
26

MP2SDA: Multi-Party Parallelized Sparse

Discriminant Learning

JIANG BIAN, University of Central Florida

HAOYI XIONG, Baidu Inc.

YANJIE FU, Missouri University of Science and Technology

JUN HUAN, Baidu Inc.

ZHISHAN GUO, University of Central Florida

Sparse Discriminant Analysis (SDA) has been widely used to improve the performance of classical Fisher’s

Linear Discriminant Analysis in supervised metric learning, feature selection, and classification. With the

increasing needs of distributed data collection, storage, and processing, enabling the Sparse Discriminant

Learning to embrace the multi-party distributed computing environments becomes an emerging research

topic. This article proposes a novel multi-party SDA algorithm, which can learn SDA models effectively with-

out sharing any raw data and basic statistics among machines. The proposed algorithm (1) leverages the direct

estimation of SDA to derive a distributed loss function for the discriminant learning, (2) parameterizes the

distributed loss function with local/global estimates through bootstrapping, and (3) approximates a global es-

timation of linear discriminant projection vector by optimizing the “distributed bootstrapping loss function”

with gossip-based stochastic gradient descent. Experimental results on both synthetic and real-world bench-

mark datasets show that our algorithm can compete with the aggregated SDA with similar performance, and

significantly outperforms the most recent distributed SDA in terms of accuracy and F1-score.

CCS Concepts: • Information systems → Spatial-temporal systems; • Computing methodologies →

Distributed algorithms;

Additional Key Words and Phrases: Sparse discriminant analysis, multi-party, distributed, parallelized

ACM Reference format:

Jiang Bian, Haoyi Xiong, Yanjie Fu, Jun Huan, and Zhishan Guo. 2020. MP2SDA: Multi-Party Parallelized

Sparse Discriminant Learning. ACM Trans. Knowl. Discov. Data 14, 3, Article 26 (March 2020), 22 pages.

https://doi.org/10.1145/3374919

1 INTRODUCTION

The Fisher’s Linear Discriminant Analysis (LDA) [15] is a method to find the linear combination
of features that separates two or multiple classes, where it can be used in supervised learning

The first and the second author contributed equally to the article.

Work supported by NSF RAISE CA-FW-HTF 1937833 and NSF CRII CSR 1755965.

Authors’ addresses: J. Bian and Z. Guo, University of Central Florida, 4328 Scorpius St, Orlando, Florida, 32816; emails:

bjbj11111@knights.ucf.edu, zsguo@ucf.edu; H. Xiong and J. Huan, Big Data Lab, Baidu Inc., 10 Shangdi 10th St, Haidian

District, Beijing, 100094, China; email: haoyi.xiong.fr@ieee.org, jhuan@ittc.ku.edu; Y. Fu, Missouri University of Science

and Technology, 500W 15th St, Rolla, Missouri, 65401; email: yanjie.fu@ucf.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1556-4681/2020/03-ART26 $15.00

https://doi.org/10.1145/3374919

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

https://doi.org/10.1145/3374919
mailto:permissions@acm.org
https://doi.org/10.1145/3374919
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3374919&domain=pdf&date_stamp=2020-03-13

26:2 J. Bian et al.

and feature selection. Considering a set of observations (training data), LDA can project the high-
dimensional data points to low-dimensional space, and achieve optimal classification performances
by minimizing the overlaps between different classes in the low-dimensional space. Further, when
the number of measurements of each sample exceeds the number of samples in each class, where it
is so-called the High-Dimensional and Low Sample Size (HDLSS) settings, to improve the perfor-
mances of LDA, Sparse Discriminant Analysis (SDA) [8] has been proposed with sparsity pursuit.
While a wide variety of methods [8, 12, 32, 35, 36, 45] have been proposed, Cai et al. [8] stud-
ied a direct estimator that can estimate SDA straightforwardly from labeled data with a provable
guarantee in asymptotic property and classification accuracy.

