
Multi-Party Sparse Discriminant Learning

Jiang Bian1, Haoyi Xiong1,∗, Wei Cheng2, Wenqing Hu1, Zhishan Guo1 and Yanjie Fu1
1Missouri University Science and Technology, USA, 2NEC Laboratories America, USA

Abstract—Sparse Discriminant Analysis (SDA) has been widely
used to improve the performance of classical Fisher’s Linear
Discriminant Analysis in supervised metric learning, feature se-
lection and classification. With the increasing needs of distributed
data collection, storage and processing, enabling the Sparse
Discriminant Learning to embrace the Multi-Party distributed
computing environments becomes an emerging research topic.
This paper proposes a novel Multi-Party SDA algorithm, which
can learn SDA models effectively without sharing any raw data
and basic statistics among machines. The proposed algorithm 1)
leverages the direct estimation of SDA [1] to derive a distributed
loss function for the discriminant learning, 2) parameterizes
the distributed loss function with local/global estimates through
bootstrapping, and 3) approximates a global estimation of linear
discriminant projection vector by optimizing the “distributed
bootstrapping loss function” with gossip-based stochastic gradi-
ent descent. Experimental results on both synthetic and real-
world benchmark datasets show that our algorithm can compete
with the centralized SDA with similar performance, and signifi-
cantly outperforms the most recent distributed SDA [2] in terms
of accuracy and F1-score.

I. INTRODUCTION

The Fisher’s Linear Discriminant Analysis (LDA) [3] is

widely used in supervised learning and feature extraction. Given

a set of training data, LDA can find the optimal discriminant

projection that can project the high-dimensional data points

to low dimensional space, and achieve optimal classification

performances by minimizing the overlaps between difference

classes in the low-dimensional space. To further improve the

performances of LDA, Sparse Discriminant Analysis (SDA) [1]

has been proposed to “recover” discriminant projection with

sparsity pursuit. While a wide range of methods [1], [4]–

[6] have been proposed, Cai et al. [1] studied a direct

estimator that can estimate Sparse Discriminant Analysis (SDA)

straightforwardly from labeled data with provable guarantee in

asymptotic property and classification accuracy.

On the other hand, with the increasing needs of distributed

data collection, storage and processing, Multi-Party comput-

ing [7] becomes an emerging computing paradigm that enables

big data applications in a privacy-preserved manner. In a multi-

party computing platform with no “raw data sharing” allowed,

a machine learning model should be trained using all data

stored in distributed machines (i.e., parties) without any cross-

machine raw data sharing. Generally speaking, such multi-party

distributed machine learning algorithms can be divided into two

categories – data-centric and model-centric methods [8]–[12].
On each machine, the data centric algorithm first estimates the

same set of parameters (of the model) using the local data,

then aggregates the estimated parameters via model-averaging

for global estimation. The model with aggregated parameters

is considered as the trained model based on the overall data

(from multiple parties). Meanwhile, model-centric algorithms

require multiple machines to share the same loss function with

“updatable parameters”, and allow each machine to update the

parameters in the loss function using the local data so as to

minimize the loss. Compared with the data-centric, the model-

centric methods usually can achieve better performances, as

it minimizes the risk of the model [8], [12]. To advance the

distributed performance of classical SDA, recently, Tian and Gu

et al. [2] proposed a data-centric SDA algorithm. However, in

literature, few researches have been carried out on the model-

centric counterpart for SDA, which intuitively may receive

better performance.
To fill the gap, we are motivated to propose a novel model-

centric SDA learning algorithm for multi-party discriminant

learning. In this paper, we propose Multi-Party SDA (namely

MPSDA) that enables the direct estimation of SDA [1] to
embrace the multi-party computing environment for sparse

discriminant learning. Specifically, MPSDA first allocates the
mean and covariance matrix estimation tasks to each machine

and allows each machine to estimate its local mean vectors

and covariance matrices based on the local data. Then, MPSDA
estimates the global mean over all the data using the local

means via the gossip-based stochastic gradient descent. Further,

MPSDA proposes a distributed bootstrapping loss function
and model the loss function using the global mean and local

covariance matrices. Finally, a gossip-based stochastic gradient

descent algorithm is employed to minimize the distributed

bootstrapping loss function and estimate the global discriminant

projection vector. Compared with the approach in [1], which

aggregates all data on a single machine to learn the model,

MPSDA can effectively approximate to the optimal solution
without sharing any raw data. Compared with [2], which

aggregates the locally learned models through model-averaging

and hard-thresholding, MPSDA models and minimizes a
distributed loss function based on SDA, parameterized with

global/local estimates, straightforwardly.
The contributions of the proposed MPSDA algorithm are as

follows:

