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Abstract
Mixed-criticality (MC) scheduling of sequential tasks (with no intra-task parallel-
ism) has been well-explored by the real-time systems community. However, till date, 
there has been little progress on MC scheduling of parallel tasks. MC scheduling 
of parallel tasks is highly challenging due to the requirement of various assurances 
under different criticality levels. In this work, we address the MC scheduling of par-
allel tasks of gang model that allows workloads to execute on multiple cores simulta-
neously, as well as the change to degree of parallelism of a task upon a mode switch. 
It represents an efficient mode-based parallel processing scheme with many poten-
tial applications. To schedule such task sets, we propose a new technique GEDF-
VD, which integrates Global Earliest Deadline First (GEDF) and Earliest Deadline 
First with Virtual Deadline (EDF-VD). We prove the correctness of GEDF-VD and 
provide a detailed quantitative evaluation in terms of speedup bound in both the MC 
and the non-MC cases. Specifically, we show that GEDF provides a speedup bound 
of 2 for non-MC gang tasks, while the speedup for GEDF-VD considering MC gang 
tasks is 

√

5 + 1 . Experiments on randomly generated gang task sets are conducted to 
validate our theoretical findings and to demonstrate the effectiveness of the proposed 
approach.

Keywords  Multi-core systems · Mixed criticality · Real-time scheduling · Speedup 
bound

1  Introduction

Due to size, weight, and power considerations, there is a trend that multiple tasks 
with different criticality levels (that are subject to varying degrees of assurance/veri-
fication) share a computing platform (Vestal 2007). This type of system is commonly 
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known as a mixed-criticality (MC) system, where each task can be associated with 
various execution budgets. During normal operation, all tasks are scheduled accord-
ing to their typical execution budget. However, some critical tasks may exceed their 
typical budget and need more resources to finish their execution. Suppose the avail-
able resources are not sufficient in these scenarios. In that case, the less critical task 
will be sacrificed to free up the resources for accommodating the additional compu-
tational requirements requested by the more critical ones.

Take an avionics software standard as an example, where the ground control sub-
systems are more safety-critical than ground communication and light controls. Dur-
ing the incident of emergency (e.g., an accident), it is more important to execute the 
safety-critical components rather than the other components. On the other hand, in 
normal condition, all these components are required to perform smoothly (for more 
details, refer to the Table 1.1 of Li (2013), which demonstrates the RTCA DO-178B 
avionics software standard). MC scheduling has received considerable attention 
(refer to Burns and Davis (2013) for a thorough and updated survey) as it brings sig-
nificant improvements in resource efficiency.

Note that safety-critical MC systems have tight correctness requirements. These 
requirements can be verified by two related but orthogonal perspectives: a priori 
verification and run-time robustness (Baruah 2018). Before run-time, a priori verifi-
cation determines whether a system will behave correctly (or not) during execution, 
while run-time robustness deals with unexpected system behavior at run-time. There 
are some debates regarding MC’s applicability to run-time robustness (Ernst and Di 
Natale 2016; Esper et al. 2015). Although an MC system has imitation from the per-
spective of a priori verification (which is our work scope), these criticisms usually 
do not hinder the applicability of an MC system for its designed scope of a priori 
verification (Baruah 2018).

Parallel computing workloads Recent advances in parallel computing allow 
executing a single piece of code simultaneously on multiple computing units or a 
set of threads to execute on multiple processors concurrently. Such design provides 
a much better capability of exploiting the benefits provided by modern platforms. 
As a result, there is an urgent need in handling workload models that allow intra-
task parallelism (i.e., parallel tasks). Parallel computing systems perform a large 
number of computations and often need to interact with their surroundings under 
real-time constraints, e.g., arms system (RADAR). In these types of applications, a 
lot of processors co-operate with each other, and these communications are timing 
critical. It is necessary for a system to have both high performance and predictabil-
ity; i.e., efficient control that minimizes the introduced overhead, while responding 
to external events (coming through sensors) in real-time. In this work, we consider 
the gang scheduling, where all threads of a task are grouped into a gang, and during 
execution, the whole group is concurrently scheduled on distinct cores. The gang 
task model is a practical, widely used, and representative workload model for intra-
task parallelism (Alahmad and Gopalakrishnan 2019; Dong and Liu 2017; Goossens 
and Richard 2016; Kato and Ishikawa 2009). Also, the gang task model is supported 
by some widely used parallel computing programming standards [e.g., openacc 
(2017)], which is commonly used in graphics processing unit (GPU).
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Existing work The real-time systems and parallel computing communities have 
given considerable attention towards these two directions: MC scheduling and 
scheduling of parallel tasks. These two emerging trends bring in some critical and 
exciting problems, and there is an emerging need in integrating those two trends. 
There has been extensive research on the (a) MC scheduling of sequential (i.e., non-
parallel) tasks (refer to the recent survey in Burns and Davis 2018, 2013) and (b) 
scheduling of parallel tasks with a single-criticality level (Kato and Ishikawa 2009; 
Goossens and Richard 2016; Dong and Liu 2017; Andersson and de  Niz 2012; 
Bonifaci et  al. 2013; Li et  al. 2014). Till date, very few efforts (Liu et  al. 2014; 
Baruah 2016; Li et al. 2017) have been made towards the combined problem of MC 
scheduling of parallel tasks. To our knowledge, none of these efforts has considered 
mixed-criticality gang task scheduling on multi-core platforms.

Motivation behind this work Multi-core platform enables applications that 
require better energy efficiency, higher performance, and real-time guarantees. 
The notion of MC systems with the intra-task parallelism stems from many current 
trends. For example, the number of cores fabricated on a chip is increasing rapidly. 
Besides, the computational demand for an individual task (with stringent timing 
requirements) is rising, which makes it essential to consider the intra-task parallel-
ism. Furthermore, when safety-critical and non-safety-critical tasks share a common 
computational platform, there is an increasing demand to integrate functionality 
with different criticality levels. Such demand promotes the idea of MC scheduling, 
i.e., combining various functionalities of varying criticality levels onto the same 
computing platform.

In this work, we study the mixed-criticality gang task scheduling, and the fault-
tolerant systems would be a promising application for such study. A fault-tolerant 
system often follows the mixed-criticality model (Burns and Davis 2013). If a fault 
is identified in such a system, it is recovered via various recovery techniques, e.g., 
exception handling, recovery blocks, and task replication. Some extra work has to 
be undertaken upon identifying a fault, which leads to the abandonment or delay of 
some less critical works. The impact of a fault in such a system ranges from no vis-
ible effect to an entire system crash. To overcome these faults, the ASTEROID pro-
ject is proposed (a cross-layer fault-tolerance solution for the mixed-criticality plat-
form) that detects errors and recovers the system in different software and hardware 
layers (Döbel et  al. 2012; Engel and Döbel 2012). Considering such a cross-layer 
platform, a recent work in Rambo and Ernst (2017) proposed a replica-aware co-
scheduling (with Strict Priority Preemptive protocols) for a mixed-criticality system 
that improves the system performance. They have considered the replicas as a gang 
that is activated concurrently on multiple cores.

Challenges In gang task model, a task cannot start execution until the number of 
available cores is no less than what is required by it (i.e., a task’s degree of paral-
lelism). This simple constraint adds a huge restriction on real-time schedulability 
and makes the problem highly challenging. We are aware of only one known correct 
schedulability analysis (Dong and Liu 2017) under Global Earliest Deadline First 
(GEDF) for gang tasks. Besides, integrating MC in gang scheduling scheme adds 
additional challenges due to the dual notion of correctness. In the normal mode, a 
task may have a utilization less than 1, while in the critical mode, the utilization 
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could be much higher than one Dong and Liu (2017). Such a change in the utiliza-
tion adds significant complexity in speedup bound analysis (Baruah et al. 2015a) . 
For example, in the speedup bound analysis for MC scheduling of ordinary sporadic 
tasks, an individual task’s utilization is at most the processor’s speed is a straight 
forward and necessary feasibility condition. At the same time, it no longer holds for 
the gang tasks. Besides, the scheduler does not know the exact behavior of each task 
before run-time (non-clairvoyant). Hence, the scheduler must be able to detect the 
critical condition early enough to allocate more resources to the more critical tasks 
to handle this drastic change and still be able to meet the deadlines.

