we provide an overview of our algorithm (GEDF-VD) consid-
ering an implicit-deadline sporadic MC gang task system � to be scheduled on M
identical cores. The GEDF-VD algorithm starts by checking whether GEDF can
successfully schedule the regular task system. A regular task system denotes that,
all lo-criticality tasks will execute up-to their lo-criticality WCET and all hi-criti-
cality tasks will execute up-to their hi-criticality WCET. It returns SUCCESS imme-
diately if the regular task system is schedulable. Otherwise, all hi-criticality tasks
can execute up-to their lo-criticality WCETs and their deadline is shortened (i.e.,
virtual deadline) and set to T̂i = xTi , while all lo-criticality tasks execute up-to their
lo-criticality WCETs with their original deadline. If any of the currently executing
job (of a hi-criticality task) executed beyond its lo-criticality WCET and did not
signal its completion by T̂i , the scheduler immediately discards all currently active
lo-criticality jobs. Also, the deadline for all hi-criticality jobs is changed to their
release time plus their actual deadline. Section 3.2 provides a detailed description of
GEDF-VD algorithm.

278	 Real-Time Systems (2021) 57:268–301

1 3

3.2 � GEDF‑VD: a detailed description

In this subsection, we describe the GEDF-VD scheduling approach in a two-
phase process. First, we describe what happens prior to run-time (denoted as a
pre-processing phase). In this phase, GEDF-VD determines whether (or not) it is
required to set a virtual deadline for the hi-criticality tasks. A lower and an upper
bound of the virtual deadline is also calculated in this phase. Then, we discuss
how the jobs are scheduled at run-time (denoted as handling the dispatched jobs
at run-time). We present the pseudo-code for (the run-time part of) GEDF-VD in
Algorithm 1.

Pre-processing phase In this phase, we perform a schedulability test for ordi-
nary (non-MC) GEDF to determine whether (or not) it can successfully schedule:
(i) all �i ∈ � lo up-to their lo-criticality WCET ( c lo

i
 ), and (ii) all �i ∈ � hi up-to their

hi-criticality WCET ( c hi
i

 ). If the GEDF test fails, then, for each HI-criticality task
�i ∈ � hi , a virtual deadline T̂i is computed (Step-2), and they execute up-to their
lo-criticality WCET ( c lo

i
 ).

Step 1	� We start by checking whether the task-set can be successfully scheduled by
GEDF. If so, then GEDF directly schedules the system. Else, we modify
the task deadlines (Step 2).

Step 2	� An additional virtual deadline parameter T̂i is calculated for each hi-crit-
icality task �i , where T̂i = xTi . A schedulability test for GEDF-VD is pro-
vided next. Furthermore, when the schedulability test is passed, x can be
arbitrarily chosen from the range [A, B] while GEDF-VD is guaranteed to
generate an MC-correct schedule, where A and B are defined and can be
easily calculated for any given system by the following equations:

(1)A =max{A1,A2};

279

1 3

Real-Time Systems (2021) 57:268–301	

A schedulability test for GEDF-VD The following theorem provides a sufficient
schedulability test for GEDF-VD.

Theorem 1  An MC gang task system is schedulable under GEDF-VD upon M iden-
tical unit-speed processors if both conditions hold:

We will prove this theorem later by proving Lemmas 1 and 2 in Sects. 3.3 and
3.4.

Recall that, 𝛥 lo
i

< M and 𝛥 hi
i

< M for all i. Therefore, m
i
U

lo

hi
+ u

lo

i
(M−

𝛥 lo

i
− m

lo

i
) = m

lo

i
(U lo

hi
− u

lo

i
) + u

lo

i
(M − 𝛥 lo

i
) > 0 , which with (5) together implies

A > 0 ; and also m
hi
i
U

hi
hi

+ u
hi
i
(M − � hi

i
− m

hi
i
) = m

hi
i
(U hi

hi
− u

hi
i
) + u

hi
i
(M−

𝛥 hi

i
) > 0 , which implies B < 1 . Thus, both (5) and (6) being true implies that

0 < A ≤ B < 1 , which guarantees that any x chosen from [A, B] must be a valid scal-
ing factor such that 0 < x < 1.

Run-time dispatch Similar to GEDF, at any specific time instant, a task with the
earliest deadline gets the highest priority. In case of ties, task with a smaller index
is favored. Let a binary variable � indicate the system-criticality level, then consider
the following two possible cases:

Case 1 System is in the lo-criticality mode ( � = 0 ), jth job of task �i arrives at
time t:

(i) If �i is a lo-criticality task, set the deadline as di,j = t + Ti , else set di,j = t + T̂i ,
where T̂i = xTi.

(ii) If any of the currently executing jobs executes for more than c lo
i

 and does not
signal completion, then the system switches to the hi-criticality mode (Case 2).

(2)A1 = max
i∶�i∈� lo

{

U lo
hi

M − � lo
i

− U lo
lo

}

;

(3)A2 = max
i∶�i∈�

{

m lo
i
U lo

hi
+ u lo

i
(M − � lo

i
− m lo

i
)

m lo
i
(M − � lo

i
− U lo

lo
)

}

;

(4)B = min
i∶�i∈� hi

{

1 −
m hi

i
U hi

hi
+ u hi

i
(M − � hi

i
− m hi

i
)

m hi
i

× (M − � hi
i
)

}

.

(5)U lo
lo

< M −max
i
{𝛥 lo

i
},

(6)A ≤ B.

280	 Real-Time Systems (2021) 57:268–301

1 3

Case 2 While the system is in the hi-criticality mode ( � = 1):
(i) Discard all lo-criticality tasks (or use background scheduling).
(ii) Update the deadline for the currently active hi-criticality jobs into release time

(of these jobs) plus their actual relative deadline.
(iii) For any future hi-criticality task �i that releases a job at time t, the deadline is

set to t + Ti.
(iv) When there is an idle instant, switch to the lo-criticality mode (Case 1)1.

3.3 � Proof of correctness in the lo‑criticality mode

In this subsection, we show that GEDF-VD and its schedulability test given by The-
orem 1 are able to guarantee MC correctness at lo-criticality mode.

Lemma 1  If both (5) and (6) are true, GEDF-VD guarantees that all lo-criticality
tasks meet their deadlines and all hi-criticality tasks meet their virtual deadlines
during lo-criticality mode.

Proof  Dong and Liu (2017) have proved that, given any real-time implicit deadline
sporadic gang task system � , GEDF can schedule it successfully if

holds for all �i ∈ � (refer to Theorem 2). The virtual deadline increases the utiliza-
tion of these hi-criticality tasks (and hence the whole system). Note that, in the lo-
criticality mode, each hi-criticality task is scheduled by its virtual relative deadline
xTi while each lo-criticality task is scheduled by its actual deadline Ti . Therefore,
it is sufficient to view each lo-criticality task as a sporadic task with utilization u lo

i

and view each hi-criticality task as a sporadic task with utilization u lo
i
∕x , in order

to meet every lo-criticality deadline and every hi-criticality virtual deadline in lo-
criticality mode. Then, for every i such that �i ∈ � , we discuss the two cases for
M − � lo

i
− m lo

i
 . Therefore, it suffice to evaluate (7) under such utilizations for every

task �i . We show this by two cases: (1) �i ∈ � hi , and (2) �i ∈ � lo.
Case 1 �i ∈ � hi . In this case, using (7) as a result from Dong and Liu (2017), we

just need the following inequality to hold for any �i ∈ � hi.