As far as we know, multi-party computing [10, 17] becomes one of popular computing par-
adigm due to the increasing needs of distributed data collection, storage and processing, where
it also benefits the privacy-preserved manner in different kinds of applications. In most multi-
party computing platform, “no raw data sharing” is an important pre-condition, where a machine-
learning model should be trained using all data stored in distributed machines (i.e., parties) without
any cross-machine raw data sharing. Specifically, such multi-party distributed machine-learning
algorithms can be accelerated by parallel computing and typically be divided into two types—data-

centric and model-centric methods [6, 14, 26, 37, 42, 46, 47, 54]. On each machine, the data-centric
algorithm first estimates the same set of parameters (of the model) using the local data, then ag-
gregates the estimated parameters via model-averaging for global estimation. The model with
aggregated parameters is considered as the trained model based on the overall data (from multi-
ple parties) and before aggregated these parameters can be estimated through parallel computing
structure in an easy way. Meanwhile, model-centric algorithms require multiple machines to share
the same loss function with “updatable parameters,” and allow each machine to update the param-
eters in the loss function using the local data so as to minimize the loss. Based on this characteristic,
model-centric algorithm commonly updates the parameters sequentially so that the additional time
consumption in updating is sometimes a tough nut for specific applications. Even so, compared
with the data-centric, the model-centric methods usually can achieve better performances, as it
minimizes the risk of the model [26, 39, 47]. To advance the distributed performance of classical
SDA, recently, Tian and Gu et al. [40] proposed a data-centric SDA algorithm, which leverages
the advantage of parallel computing. Although it is intuitive that the model-centric counterpart
for SDA could receive better performance, few work has been carried out due to the challenge in
terms of efficiency (i.e., the time consumption in sequential updating) through parallel computing.

To fill the gap, we are motivated to design a novel model-centric SDA learning algorithm for
multi-party parallelized discriminant learning. In this article, we propose multi-party parallelized
SDA (namely MP2SDA) that enables the direct estimation of SDA [8] to embrace the multi-party
parallel computing environment for sparse discriminant learning. Not only MP2SDA can achieve
a better performance provided by the model-centric algorithm, it also promotes the efficiency of
the algorithm through parallel computing mechanism. Specifically, MP2SDA first establishes mul-
tiple threads (sets of machines) for parallel computing. In each thread, MP2SDA allocates the mean
and covariance matrix estimation tasks to each machine and allows each machine to estimate its
local mean vectors and covariance matrices based on the local data. Then, MP2SDA estimates the
global mean over all the data using the local means via the gossip-based stochastic gradient de-
scent (SGD). Further, MP2SDA proposes a distributed bootstrapping loss function and model the
loss function using the global mean and local covariance matrices. Finally, a gossip-based parallel
SGD algorithm is employed to minimize the distributed bootstrapping loss function and estimate
the global discriminant projection vector. Compared with the approach in [8], which aggregates
all data on a single machine to learn the model, MP2SDA can effectively approximate to the op-
timal solution without sharing any raw data. Compared with [40], which aggregates the locally

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

MP2SDA: Multi-Party Parallelized Sparse Discriminant Learning 26:3

learned models through model-averaging and hard-thresholding, MP2SDA models and minimizes
a distributed loss function based on SDA, parameterized with global/local estimates, straightfor-
wardly. Moreover, compared to normal single thread model-centric algorithm [48], MP2SDA addi-
tionally processing parallel computing (multiple threads) when estimating the model parameters
to improve the performance with fast convergence rate.

Contributions. We summarize the contribution of the proposed MP2SDA algorithm in three
aspects. First, we study and formulate the problem of sparse discriminant learning on the top of
multi-party parallel computing platform, while assuming the raw data distributed on machines
(parties) are not sharable and accelerating the training procedure through parallel computing. To
the best of our knowledge, this is the first study on SDA, by addressing (1) multi-party comput-

ing platform without sharing raw data, (2) model-centric1 learning with a shared loss function, and
(3) distributed optimization issues with parallel computing. Note that multi-party parallel computing
systems [7] usually leverage the secured communication and computation to keep the local data,
on each party, private, while our work assumes the local raw data and basic statistics (on each
machine) are not accessible by others. Thus we do not make the further assumption on cryptogra-
phy issue. Second, to achieve the above goals, we design the MP2SDA algorithm which leverages
the direct estimation of SDA to derive a distributed loss function of the discriminant learning, pa-
rameterizes the distributed loss function with local/global estimates through bootstrapping, and
approximates a global estimation of linear discriminant projection vector by optimizing the “dis-
tributed bootstrapping loss function” and further improving the estimation through parallel com-
puting. Finally, we evaluate MP2SDA on both pseudo-random simulation and real-world bench-
mark datasets for binary classification. The results show that MP2SDA can compete with the cen-
tralized SDA with similar performances, outperform the single thread version and significantly
outperform the state-of-the-art distributed SDA [40].