This research In this paper, we study the real-time scheduling of MC gang tasks 
on identical multi-core platforms. We propose the first scheduling algorithm GEDF-
VD (GEDF with Virtual Deadline) for MC gang tasks. Our approach leverages the 
synthesis of uniprocessor scheduling techniques such as EDF-VD (Baruah et  al. 
2012) as well as GEDF (Dong and Liu 2017) that was designed for non-MC gang 
tasks. To our knowledge, this is the first work that studies the MC scheduling of the 
gang task model. Specifically, we make the following contributions:

•	 We generalize the gang task model to the MC context by incorporating exten-
sions on both the execution time and the degree of parallelism dimensions , and 
propose GEDF-VD for the generalized model. We also conduct a utilization 
based schedulability test and prove its correctness formally.

•	 We prove that the speedup bound (Baruah et al. 2015a) for GEDF to gang tasks 
in a non-MC platform is at most 

(

2 − 1∕(M + 1 −mini{mi})
)

 , where M denotes 
the total number of processor cores and mi denotes the degree of parallelism of 
task �i . To our knowledge, this is the first speedup bound result for GEDF sched-
uling of gang tasks.

•	 With the result from the previous step, we then derive a speedup bound of 
√

5 + 1 for GEDF-VD considering MC gang tasks.
•	 Extensive simulations under randomly generated task sets are conducted to dem-

onstrate the real-time performance and effectiveness of the proposed algorithm 
in terms of acceptance ratio, which is defined as the ratio of the number of sched-
ulable task sets over the total number of task sets.

Organization The remainder of this paper is organized as follows. Section  2 
describes the task model, notations, and preliminaries. Section 3 provides a detailed 
description of our scheduling algorithm and prove its correctness. Section 4 derives 
the speedup bounds for the non-MC and MC platform, under GEDF and GEDF-VD 
scheduling algorithms, respectively. Simulation results are presented in Sect. 5. Sec-
tion 6 discusses related prior work. Section 7 concludes this paper and points out 
future research directions.
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2 � Dual‑criticality gang task model

In this work, we consider the problem of scheduling a task set � =
{

�1,… , �n
}

 of 
n independent implicit deadline (i.e., the period of a task is equal to its deadline) 
sporadic MC gang tasks on M identical cores. In this model, each task generates an 
infinite number of MC gang jobs (the jth job of task �i is denoted as �i,j ). To describe 
the dual-criticality gang task model, first, we provide details on traditional non-MC 
gang task model and MC sporadic sequential task model. Then, by leveraging these 
two models, we generalize the gang task model to the MC context. In this work, we 
restrict our attention to dual-criticality model, and consider it is an important step 
towards the multi-criticality systems.

Non-MC gang task model In traditional non-MC gang task model, each task �i 
is represented with a 4-tuple (mi, ci, Ti,Di) , where mi is the degree of parallelism and 
each job of task �i requires access to mi cores for at most ci time units to complete its 
execution, Ti is the task period, and Di is the relative deadline. In gang scheduling, 
each task is consists of multiple threads (referred to as a gang), and each thread of 
the same task occupies a processor for the same time quantum (Kato and Ishikawa 
2009; Dong and Liu 2017). Hence, in the time-space, the execution requirement of 
any job �i,j ∈ �i can be represented as an mi × ci rectangle. The relative deadline Di 
specifies that for each of the released jobs �i,j (of task �i ), its deadline di,j = ri,j + Di , 
where ri,j denotes the release time of �i,j (Dong and Liu 2017). The utilization ui 
of each task �i ∈ � is given by ui = (mici)∕Ti , and the overall system utilization is: 
Usum =

∑

�i∈�
ui . Note that, it is possible that the value of ui is larger than one, which 

is different from the traditional sequential task model. Based on the scheduling flex-
ibility, a gang task �i can be categorized into three groups. A task �i is said to be:

–	 rigid, if mi is fixed a priori and does not change throughout the execution,
–	 moldable, if mi is fixed during its activation and does not change throughout the 

execution,
–	 malleable, if mi is not fixed and can be changed during its execution by the sched-

uler.

We currently restrict our attention to the rigid task model. This model suits various 
applications that use parallelism, some of which are implemented using the mes-
sage-passing approach and tools like MPI.

MC sporadic task model In a dual-criticality systems, the criticality level of �i is 
represented by �i = { lo , hi } . The worst case execution time (WCET) estimations 
of each task is also represented by a tuple (c lo

i
, c hi

i
) where c lo

i
 and c hi

i
 represent the 

lo and hi-criticality WCETs respectively. c hi
i

 is measured by a more pessimistic tool 
by considering all possible scenarios, while c lo

i
 is calculated using a less pessimistic 

yet realistic tool. Collection of all lo- and hi-criticality tasks in � are denoted by � lo 
and � hi respectively. u lo

i
 and u hi

i
 denotes the utilization of �i in lo- and hi-criticality 

mode respectively, where u lo
i

= c lo
i
∕Ti and u hi

i
= c hi

i
∕Ti.
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MC gang task model By leveraging the above two models, in our work, we con-
sider a workload model of MC gang tasks, where each task �i is represented by a 
7-tuple (m lo

i
,m hi

i
,�i, c

lo
i
, c hi

i
, Ti,Di) , where

m lo
i
(m hi

i
) = degree of parallelism of task �i in lo(hi) criticality mode, and 

m lo
i

≤ m hi
i

.
�i = criticality level of each task �i and �i ∈ { lo , hi }

c lo
i
(c hi

i
) = �′

i
 s WCET in lo(hi)-criticality mode, and c lo

i
≤ c hi

i
.

Ti = minimum inter-arrival time between jobs.
Di = relative deadline.

In this model, a task �i occupies m lo
i
(m hi

i
) processors for c lo

i
(c hi

i
) time quantum at 

lo(hi)-criticality mode. Note that, if ∀�i,m lo
i

= m hi
i

= 1 , i.e., degree of parallelism 
for each gang task is 1, our analysis (Sects. 3 and 4) will reduce to the existing MC 
scheduling method designed for the sporadic task model. We believe this is common 
for a restricted special case of a more complex and expressive model. For example, 
the directed acyclic graph (DAG) task model (Bonifaci et al. 2013; Li et al. 2014) 
is popular to represent intra-task parallelism. Many of the existing schedulability 
analysis considering the DAG model would also reduce to prior study for ordinary 
sporadic tasks if the number of nodes of each DAG task is equal to 1.

Now, we generalize the utilization concepts to suit the MC gang task model, 
which are analogous to the above-mentioned concepts. Refer to the Example 1 for 
details.

Example 1  Consider the task-set � = (�1, �2, �3) in Table  1. For this task-set we 
derive the utilization as follows:

U
lo

lo
= c

lo

2
× m

lo

2
∕T2 = 0.6,U lo

hi
= c

lo

1
× m

lo

1
∕T1 + c

lo

3
× m

lo

3
∕T3 = 2, and U hi

hi

= c
hi

1
× m

hi

1
∕T1 + c

hi

3
× m

hi

3
∕T3 = 3.6.

Example 2  Consider the MC gang task set in Table 1 to be scheduled in four cores. 
A GEDF schedule for this task set is shown in Fig. 1. The system starts at lo-crit-
icality mode, and all the tasks ( �1, �2, �3 ) will execute up-to C lo

i
 . Recall that, m lo

i
 is 

the degree of parallelism of �i in lo-criticality mode. Hence, �1 cannot execute at 
t = 5 as it needs three cores to execute while only two cores ( P3 and P4 ) are idle. 
At a mode switch ( t = 9 ), all lo-criticality tasks ( �2 ) are dropped, and all hi-criti-
cality tasks ( �1, �3 ) will execute up-to C hi

i
(at m hi

i
 cores). After a mode switch, all 

U lo
lo

def
=

∑

�i∈� lo

m lo
i

× c lo
i
∕Ti,

U lo
hi

def
=

∑

�i∈� hi

m lo
i

× c lo
i
∕Ti,

U hi
hi

def
=

∑

�i∈� hi

m hi
i

× c hi
i
∕Ti
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hi-criticality jobs (including the ones which are currently executing) will execute 
up-to their hi-criticality WCET.