• We study and formulate the problem of sparse discriminant
learning on the top of multi-party computing platform,

while assuming the raw data distributed on machines

(parties) are not sharable. To the best of our knowledge,

this is the first study on sparse discriminant analysis, by

addressing 1) multi-party computing platform without

sharing raw data, 2) model-centric learning with shared

loss function, and 3) distributed optimization issues.

Note that Multi-Party computing settings [13], usually

2017 IEEE International Conference on Data Mining

2374-8486/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDM.2017.86

745

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:41:06 UTC from IEEE Xplore. Restrictions apply.

leverage the secured communication and computation
to keep the local data, on each party, private, while our
work assumes the local raw data and basic statistics (on
each machine) are not accessible by others. Thus we do
not make further assumption on cryptography issue.

• To achieve the above goals, we design the MPSDA
algorithm which leverages the direct estimation of SDA

to derive a distributed loss function of the discriminant

learning, parameterizes the distributed loss function with

local/global estimates through bootstrapping, and approxi-

mates a global estimation of linear discriminant projection

vector by optimizing the “distributed bootstrapping loss

function”.

• We evaluate MPSDA on both pseudo-random simulation
and real-world benchmark datasets for binary classification.

The results show that MPSDA can compete with the cen-
tralized SDA with similar performances, and significantly

outperform the state-of-the-art distributed SDA [2].

The rest of the paper is organized as follows. In Section

II, we review Fisher’s Linear Discriminant Analysis and

present the details of MPSDA algorithm. In Section III, we
evaluate the proposed algorithms on synthetic datasets and

benchmark datasets. In addition, we compare MPSDA with
baseline centralized algorithms. Finally, we conclude the paper

in Section IV.

II. MODELS AND PROPOSED ALGORITHMS

In this section, we present the algorithm design of MPSDA,
where we first review the model of Fisher’s Linear Discriminant

Analysis, then we cover the key algorithms used in MPSDA.

A. Model Overview: Fisher’s Linear Discriminant Analysis

Linear Discriminant Analysis (LDA), which leverages a

linear combination of features that characterize or separate two

or more classes of objects or events. LDA has been shown

to perform well and enjoy certain optimality as the sample

size tends to infinity while the dimension is fixed [1]. Given

the LDA classifier ψF (Z) based on the given p-dimensional
data vector Z that is drawn from one of two distributions
N (μ+,Σ) and N (μ−,Σ) with equal prior probabilities, the
binary classification problem can be solved by

ψF (Z) = sign
{
(Z − μ)TΘ(μ+ − μ−)

}
, (1)

where μ = (μ+ + μ−)/2; Θ = Σ−1 is the inverse covariance
matrix; μ+ and μ− are the mean vectors of the positive samples
and negative samples respectively; ψF (Z) classifies Z into
positive class if and only if ψF (Z) = 1. In practice, μ+, μ−
and Θ are unknown, we need to estimate μ+, μ− and Θ from
observations. Specifically, we assume the data Z is randomly
drawn from N (μ+,Σ) and N (μ−,Σ) with equal priors.
A simple way to estimate μ+, μ− and Θ is to use their

sample estimator: μ̄+, μ̄−, Θ̄ = Σ̄−1, where Σ̄ is pooled sample
covariance matrix estimation [14] with respect to the two

classes. Note that, under the High Dimensional Low Sample

Size (HDLSS) settings, Σ̄ is often singular [15] and Σ̄−1

usually does not exist [16]. Thus, to train LDA, researchers [1],

[5] proposed to estimate the linear discriminate projection

vector β = Θ(μ+−μ−), instead of estimating Θ and μ+−μ−
separately.