The rest of the article is organized as follows. In Section 2, we introduce the related works. In
Section 3, we review the LDA model and the direct estimation of SDA by Cai and Liu, then we in-
troduce the problem formulation of our work. In Section 4, we propose the framework of MP2SDA

and present the details of MP2SDA algorithm. In Section 5, we evaluate the proposed algorithms on
synthetic datasets and benchmark datasets. In addition, we compare MP2SDA with baseline cen-
tralized algorithms. In Section 6, we present a discussion and raise up some open issues. Finally,
we conclude the article in Section 7. We summarize the notations used in the following sections
in Table 1.

2 RELATED WORKS

In this section, we first introduce the related works in the SDA, then present the most relevant work
in distributed learning algorithms. Finally, we compare our work with existing studies, show the
intuition of the proposed method.

Sparse Discriminant Analysis. SDA is frequently used to improve classical LDA through
leveraging shrunken estimators [23, 43, 45, 52], such as Graphical Lasso [18]. Specifically, using a
sparse regularized method to replace the precision matrix used in LDA [4, 49–51], the original ill-
posed problem led by HDLSS settings can be well settled. With faster convergence rate, the sparse
estimators often perform better than the sample estimators [9] when approximate the inverse of
the population covariance matrix. Typically, the sparse LDA with the asymptotic properties can
be closer to the optimal LDA than the other traditional sample estimators.

Distributed Learning Algorithm. With increasing the volume of “big data,” mining/training
such tremendous data models with a single machine can be very slow [54]. Not only that,

1Transfer from traditional data-centric paradigm to model centric paradigm.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

26:4 J. Bian et al.

Table 1. Summary of Notations

Symbol Definition Symbol Definition

N the total number of training samples ε the tuning parameter of Direct SDA

n the number of training samples on each machine (·)k the k th element of the input vector

m the number of machines t the index of iteration

S the size of Leader set μ̄ j , μ̄
j
+, μ̄

j
− the sample means on the j th machine

p the number of dimensions of data sample Σ̂j the covariance matrix estimated on the j th machine

Z the data for classification μ̂, μ̂+, μ̂− the global estimation of means

ψF (·) the linear discriminant rule of Fisher’s LDA μ̂∗, μ̂∗+, μ̂∗− the averaged global estimation of means

μ, μ+, μ− the population means T
j
+, T

j
− sets of positive/negative samples on the j th machine

Σ, Θ the population covariance matrix and its inverse β̂ ∗ the global estimation of Direct SDA

μ̄, μ̄+, μ̄− the sample estimation of means β̄ ∗ the averaged global estimation of Direct SDA

Σ̄, Θ̄ the sample covariance matrix and its inverse β̂ ∗T the truncated global estimation of Direct SDA

β, β ∗ linear discriminant projection vector (optimal) D̂ j de-sparsified precision matrix on the j th machine

large-scale data problem is not just the size of the data to be mined but also its location and ho-
mogeneity. Data may be distributed across a set of locations or machines for several reasons. For
example, several datasets concerning medical (personal) information (e.g., allergic history) might
be owned by separate hospitals that have reasons for keeping the data private. To handle the
above issues, various distributed/parallelized machine-learning algorithms were proposed, e.g.,
distributed decision tree [3], parallel support vector machine [53], and parallel rule induction [30,
31].