Motivations behind this model Some commonly used parallel computing pro-
gramming standards [e.g., openacc (2017)] support the gang task model. OpenACC 
is one of the parallel computing programming standards used for GPU architecture. 
Recently, there has been extensive research on GPU architecture (few to mention 
Capodieci et al. 2018; Elliott et al. 2013; Xiao and Feng 2010; Yang et al. 2018). 
GPU architecture is popular because of the features like (1) highly threaded but low 
context switch latency architecture, (2) high parallelism and (3) minimal depend-
ency between data elements, etc. Previous work on GPU scheduling considered lim-
ited or no preemption policy (Elliott et al. 2013; Xiao and Feng 2010). However, this 
work is motivated by some recent attempts to incorporate the preemptive support 
in GPUs. For example, a prototype has been implemented and tested with preemp-
tive support (at the pixel level and the thread level) in a virtualized environment in 
a recent work (Capodieci et  al. 2018). Its prototype is EDF based, and enhanced 

P4

P3

P2

P1
0 4 8 12 16 202 6 10 14 18

C3
LO

C3
HI

C1
LO

C2
LO C1

HI

E NE E NE E

1's Ex/
Non-Ex
Interval

2 31

Mode Switch

1 is released here
but cannot execute

Job
Release

Fig. 1   A GEDF scheduling of the MC gang task-set from Table 1 and the executing (E)/non-executing 
(NE) intervals of �

1

Table 1   An MC gang task set 
with GEDF schedule shown in 
Fig. 1

Task ID c
lo

i
c
hi

i
T
i

�
i m

lo

i
m

hi

i

�
1

3 4 5 hi 3 4
�
2

3 3 10 lo 2 2
�
3

1 2 10 hi 2 2
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with a bandwidth isolation mechanism (e.g., constant/total bandwidth servers (Spuri 
and Buttazzo 1994) for the graphics and computing workloads. Also, the prototype 
is tested on a recent NVIDIA Tegra-based system on a chip (SoCs) (nvidia 2017). 
Since some recent work study the preemptive support in the GPU architecture, there 
is a need for a comprehensive study of gang task scheduling using GEDF.

Now, we introduce some definitions and preliminaries which will be frequently 
used in later sections of this paper.

Definition 1  (MC-correct schedule) Scheduling strategy must ensure an MC-correct 
schedule, as defined below (Li et al. 2017).

•	 If the system stays in normal condition (i.e., each task in the system finishes 
execution within its lo-criticality WCET), all tasks must meet their dead-
lines.

•	 If the system transits into a critical condition (i.e., there exists a hi-criticality 
task executing beyond its lo-criticality WCET), all hi-criticality tasks must 
meet their deadlines, while lo-criticality tasks need not so.

Definition 2  (Executing/Non-Executing interval) An interval [t1, t2) (where t1 < t2 ) 
is an executing interval for a task �i if mi out of M cores are executing the current 
active job released by �i throughout this interval. Otherwise, [t1, t2) is a non-execut-
ing interval for �i . An illustrative example is shown in Fig. 1 by pointing the execut-
ing and non-executing intervals for task �1.

Definition 3  (Active/pending task) If there exists a task �i ∈ � , such that it has a job 
�i,j where ri,j ≤ t < di,j . Here, ri,j and di,j respectively denotes the release time and 
deadline of �i,j , then �i is considered as an active task at time t. A job is pending if it 
is released but not finished (Dong and Liu 2017).

Definition 4  Maximum possible number of idle cores � lo
i

 ( � hi
i

 ) for a task �i refers to 
the maximum number of available cores (that are not executing any job) at any time 
in lo (hi-criticality mode) during �i ’s non-executing intervals in which it has a pend-
ing job (Dong and Liu 2017).

Example 3  Let us consider a 4-core platform and task set � = {�1, �2, �3} from 
Table 1. At lo-criticality mode, the degree of parallelism for these tasks are given 
as: m lo

1
= 3 , m lo

2
= m lo

3
= 2 . For this task set, the maximum possible number of 

idle cores at lo-criticality mode is: � lo
1

= 2, � lo
2

= � lo
3

= 1 . This is because �1 can-
not execute at time t (even when it has a pending job) if �2 or �3 is executing at t. The 
degree of parallelism for �2 (or �3 ) is 2. So, the maximum number of idle cores for 
�1 is �1, where �1 = 4 − 2 = 2 . We can calculate the value of �2 and �3 in the same 
approach (refer to Algorithm  1 in Dong and Liu (2017)). At hi-criticality mode, 
degree of parallelism for these tasks becomes: m hi

1
= 4 , m hi

2
= m hi

3
= 2 , and the 

maximum possible number of idle cores will be: � hi
1

= 2, � hi
2

= � hi
3

= 0.
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System behavior and scope of this work It is expected that an MC system 
starts execution in normal mode. The system-wide mode transition is triggered 
if a hi-criticality task �i has received cumulative execution length beyond its lo-
criticality WCET and did not signal its finishing. Like the Vestal model (Ves-
tal 2007), after a mode switch, no lo-criticality tasks get any service guaran-
tee. After mode transition (from lo-criticality to hi-criticality), at the first idle 
instant, the system switches back to the lo-criticality mode again. All other sce-
narios (e.g., a hi-criticality task runs for more than its hi-criticality WCET) are 
considered as erroneous, where no guarantees will be made and hence is not 
considered.

3 � GEDF‑VD for dual‑criticality system

Now we describe our algorithm for the MC task systems considering the GEDF-
VD algorithm. In this work, we consider implicit deadline (So, we use the terms 
deadline and period interchangeably) sporadic task systems on identical multi-
core platforms. We integrate an uniprocessor MC scheduling technique [EDF-
VD (Baruah et  al. 2012)] with a multiprocessor gang task scheduling technique 
[GEDF (Dong and Liu 2017)] and derive a new algorithm named GEDF-VD 
(Sects. 3.1 and 3.2). In our approach, we determine a scaling factor, which scales 
the deadline of all hi-criticality tasks at lo-criticality mode. This factor will be 
calculated in such a way that the correctness of the system can be guaranteed at 
both lo- and hi-criticality modes (Sects. 3.3 and 3.4).

3.1 � EDF‑VD and GEDF‑VD: an overview

EDF-VD In case of a mode switch (lo to hi), to generate an MC-correct schedule 
(Definition 1), a scheduler must ensure that all hi-criticality tasks meet their dead-
lines (while lo-criticality tasks can be sacrificed). To guarantee this criterion, a 
specific amount of CPU time must be reserved for those hi-criticality tasks even 
if the system is running at lo-criticality mode. This reservation of time can be 
achieved by shortening the deadlines of hi-criticality tasks under normal mode—
those are virtual deadlines.

In EDF-VD, deadlines of all hi-criticality tasks are shortened by multiplying 
them with a scaling factor, and this updated deadline is called the virtual dead-
line. During run-time (at lo-criticality mode), all hi-criticality (lo-criticality) 
tasks are executed according to their virtual (actual) deadline, according to the 
EDF order. Upon a mode switch, only the hi-criticality tasks are executed in the 
EDF order w.r.t their actual/original deadlines.

In the case of a lo- to hi-criticality mode-switch, a hi-criticality task demands 
additional computational requirements. Setting a virtual deadline for the hi-crit-
icality tasks leaves enough time to finish the extra workload within their actual 
deadlines. If the virtual deadline is too short, it increases the system density at 
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normal (i.e., lo-criticality) mode. In contrast, a large virtual deadline threatens 
the schedulability of the system after a lo- to hi-criticality mode switch. The trick 
is to determine a balanced scaling factor x, such that the correctness under both 
execution modes can be guaranteed. Baruah et al. (2012) showed the steps to cal-
culate the minimum x that guarantees the schedulability of all tasks in the system. 
They also proved the improvement in system schedulability by reducing the dead-
line for hi-criticality tasks at lo-criticality mode.

Remark 1  In this work, we consider a completely different Gang task workload 
model in a multi-core platform. As a result, the approach proposed by Baruah et al. 
(2012) to calculate the scaling factor x, as well as the schedulability test, are no 
longer applicable for our case. We propose a novel approach to calculate a feasible 
scaling factor x in this section.