(7)
Usum ≤(M − �i) × (1 −

ui

mi

) + ui

⟺ Usum ≤M − �i + ui(1 −
M − �i

mi

)

1  Note that hi-criticality mode exists for certification purposes. Such both directions of mode switch
should be unlikely events during run time. Please also refer to the discussions about apriori verification
and run-time robustness in Sect. 1.

281

1 3

Real-Time Systems (2021) 57:268–301	

Notice that (5) implies

and (6) allows x ∈ [A,B] can be chosen so that x ≥ A , which, by (1) and (3), implies

It is clear that (9) and (10) imply (8).
Case 2 �i ∈ � lo . In this case, using (7) as a result from Dong and Liu (2017), we

just need the following condition to hold for any �i ∈ � lo.

Subcase 2.1 M − � lo
i

− m lo
i

≤ 0 . In this case, M − � lo
i

≤ m lo
i

⟹ 1 −
M−� lo

i

m lo
i

≥ 0 .
Therefore, the following inequality implies (11):

Notice that (5) implies

and (6) allows x ∈ [A,B] can be chosen so that x ≥ A , which, by (1) and (2), implies

It is clear that (13) and (14) imply (12)
Subcase 2.2 M − 𝛥 lo

i
− m lo

i
> 0 . In this case,

M − 𝛥 lo
i

> m lo
i

⟹ 1 −
M−𝛥 lo

i

m lo
i

< 0 . So, u lo
i

x
(1 −

M−𝛥 lo
i

m lo
i

) < u lo
i
(1 −

M−𝛥 lo
i

m lo
i

) , as
0 < x < 1 . Therefore, the following inequality implies (11).

(8)

U lo
lo

+
U lo

hi

x
≤ M − � lo

i
+

u lo
i

x

(

1 −
M − � lo

i

m lo
i

)

⟺

U lo
hi

x
+

u lo
i

x

(

M − � lo
i

m lo
i

− 1

)

≤ M − � lo
i

− U lo
lo

⟺

m lo
i
U lo

hi
+ u lo

i
(M − � lo

i
− m lo

i
)

m lo
i

⋅ x
≤ M − � lo

i
− U lo

lo

(9)M − 𝛥 lo
i

− U lo
lo

> 0for allisuch that𝜏i ∈ 𝜏,

(10)x ≥
m lo

i
U lo

hi
+ u lo

i
(M − � lo

i
− m lo

i
)

m lo
i
(M − � lo

i
− U lo

lo
)

for all i such that �i ∈ �.

(11)U lo
lo

+
U lo

hi

x
≤ M − � lo

i
+ u lo

i
(1 −

M − � lo
i

m lo
i

)

(12)U lo
lo

+
U lo

hi

x
≤ M − � lo

i
.

(13)M − 𝛥 lo
i

− U lo
lo

> 0 for all isuch that𝜏i ∈ 𝜏,

(14)x ≥
U lo

hi

M − � lo
i

− U lo
lo

for all i such that �i ∈ � lo .

282	 Real-Time Systems (2021) 57:268–301

1 3

By the same reasoning as that for Case 1, (15) always holds because (9) and (10) are
“for any �i ∈ � ” and both hi- and lo-criticality tasks are included in the set � . That
is, (11) is also true in Case 2.2 here.

Combining Cases 1 and 2 (the latter includes Sub-cases 2.1 and 2.2), the lemma
follows. 	� ◻

3.4 � Proof of correctness in the hi‑criticality mode

In this subsection, we show that GEDF-VD and its schedulability test given by The-
orem 1 are able to guarantee MC correctness at hi-criticality mode.

Lemma 2  If both (5) and (6) are true, GEDF-VD guarantees that all hi-criticality
tasks meet their deadlines during hi-criticality mode.

Proof  At the mode switch point from the lo- to hi-criticality mode, a job from any
task �i ∈ � hi must be either completed or has a deadline at least (1 − x)Ti after this
mode-switch point; otherwise, an earlier time instant would have been the mode
switch point.

Afterwards, any job from any task �i ∈ � hi has at least Ti time units (which is
more than (1 − x)Ti as 0 < x < 1 ) from their releases in the hi-criticality mode to
their corresponding deadlines.

Therefore, viewing each task �i ∈ � hi in the hi-criticality mode as a sporadic task
with utilization u hi

i

(1−x)
 and using (7) as a result from Dong and Liu (2017), the follow-

ing inequality is sufficient to ensure that all hi-criticality tasks meet their actual
deadlines during hi-criticality mode. For all i such that �i ∈ � hi,

 Notice that (6) allows x ∈ [A,B] can be chosen so that x ≤ B , which, by (4), implies
the following equation holds for all i such that �i ∈ � hi:

(15)U lo
lo

+
U lo

hi

x
≤ M − � lo

i
+

u lo
i

x
(1 −

M − � lo
i

m lo
i

)

(16)m hi
i

×
U hi

hi

(1 − x)
≤ m hi

i
× (M − � hi

i
) −

u hi
i

1 − x
× (M − � hi

i
− m hi

i
)

Fig. 2   Any value of the scaling
factor x, where A ≤ x ≤ B , guar-
antees an MC-correct schedule

0 1B

System schedulable at
LO-criticality mode

A

System schedulable at HI-criticality mode

System schedulable at both
LO- and HI-criticality mode

283

1 3

Real-Time Systems (2021) 57:268–301	

Furthermore, Equation (17) is equivalent to Equation (16), as
0 < x < 1 and 𝛥 hi

i
< M . Thus, the lemma follows. 	� ◻

Finishing up We establish Theorem 1 by combining Lemma 1 and 2, and it
serves as a sufficient schedulability test for GEDF-VD to schedule MC gang task
sets on M identical processors. In addition, Fig. 2 gives a high-level intuition for
validating Theorem 1, given that Lemma 1 and 2 have been proven. Note that we
did leverage some insights (in our analysis) from prior works on MC scheduling and
gang scheduling. However, considering both of these directions brought increased
complexity in our system model. The existing analysis of MC scheduling or gang
scheduling is not directly applicable to our work. For example, in the speedup bound
analysis for MC scheduling of ordinary sporadic tasks, an individual task’s utiliza-
tion is at most the speed of a processor is a straightforward and necessary feasibility
condition, while it no longer holds for the gang tasks.

Remark 2  If we consider that the degree of parallelism of a task �i remains
unchanged even after a mode-switch, i.e., m lo

i
= m hi

i
= mi , then the correctness

proofs become identical to the correctness proofs established in Bhuiyan et al.
(2019b).