B. The Three-Stage Algorithm for MPSDA Training

To facilitate Θ(μ+ − μ−) estimation under the Multi-
Party computing settings which have been defined previously,
MPSDA first estimates the projection vector β̂∗ that approx-
imates Θ(μ+ − μ−) over Gossip-based stochastic gradient
descent, so as to avoid the singularity issue of the sample

covariance matrix. Then, for any new data vector Z arriving
at any machine, MPSDA outputs the classification result (i.e.,
±1) as the computing result of sign

(
(Z − μ̂)T β̂∗

)
.

1) Stage I – Global Mean Estimation: Given the local
training samples T j+ and T

j
− on each machine j, MPSDA first

estimates the local mean vectors μ̄j , μ̄j+ and μ̄
j
−. Then, MPSDA

randomly picks up a starting machine (e.g., the jth machine)
and sends (0,0,0, 1) to the Algorithm. 1 on the machine, where
0 refers to a p-dimensional vector with all zero elements and
1 refers to the first update of the algorithm. Algorithm. 1 is a
gossip-based stochastic gradient decent algorithm that intends

to approximate the global means using the estimators listed in

Eq. 2.

μ̂ = argmin
μ∈�1×p

1

m

m∑
j=1

|μ− μj |∞, (2)

so as to μ̂+, μ̂−. Specifically, the Algorithm. 1 first receives
the input mean vectors (initialed as 0 in the first run), then
it updates the input mean vectors using the local means,

and randomly picks up the next machine and sends the

updated mean vectors for further updating. Algorithm. 1

keeps picking up the next machine for the updating, until

(1) the total number of updates t exceeds the maximal
number of updates, or (2) the updating process converges (i.e.,

max
{∣∣μ̂− μ̄j∣∣∞ ,

∣∣∣μ̂+ − μ̄j+∣∣∣∞ ,
∣∣∣μ̂− − μ̄j−∣∣∣∞}

≤ Δmax).

Once the updating process completes, Algorithm. 1 broadcasts

all m machines with the final global mean estimations μ̂, μ̂+
and μ̂− for Algorithm. 2 computation. Note that the notation
∇|μ̂− μ̄j |∞ refers to the gradient of function |μ̂− μ̄j |∞ over
μ̂ and can be implemented as:

(∇|μ̂− μ̄j |∞)
k
=

⎧⎪⎨⎪⎩
sign((μ̂− μ̄j)k), if |(μ̂− μ̄j)k|

is the maximal for 1 ≤ k ≤ p

0, else
(3)

where (·)k refers to the kth element in the input vector.
2) Stage II – Local Covariance Matrix Estimation: Given

the global mean vectors μ̂+ and μ̂−, MPSDA runs Algorithm. 2
in parallel on each machine without any inter-machine commu-

nication requirement. Specifically, this stage first estimates the

sample covariance matrix Σ̄j using the global mean vectors.
Then, to handle the High-Dimensional Low Sample Size

settings, the algorithm leverages the de-sparsified Graphical

Lasso estimator [17] (D̂j) to improve the estimation of inverse

746

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:41:06 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Global Mean Vectors Estimation Algo-
rithm on jth machine
Data:
μ̄j , μ̄j

+, and μ̄
j
− — the local mean vectors based on training

samples on jth machine
Parameter:
η — step size
Δmax — maximumly allowed perturbation
tmax — maximum number of allowed updates
begin

/* On receiving the message from the previous
machine */

RECEIVE (μ̂, μ̂+, μ̂−, t)
/* Updating mean vectors on the jth machine */

μ̂← μ̂− η · ∇|μ̂− μ̄j |∞
μ̂+ ← μ̂+ − η · ∇|μ̂+ − μ̄j

+|∞
μ̂− ← μ̂− − η · ∇|μ̂− − μ̄j

−|∞
t← t+ 1
/* Checking convergence conditions */

Δ = max
{∣∣μ̂− μ̄j

∣∣
∞ ,

∣∣μ̂+ − μ̄j
+

∣∣
∞ ,

∣∣μ̂− − μ̄j
−
∣∣
∞
}

if Δ ≥ Δmax AND t ≤ tmax then
/* Not converged, continuing the algorithm */

jnext ← Draw a random number from 1 to m;
SEND (μ̂, μ̂+, μ̂−, t) to the jthnext machine;