GEDF-VD Now, we provide an overview of our algorithm (GEDF-VD) consid-
ering an implicit-deadline sporadic MC gang task system � to be scheduled on M 
identical cores. The GEDF-VD algorithm starts by checking whether GEDF can 
successfully schedule the regular task system. A regular task system denotes that, 
all lo-criticality tasks will execute up-to their lo-criticality WCET and all hi-criti-
cality tasks will execute up-to their hi-criticality WCET. It returns SUCCESS imme-
diately if the regular task system is schedulable. Otherwise, all hi-criticality tasks 
can execute up-to their lo-criticality WCETs and their deadline is shortened (i.e., 
virtual deadline) and set to T̂i = xTi , while all lo-criticality tasks execute up-to their 
lo-criticality WCETs with their original deadline. If any of the currently executing 
job (of a hi-criticality task) executed beyond its lo-criticality WCET and did not 
signal its completion by T̂i , the scheduler immediately discards all currently active 
lo-criticality jobs. Also, the deadline for all hi-criticality jobs is changed to their 
release time plus their actual deadline. Section 3.2 provides a detailed description of 
GEDF-VD algorithm.
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3.2 � GEDF‑VD: a detailed description

In this subsection, we describe the GEDF-VD scheduling approach in a two-
phase process. First, we describe what happens prior to run-time (denoted as a 
pre-processing phase). In this phase, GEDF-VD determines whether (or not) it is 
required to set a virtual deadline for the hi-criticality tasks. A lower and an upper 
bound of the virtual deadline is also calculated in this phase. Then, we discuss 
how the jobs are scheduled at run-time (denoted as handling the dispatched jobs 
at run-time). We present the pseudo-code for (the run-time part of) GEDF-VD in 
Algorithm 1.

Pre-processing phase In this phase, we perform a schedulability test for ordi-
nary (non-MC) GEDF to determine whether (or not) it can successfully schedule: 
(i) all �i ∈ � lo up-to their lo-criticality WCET ( c lo

i
 ), and (ii) all �i ∈ � hi up-to their 

hi-criticality WCET ( c hi
i

 ). If the GEDF test fails, then, for each HI-criticality task 
�i ∈ � hi , a virtual deadline T̂i is computed (Step-2), and they execute up-to their 
lo-criticality WCET ( c lo

i
 ). 

Step 1	� We start by checking whether the task-set can be successfully scheduled by 
GEDF. If so, then GEDF directly schedules the system. Else, we modify 
the task deadlines (Step 2).

Step 2	� An additional virtual deadline parameter T̂i is calculated for each hi-crit-
icality task �i , where T̂i = xTi . A schedulability test for GEDF-VD is pro-
vided next. Furthermore, when the schedulability test is passed, x can be 
arbitrarily chosen from the range [A, B] while GEDF-VD is guaranteed to 
generate an MC-correct schedule, where A and B are defined and can be 
easily calculated for any given system by the following equations:

(1)A =max{A1,A2};
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A schedulability test for GEDF-VD The following theorem provides a sufficient 
schedulability test for GEDF-VD.

Theorem 1  An MC gang task system is schedulable under GEDF-VD upon M iden-
tical unit-speed processors if both conditions hold:

We will prove this theorem later by proving Lemmas 1 and 2 in Sects. 3.3 and 
3.4.

Recall that, 𝛥 lo
i

< M and 𝛥 hi
i

< M for all i. Therefore, m
i
U

lo

hi
+ u

lo

i
(M−

𝛥 lo

i
− m

lo

i
) = m

lo

i
(U lo

hi
− u

lo

i
) + u

lo

i
(M − 𝛥 lo

i
) > 0 , which with (5) together implies  

A > 0 ; and also m
hi
i
U

hi
hi

+ u
hi
i
(M − � hi

i
− m

hi
i
) = m

hi
i
(U hi

hi
− u

hi
i
) + u

hi
i
(M−

𝛥 hi

i
) > 0 , which implies B < 1 . Thus, both (5) and (6) being true implies that 

0 < A ≤ B < 1 , which guarantees that any x chosen from [A, B] must be a valid scal-
ing factor such that 0 < x < 1.

Run-time dispatch Similar to GEDF, at any specific time instant, a task with the 
earliest deadline gets the highest priority. In case of ties, task with a smaller index 
is favored. Let a binary variable � indicate the system-criticality level, then consider 
the following two possible cases:

Case 1 System is in the lo-criticality mode ( � = 0 ), jth job of task �i arrives at 
time t:

(i) If �i is a lo-criticality task, set the deadline as di,j = t + Ti , else set di,j = t + T̂i , 
where T̂i = xTi.

(ii) If any of the currently executing jobs executes for more than c lo
i

 and does not 
signal completion, then the system switches to the hi-criticality mode (Case 2).

(2)A1 = max
i∶�i∈� lo

{

U lo
hi

M − � lo
i

− U lo
lo

}

;

(3)A2 = max
i∶�i∈�

{

m lo
i
U lo

hi
+ u lo

i
(M − � lo

i
− m lo

i
)

m lo
i
(M − � lo

i
− U lo

lo
)

}

;

(4)B = min
i∶�i∈� hi

{

1 −
m hi

i
U hi

hi
+ u hi

i
(M − � hi

i
− m hi

i
)

m hi
i

× (M − � hi
i
)

}

.

(5)U lo
lo

< M −max
i
{𝛥 lo

i
},

(6)A ≤ B.
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Case 2 While the system is in the hi-criticality mode ( � = 1):
(i) Discard all lo-criticality tasks (or use background scheduling).
(ii) Update the deadline for the currently active hi-criticality jobs into release time 

(of these jobs) plus their actual relative deadline.
(iii) For any future hi-criticality task �i that releases a job at time t, the deadline is 

set to t + Ti.
(iv) When there is an idle instant, switch to the lo-criticality mode (Case 1)1.

3.3 � Proof of correctness in the lo‑criticality mode

In this subsection, we show that GEDF-VD and its schedulability test given by The-
orem 1 are able to guarantee MC correctness at lo-criticality mode.

Lemma 1  If both (5) and (6) are true, GEDF-VD guarantees that all lo-criticality 
tasks meet their deadlines and all hi-criticality tasks meet their virtual deadlines 
during lo-criticality mode.

Proof  Dong and Liu (2017) have proved that, given any real-time implicit deadline 
sporadic gang task system � , GEDF can schedule it successfully if

holds for all �i ∈ � (refer to Theorem 2). The virtual deadline increases the utiliza-
tion of these hi-criticality tasks (and hence the whole system). Note that, in the lo-
criticality mode, each hi-criticality task is scheduled by its virtual relative deadline 
xTi while each lo-criticality task is scheduled by its actual deadline Ti . Therefore, 
it is sufficient to view each lo-criticality task as a sporadic task with utilization u lo

i
 

and view each hi-criticality task as a sporadic task with utilization u lo
i
∕x , in order 

to meet every lo-criticality deadline and every hi-criticality virtual deadline in lo-
criticality mode. Then, for every i such that �i ∈ � , we discuss the two cases for 
M − � lo

i
− m lo

i
 . Therefore, it suffice to evaluate (7) under such utilizations for every 

task �i . We show this by two cases: (1) �i ∈ � hi , and (2) �i ∈ � lo.
Case 1 �i ∈ � hi . In this case, using (7) as a result from Dong and Liu (2017), we 

just need the following inequality to hold for any �i ∈ � hi.

(7)
Usum ≤(M − �i) × (1 −

ui

mi

) + ui

⟺ Usum ≤M − �i + ui(1 −
M − �i

mi

)

1  Note that hi-criticality mode exists for certification purposes. Such both directions of mode switch 
should be unlikely events during run time. Please also refer to the discussions about apriori verification 
and run-time robustness in Sect. 1.
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Notice that (5) implies

and (6) allows x ∈ [A,B] can be chosen so that x ≥ A , which, by (1) and (3), implies

It is clear that (9) and (10) imply (8).
Case 2 �i ∈ � lo . In this case, using (7) as a result from Dong and Liu (2017), we 

just need the following condition to hold for any �i ∈ � lo.