4 � Speedup bound analysis

In this section, we evaluate the effectiveness of our algorithm GEDF-VD based on
speedup bound metric, which is a widely accepted tool for evaluating the effective-
ness of multiprocessor scheduling algorithms (Baruah et al. 2015a). We will first
provide the related definition and some existing results, and then (in Sect. 4.1) will
derive the speedup bound for gang tasks under GEDF algorithm considering the
non-MC systems. This is the first speedup bound for (non-MC) gang tasks under
GEDF scheduling policy, which lays the foundation for deriving a speedup bound
for MC gang tasks. Finally, in Sect. 4.2, considering the MC sporadic gang tasks,
we prove a speedup bound for our proposed algorithm GEDF-VD. We derive the
speedup bound for non-MC gang tasks (Sect. 4.1) and the MC gang tasks (Sect. 4.2)
assuming that the degree of parallelism of a task �i does not change after a mode-
switch, i.e., m lo

i
= m hi

i
= mi.

Definition 5  (Speedup factor and speedup bound) For a scheduler S , a speedup fac-
tor V ( V ≥ 1 ) (also known as resource augmentation factor) means that any task set
that is schedulable by an optimal scheduler on a platform of speed-1 cores will be
schedulable by S on a platform of speed−V cores.

(17)x ≤ 1 −
m hi

i
U hi

hi
+ u hi

i
(M − � hi

i
− m hi

i
)

m hi
i

× (M − � hi
i
)

284	 Real-Time Systems (2021) 57:268–301

1 3

For a scheduler S , a speedup bound refers to the lower bound of the speedup fac-
tor V achievable by it. A speedup bound for a scheduler S provides an estimation of
how far the performance of S is from an optimal scheduler, and the lower the better.

Limitations Our speedup factors result in this section rely on the following
assumption that

The speedup factors results in this section apply only to systems that satisfy the
condition (18). Nonetheless, condition (18) was not required for the schedulability
test and analysis in the last section. Therefore those schedulability results apply to a
broader range of MC gang task systems. In practice, condition (18) is often satisfied
because of the number of cores in modern platforms increases.

Note that gang tasks cannot be scheduled on uniprocessor platforms due to their
natures of the mandatory parallel processor access request. Therefore, in order to
compare with a potential optimal scheduler on a uniprocessor, we propose a De-
ganging transformation between a multiprocessor gang task set and a corresponding
Liu-and-Layland (LL) task set:

–	 De-ganging Given a gang task set � = {�1,..., �n} , for each task �i = {mi, ci, Ti} ,
construct mi LL tasks {�

�(1)

i
,..., �

�(mi)

i
} , each with the same execution length and

period, i.e., �
�(j)

i
= {ci, Ti} for any j = 1,...,mi . For mapping of the other way

around, any deganged LL task set can be clustered into n groups, where there
are mi tasks from the ith group sharing the same execution time ci and the same
period Ti , resulting in a gang task �i = {mi, ci, Ti} of the same “total” utilization.
The extension to MC task set is trivial—treat ci as a vector and maintain the val-
ues during the transfer.

A moment thought should convince the reader that it suffices to restrict our attention
to the de-ganged LL task set when deriving the speedup bound, as the de-ganged
LL task set being schedulable is necessary for the corresponding gang task set to be
schedulable. This transformation does not change the overall set utilization and thus
does not change the utilization-based necessary schedulability conditions (i.e., basis
of the speedup proofs). Throughout the proofs in this section, the following Greek
letters will be used frequently:

(18)mi ≤
M + 1

2
for all �i ∈ �,

(19)

� =M∕
�

2 −
1

M

�

;

� =

√

5 + 1

2
(i.e., golden ratio);

� =

√

5 − 1

2

285

1 3

Real-Time Systems (2021) 57:268–301	

4.1 � Speedup bound for gang tasks under GEDF

In this subsection, we derive the speedup bound (shown in Theorem 2) for the algo-
rithm GEDF, considering the non-MC gang task set � , executing on V-speed cores.
This is the first speedup bound result for gang task under GEDF scheduling. This
analysis lays the basis for deriving the speedup bound for the proposed MC gang
task scheduler.

Theorem 2  Given any de-ganged task set that is schedulable on a speed-M uni-pro-
cessor, the corresponding gang task set will pass the schedulabililty test of GEDF
upon a M-core system, each of speed V = 2 − 1∕(M + 1 −mini{mi}).

Proof  Because 1 ≤ mi ≤ M for any i, we know that for all �i ∈ �,

From feasibility of the LL task set on a speed-M uniprocessor, we have Usum ≤ M .
So,

The condition 2mi −M − 1 ≤ 0 is equivalent to (18); while ui ≤ mi is true for any
gang task because the utilization of each gang task �i is ui = mi(ci∕Ti) , where ci ≤ Ti .
Note that ui can also be viewed as the total utilization of the mi de-ganged LL tasks
that correspond to the gang task �i . Again, de-ganging preserves the utilization of
the set. From Eq. (21):

(20)

V =2 −
1

M + 1 −mini{mi}

≥2 −
1

M + 1 − mi

=
2M + 1 − 2mi

M + 1 − mi

;

(21)

(20) ⟹ V ≥
Usum +M + 1 − 2mi

M + 1 − mi

⟺
Usum

V
≤M − (mi − 1) +

(2mi −M − 1)

V

⟺ mi

Usum

V
≤miM − mi(mi − 1) +

mi

V
(2mi −M − 1)

⟹ mi

Usum

V
≤miM − mi(mi − 1) +

ui

V
(2mi −M − 1)

[ui ≤ mi, 2mi −M − 1 ≤ 0]

286	 Real-Time Systems (2021) 57:268–301

1 3

[From Definition 4: 0 ≤ �i ≤ mi − 1]

The equation above implies that the corresponding gang set is GEDF schedulable on
M speed-V processors (Theorem 2 in Dong and Liu (2017)). Note that the last step
is true because under speed of V , all utilizations in the test should be treated as the
ones under speed 1 divided by V , in order to apply the original schedulability test
under a speed-1 platform. 	� ◻

Theorem 2 indicates that the speedup factor of the GEDF schedulability test
in Theorem 2 of Dong and Liu (2017) (for gang task set) is no greater than
V = 2 − 1∕(M + 1 −mini{mi}) . Because 1 ≤ mi ≤ M for any i, V ≤ 2 −

1

M
 . There-

fore, the following corollary follows directly from Theorem 2.

Corollary 1  Given any de-ganged task set that is schedulable on a speed-M uni-pro-
cessor, the corresponding gang task set will pass the schedulability test of GEDF
upon a M-core system, each of speed (2 − 1

M
).

Furthermore, scaling all speeds by a factor of 1∕(2 − 1

M
) lead to the following

corollary.

Corollary 2  Given any de-ganged task set that is schedulable on a speed-� uni-pro-
cessor, the corresponding gang task set will pass the schedulability test of GEDF
upon M unit-speed processors, where � = M∕(2 −

1

M
).

4.2 � Speedup bound for gang tasks under GEDF‑VD

The previous subsection proved the speedup bound for non-MC task under GEDF.
We now brings MC and virtual deadlines into the picture, and derive the speedup

mi

Usum

V
≤ miM − (mi − 1)mi + (mi − 1)

ui

V
+

ui

V
(mi −M)

⟹ mi

Usum

V
≤ miM − (mi − 1)

(

mi −
ui

V

)

−
ui

V
(M − mi)

⟹ mi

Usum

V
≤ miM − �i

(

mi −
ui

V

)

−
ui

V
(M − mi)

(22)

=mi(M − �i) − (M − �i − mi)
ui

V
[re-arrange]

=(M − �i)
(

mi −
ui

V

)

+ mi

ui

V
[re-arrange]

⟹
Usum

V
≤(M − �i)

(

1 −
ui

miV

)

+
ui

V

[dividemion both sides, re-arrange], for all i

287

1 3

Real-Time Systems (2021) 57:268–301	

bound for MC gang task set � under GEDF-VD. From the definitions of � and �
in Equation (19), the following properties hold:

Theorem 3  Given any de-ganged MC task set that is schedulable on a speed-(� ⋅�)
uniprocessor, the corresponding MC gang task set will be schedulable under GEDF-
VD upon M unit-speed processors, where � = M∕(2 −

1

M
) and � =

√

5−1

2
.