else
/* Converged, sharing the estimates to all

machines */

BROADCAST (μ̂, μ̂+, μ̂−) to All machines;
end

end

covariance matrix. Finally, matrix inverse is used to estimate

the covariance matrix Σ̂j on the jth machine.
3) Stage III – Sparse Discriminant Projection Vector Esti-

mation: Given the local covariance matrix Σ̂ on each machine
j and the global mean vectors μ̂+, μ̂−, this stage intends
to approximate the global estimation of β̂∗ via gossip-based
stochastic gradient decent. Specifically, MPSDA randomly picks
up a starting machine (e.g., the jth machine) and sends (0, 1) to
Algorithm. 3 on the machine, where 0 refers to a p-dimensional
vector with all zero elements and 1 refers to the first update of
the algorithm. Algorithm. 3 indeed minimizes the following loss

function over the m machines through gossip-based stochastic
gradient decent:

β̂∗ ← argmin
β∈Rp

λ · |β|1 +
1

m

m∑
j=1

∣∣∣Σ̂jβ − (μ̂+ − μ̂−)
∣∣∣
∞
, (4)

where λ is a regularization parameter. Specifically, Algorithm. 2
first receives the input β̂∗ for updating (initialed as 0 in the
first run), then it updates the inputed β̂∗ vector using Σ̂j and
μ̂+/μ̂−, and randomly picks up the next machine and sends the
updated β̂∗ for further updating. Algorithm. 2 keeps picking
up the next machine for the updating, until (1) the times of

updates t exceeds the maximal number of updates, or (2)
the updating process converges. Once the updating process

completes, Algorithm. 3 broadcasts all m machines with the
final global estimation of β̂∗. To this end, each machine already
receives β̂∗ and μ̂ as the trained SDA model.
Note that in Algorithm. 1, we set the parameters as following:

maximum number of allowed updates is tmax = 106, step size

Algorithm 2: Local Covariance Matrix Estimation
(with Global Mean) on the jth Machine
Data:
T j — training sample on j = 1, 2, ...,m machine
Input:
μ̂+ — global positive mean vector
μ̂− — global negative mean vector
λglasso — Graphical Lasso regularization parameter
Output:
Σ̄j

p — the local covariance matrix (with global mean) on the jth

machine
begin

/* Sample covariance matrix estimation */

Σ̄j
+ = (T j

+ − μ̂+)(T j
+ − μ̂+)T

Σ̄j
− = (T j

− − μ̂−)(T j
− − μ̂−)T

Σ̄j = 1
2
(Σ̄j
+ + Σ̄j

−)
/* Precision matrix estimation through Graphical

Lasso [18] */

Θ̂j ← glasso(Σj)
/* De-sparsify precision matrix */

D̂j ←
(
2Θ̂j − Θ̂jΣ̄jΘ̂j

)
/* Obtain the de-sparsified covariance matrix */

Σ̂j ← (D̂j)−1
/* Continuing on next machine */

end

is η = 10−2 and maximum allowed perturbation is Δmin =
10−8. In Algorithm. 3, the parameter settings are tmax = 104,
η = 10−6 and Δmin = 10−4.

C. Remark on the Algorithm

Suppose the size of training set on each machine n is
sufficiently large and all these samples are drawn i.i.d. from

Gaussian distributions N (μ+,Σ) and N (μ−,Σ). We can
assume that the local sample covariance matrix Σ̄j estimated
from local raw data on each (the jth) machine should follow
an inverse wishart distribution W−1(Σ, v(n)), where v(n) is a
function on n for the degree of freedom. With infinite number
of machines m→∞ and infinite number of gossip message

passing (i.e., t → ∞), the algorithm can converge to the
minimum of R̂(β) (as the loss function R̂ is convex [1]),
where

R̂(β) = E
̂Σ∼W−1(Σ,v(n))

(
λ · |β|1 +

∣∣∣Σ̂β − (μ̂+ − μ̂−)
∣∣∣
∞

)
.