Subcase 2.1 M − � lo
i

− m lo
i

≤ 0 . In this case, M − � lo
i

≤ m lo
i

⟹ 1 −
M−� lo

i

m lo
i

≥ 0 . 
Therefore, the following inequality implies (11):

Notice that (5) implies

and (6) allows x ∈ [A,B] can be chosen so that x ≥ A , which, by (1) and (2), implies

It is clear that (13) and (14) imply (12)
Subcase 2.2 M − 𝛥 lo

i
− m lo

i
> 0 . In this case, 

M − 𝛥 lo
i

> m lo
i

⟹ 1 −
M−𝛥 lo

i

m lo
i

< 0 . So, u lo
i

x
(1 −

M−𝛥 lo
i

m lo
i

) < u lo
i
(1 −

M−𝛥 lo
i

m lo
i

) , as 
0 < x < 1 . Therefore, the following inequality implies (11).

(8)

U lo
lo

+
U lo

hi

x
≤ M − � lo

i
+

u lo
i

x

(

1 −
M − � lo

i

m lo
i

)

⟺

U lo
hi

x
+

u lo
i

x

(

M − � lo
i

m lo
i

− 1

)

≤ M − � lo
i

− U lo
lo

⟺

m lo
i
U lo

hi
+ u lo

i
(M − � lo

i
− m lo

i
)

m lo
i

⋅ x
≤ M − � lo

i
− U lo

lo

(9)M − 𝛥 lo
i

− U lo
lo

> 0for allisuch that𝜏i ∈ 𝜏,

(10)x ≥
m lo

i
U lo

hi
+ u lo

i
(M − � lo

i
− m lo

i
)

m lo
i
(M − � lo

i
− U lo

lo
)

for all i such that �i ∈ �.

(11)U lo
lo

+
U lo

hi

x
≤ M − � lo

i
+ u lo

i
(1 −

M − � lo
i

m lo
i

)

(12)U lo
lo

+
U lo

hi

x
≤ M − � lo

i
.

(13)M − 𝛥 lo
i

− U lo
lo

> 0 for all isuch that𝜏i ∈ 𝜏,

(14)x ≥
U lo

hi

M − � lo
i

− U lo
lo

for all i such that �i ∈ � lo .
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By the same reasoning as that for Case 1, (15) always holds because (9) and (10) are 
“for any �i ∈ � ” and both hi- and lo-criticality tasks are included in the set � . That 
is, (11) is also true in Case 2.2 here.

Combining Cases 1 and 2 (the latter includes Sub-cases 2.1 and 2.2), the lemma 
follows. 	� ◻

3.4 � Proof of correctness in the hi‑criticality mode

In this subsection, we show that GEDF-VD and its schedulability test given by The-
orem 1 are able to guarantee MC correctness at hi-criticality mode.

Lemma 2  If both (5) and (6) are true, GEDF-VD guarantees that all hi-criticality 
tasks meet their deadlines during hi-criticality mode.

Proof  At the mode switch point from the lo- to hi-criticality mode, a job from any 
task �i ∈ � hi must be either completed or has a deadline at least (1 − x)Ti after this 
mode-switch point; otherwise, an earlier time instant would have been the mode 
switch point.

Afterwards, any job from any task �i ∈ � hi has at least Ti time units (which is 
more than (1 − x)Ti as 0 < x < 1 ) from their releases in the hi-criticality mode to 
their corresponding deadlines.

Therefore, viewing each task �i ∈ � hi in the hi-criticality mode as a sporadic task 
with utilization u hi

i

(1−x)
 and using (7) as a result from Dong and Liu (2017), the follow-

ing inequality is sufficient to ensure that all hi-criticality tasks meet their actual 
deadlines during hi-criticality mode. For all i such that �i ∈ � hi,

 Notice that (6) allows x ∈ [A,B] can be chosen so that x ≤ B , which, by (4), implies 
the following equation holds for all i such that �i ∈ � hi:

(15)U lo
lo

+
U lo

hi

x
≤ M − � lo

i
+

u lo
i

x
(1 −

M − � lo
i

m lo
i

)

(16)m hi
i

×
U hi

hi

(1 − x)
≤ m hi

i
× (M − � hi

i
) −

u hi
i

1 − x
× (M − � hi

i
− m hi

i
)

Fig. 2   Any value of the scaling 
factor x, where A ≤ x ≤ B , guar-
antees an MC-correct schedule

0 1B

System schedulable at
LO-criticality mode

A

System schedulable at HI-criticality mode

System  schedulable at both
LO- and HI-criticality mode
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Furthermore, Equation (17) is equivalent to Equation (16), as 
0 < x < 1 and 𝛥 hi

i
< M . Thus, the lemma follows. 	�  ◻

Finishing up We establish Theorem  1 by combining Lemma 1 and 2, and it 
serves as a sufficient schedulability test for GEDF-VD to schedule MC gang task 
sets on M identical processors. In addition, Fig.  2 gives a high-level intuition for 
validating Theorem 1, given that Lemma 1 and 2 have been proven. Note that we 
did leverage some insights (in our analysis) from prior works on MC scheduling and 
gang scheduling. However, considering both of these directions brought increased 
complexity in our system model. The existing analysis of MC scheduling or gang 
scheduling is not directly applicable to our work. For example, in the speedup bound 
analysis for MC scheduling of ordinary sporadic tasks, an individual task’s utiliza-
tion is at most the speed of a processor is a straightforward and necessary feasibility 
condition, while it no longer holds for the gang tasks.

Remark 2  If we consider that the degree of parallelism of a task �i remains 
unchanged even after a mode-switch, i.e., m lo

i
= m hi

i
= mi , then the correctness 

proofs become identical to the correctness proofs established in  Bhuiyan et  al. 
(2019b).

4 � Speedup bound analysis

In this section, we evaluate the effectiveness of our algorithm GEDF-VD based on 
speedup bound metric, which is a widely accepted tool for evaluating the effective-
ness of multiprocessor scheduling algorithms (Baruah et  al. 2015a). We will first 
provide the related definition and some existing results, and then (in Sect. 4.1) will 
derive the speedup bound for gang tasks under GEDF algorithm considering the 
non-MC systems. This is the first speedup bound for (non-MC) gang tasks under 
GEDF scheduling policy, which lays the foundation for deriving a speedup bound 
for MC gang tasks. Finally, in Sect. 4.2, considering the MC sporadic gang tasks, 
we prove a speedup bound for our proposed algorithm GEDF-VD. We derive the 
speedup bound for non-MC gang tasks (Sect. 4.1) and the MC gang tasks (Sect. 4.2) 
assuming that the degree of parallelism of a task �i does not change after a mode-
switch, i.e., m lo

i
= m hi

i
= mi.

Definition 5  (Speedup factor and speedup bound) For a scheduler S , a speedup fac-
tor V ( V ≥ 1 ) (also known as resource augmentation factor) means that any task set 
that is schedulable by an optimal scheduler on a platform of speed-1 cores will be 
schedulable by S on a platform of speed−V cores.

(17)x ≤ 1 −
m hi

i
U hi

hi
+ u hi

i
(M − � hi

i
− m hi

i
)

m hi
i

× (M − � hi
i
)
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For a scheduler S , a speedup bound refers to the lower bound of the speedup fac-
tor V achievable by it. A speedup bound for a scheduler S provides an estimation of 
how far the performance of S is from an optimal scheduler, and the lower the better.

Limitations Our speedup factors result in this section rely on the following 
assumption that

The speedup factors results in this section apply only to systems that satisfy the 
condition (18). Nonetheless, condition (18) was not required for the schedulability 
test and analysis in the last section. Therefore those schedulability results apply to a 
broader range of MC gang task systems. In practice, condition (18) is often satisfied 
because of the number of cores in modern platforms increases.