Proof  The de-ganged MC task set being schedulable on a speed-(� ⋅�) uni-proces-
sor implies

We proceed the rest of this proof in two cases.
Case 1: U lo

hi
≥ � ⋅ U lo

lo
 . By (25) and the condition of Case 1,

Then, by the above and (25),

Thus, no virtual deadline needs to be set at all. Both hi- and lo-criticality tasks are
scheduled by GEDF according to their actual deadlines on M unit-speed processors.
By Corollary 2, no deadline will be missed.

Case 2: U lo
hi

< 𝛷 ⋅ U lo
lo

 . By (25) and the condition of Case 2,

That is,

Then, we have

(23)1 +� = � =
1

�

(24)� +�2 = 1

(25)max{U lo
lo

+ U lo
hi
,U hi

hi
} ≤ � ⋅�.

� ⋅� ≥ U lo
lo

+ U lo
hi

≥ (1 +�)U lo
lo

⟹ U lo
lo

≤
�

1 +�
⋅ � = �2

⋅ � . [by (23)]

U lo
lo

+ U hi
hi

≤ �2
⋅ � +� ⋅ � = � . [by (24)]

𝜓 ⋅𝛷 ≥ U lo
lo

+ U lo
hi

> (
1

𝛷
+ 1)U lo

hi

=
1 +𝛷

𝛷
⋅ U lo

hi
=

1

𝛷2
⋅ U lo

hi
. [by (23)]

(26)U lo
hi

< 𝛷3
⋅ 𝜓 .

288	 Real-Time Systems (2021) 57:268–301

1 3

which is concluded as

In this case, one could take x = U lo
hi

�−U lo
lo

 as the scaling factor to set the virtual dead-
lines for hi-criticality tasks. Because the de-ganged task set is schedulable on a
speed-(� ⋅� ) uniprocessor, U lo

lo
≤ � ⋅� , which implies x > 0 , as 𝛷 < 1 , 𝜓 > 0 ,

and U lo
hi

> 0 . On the other hand, U lo
hi

< 𝛷 ⋅ U lo
lo

 in Case 2, so

Thus, in this case, 0 < x < 1 is guaranteed under this particular setting and there-
fore this x can always be used as the scaling factor to set the virtual deadlines for
GEDF-VD.

Then, we first show that all lo-criticality tasks meet their actual deadlines and all
hi-criticality tasks meet their virtual deadlines during the lo-criticality mode.

By Corollary 2, the above equation implies that using GEDF-VD to schedule the
gang task set on M unit-speed processors, all lo-tasks meet their actual deadlines
and all hi-tasks meet their virtual deadlines during the lo-mode. Next, we show that
all hi-criticality tasks, including any carryover (hi-) jobs across the mode-switch
point, meet their actual deadlines during the hi-criticality mode.

Because the virtual deadlines are set as x ⋅ Ti for each hi-criticality task �i , every
hi-criticality job including the one triggering the mode switch will have at least
(1 − x)Ti time units to finish its at most C hi

i
 execution and to release its next job.

It suffices to consider the schedulability when replacing each hi-criticality task in

U lo
lo

+
U lo

hi

1 − U hi
hi
∕𝜓

= U lo
lo

+ U lo
hi

+ U lo
hi

⋅

U hi
hi
∕𝜓

1 − U hi
hi
∕𝜓

≤ U lo
lo

+ U lo
hi

+ U lo
hi

⋅

𝛷

1 −𝛷

[U hi
hi

≤ 𝜓 ⋅𝛷 by (25)]

= U lo
lo

+ U lo
hi

+ U lo
hi

⋅

𝛷

𝛷2
[by (24)]

< 𝜓 ⋅𝛷 +𝛷3
⋅ 𝜓 ⋅

𝛷

𝛷2
[by (25) and (26)]

= (𝛷 +𝛷2)𝜓 [rearrange] = 𝜓 , [by (24)]

(27)U lo
lo

+
U lo

hi

1 − U hi
hi
∕𝜓

< 𝜓 .

x =
U lo

hi

𝜓 − U lo
lo

<
𝛷 ⋅ U lo

lo

𝜓 − U lo
lo

≤
𝛷 ⋅ 𝜓 ⋅𝛷

𝜓 − 𝜓 ⋅𝛷
=

𝛷2

1 −𝛷
= 1. [by (24)]

U lo
lo

+
U lo

hi

x
= U lo

lo
+ � − U lo

lo
= � .

289

1 3

Real-Time Systems (2021) 57:268–301	

the hi-criticality mode by a implicit-deadline sporadic task with period (1 − x)Ti and
execution C hi

i
 . It can be done by checking their total utilization

On the other hand, by (27), we have

and 1 − x > U hi
hi
∕𝜓 holds since we set x = U lo

hi

�−U lo
lo

 . Thus,

By Corollary 2, the above equation implies that using GEDF-VD to schedule the
gang task set on M unit-speed processors, all hi-criticality tasks, including any car-
ryover (hi-) jobs across the mode-switch point, meet their actual deadlines during
the hi-criticality mode. 	� ◻

Finally, we can easily use Theorem 3 to derive a speedup bound for GEDF-VD
to schedule MC gang task sets on identical processors, as stated in the following
theorem.

Theorem 4  If any potentially optimal algorithm can schedule an MC gang task set
on M unit-speed processors, GEDF-VD is able to schedule the same MC gang task
set on M speed-(

√

5 + 1) processors.

Proof  Theorem 3 directly implies that:

If any potentially optimal algorithm can schedule an MC gang task set on M
speed-(� ⋅�∕M) processors, GEDF-VD is able to schedule the same MC gang
task set on M unit-speed processors.

This is because for a MC gang task set to be schedulable on M speed-(� ⋅�∕M) pro-
cessors, it is necessary for its corresponding de-ganged MC task set to schedulable
on a speed-(� ⋅�) uniprocessor. Note that, by definitions: � =

M

2−
1

M

 and � =
√

5−1

2
 ,

the following statement is true:

If any potentially optimal algorithm can schedule a MC gang task set on M
speed-

�

1

2−
1

M

⋅

√

5−1

2

�

 processors, GEDF-VD is able to schedule the same MC

gang task set on M unit-speed processors.

Scaling the speed unit up by
�

2 −
1

M

�√

5+1

2
 (please note that

√

5−1

2
⋅

√

5+1

2
= 1 ), the

above statement can be re-written as:

∑

�i∈� hi

C hi
i

(1 − x)Ti
=

U hi
hi

1 − x
.