Comparison to the existing work. Since the proposed MP2SDA algorithm is mainly compared
with the centralized SDA algorithm and distributed SDA algorithm in this article, it is necessary to
briefly introduce these two baseline algorithms. For the centralized SDA proposed by Cai et al. [8],
this algorithm leverages a sparse LDA classifier by directly estimating the linear discriminant pro-
jection vector (aka, β). In contrast to the methods which are based on separate estimation of the
precision matrix [34] and the difference of the mean vectors [38], the centralized SDA exploits
the approximate sparsity of β and as a consequence allows cases where it can still perform well
even when precision matrix and/or the difference of the mean vectors cannot be estimated consis-
tently [16]. However, in the centralized SDA algorithm, all samples are located in an only single
machine, where the bottleneck of the computation will turn up when the size of data grows and
the algorithm is not easy to implement when the data is not sharable for some specific reasons.
For the distributed SDA proposed by Tian et al. [40], this algorithm is an extended distributed
version based on the centralized SDA algorithm. Instead of estimating a single SDA estimator, the
distributed SDA algorithm considers to estimate the debiased local estimators [22] and aggregate
to a sparsified one through averaging and hard-thresholding. With an approximate convergence
rate as the centralized SDA, the distributed SDA algorithm is communication-efficient and can
better adapt to the “big data” environment. Nonetheless, the distributed SDA still cannot address
the “raw data sharing problem” when aggregates the local estimators. Combining the distributed
techniques and the concept of non-sharable raw data, MP2SDA is proposed in this article. Note
that the proposed MP2SDA can be categorized as a new designed model-centric distributed SDA
algorithm, differd from the existing centralized SDA and data-centric distributed SDA. We will
introduce the detailed designs and demonstrate the superiority of our algorithm.

3 BACKGROUNDS AND PROBLEM FORMULATION

In this section, we first present the model of Fisher’s LDA. Then, we introduce the direct estimation
of SDA proposed by Cai et al. [9]. Then we address the robust estimator under uncertain parameters

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

MP2SDA: Multi-Party Parallelized Sparse Discriminant Learning 26:5

using the “bootstrapping loss function” minimization. Finally, we formulate the research problem
of this article.

3.1 Sparse Linear Discriminant Analysis

Fisher’s LDA Model: LDA, which leverages a linear combination of features that characterize or
separate two or more classes of objects or events. LDA has been shown to perform well and enjoy
certain optimality as the sample size tends to infinity while the dimension is fixed [8]. Given the
LDA classifier ψF (Z) based on the given p-dimensional data vector Z that is drawn from one of
two distributions N (μ+, Σ) and N (μ−, Σ) with equal prior probabilities, the binary classification
problem can be solved by

ψF (Z) = siдn
{

(Z − μ)T Θ(μ+ − μ−)
}
, (1)

where μ = (μ+ + μ−)/2; Θ = Σ−1 is the inverse covariance matrix; μ+ and μ− are the mean vectors
of the positive samples and negative samples, respectively; and ψF (Z) classifies Z into positive
class if and only if ψF (Z) = 1. In practice, μ+, μ− and Θ are unknown, we need to estimate μ+, μ−
and Θ from observations. Specifically, we assume the data Z is randomly drawn from N (μ+, Σ)
and N (μ−, Σ) with equal priors.

A simple way to estimate μ+, μ− and Θ is to use their sample estimator: μ̄+, μ̄−, Θ̄ = Σ̄−1, where Σ̄
is pooled sample covariance matrix estimation [28] with respect to the two classes. Note that, under
the HDLSS settings, Σ̄ is often singular [27] and Σ̄−1 usually does not exist [34]. Thus, to train LDA,
researchers [8, 35] proposed to estimate the linear discriminate projection vector β = Θ(μ+ − μ−),
instead of estimating Θ and μ+ − μ− separately.

Loss Function of Direct SDA (Sparse β) Estimation: Based on the Equation (1), Cai and
Liu (2011) [8] proposed a direct estimation method for sparse LDA by estimating β through a
constrained �1 minimization method:

argmin
β ∈�p

⎧⎪⎨⎪⎩
|β |1 s .t . |Σ̄β − (μ̄+ − μ̄−) |∞ ≤ ε

⎫⎪⎬⎪⎭
, (2)

where ε is a tuning parameter.

3.2 Bootstrapping Loss Function Minimization

In this section, we introduce a robust estimator that can minimize the loss function with uncertain
parameters. Given a loss function L (ω |θ), where θ is an unknown parameter following a known
probabilistic distribution with density function P (θ). To approximate the optimal ω∗ that mini-
mizes the loss under the uncertainty of θ , we need a solution to minimize the expectation of loss
over θ

ω∗ = argmin
ω

Eθ∼P (L (ω |θ)) . (3)

To simplify the computation, a bootstrapping solution is frequently used, where the algorithm
first randomly draws θ1,θ2, . . . ,θm from the distribution with the density function P (θ), and then
approximates ω∗ by minimizing the bootstrapping loss function

ω̂m = argmin
ω

m∑
i=1

(L (ω |θi)) /m. (4)

As θ1,θ2, . . . ,θm are drawn from the distribution randomly, the sum of loss functions can approx-
imate the expectation of loss function under Central-Limit Theorem [20] with large m, where
limm→∞ ω̂m = ω∗. Recent studies [24, 25] show that the bootstrapping loss function minimization
can obtain a robust estimation of ω under the uncertainty of θ .