Note that gang tasks cannot be scheduled on uniprocessor platforms due to their 
natures of the mandatory parallel processor access request. Therefore, in order to 
compare with a potential optimal scheduler on a uniprocessor, we propose a De-
ganging transformation between a multiprocessor gang task set and a corresponding 
Liu-and-Layland (LL) task set:

–	 De-ganging Given a gang task set � = {�1,..., �n} , for each task �i = {mi, ci, Ti} , 
construct mi LL tasks {�

�(1)

i
,..., �

�(mi)

i
} , each with the same execution length and 

period, i.e., �
�(j)

i
= {ci, Ti} for any j = 1,...,mi . For mapping of the other way 

around, any deganged LL task set can be clustered into n groups, where there 
are mi tasks from the ith group sharing the same execution time ci and the same 
period Ti , resulting in a gang task �i = {mi, ci, Ti} of the same “total” utilization. 
The extension to MC task set is trivial—treat ci as a vector and maintain the val-
ues during the transfer.

A moment thought should convince the reader that it suffices to restrict our attention 
to the de-ganged LL task set when deriving the speedup bound, as the de-ganged 
LL task set being schedulable is necessary for the corresponding gang task set to be 
schedulable. This transformation does not change the overall set utilization and thus 
does not change the utilization-based necessary schedulability conditions (i.e., basis 
of the speedup proofs). Throughout the proofs in this section, the following Greek 
letters will be used frequently:

(18)mi ≤
M + 1

2
for all �i ∈ �,

(19)

� =M∕
�

2 −
1

M

�

;

� =

√

5 + 1

2
(i.e., golden ratio);

� =

√

5 − 1

2
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4.1 � Speedup bound for gang tasks under GEDF

In this subsection, we derive the speedup bound (shown in Theorem 2) for the algo-
rithm GEDF, considering the non-MC gang task set � , executing on V-speed cores. 
This is the first speedup bound result for gang task under GEDF scheduling. This 
analysis lays the basis for deriving the speedup bound for the proposed MC gang 
task scheduler.

Theorem 2  Given any de-ganged task set that is schedulable on a speed-M uni-pro-
cessor, the corresponding gang task set will pass the schedulabililty test of GEDF 
upon a M-core system, each of speed V = 2 − 1∕(M + 1 −mini{mi}).

Proof  Because 1 ≤ mi ≤ M for any i, we know that for all �i ∈ �,

From feasibility of the LL task set on a speed-M uniprocessor, we have Usum ≤ M . 
So,

The condition 2mi −M − 1 ≤ 0 is equivalent to (18); while ui ≤ mi is true for any 
gang task because the utilization of each gang task �i is ui = mi(ci∕Ti) , where ci ≤ Ti . 
Note that ui can also be viewed as the total utilization of the mi de-ganged LL tasks 
that correspond to the gang task �i . Again, de-ganging preserves the utilization of 
the set. From Eq. (21):

(20)

V =2 −
1

M + 1 −mini{mi}

≥2 −
1

M + 1 − mi

=
2M + 1 − 2mi

M + 1 − mi

;

(21)

(20) ⟹ V ≥
Usum +M + 1 − 2mi

M + 1 − mi

⟺
Usum

V
≤M − (mi − 1) +

(2mi −M − 1)

V

⟺ mi

Usum

V
≤miM − mi(mi − 1) +

mi

V
(2mi −M − 1)

⟹ mi

Usum

V
≤miM − mi(mi − 1) +

ui

V
(2mi −M − 1)

[ui ≤ mi, 2mi −M − 1 ≤ 0]
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[From Definition 4: 0 ≤ �i ≤ mi − 1]

The equation above implies that the corresponding gang set is GEDF schedulable on 
M speed-V processors (Theorem 2 in Dong and Liu (2017)). Note that the last step 
is true because under speed of V , all utilizations in the test should be treated as the 
ones under speed 1 divided by V , in order to apply the original schedulability test 
under a speed-1 platform. 	� ◻

Theorem 2 indicates that the speedup factor of the GEDF schedulability test 
in Theorem  2 of Dong and Liu (2017) (for gang task set) is no greater than 
V = 2 − 1∕(M + 1 −mini{mi}) . Because 1 ≤ mi ≤ M for any i, V ≤ 2 −

1

M
 . There-

fore, the following corollary follows directly from Theorem 2.

Corollary 1  Given any de-ganged task set that is schedulable on a speed-M uni-pro-
cessor, the corresponding gang task set will pass the schedulability test of GEDF 
upon a M-core system, each of speed (2 − 1

M
).

Furthermore, scaling all speeds by a factor of 1∕(2 − 1

M
) lead to the following 

corollary.

Corollary 2  Given any de-ganged task set that is schedulable on a speed-� uni-pro-
cessor, the corresponding gang task set will pass the schedulability test of GEDF 
upon M unit-speed processors, where � = M∕(2 −

1

M
).

4.2 � Speedup bound for gang tasks under GEDF‑VD

The previous subsection proved the speedup bound for non-MC task under GEDF. 
We now brings MC and virtual deadlines into the picture, and derive the speedup 

mi

Usum

V
≤ miM − (mi − 1)mi + (mi − 1)

ui

V
+

ui

V
(mi −M)

⟹ mi

Usum

V
≤ miM − (mi − 1)

(

mi −
ui

V

)

−
ui

V
(M − mi)

⟹ mi

Usum

V
≤ miM − �i

(

mi −
ui

V

)

−
ui

V
(M − mi)

(22)

=mi(M − �i) − (M − �i − mi)
ui

V
[re-arrange]

=(M − �i)
(

mi −
ui

V

)

+ mi

ui

V
[re-arrange]

⟹
Usum

V
≤(M − �i)

(

1 −
ui

miV

)

+
ui

V

[dividemion both sides, re-arrange], for all i
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bound for MC gang task set � under GEDF-VD. From the definitions of � and � 
in Equation (19), the following properties hold:

Theorem 3  Given any de-ganged MC task set that is schedulable on a speed-(� ⋅�) 
uniprocessor, the corresponding MC gang task set will be schedulable under GEDF-
VD upon M unit-speed processors, where � = M∕(2 −

1

M
) and � =

√

5−1

2
.

Proof  The de-ganged MC task set being schedulable on a speed-(� ⋅�) uni-proces-
sor implies

We proceed the rest of this proof in two cases.
Case 1: U lo

hi
≥ � ⋅ U lo

lo
 . By (25) and the condition of Case 1,

Then, by the above and (25),

Thus, no virtual deadline needs to be set at all. Both hi- and lo-criticality tasks are 
scheduled by GEDF according to their actual deadlines on M unit-speed processors. 
By Corollary 2, no deadline will be missed.

Case 2: U lo
hi

< 𝛷 ⋅ U lo
lo

 . By (25) and the condition of Case 2,

That is,

Then, we have

(23)1 +� = � =
1

�

(24)� +�2 = 1

(25)max{U lo
lo

+ U lo
hi
,U hi

hi
} ≤ � ⋅�.

� ⋅� ≥ U lo
lo

+ U lo
hi

≥ (1 +�)U lo
lo

⟹ U lo
lo

≤
�

1 +�
⋅ � = �2

⋅ � . [by (23)]

U lo
lo

+ U hi
hi

≤ �2
⋅ � +� ⋅ � = � . [by (24)]

𝜓 ⋅𝛷 ≥ U lo
lo

+ U lo
hi

> (
1

𝛷
+ 1)U lo

hi

=
1 +𝛷

𝛷
⋅ U lo

hi
=

1

𝛷2
⋅ U lo

hi
. [by (23)]

(26)U lo
hi

< 𝛷3
⋅ 𝜓 .



288	 Real-Time Systems (2021) 57:268–301

1 3

which is concluded as

In this case, one could take x = U lo
hi

�−U lo
lo

 as the scaling factor to set the virtual dead-
lines for hi-criticality tasks. Because the de-ganged task set is schedulable on a 
speed-(� ⋅� ) uniprocessor, U lo

lo
≤ � ⋅� , which implies x > 0 , as 𝛷 < 1 , 𝜓 > 0 , 

and U lo
hi

> 0 . On the other hand, U lo
hi

< 𝛷 ⋅ U lo
lo

 in Case 2, so

Thus, in this case, 0 < x < 1 is guaranteed under this particular setting and there-
fore this x can always be used as the scaling factor to set the virtual deadlines for 
GEDF-VD.

Then, we first show that all lo-criticality tasks meet their actual deadlines and all 
hi-criticality tasks meet their virtual deadlines during the lo-criticality mode.