U lo
hi

𝜓 − U lo
lo

< 1 − U hi
hi
∕𝜓 ,

U hi
hi

1 − x
<

U hi
hi

U hi
hi
∕𝜓

= 𝜓 .

290	 Real-Time Systems (2021) 57:268–301

1 3

If any potentially optimal algorithm can schedule a MC gang task set on M
unit-speed processors, GEDF-VD is able to schedule the same MC gang task
set on M speed-

�

2 −
1

M

�√

5+1

2
 processors.

Since
�

2 −
1

M

�√

5+1

2
<
√

5 + 1 , the theorem follows. 	� ◻

5 � Evaluation

In this section, we evaluate the performance of GEDF-VD through simulation
results. While the simulation results provide some representation of the proposed
scheduling’s performance, they may not represent the exact behavior of our pro-
posed approach in real systems for several reasons. For example, memory plays
a vital role from an implementation point of view and needs to be available and
allocated to parallel threads. Although a recent work (Capodieci et al. 2018) has
implemented a preemptive EDF scheduler for GPU tasks providing bandwidth isola-
tion, MC scheduling on the GPU platform (with preemptive EDF) and the memory

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

Normalized (by M) Average Utilization

Ac
ce

pt
an

ce
 R

at
io

(%
)

m_lo=2.5, m_hi=3
m_lo=2.5, m_hi=3.4
m_lo=3, m_hi=3.8
m_lo=3.5, m_hi=4

Fig. 3   Acceptance ratio for GEDF-VD with a different (after a mode-switch) average degrees of parallel-
ism

Table 2   Acceptance ratio
for different amount of tasks
generated under various average
utilization and R value

U
avg

→

of tasks↓
R 2 2.5 3 3.5 4 4.5 5

8 4 100 100 97 59 5 5 4
12 4 100 99 94 65 2 2 2
16 4 100 100 98 50 0 0 0
8 8 97 75 67 31 23 19 11
12 8 100 100 74 58 40 17 6
16 8 100 98 91 77 48 34 11

291

1 3

Real-Time Systems (2021) 57:268–301	

partitioning technique to the gang tasks are yet to be explored. In the future, we
plant to explore implementation and experimentation on a real hardware platform.
As our work is the first to propose MC gang task scheduling, there is no perfect
baseline for comparison. We have performed many experiments by varying different
factors to observe the efficiency of our algorithm.

5.1 � Experimental setup

Workload generation We generate MC gang tasks based on the following
parameters.

0 2 4 6 8
0

20

40

60

80

100

Average utilization

Ac
ce

pt
an

ce
 R

at
io

 %

m = [1,2]
m = [3,4]
m = [5,6]
m = [7,8]

Fig. 4   Acceptance ratio for GEDF-VD in an 8-core platform with R = 4 , and under same ranges of
degrees of parallelism

Fig. 5   Acceptance ratio for GEDF-VD in an 8-core platform with R = 8 , and under same ranges of
degrees of parallelism

292	 Real-Time Systems (2021) 57:268–301

1 3

•	 M : The number of processor cores.
•	 mmin,mmax,mavg : The minimum, maximum, and average value for m (i.e.,

degree of parallelism), respectively. We generate the task set by varying these
three parameters, where mmin,mmax ∈ [1,M] and mmin ≤ mavg ≤ mmax.

•	 Uavg : The average utilization for the task set. We have varied Uavg value from
0.05 ×M to 0.95 ×M with 0.05 ×M difference at each step.

•	 P hi = 0.5 : The probability of a task �i ∈ � hi.
•	 R: Denotes the maximum ratio of u hi

i
 to u lo

i
 , where R ∈ [4, 8] . We generate u hi

i

uniformly from [u lo
i
,R × u lo

i
].

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Normalized(by M) average utilization

Ac
ce

pt
an

ce
 R

at
io

 %

M=4
M=8
M=16
M=32

Fig. 6   Acceptance ratio for GEDF-VD in an M-core platform (with R = 4 ). In this experiment
M ∈ {4, 8, 16, 32}

Fig. 7   Acceptance ratio for GEDF-VD in an M-core platform (with R = 8 ). In this experiment
M ∈ {4, 8, 16, 32}

293

1 3

Real-Time Systems (2021) 57:268–301	

At first, for a specific value of n (number of tasks per task set), we generate the m
values for each task. m is uniformly generated from

[

mmin,mmax

]

 range in a way so
that the average m for all tasks remains equal to mavg . Next, for a specific value of
average utilization Uavg , we calculate the average utilization ua

i
 for each task by

following the log-normal distribution. Note that, for n number of gang tasks,
there are total

∑n

i=1
mi = mavg × n amount of single task instances in each task set.

For the sake of a proper distribution, we extend the UUniFast algorithm (Bolado
et al. 2004) for Gang task. We use log-normal distribution over

∑n

i=1
mi task

instances similarly as UUnifast, but for a single task, we take the average of all of
its instances as the task’s average utilization. The values of u lo

i
 is uniformly gen-

erated from [2×u
a
i

R+1
, ua

i
] so that the value of u hi

i
 is always in the range [u lo

i
,R × u lo

i
].

Simulation setup We performed the simulation for average utilization ranging
from 0.05M to 0.95M with a step size of 0.05M. For each average, 100 task sets (
each with 10 tasks) are generated.

0 2 4 6 8
0

20

40

60

80

100

Average utilization

Ac
ce

pt
an

ce
 R

at
io

 %

m=2.5
m=3.5
m=4.5
m=5.5

Fig. 8   Acceptance ratio for GEDF-VD in an 8-core platform with R = 4 and a varying range of m
avg

Fig. 9   Acceptance ratio for GEDF-VD in an 8-core platform with R = 8 and a varying range of m
avg

294	 Real-Time Systems (2021) 57:268–301

1 3

5.2 � Evaluation results

We execute a set of gang tasks under our proposed algorithm by varying differ-
ent parameters, and present the simulation results in Figs. 3, 4, 5, 6, 7, 8 and 9,
and in Table 2. Note that, in Table 2, and in Figs. 4, 5, 6, 7, 8 and 9, we consider
that the degree of parallelism (of the hi-criticality tasks) does not change after a
mode-switch.

Effect of changing the degree of parallelism after a mode switch In this
experiment, we set the value for M to 8 , and vary (i.e., increase or unchanged)
the degree of parallelism of a hi-criticality task after a mode-switch. To incorpo-
rate the change in the task model, i.e., the degree of parallelism of a hi-criticality
task can change after a mode-switch, we slightly modify the simulation setup
described in Sect. 5.1. We report the acceptance ratio (in Fig. 3) with a different
average of m lo

i
 (i.e., from 2.5 to 3.5) and m hi

i
 (i.e., from 3 to 4) values. This figure

reports that the acceptance ratio (i.e., the ratio of the number of schedulable task
sets over the total number of task sets) decreases when the degree of parallelism
increases, which can be explained by Eqs. (8) and (16). That is, a higher value of
m lo

i
 or m hi

i
 inversely affects the acceptance ratio.