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

26:6 J. Bian et al.

3.3 Stochastic Gradient Descent

In order to solve the optimization problem in Equation (4), a lot of optimization algorithms have
been proposed. Among them, Gradient Descent (GD) is an iterative optimization algorithm, where,
with an initial setting of ω, the algorithm updates ω using the gradient information of ω. The SGD
algorithm keeps updating ω iteratively, until the total number of iterations exceeds the maximum
allowed value or the updated error converges. Specifically, in each (the t + 1th) iteration, the GD
algorithm updates ωt and obtains ωt+1 using the following scheme:

ωt+1 ← ωt − η ·
m∑

i=1

L (ωt |θi)/m, (5)

where η refers to the step size and
∑m

i=1
L (ω |θi) is the sum of gradients.
However, sometimes, the sum of gradient functions are not available. For example, in distributed

computing environments, θi ’s are distributed in multiple machines and are not sharable. In this
case, SGD algorithm has been proposed to solve the optimization problem in Equation (4) in an ad-
hoc manner. In each iteration, compared to GD, the SGD randomly picks up one θi from θ1 . . . θm ,
and obtains ωt+1 using the gradient of a single loss function L (θt |θi). Specifically, in the iteration,
SGD randomly selects an integer i ∈ [1,m], then it updates ω using

ωt+1 ← ωt − η ·
L (ωt |θi). (6)

Note that, in distributed optimization problems, where θi ’s are distributed on different machines,
the aforementioned algorithm can be implemented as a gossip-based SGD through exchanging the
(updated) ω between machines to approximate the optimal solution.

3.4 Parallelized Stochastic Gradient Descent

To further accelerating the optimization process, we leverage the parallelized SGD framework to
solve the optimization problem in Equation (4). Suppose the SGD algorithm can be regarded as a
single thread with the index k , we reclaim the Equation (6) as

ωk
t+1 ← ωk

t − η ·
L (ωk
t |θi), (7)

where k ∈ {1 . . . S }, S is the size of multiple threads (Leaders). Note that each kth thread runs an
independent SGD algorithm and thekth optimal result ω̂k can be obtained when the SGD algorithm
converged. Once we have all the converged ω̂k from S threads, the overall optimal result can be
averaged by

ω̄ ← 1

S

S∑
k=1

ωk . (8)

Actually, the multi-thread process run the SGD algorithm in parallel and does not affect other
threads when passing the message among the selected machines. To demonstrate the speedup of
the parallelized SGD algorithm, we briefly introduce the convergence analysis of the algorithm.
Specifically, according to the concentration for distribution [55], the parallelized SGD algorithm
is converging to a stationary distribution exponentially faster than the traditional SGD. Also, the
guarantees for stationary distribution achieving have been proved [55].

3.5 Problem Formulation

Givenm machines, where each (the jth) machine stores n labeled samples with sample estimation

of means and covariance matrix μ̄ j , μ̄ j
+, μ̄ j

− and Σ̄j , our work intends to estimate the linear discrim-
inant projection vector β using the estimator listed in Equation (2), while ensuring that the raw

data, μ̄ j , μ̄ j
+, μ̄ j

− and Σ̄j on each machine are not shared with other machines.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

MP2SDA: Multi-Party Parallelized Sparse Discriminant Learning 26:7

Specifically, we assume the n data samples on each machine are randomly drawn from the prob-

ability distributions N (μ+, Σ) and N (μ−, Σ) with equal priors. Given μ̄ j , μ̄ j
+, μ̄ j