By Corollary  2, the above equation implies that using GEDF-VD to schedule the 
gang task set on M unit-speed processors, all lo-tasks meet their actual deadlines 
and all hi-tasks meet their virtual deadlines during the lo-mode. Next, we show that 
all hi-criticality tasks, including any carryover (hi-) jobs across the mode-switch 
point, meet their actual deadlines during the hi-criticality mode.

Because the virtual deadlines are set as x ⋅ Ti for each hi-criticality task �i , every 
hi-criticality job including the one triggering the mode switch will have at least 
(1 − x)Ti time units to finish its at most C hi

i
 execution and to release its next job. 

It suffices to consider the schedulability when replacing each hi-criticality task in 
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the hi-criticality mode by a implicit-deadline sporadic task with period (1 − x)Ti and 
execution C hi

i
 . It can be done by checking their total utilization

On the other hand, by (27), we have

and 1 − x > U hi
hi
∕𝜓 holds since we set x = U lo

hi

�−U lo
lo

 . Thus,

By Corollary  2, the above equation implies that using GEDF-VD to schedule the 
gang task set on M unit-speed processors, all hi-criticality tasks, including any car-
ryover (hi-) jobs across the mode-switch point, meet their actual deadlines during 
the hi-criticality mode. 	�  ◻

Finally, we can easily use Theorem 3 to derive a speedup bound for GEDF-VD 
to schedule MC gang task sets on identical processors, as stated in the following 
theorem.

Theorem 4  If any potentially optimal algorithm can schedule an MC gang task set 
on M unit-speed processors, GEDF-VD is able to schedule the same MC gang task 
set on M speed-(

√

5 + 1) processors.

Proof  Theorem 3 directly implies that:

If any potentially optimal algorithm can schedule an MC gang task set on M 
speed-(� ⋅�∕M) processors, GEDF-VD is able to schedule the same MC gang 
task set on M unit-speed processors.

This is because for a MC gang task set to be schedulable on M speed-(� ⋅�∕M) pro-
cessors, it is necessary for its corresponding de-ganged MC task set to schedulable 
on a speed-(� ⋅�) uniprocessor. Note that, by definitions: � =

M

2−
1

M

 and � =
√

5−1

2
 , 

the following statement is true:

If any potentially optimal algorithm can schedule a MC gang task set on M 
speed-

�

1

2−
1

M

⋅

√

5−1

2

�

 processors, GEDF-VD is able to schedule the same MC 

gang task set on M unit-speed processors.

Scaling the speed unit up by 
�
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M

�√
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2
 (please note that 
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= 1 ), the 

above statement can be re-written as:
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�i∈� hi
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U hi
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If any potentially optimal algorithm can schedule a MC gang task set on M 
unit-speed processors, GEDF-VD is able to schedule the same MC gang task 
set on M speed-

�

2 −
1

M

�√

5+1

2
 processors.

Since 
�

2 −
1

M

�√

5+1

2
<
√

5 + 1 , the theorem follows. 	�  ◻

5 � Evaluation

In this section, we evaluate the performance of GEDF-VD through simulation 
results. While the simulation results provide some representation of the proposed 
scheduling’s performance, they may not represent the exact behavior of our pro-
posed approach in real systems for several reasons. For example, memory plays 
a vital role from an implementation point of view and needs to be available and 
allocated to parallel threads. Although a recent work (Capodieci et  al. 2018) has 
implemented a preemptive EDF scheduler for GPU tasks providing bandwidth isola-
tion, MC scheduling on the GPU platform (with preemptive EDF) and the memory 
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Fig. 3   Acceptance ratio for GEDF-VD with a different (after a mode-switch) average degrees of parallel-
ism

Table 2   Acceptance ratio 
for different amount of tasks 
generated under various average 
utilization and R value

U
avg

→

# of tasks↓
R 2 2.5 3 3.5 4 4.5 5

8 4 100 100 97 59 5 5 4
12 4 100 99 94 65 2 2 2
16 4 100 100 98 50 0 0 0
8 8 97 75 67 31 23 19 11
12 8 100 100 74 58 40 17 6
16 8 100 98 91 77 48 34 11
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partitioning technique to the gang tasks are yet to be explored. In the future, we 
plant to explore implementation and experimentation on a real hardware platform. 
As our work is the first to propose MC gang task scheduling, there is no perfect 
baseline for comparison. We have performed many experiments by varying different 
factors to observe the efficiency of our algorithm.

5.1 � Experimental setup

Workload generation We generate MC gang tasks based on the following 
parameters.
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Fig. 4   Acceptance ratio for GEDF-VD in an 8-core platform with R = 4 , and under same ranges of 
degrees of parallelism

Fig. 5   Acceptance ratio for GEDF-VD in an 8-core platform with R = 8 , and under same ranges of 
degrees of parallelism
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•	 M : The number of processor cores.
•	 mmin,mmax,mavg : The minimum, maximum, and average value for m (i.e., 

degree of parallelism), respectively. We generate the task set by varying these 
three parameters, where mmin,mmax ∈ [1,M] and mmin ≤ mavg ≤ mmax.

•	 Uavg : The average utilization for the task set. We have varied Uavg value from 
0.05 ×M to 0.95 ×M with 0.05 ×M difference at each step.

•	 P hi = 0.5 : The probability of a task �i ∈ � hi.
•	 R: Denotes the maximum ratio of u hi

i
 to u lo

i
 , where R ∈ [4, 8] . We generate u hi

i
 

uniformly from [u lo
i
,R × u lo

i
].
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Fig. 6   Acceptance ratio for GEDF-VD in an M-core platform (with R = 4 ). In this experiment 
M ∈ {4, 8, 16, 32}

Fig. 7   Acceptance ratio for GEDF-VD in an M-core platform (with R = 8 ). In this experiment 
M ∈ {4, 8, 16, 32}
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At first, for a specific value of n (number of tasks per task set), we generate the m 
values for each task. m is uniformly generated from 

[

mmin,mmax

]

 range in a way so 
that the average m for all tasks remains equal to mavg . Next, for a specific value of 
average utilization Uavg , we calculate the average utilization ua

i
 for each task by 

following the log-normal distribution. Note that, for n number of gang tasks, 
there are total 

∑n

i=1
mi = mavg × n amount of single task instances in each task set. 

For the sake of a proper distribution, we extend the UUniFast algorithm (Bolado 
et  al. 2004) for Gang task. We use log-normal distribution over 

∑n

i=1
mi task 

instances similarly as UUnifast, but for a single task, we take the average of all of 
its instances as the task’s average utilization. The values of u lo

i
 is uniformly gen-

erated from [ 2×u
a
i

R+1
, ua

i
] so that the value of u hi

i
 is always in the range [u lo

i
,R × u lo

i
].

Simulation setup We performed the simulation for average utilization ranging 
from 0.05M to 0.95M with a step size of 0.05M. For each average, 100 task sets ( 
each with 10 tasks) are generated.
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Fig. 9   Acceptance ratio for GEDF-VD in an 8-core platform with R = 8 and a varying range of m
avg
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5.2 � Evaluation results

We execute a set of gang tasks under our proposed algorithm by varying differ-
ent parameters, and present the simulation results in Figs. 3, 4, 5, 6, 7, 8 and 9, 
and in Table 2. Note that, in Table 2, and in Figs. 4, 5, 6, 7, 8 and 9, we consider 
that the degree of parallelism (of the hi-criticality tasks) does not change after a 
mode-switch.

Effect of changing the degree of parallelism after a mode switch In this 
experiment, we set the value for M to 8 , and vary (i.e., increase or unchanged) 
the degree of parallelism of a hi-criticality task after a mode-switch. To incorpo-
rate the change in the task model, i.e., the degree of parallelism of a hi-criticality 
task can change after a mode-switch, we slightly modify the simulation setup 
described in Sect. 5.1. We report the acceptance ratio (in Fig. 3) with a different 
average of m lo

i
 (i.e., from 2.5 to 3.5) and m hi

i
 (i.e., from 3 to 4) values. This figure 

reports that the acceptance ratio (i.e., the ratio of the number of schedulable task 
sets over the total number of task sets) decreases when the degree of parallelism 
increases, which can be explained by Eqs. (8) and (16). That is, a higher value of 
m lo

i
 or m hi

i
 inversely affects the acceptance ratio.