Effect of changing the degree of parallelism in a range with lower difference
In this set of experiments, for M = 8 , we vary a task’s degree of parallelism (m) in
a different range, while the difference between the upper and lower bound in each
range is fixed. The acceptance ratio under varying degree of parallelism (and dif-
ferent R values) is reported in Figs. 4 and 5. These figures indicate that in boundary
cases (where the degree of parallelism is very low or very high) acceptance ratio
changes proportionally with respect to the degree of parallelism. This behavior can
be explained with the help of Eqs. (8) and (16). When m increases or decreases by a
large amount, acceptance ratio will increase or decrease respectively. However, for a
small change of m, acceptance ratio may not change proportionally. This is because
the schedulability conditions provided by Eqs. (8) and (16) are also effected by the
maximum number of idle cores ( �i ), which is dependent on m.

Effect of changing the total number of cores In Figs. 6 and 7, we report the
acceptance ratio of the task set by varying the number of cores in the system, M. In
this set of experiments, we set a value for mavg , which is uniformly generated from
a range of [M

2
,
3M

4
] . Simulations are conducted for M = 4, 8, 16, and 32 and the aver-

age utilization is weighted with respect to the value of M. Figures 6 and 7 shows
that the acceptance ratio is not affected by different values of M and remains almost
unchanged.

Effect of changing number of tasks per task set In this set of experiments, we
have randomly generated 100 task sets with different R values and 8, 12, and 16
tasks per task set (with Uavg changing from 2 to 5 with a step size of 0.5) and report
the acceptance ratio in Table 2. From the reported data, it is clear that the accept-
ance ratio of the task set is not affected by the number of tasks per set. This result
indicates the effectiveness of our proposed algorithm under a varying number of
tasks in a task set.

295

1 3

Real-Time Systems (2021) 57:268–301	

Effect of changing mavg value In Figures 8 and 9, we show the acceptance ratio
by varying mavg in an 8-core platform. The result does not demonstrate a direct rela-
tionship between mavg and the acceptance ratio.

6 � Related work

Since Vestal’s proposal (Vestal 2007) of MC workload model, much work has
focused on scheduling MC tasks (refer to Burns and Davis (2013) for a survey). For
uniprocessor platforms, many algorithms were proposed based on both fixed prior-
ity (e.g., Li and Baruah 2010; Baruah et al. 2011) and dynamic priority scheduling
(e.g., Easwaran 2013). The work in Bhuiyan et al. (2019a, 2020b) proposed the
precise scheduling policy, where all lo-criticality tasks receive a full-service guar-
antee even after a mode switch. On the other hand, numerous MC scheduling algo-
rithms were proposed for multiprocessor platforms (Lee et al. 2014; Baruah et al.
2015b; Tobuschat and Ernst 2017; Awan et al. 2017; Trüb et al. 2017). Considering
the multiprocessor platforms, Lee et al. (2014) and Baruah et al. (2015b) proposed
fluid-based MC models, and a semi-partitioned based scheme is proposed by Awan
et al. (2017).

Considering different parallel tasks models [e.g., synchronous task model
(Andersson and de Niz 2012), DAG model (Bonifaci et al. 2013; Li et al. 2014; Guo
et al. 2017; Bhuiyan et al. 2018, 2020a; Guo et al. 2019) and gang models (Kato and
Ishikawa 2009; Goossens and Richard 2016; Dong and Liu 2017)] there have been
a number of works that have provided the energy efficiency technique, schedulabil-
ity analysis, and the speedup bound (i.e., resource augmentation bound) for vari-
ous scheduling strategies. For synchronous tasks under GEDF scheduling, Anders-
son and de Niz (2012) proved a resource augmentation bound of 2 with constrained
deadlines tasks. Considering DAG tasks (with arbitrary deadlines) under GEDF,
Li et al. (2013) and Bonifaci et al. (2013) simultaneously proved a resource aug-
mentation bound of 2. Bonifaci et al. (2013) also showed the bound to be 3 under
global rate-monotonic scheduling. For implicit deadline DAG tasks under federated
scheduling, a resource augmentation bound of 2 is showed by Li et al. (2014). Gang
scheduling and Coscheduling was initially introduced to perform parallel process-
ing with fine-grained interactions efficiently (Feitelson and Rudolph 1992; Ouster-
hout 1982; Gehringer et al. 1987). Both of these approaches allocate resources to the
threads of the same task concurrently. However, gang scheduling imposes a strict
requirement of executing all threads of the same task simultaneously. In contrast,
in coscheduling, some threads may not execute concurrently with the rest of the
threads in the same task. Some recent work used this concept to execute the parallel
workload in cloud computing (Stavrinides and Karatza 2016) and extended to incor-
porate hard real-time tasks (Goossens and Richard 2016). The work in Goossens and
Richard (2016) also has proposed a DP-Fair based scheduling of periodic gang tasks
and proved a speedup bound which is no larger than ( 2 − 1∕m ). A recent work by
Alahmad and Gopalakrishnan (2019) proposed the isochronous scheduling, which
has some similarity to the traditional gang scheduling. Unlike the gang scheduling,
the isochronous model assumed that the job versions might not be compatible with

296	 Real-Time Systems (2021) 57:268–301

1 3

all the processors available. Although the work in Alahmad and Gopalakrishnan
(2019) has some connections to the MC task model, they did not explicitly concern
different criticality levels of a task. It aims to achieve higher design assurance lev-
els by using adequate monitoring and improving mechanisms. In contrast, the MC
scheduling that we propose focuses on providing service guarantee only to the high
criticality jobs where computational resources are not adequate. Kato and Ishikawa
(2009) introduced gang task scheduling based on global EDF. Dong and Liu (2017)
proposed a schedulability analysis based on lag-based reasoning. Few other related
works, such as Goossens and Berten (2010), provided schedulability tests for fixed
task-priority scheduling of real-time periodic gang tasks.

Although a good number of works studied MC scheduling and parallel tasks
scheduling individually, very few works studied the scheduling of MC parallel
tasks (Liu et al. 2014; Baruah 2016; Li et al. 2017; Rambo and Ernst 2017). Rambo
and Ernst (2017) proposed a replica-aware co-scheduling approach (that is a com-
bination of strict priority preemptive (SPP) policy and gang scheduling policy) for
mixed-critical systems. Baruah (2016) and Li et al. (2017) proposed the MC sched-
uling of DAG models, while (Liu et al. 2014) proposed the MC scheduling of the
synchronous task model. Unlike these works, we consider the gang task model,
where a task cannot execute if the number of available cores is less than its degree of
parallelism. This constraint makes the scheduling problem highly challenging.

7 � Conclusion

Parallel computing with real-time constraints is gaining popularity due to its broad
applicability and system efficiency (Kato and Ishikawa 2009; Andersson and de Niz
2012; Bonifaci et al. 2013; Li et al. 2014; Goossens and Richard 2016; Dong and
Liu 2017; Guo et al. 2017; Bhuiyan et al. 2018; Guo et al. 2019). WCET measure-
ments are pessimistic due to increased uncertainty. So, there is an emerging need to
introduce MC into parallel computation models and system designs. We leverage
two existing algorithms (EDF-VD and GEDF) to schedule MC gang tasks efficiently
in this work. We derive the first speedup bound for GEDF schedulability of (non-
MC) gang tasks and further derived the bound for GEDF-VD of MC gang tasks.