(5)

According to the definition of Bayes estimator [19] and

KKT conditions, R̂(β) indeed approximates the following loss
function,

argmin
β∈�p

{
|β|1 s.t.|Σβ − (μ̂+ − μ̂−)|∞ ≤ ε

}
, (6)

through sampling the Wishart Distribution, where Σ refers to
the (unknown) true covariance matrix and μ̂+, μ̂− refer to the
estimated mean vectors. Note that the solution Eq. 6 is actually

the Direct Estimator of Sparse LDA proposed by Cat et al. [1].

III. EXPERIMENT

In this section, we use both synthetic data and real-world data

to evaluate the performance of MPSDA algorithm. Specifically,

747

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:41:06 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: β̂∗ Estimation on the jth machine
Data:
Σ̂j — the local covariance matrix on the jth machine
Parameter:
η — step size
Δmin — minimum allowed perturbation
tmax — maximum number of allowed updates
λ — regularization parameter
begin

/* On receiving the message from the previous
machine */

RECEIVE (β̂∗, t)
/* Selecting the kth row of vector (̂Σj ̂β∗ − (μ̂+ − μ̂−))

with the maximal absolute value */

k ← argmax
1≤k′≤p

∣∣∣(Σ̂j β̂∗ − (μ̂+ − μ̂−)
)
k′

∣∣∣
/* Updating each row of ̂β∗ on the jth machine */

β′ ← 〈0, 0, . . . , 0〉T
/* initializing β with a p-dimensional 0 vector */

foreach 1 ≤ l ≤ p do
/* Note: ̂Σj,k,l is the scaler on the kth row and

the lth column of the matrix ̂Σj */

gl ← sign(β̂∗l) ·λ+ sign(Σ̄j,kβ̂∗− (μ̂+− μ̂−)) · Σ̂j,k,l

/* Update each row of local β based on ̂β∗ */

β′l ← β̂∗l − η · gl;
end
t← t+ 1
/* Checking convergence conditions */

Δ =
∣∣∣β̂∗ − β′∣∣∣

1
/* Update ̂β∗ after calculating the Δ */

β̂∗ ← β′

if Δ ≥ Δmax AND t ≤ tmax then
/* Not converged, continuing the algorithm */

jnext ← Draw a random number from 1 to m;
SEND (β̂∗, t) to the jthnext machine;

else
/* Converged, sharing the estimates to all

machines */

BROADCAST β̂∗ to All machines;
end

end

we compare our algorithm with distributed SDA algorithm and

centralized SDA algorithm. For centralized SDA, all samples

are collected on one machine based on the algorithm proposed

by [1]. For distributed SDA, we adopt the algorithm proposed

by [2] which estimate the global estimator by aggregating local

unbiased estimators through averaging with hard threshold.

A. Synthetic Data Experiments

Experiment Setup: To validate our algorithm, we evaluate
our algorithm on a synthesized dataset, which are obtained

through a pseudo-random simulation. The synthetic data are

generated by two predefined Gaussian distributions N (μ∗+,Σ
∗)

and N (μ∗−,Σ
∗) with equal priors. The settings of μ∗+, μ

∗
−

and Σ∗ are as follows: Σ∗ is a p× p symmetric and positive-
definite matrix, where p = 200, each element Σ∗

i,j = 0.8|i−j|,
1 ≤ i ≤ p and 1 ≤ j ≤ p. μ∗+ and μ

∗
− are both p-dimensional

vectors, where μ∗+ = 〈1, 1, . . . , 1, 0, 0, . . . , 0〉T (the first 10
elements are all 1’s, while the rest p − 10 elements are 0’s)
and μ∗− = 0. While noting that the number of samples from

two Gaussian distributions are equal on each machine.(Settings

of the two Gaussian distributions first appear in [2].) In order

to evaluate the performance of algorithms for comparison,

we obtain the accuracy, F1-score, ROC curve and AUC from

the classification results. Specifically, accuracy and F1-score

are calculated by maximizing the accuracy/F1-score across all

possible cutoffs in ROC curve and AUC stands for the area

under the ROC curve. Usually, a higher AUC means the model

has a better fit on the datasets.