Effect of changing the degree of parallelism in a range with lower difference 
In this set of experiments, for M = 8 , we vary a task’s degree of parallelism (m) in 
a different range, while the difference between the upper and lower bound in each 
range is fixed. The acceptance ratio under varying degree of parallelism (and dif-
ferent R values) is reported in Figs. 4 and 5. These figures indicate that in boundary 
cases (where the degree of parallelism is very low or very high) acceptance ratio 
changes proportionally with respect to the degree of parallelism. This behavior can 
be explained with the help of Eqs. (8) and (16). When m increases or decreases by a 
large amount, acceptance ratio will increase or decrease respectively. However, for a 
small change of m, acceptance ratio may not change proportionally. This is because 
the schedulability conditions provided by Eqs. (8) and (16) are also effected by the 
maximum number of idle cores ( �i ), which is dependent on m.

Effect of changing the total number of cores In Figs. 6 and 7, we report the 
acceptance ratio of the task set by varying the number of cores in the system, M. In 
this set of experiments, we set a value for mavg , which is uniformly generated from 
a range of [M

2
,
3M

4
] . Simulations are conducted for M = 4, 8, 16, and 32 and the aver-

age utilization is weighted with respect to the value of M. Figures 6 and 7 shows 
that the acceptance ratio is not affected by different values of M and remains almost 
unchanged.

Effect of changing number of tasks per task set In this set of experiments, we 
have randomly generated 100 task sets with different R values and 8, 12, and 16 
tasks per task set (with Uavg changing from 2 to 5 with a step size of 0.5) and report 
the acceptance ratio in Table 2. From the reported data, it is clear that the accept-
ance ratio of the task set is not affected by the number of tasks per set. This result 
indicates the effectiveness of our proposed algorithm under a varying number of 
tasks in a task set.
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Effect of changing mavg value In Figures 8 and 9, we show the acceptance ratio 
by varying mavg in an 8-core platform. The result does not demonstrate a direct rela-
tionship between mavg and the acceptance ratio.

6 � Related work

Since Vestal’s proposal  (Vestal 2007) of MC workload model, much work has 
focused on scheduling MC tasks (refer to Burns and Davis (2013) for a survey). For 
uniprocessor platforms, many algorithms were proposed based on both fixed prior-
ity (e.g., Li and Baruah 2010; Baruah et al. 2011) and dynamic priority scheduling 
( e.g., Easwaran 2013). The work in Bhuiyan et  al. (2019a, 2020b) proposed the 
precise scheduling policy, where all lo-criticality tasks receive a full-service guar-
antee even after a mode switch. On the other hand, numerous MC scheduling algo-
rithms were proposed for multiprocessor platforms (Lee et al. 2014; Baruah et al. 
2015b; Tobuschat and Ernst 2017; Awan et al. 2017; Trüb et al. 2017). Considering 
the multiprocessor platforms, Lee et al. (2014) and Baruah et al. (2015b) proposed 
fluid-based MC models, and a semi-partitioned based scheme is proposed by Awan 
et al. (2017).

Considering different parallel tasks models [e.g., synchronous task model 
(Andersson and de Niz 2012), DAG model (Bonifaci et al. 2013; Li et al. 2014; Guo 
et al. 2017; Bhuiyan et al. 2018, 2020a; Guo et al. 2019) and gang models (Kato and 
Ishikawa 2009; Goossens and Richard 2016; Dong and Liu 2017)] there have been 
a number of works that have provided the energy efficiency technique, schedulabil-
ity analysis, and the speedup bound (i.e., resource augmentation bound) for vari-
ous scheduling strategies. For synchronous tasks under GEDF scheduling, Anders-
son and de Niz (2012) proved a resource augmentation bound of 2 with constrained 
deadlines tasks. Considering DAG tasks (with arbitrary deadlines) under GEDF, 
Li et  al. (2013) and Bonifaci et  al. (2013) simultaneously proved a resource aug-
mentation bound of 2. Bonifaci et al. (2013) also showed the bound to be 3 under 
global rate-monotonic scheduling. For implicit deadline DAG tasks under federated 
scheduling, a resource augmentation bound of 2 is showed by Li et al. (2014). Gang 
scheduling and Coscheduling was initially introduced to perform parallel process-
ing with fine-grained interactions efficiently (Feitelson and Rudolph 1992; Ouster-
hout 1982; Gehringer et al. 1987). Both of these approaches allocate resources to the 
threads of the same task concurrently. However, gang scheduling imposes a strict 
requirement of executing all threads of the same task simultaneously. In contrast, 
in coscheduling, some threads may not execute concurrently with the rest of the 
threads in the same task. Some recent work used this concept to execute the parallel 
workload in cloud computing (Stavrinides and Karatza 2016) and extended to incor-
porate hard real-time tasks (Goossens and Richard 2016). The work in Goossens and 
Richard (2016) also has proposed a DP-Fair based scheduling of periodic gang tasks 
and proved a speedup bound which is no larger than ( 2 − 1∕m ). A recent work by 
Alahmad and Gopalakrishnan (2019) proposed the isochronous scheduling, which 
has some similarity to the traditional gang scheduling. Unlike the gang scheduling, 
the isochronous model assumed that the job versions might not be compatible with 
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all the processors available. Although the work in Alahmad and Gopalakrishnan 
(2019) has some connections to the MC task model, they did not explicitly concern 
different criticality levels of a task. It aims to achieve higher design assurance lev-
els by using adequate monitoring and improving mechanisms. In contrast, the MC 
scheduling that we propose focuses on providing service guarantee only to the high 
criticality jobs where computational resources are not adequate. Kato and Ishikawa 
(2009) introduced gang task scheduling based on global EDF. Dong and Liu (2017) 
proposed a schedulability analysis based on lag-based reasoning. Few other related 
works, such as Goossens and Berten (2010), provided schedulability tests for fixed 
task-priority scheduling of real-time periodic gang tasks.

Although a good number of works studied MC scheduling and parallel tasks 
scheduling individually, very few works studied the scheduling of MC parallel 
tasks (Liu et al. 2014; Baruah 2016; Li et al. 2017; Rambo and Ernst 2017). Rambo 
and Ernst (2017) proposed a replica-aware co-scheduling approach (that is a com-
bination of strict priority preemptive (SPP) policy and gang scheduling policy) for 
mixed-critical systems. Baruah (2016) and Li et al. (2017) proposed the MC sched-
uling of DAG models, while (Liu et al. 2014) proposed the MC scheduling of the 
synchronous task model. Unlike these works, we consider the gang task model, 
where a task cannot execute if the number of available cores is less than its degree of 
parallelism. This constraint makes the scheduling problem highly challenging.

7 � Conclusion

Parallel computing with real-time constraints is gaining popularity due to its broad 
applicability and system efficiency (Kato and Ishikawa 2009; Andersson and de Niz 
2012; Bonifaci et al. 2013; Li et al. 2014; Goossens and Richard 2016; Dong and 
Liu 2017; Guo et al. 2017; Bhuiyan et al. 2018; Guo et al. 2019). WCET measure-
ments are pessimistic due to increased uncertainty. So, there is an emerging need to 
introduce MC into parallel computation models and system designs. We leverage 
two existing algorithms (EDF-VD and GEDF) to schedule MC gang tasks efficiently 
in this work. We derive the first speedup bound for GEDF schedulability of (non-
MC) gang tasks and further derived the bound for GEDF-VD of MC gang tasks.

Future work This work is an initial step of more substantial efforts in bringing 
richer system modeling and analysis into the emerging need in many applications 
for parallel computing and MC. In the future, by ensuring the a priori verification, 
we plan to consider run-time robustness, with moldable or malleable models for MC 
gang tasks. In this work, we have considered the preemptive scheduling, where a 
high priority task can interrupt a running task, and offers more flexibility in task 
scheduling. However, preemptive scheduling suffers from the switching overhead 
as a task from running state to ready state and vice-versa. In the future, we plan 
to study the non-preemptive scheduling (which does not suffer from task switching 
overhead) and provide a detailed comparison between these two directions. We also 
plan to evaluate our results (in this paper) by implementations on applicable hard-
ware platforms.
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