Future work This work is an initial step of more substantial efforts in bringing
richer system modeling and analysis into the emerging need in many applications
for parallel computing and MC. In the future, by ensuring the a priori verification,
we plan to consider run-time robustness, with moldable or malleable models for MC
gang tasks. In this work, we have considered the preemptive scheduling, where a
high priority task can interrupt a running task, and offers more flexibility in task
scheduling. However, preemptive scheduling suffers from the switching overhead
as a task from running state to ready state and vice-versa. In the future, we plan
to study the non-preemptive scheduling (which does not suffer from task switching
overhead) and provide a detailed comparison between these two directions. We also
plan to evaluate our results (in this paper) by implementations on applicable hard-
ware platforms.

297

1 3

Real-Time Systems (2021) 57:268–301	

Acknowledgements  We thank the reviewers for their constructive feedback to improve this paper. This
work is partially supported by NSF Grant CNS-1850851.

References

Alahmad B, Gopalakrishnan S (2019) Isochronous execution models for high-assurance real-time sys-
tems. In: HASE. IEEE

Andersson B, de Niz D (2012) Analyzing global-EDF for multiprocessor scheduling of parallel tasks. In:
OPODIS. Springer

Awan M, Bletsas K, Souto P, Tovar E (2017) Semi-partitioned mixed-criticality scheduling. In: ARCS.
Springer

Baruah S (2016) The federated scheduling of systems of mixed-criticality sporadic DAG tasks. In: RTSS.
IEEE

Baruah S (2018) Mixed-criticality scheduling theory: scope, promise, and limitations. IEEE Des Test
35(2):31–37

Baruah S, Bonifaci V, D’angelo G, Marchetti-Spaccamela A, Van Der Ster S, Stougie L (2011) Mixed-
criticality scheduling of sporadic task systems. In: ESA. Springer

Baruah S, Bonifaci V, DAngelo G, Li H, Marchetti-Spaccamela A, Van Der Ster S, Stougie L (2012) The
preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems. In:
ECRTS. IEEE

Baruah S, Bertogna M, Buttazzo G (2015a) Multiprocessor scheduling for real-time systems. Springer,
New York

Baruah S, Eswaran A, Guo Z (2015b) MC-Fluid: simplified and optimally quantified. In: RTSS. IEEE
Bhuiyan A, Guo Z, Saifullah A, Guan N, Xiong H (2018) Energy-efficient real-time scheduling of DAG

tasks. ACM Trans Embed Comput Syst 17(5):84
Bhuiyan A, Sruti S, Guo Z, Yang K (2019a) Precise scheduling of mixed-criticality tasks by varying pro-

cessor speed. In: RTNS
Bhuiyan A, Yang K, Arefin S, Saifullah A, Guan N, Guo Z (2019b) Mixed-criticality multicore schedul-

ing of real-time gang task systems. In: RTSS. IEEE
Bhuiyan A, Liu D, Khan A, Saifullah A, Guan N, Guo Z (2020a) Energy-efficient parallel real-time

scheduling on clustered multi-core. IEEE Trans Parallel Distrib Syst 31(9):2097–2111
Bhuiyan A, Reghenzani F, Fornaciari W, Guo Z (2020b) Optimizing energy in non-preemptive mixed-

criticality scheduling by exploiting probabilistic information. IEEE Trans Comput-Aided Des Integr
Circ Syst 39(11):3906–3917

Bolado M, Posadas H, Castillo J, Huerta P, Sanchez P, Sánchez C, Fouren H, Blasco F (2004) Platform
based on open-source cores for industrial applications. In: Design, automation and test in Europe
conference and exhibition. Proceedings, vol. 2, pp. 1014–1019. IEEE

Bonifaci V, Marchetti-Spaccamela A, Stiller S, Wiese A (2013) Feasibility analysis in the sporadic DAG
task model. In: ECRTS. IEEE

Burns A, Davis R (2013) Mixed criticality systems-a review. Department of Computer Science, Univer-
sity of York, Tech. Rep pp. 1–69

Burns A, Davis R (2018) A survey of research into mixed criticality systems. ACM Comput Surv
50(6):82

Capodieci N, Cavicchioli R, Bertogna M, Paramakuru A (2018) Deadline-based scheduling for GPU with
preemption support. In: RTSS. IEEE

Döbel B, Härtig H, Engel M (2012) Operating system support for redundant multithreading. In: Proceed-
ings of the tenth ACM international conference on Embedded software, pp 83–92

Dong Z, Liu C (2017) Analysis techniques for supporting hard real-time sporadic gang task systems. In:
RTSS. IEEE

Easwaran A (2013) Demand-based scheduling of mixed-criticality sporadic tasks on one processor. In:
RTSS. IEEE

Elliott GA, Ward BC, Anderson JH (2013) GPUSync: A framework for real-time GPU management. In:
RTSS. IEEE

Engel M, Döbel B (2012) The reliable computing base-a paradigm for software-based reliability. INFOR-
MATIK 2012

298	 Real-Time Systems (2021) 57:268–301

1 3

Ernst R, Di Natale M (2016) Mixed criticality systems-a history of misconceptions? IEEE Des Test
33(5):65–74

Esper A, Nelissen G, Nélis V, Tovar E (2015) How realistic is the mixed-criticality real-time system
model? In: RTNS. ACM

Feitelson DG, Rudolph L (1992) Gang scheduling performance benefits for fine-grain synchronization. J
Parallel Distrib Comput 16(4):306–318

Gehringer EF, Siewiorek DP, Segall Z (1987) Parallel processing: the Cm* experience. Digital Press,
Bedford

Goossens J, Berten V (2010) Gang FTP scheduling of periodic and parallel rigid real-time tasks. arXiv
preprint arXiv:​1006.​2617

Goossens J, Richard P (2016) Optimal scheduling of periodic gang tasks. Leibniz Trans Embed Syst
3(1):04-1

Guo Z, Bhuiyan A, Saifullah A, Guan N, Xiong H (2017) Energy-efficient multi-core scheduling for real-
time DAG tasks

Guo Z, Bhuiyan A, Liu D, Khan A, Saifullah A, Guan N (2019) Energy-efficient real-time scheduling of
DAGs on clustered multi-core platforms. In: RTAS. IEEE

Kato S, Ishikawa Y (2009) Gang EDF scheduling of parallel task systems. In: 30th IEEE real-time sys-
tems symposium, pp 459–468. IEEE

Lee J, Phan K, Gu X, Lee J, Easwaran A, Shin I, Lee I (2014) MC-Fluid: fluid model-based mixed-criti-
cality scheduling on multiprocessors. In: RTSS. IEEE

Li H (2013) Scheduling mixed-criticality real-time systems. Ph.D. thesis, The University of North Caro-
lina at Chapel Hill

Li H, Baruah S (2010) An algorithm for scheduling certifiable mixed-criticality sporadic task systems. In:
RTSS. IEEE