We report the best results based on fine-tuned parameters

for all methods. Also we fix the testing samples at 400 for all
the following experiments.

Setting 1 – Fix the total training sample size and vary the
number of machines: To investigate the effect of number of
machines m, we fix the total training sample size N = 20000
and vary the number of machines. Figure 1 shows how the

accuracy, F1-score and AUC of MPSDA, centralized SDA and
distributed SDA change as the number of machine grows. For

each m, we repeat each algorithm for 10 times and report
the average value. From Figure 1, we can find that MPSDA
algorithm outperforms distributed SDA algorithm on accuracy,

F1-score and AUC. It is unsurprising that centralized SDA

outperforms both MPSDA and distributed SDA on accuracy,
F1-score and AUC.

Setting 2 – Fix the training sample size on each machine
and vary the number of machines: We alter the settings
to evaluate the effect of averaging. We increase the number

of machines m linearly as the total training sample size N ,
that is, the sample size on each machine n is fixed. More
specifically, we choose n = 400. Fig. 2 displays the accuracy,
F1-score and AUC of the three algorithms. The result shows

that the performance of MPSDA still outperforms distributed
SDA algorithm on accuracy, F1-score and AUC. Similarly,

centralized SDA outperforms both MPSDA and distributed
SDA algorithm. We notice that the performance of MPSDA
is close to the performance (accuracy, F1-score and AUC) of

centralized SDA when the number of machines is equal to or

less than 20. The same situation occurs when the number of
machines is equal to or greater than 100.
Summary: In synthetic data experiments, we compare the

performance of MPSDA with distributed SDA and centralized
SDA in two settings. At most circumstance, centralized SDA

has the best performance compared to other two algorithms.

Typically, the performance of MPSDA can approach the perfor-
mance of centralized SDA in Setting 2 with the sample size on

each machine increased (� 100) or stayed relatively low (� 20).
Note that, in both settings, MPSDA outperforms distributed
SDA significantly. The Receiver Operating Characteristic
(ROC) of both settings are also attached in Fig. 1 and Fig. 2,

respectively, which further validate our findings.

B. Benchmark Data Experiments

Experiment Setup: To verify the effectiveness of MPSDA
algorithm on real datasets, we use Phishing datasets [20] to

conduct the comparison. Specifically, we set the size of total

training samples varied from 200 to 2000 with 400 testing

748

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:41:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Performance Comparison among MPSDA, SDA (Centralized) and SDA (Distributed) on synthetic datasets. We compare
the Accuracy, F1-Score, AUC and ROC curve of each algorithm when the total training sample size is fixed as 20000.
(Note that the ROC curve is drawn when the number of machines is 100)

Fig. 2: Performance Comparison among MPSDA, SDA (Centralized) and SDA (Distributed) on synthetic datasets. We compare
the Accuracy, F1-Score, AUC and ROC curve of each algorithm when the training sample size on each machine is set as
400. (Note that the ROC curve is drawn when the number of machines is 100)

TABLE I: Accuracy Comparison among MPSDA, SDA (Centralized) and SDA (Distributed) on Phishing Datasets. Noting that,
MPSDA’ values are bold since it outperforms SDA (distributed).

Total Training Set Size

Algorithm 200 400 600 800 1000 1200 1400 1600 1800 2000

Distributed Algorithm (number of machines, m = 4)

MPSDA 0.918±0.001 0.918±0.001 0.918±0.000 0.918±0.000 0.919±0.002 0.918±0.000 0.918±0.000 0.918±0.002 0.918±0.000 0.918±0.000

SDA (Distributed) 0.885±0.000 0.885±0.000 0.888±0.000 0.878±0.000 0.885±0.000 0.885±0.000 0.888±0.000 0.885±0.000 0.885±0.000 0.885±0.000

Centralized Algorithm

SDA (Centralized) 0.898±0.000 0.890±0.000 0.908±0.000 0.910±0.000 0.918±0.000 0.915±0.000 0.915±0.000 0.915±0.000 0.913±0.000 0.913±0.000

Ye-LDA 0.932±0.024 0.949±0.017 0.947±0.020 0.954±0.016 0.954±0.018 0.948±0.019 0.951±0.015 0.945±0.020 0.953±0.016 0.950±0.017