− and Σ̄j estimated

using the local data stored on each (the jth) machine, with asymptotic properties that

lim
m→∞

1

m

m∑
j=1

μ̄ j
+ = μ+, lim

m→∞

1

m

m∑
j=1

μ̄ j
− = μ−, lim

m→∞

1

m

m∑
j=1

Σ̄j = Σ,

our work intends to estimate/approximate β̂∗ that

β̂∗ = argmin
β ∈�p

⎧⎪⎨⎪⎩
|β |1 s .t . |Σβ − (μ+ − μ−) |∞ ≤ ε

⎫⎪⎬⎪⎭
. (9)

Note that all computation tasks are allocated to run on each machine, while each machine can

only access the local raw data and local estimations i.e., μ̄ j , μ̄ j
+, μ̄ j

− and Σ̄j . Raw data sharing or
local estimation (means and covariance matrix) sharing are not allowed.

4 MODELS AND PROPOSED ALGORITHMS

In this section, we present the algorithm design of MP2SDA, where we first introduce the overall
framework, then we cover the key algorithms used in MP2SDA.

4.1 Overall Framework Design

In this section, we present the framework design of MP2SDA algorithm which consists of the
following two phases:

—Training Phase– Given the n labeled data pairs for training on each (the jth) machine,

MP2SDA sorts the n data into two sets – T j
+ and T j

− for the positive training samples and
negative training samples, respectively. A three-stage learning algorithm is employed to (in

Stage I) first estimate the local mean vectors μ̄ j , μ̄ j
+ and μ̄ j

− using T j
+ and T j

− for (each) jth

machine, and approximate the averaged global means μ̂∗, μ̂∗+, and μ̂∗− using the gossip-based
SGD over all m machines. Then, with the global mean vectors, MP2SDA (in Stage II) es-

timates the local covariance matrix Σ̂j on each (the jth) machine using the local data but
the global means. The algorithm further (in Stage III) estimates the truncated linear dis-

criminant projection vector β̂∗T using μ̂∗+, μ̂∗−, and Σ̂j (1 ≤ j ≤ m) with the same gossip-based

optimization paradigm. Finally, the training phase of MP2SDA outputs β̂∗T and μ̂∗ as the
model of SDA.

—Testing Phase – Suppose a new data vector Z arrives at a random machine. With the SDA

model β̂∗T and μ̂∗ learned in training phase, MP2SDA outputs the classification result (i.e.,

±1) as the computing result of siдn((Z − μ̂∗)T β̂∗T).

In the following sections, we present the detailed design of the three-stage algorithm for the
MP2SDA training.

4.2 Multi-Party Message Passing Mechanism

As shown in Figure 1, the Multi-Party Random Message Passing Mechanism is proposed and
adopted in Stage I and Stage III. The whole process consists of three parts which are Initializa-

tion, Multi-round of Message Passing and Averaging and Truncation. Specifically, in Initialization

part, through the leader selection, each leader can start initializing the required parameters and
independently possess a thread of machines for message passing. Each of the orange block stands
for the machine participated in the multi-party community and one or some of them are selected

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

26:8 J. Bian et al.

Fig. 1. Multi-party random message passing mechanism.

to be the leaders for the following message passing job (e.g., red leader superscripts have been
marked on the machine 1 and machine 3). Then, in Multi-round Random of Message Passing, the
randomly selected machine (leader) in its thread updates the target value based on the receiving
message and passes to the next machine for another round until converged. The solid blue lines
represent one time of message passing from one machine to another machine and the machine
which receive (marked with received on top on machine block) the message will update the tar-
get value, while the machine which do not receive the message will stay idle for this round of
message passing. Note that the blue dotted lines differentiate from the solid one due to the fact
that it will run more than one round of massage passing until converged. Finally, in Averaging and

Truncation, the converged target value from all threads are aggregated and truncated to obtain the
optimal target value, where every machine can receive the optimal target value by broadcasting in
the end. The machine block marked by the checked superscript represents the target value passing
through that machine has been converged and will be broadcasted to all the machines (solid blue
line). Then each machine will process the last step to average and truncate the received value.

4.3 Stage I: Global Mean Estimation

Due to the parallelism of multi-party computing, MP2SDA needs specific “Leaders” which are con-
sidered a group of starting machines, where these machines can initialize the parameters there
to be used and start independent threads among each other. As shown in Algorithm 1, among m
machines, MP2SDA first randomly pick up a set of machines (denote as the setLS with size S ≤ m)
through function LeaderSetSelection(), where each machine inLS initialize a group of key factors
(μ̂, μ̂+, μ̂−, t) as (0, 0, 0, 1), where 0 refers to a p-dimensional vector with all zero elements and 1
refers to the first update of the algorithm. Then, the initialized key factors will be sent to the next
selected machine for Algorithm 2.