Li J, Agrawal K, Lu C, Gill C (2013) Analysis of global EDF for parallel tasks. In: ECRTS. IEEE
Li J, Chen JJ, Agrawal K, Lu C, Gill C, Saifullah A (2014) Analysis of federated and global scheduling

for parallel real-time tasks. In: ECRTS. IEEE
Li J, Ferry D, Ahuja S, Agrawal K, Gill C, Lu C (2017) Mixed-criticality federated scheduling for parallel

real-time tasks. Real-Time Syst 53(5):760–811
Liu G, Lu Y, Wang S, Gu Z (2014) Partitioned multiprocessor scheduling of mixed-criticality parallel

jobs. In: RTCSA. IEEE
Nvidia (2017) http://​www.​nvidia.​com/​page/​home.​html
Openacc (2017) https://​www.​opena​cc.​org/
Ousterhout JK et al (1982) Scheduling techniques for concurrent systems. ICDCS 82:22–30
Rambo EA, Ernst R (2017) Replica-aware co-scheduling for mixed-criticality. In: ECRTS 2017. Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik
Spuri M, Buttazzo GC (1994) Efficient aperiodic service under earliest deadline scheduling. In: RTSS,

pp. 2–11
Stavrinides GL, Karatza HD (2016) Scheduling real-time parallel applications in saas clouds in the pres-

ence of transient software failures. In: SPECTS. IEEE
Tobuschat S, Ernst R (2017) Efficient latency guarantees for mixed-criticality networks-on-chip. In:

RTAS. IEEE
Trüb R, Giannopoulou G, Tretter A, Thiele L (2017) Implementation of partitioned mixed-criticality

scheduling on a multi-core platform. ACM Trans Embed Comput Syst 16(5s):122
Vestal S (2007) Preemptive scheduling of multi-criticality systems with varying degrees of execution

time assurance. In: RTSS. IEEE
Xiao S, Feng Wc (2010) Inter-block GPU communication via fast barrier synchronization. In: IPDPS.

IEEE
Yang M, Amert T, Yang K, Otterness N, Anderson JH, Smith FD, Wang S (2018) Making OpenVX

really“ real time”. In: RTSS. IEEE

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/1006.2617
http://www.nvidia.com/page/home.html
https://www.openacc.org/

299

1 3

Real-Time Systems (2021) 57:268–301	

Ashikahmed Bhuiyan  is a Ph.D. candidate in the Department of
Electrical and Computer Engineering at the University of Central
Florida (UCF), under the supervision of Zhishan Guo and Abusay-
eed Saifullah (from the Wayne state University). He is a member of
the Real-Time & Intelligent Systems Lab at UCF. He received his
Bachelor of Science degree in Computer Science and Engineering
from Bangladesh University of Engineering and Technology
(BUET), Bangladesh, in 2013. His research focuses on improving
energy efficiency in real-time embedded systems, parallel comput-
ing, and mixed-criticality scheduling. He has received the Best Stu-
dent Paper Award at the 40th IEEE Real-Time Systems Symposium
(RTSS 2019).

Kecheng Yang  is an Assistant Professor in the Department of Com-
puter Science at Texas State University. He received his Ph.D. and
M.S. degrees in Computer Science from the University of North
Carolina at Chapel Hill in 2018 and 2015, respectively, both with
Prof. James H. Anderson. Before that, he received his B.E. degree in
Computer Science and Technology from Hunan University in 2013.
His research interests include real-time and cyber-physical systems,
scheduling theory and resource allocation algorithms, and heteroge-
neous multiprocessor platforms.

Samsil Arefin  is a software engineer in Microsoft New England
Research and Development Center. He received his B.Sc. degree in
Computer Science and Engineering from Bangladesh University of
Engineering and Technology (BUET). He received his M.S. in
Computer science from Missouri University of Science & Technol-
ogy under the supervision of Dr. Zhishan Guo. His research focuses
on realtime mixed-criticality task scheduling and graceful
degradation.

300	 Real-Time Systems (2021) 57:268–301

1 3

Abusayeed Saifullah  is an assistant professor of the Computer Sci-
ence Department at Wayne State University. He received PhD in
Computer Science and Engineering with Turner Dissertation Award
from Washington University in St Louis in 2014. His research pri-
marily concerns Internet-of-Things, cyber-physical systems, real-
time systems, embedded systems, and lowpower wide-area net-
works. He received 8 Best Paper Awards and nominations in highly
competitive conferences including EWSN (2021 nomination), ACM
SenSys (2016 nomination), IEEE RTSS (2019, 2014, 2011), IEEE
ICII (2018), and IEEE RTAS (2012 nomination). He also received
multiple young investigator awards including the CAREER award
(2019) and the CRII award (2016) of the National Science Founda-
tion (NSF). He is an editor of Elsevier Pervasive and Mobile Com-
puting journal.

Nan Guan  is currently an Associate Professor at City University of
Hong Kong. He got his PhD in Uppsala University, Sweden. His
research interests include the design and analysis of real-time sys-
tems, embedded systems, cyberphysical systems and Internet-of-
Things (IoT) systems. He received the EDAA Outstanding Disserta-
tion Award in 2014, the CCF Outstanding Dissertation Award in
2013, the Best Paper Award of IEEE RTSS in 2009, the Best Paper
Award of DATE in 2013, the Best Paper Award of ACM e-Energy
2018 and the Best Paper Award of IEEE ISORC 2019, the Out-
standing Paper Award of RTSS 2019 and the Best Paper Award of
EMSOFT 2020.

Zhishan Guo  is an assistant professor in the Department of Electri-
cal and Computer Engineering at The University of Central Florida.
He received his B.E. degree (with honor) in computer science and
technology from Tsinghua University, Beijing, China, in 2009, his
M.Phil. degree in mechanical and automation engineering from the
Chinese University of Hong Kong in 2011, and his Ph.D. degree in
computer science from the University of North Carolina at Chapel
Hill in 2016. His research and teaching interests include real-time
scheduling, cyber-physical systems, and neural networks and their
applications.

301

1 3

Real-Time Systems (2021) 57:268–301	

Authors and Affiliations

Ashikahmed Bhuiyan1  · Kecheng Yang2 · Samsil Arefin3 ·
Abusayeed Saifullah4 · Nan Guan5 · Zhishan Guo1

	 Ashikahmed Bhuiyan
	 ashik@knights.ucf.edu

	 Kecheng Yang
	 yangk@txstate.edu

	 Samsil Arefin
	 Samsil.Arefin@microsoft.com

	 Abusayeed Saifullah
	 saifullah@wayne.edu

	 Nan Guan
	 nanguan@cityu.edu.hk

1	 University of Central Florida, Orlando, USA
2	 Texas State University, San Marcos, USA
3	 Microsoft New England Research and Development Center, Cambridge, USA
4	 Wayne State University, Detroit, USA
5	 City University of Hong Kong, Kowloon, Hong Kong

http://orcid.org/0000-0002-4668-4247

	Mixed-criticality real-time scheduling of gang task systems
	Abstract
	1 Introduction
	2 Dual-criticality gang task model
	3 GEDF-VD for dual-criticality system
	3.1 EDF-VD and GEDF-VD: an overview
	3.2 GEDF-VD: a detailed description
	3.3 Proof of correctness in the lo-criticality mode
	3.4 Proof of correctness in the hi-criticality mode

	4 Speedup bound analysis
	4.1 Speedup bound for gang tasks under GEDF
	4.2 Speedup bound for gang tasks under GEDF-VD

	5 Evaluation
	5.1 Experimental setup
	5.2 Evaluation results

	6 Related work
	7 Conclusion
	Acknowledgements
	References