Linear SVM 0.984±0.010 0.998±0.002 0.998±0.002 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001

Kernel SVM 0.969±0.025 0.995±0.004 0.996±0.004 0.998±0.002 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001

Random Forest 0.947±0.027 0.962±0.017 0.984±0.012 0.962±0.020 0.991±0.007 0.987±0.008 0.985±0.007 0.960±0.018 0.993±0.005 0.995±0.004

Decision Tree 0.981±0.016 0.994±0.006 0.998±0.002 0.997±0.003 0.997±0.003 0.999±0.001 0.998±0.002 0.998±0.002 0.998±0.002 0.999±0.001

samples, while the numbers of dimensions p are p = 54
respectively. The number of machines is fixed at 4. We repeat
each algorithm for 10 times and report the average value.

In this experiment, we compare the classification accuracy

and F1-score of MPSDA with distributed SDA and centralized
SDA on each benchmark datasets. Figure. 3(a)(b) presents

the performance of each algorithms on Phishing datasets. We

can observe that MPSDA obviously outperforms distributed
SDA and centralized SDA when the training sample size is

smaller than 250, even when the training sample size is greater

than 250, MPSDA is still comparable to centralized SDA and
obviously superior to distributed SDA.

Further, we compare MPSDA algorithm with other central-
ized baseline algorithms in the same setting. For compari-

son, we categorize MPSDA and the baseline algorithms into
groups of distributed algorithms and centralized algorithms.

The distributed algorithms include MPSDA and distributed
SDA. The centralized algorithms include centralized SDA,

centralized two-stage LDA (Ye-LDA), centralized Linear SVM,

centralized Kernel SVM, centralized Random Forest and

749

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:41:06 UTC from IEEE Xplore. Restrictions apply.

(a) Accuracy on Phishing Datasets
(400 Testing Samples)

(b) F1-Score on Phishing Datasets
(400 Testing Samples)

Fig. 3: Performance Comparison amongMPSDA, SDA (Central-
ized) and SDA (Distributed) with Phishing Datasets (Machine

Number m = 4 with 400 Testing samples)

centralized Decision Tree. All the algorithms are fine-tuned.

Table. I presents the accuracy with standard deviation of

each algorithm in varying total training sample size. We

notice that for two groups, the centralized algorithms have

overall better performance compared to distributed algorithms.

For comparison in distributed group, MPSDA significantly
outperforms distributed SDA on Phishing datasets.

Summary: In benchmark data experiments, we first com-
pare the performance of MPSDA with distributed SDA and
centralized SDA on real-world benchmark datasets. In most

instances, MPSDA can compete with centralized SDA, even
outperform centralized SDA on Mushrooms and Phishing

datasets. Like the results on synthetic datasets, MPSDA overall
outperforms distributed SDA on three benchmark datasets.

Then, we additionally compare MPSDA with other centralized
baseline algorithms. The result shows that these well-tuned

centralized baseline algorithms dominantly outperform MPSDA
and distributed SDA. While in distributed algorithm group,

MPSDA still outperforms distributed SDA. Also we compare
the time consumption ofMPSDA algorithm (1.13×103 seconds)
with centralized SDA algorithm (3.97 seconds) on Mushrooms
datasets (4 machines with 2000 total training samples). Note
that the communication time between each machine account

for large proportion in the total time consumption of MPSDA.
Actually, on each machine, MPSDA only takes 0.93 seconds
which is much less than the centralized SDA algorithm. (The

experiment platform is Windows OS with 2.8GHz CPU)

IV. CONCLUSION

In this paper, we proposed MPSDA - a set of novel Multi-
Party SDA algorithms. Specifically, MPSDA is designed to
enable sparse discriminant learning effectively without sharing

any raw data and basic statistics (means and covariance

matrix estimated using the data on specific machine) between

machines. MPSDA proposed three-stage training procedure for
SDA estimation on top of Multi-Party computing platform,

where gossip-based stochastic gradient descent algorithms are

used to minimize a bootstrapping loss function derived from Cai

et al. [1]. Note that, during the optimization procedures, only

the gradients of loss function are exchanged between machines

in a gossip manner and no raw data or basic statistics are

shared directly. The experimental results on synthetic datasets

and real-world benchmark datasets for classification show that

that MPSDA is comparable to the centralized SDA with similar
performance. Furthermore, MPSDA significantly outperforms
state-of-the-art distributed SDA algorithm based on model

average in most cases.

REFERENCES

[1] Tony Cai and Weidong Liu. A direct estimation approach to sparse linear
discriminant analysis. Journal of the American Statistical Association,
106(496):1566–1577, 2011.

[2] Lu Tian and Quanquan Gu. Communication-efficient distributed sparse
linear discriminant analysis. arXiv preprint arXiv:1610.04798, 2016.

[3] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification
(2nd Ed). Wiley, 2001.

[4] Line Clemmensen, Trevor Hastie, Daniela Witten, and Bjarne Ersbøll.
Sparse discriminant analysis. Technometrics, 53(4), 2011.

[5] Jun Shao, Yazhen Wang, Xinwei Deng, Sijian Wang, et al. Sparse linear
discriminant analysis by thresholding for high dimensional data. The
Annals of Statistics, 39(2):1241–1265, 2011.

[6] Daniela M Witten and Robert Tibshirani. Covariance-regularized
regression and classification for high dimensional problems. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 71(3):615–
636, 2009.

[7] Hao Chen and Ronald Cramer. Algebraic geometric secret sharing
schemes and secure multi-party computations over small fields. In
Annual International Cryptology Conference, pages 521–536. Springer,
2006.

[8] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak
Lee, Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu.
Petuum: A new platform for distributed machine learning on big data.
IEEE Transactions on Big Data, 1(2):49–67, 2015.

[9] Lingfei Wu, Kesheng John Wu, Alex Sim, Michael Churchill, Jong Y
Choi, Andreas Stathopoulos, Choong-Seock Chang, and Scott Klasky.
Towards real-time detection and tracking of spatio-temporal features:
Blob-filaments in fusion plasma. IEEE Transactions on Big Data,
2(3):262–275, 2016.

[10] Jie Chen, Lingfei Wu, Kartik Audhkhasi, Brian Kingsbury, and Bhuvana
Ramabhadrari. Efficient one-vs-one kernel ridge regression for speech
recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on, pages 2454–2458. IEEE, 2016.

[11] Lingfei Wu, Ian EH Yen, Jie Chen, and Rui Yan. Revisiting random
binning features: Fast convergence and strong parallelizability. In
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1265–1274. ACM, 2016.

[12] Róbert Ormándi, István Hegedűs, and Márk Jelasity. Gossip learning with
linear models on fully distributed data. Concurrency and Computation:
Practice and Experience, 25(4):556–571, 2013.

[13] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-
performance secure multi-party computation for data mining applications.
International Journal of Information Security, 11(6):403–418, 2012.

[14] M Hashem Pesaran, Yongcheol Shin, and Ron P Smith. Pooled mean
group estimation of dynamic heterogeneous panels. Journal of the
American Statistical Association, 94(446):621–634, 1999.

[15] Finbarr O’Sullivan. A statistical perspective on ill-posed inverse problems.
Statistical science, pages 502–518, 1986.

[16] Sarunas Raudys and Robert PW Duin. Expected classification error of
the fisher linear classifier with pseudo-inverse covariance matrix. Pattern
Recognition Letters, 19(5):385–392, 1998.

[17] Jana Jankova, Sara van de Geer, et al. Confidence intervals for
high-dimensional inverse covariance estimation. Electronic Journal of
Statistics, 9(1):1205–1229, 2015.

[18] Daniela M Witten, Jerome H Friedman, and Noah Simon. New insights
and faster computations for the graphical lasso. Journal of Computational
and Graphical Statistics, 20(4):892–900, 2011.

[19] James O Berger. Statistical decision theory and Bayesian analysis.
Springer Science & Business Media, 2013.

[20] John C Platt. 12 fast training of support vector machines using sequential
minimal optimization. Advances in kernel methods, pages 185–208, 1999.

750

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:41:06 UTC from IEEE Xplore. Restrictions apply.