Given the local training samplesT j
+ andT j

− on each machine j, MP2SDA first estimates the local

mean vectors μ̄ j , μ̄ j
+, and μ̄ j

−. Algorithm 2 is a gossip-based stochastic gradient decent algorithm
that intends to approximate the global means using the estimators listed in Equation (10).

μ̂ = argmin
μ ∈�1×p

1

m

m∑
j=1

|μ − μ j |∞, μ̂+ = argmin
μ ∈�1×p

1

m

m∑
j=1

|μ − μ j
+ |∞, μ̂− = argmin

μ ∈�1×p

1

m

m∑
j=1

|μ − μ j
−|∞, (10)

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

MP2SDA: Multi-Party Parallelized Sparse Discriminant Learning 26:9

ALGORITHM 1: Leader Selection on the jth Machine

begin
LS ← LearderSetElection(S);
if j ∈ LS then

INITIALIZE (0, 0, 0, 1) to (μ̂, μ̂+, μ̂−, t);
Draw jnext ∈ {1 . . .m} uniformly at random;

SEND (μ̂, μ̂+, μ̂−, t) to the jnext machine for Algorithm 2;
end

end

ALGORITHM 2: Global Mean Vectors Estimation Algorithm on jth Machine

Data:

μ̄ j , μ̄
j
+, and μ̄

j
− — the local mean vectors based on training samples on the jth Machine

Parameter:

η — step size

Δmax — maximumly allowed perturbation

tmax — maximum number of allowed updates

begin
/* On receiving the message from the previous machine */

RECEIVE (μ̂, μ̂+, μ̂−, t)
/* Updating mean vectors on the jth machine */

μ̂ ← μ̂ − η · ∇|μ̂ − μ̄ j |∞
μ̂+ ← μ̂+ − η · ∇|μ̂+ − μ̄

j
+ |∞

μ̂− ← μ̂− − η · ∇|μ̂− − μ̄
j
−|∞

t ← t + 1
/* Checking convergence conditions */

Δ =max
{���μ̂ − μ̄ j ���∞ , ���μ̂+ − μ̄

j
+
���∞ , ���μ̂− − μ̄

j
−
���∞
}

if Δ ≥ Δmax AND t ≤ tmax then
/* Not converged, continuing the algorithm */

Draw jnext ∈ {1 . . .m} uniformly at random;

SEND (μ̂, μ̂+, μ̂−, t) to the jth
next machine;

else
/* Converged, sharing the estimates to all machines */

BROADCAST (μ̂, μ̂+, μ̂−) to All machines;

end

end

Specifically, Algorithm 1 first receives the input mean vectors (initialed as 0 in the first run), then
it updates the input mean vectors using the local means, and randomly picks up the next machine
and sends the updated mean vectors for further updating. Algorithm 1 keeps picking up the next
machine for the updating, until (1) the total number of updates t exceeds the maximal number

of updates, or (2) the updating process converges (i.e., max {|μ̂ − μ̄ j |∞, |μ̂+ − μ̄ j
+ |∞, |μ̂− − μ̄ j

−|∞} ≤
Δmax). Once the updating process completes, Algorithm 1 broadcasts all m machines with the
final global mean estimations μ̂, μ̂+, and μ̂− for Algorithm 2 computation. Note that the notation
∇|μ̂ − μ̄ j |∞ refers to the gradient of function |μ̂ − μ̄ j |∞ over μ̂ and can be implemented as:

(
∇|μ̂ − μ̄ j |∞

)
k
=
⎧⎪⎨⎪⎩
siдn((μ̂ − μ̄ j)k), if |(μ̂ − μ̄ j)k | is the maximal for 1 ≤ k ≤ p

0, else
(11)

where (·)k refers to the kth element in the input vector.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

26:10 J. Bian et al.

ALGORITHM 3: Local Covariance Matrix Estimation (with Global Mean) on the jth Machine

Data:

T j — training sample on j = 1, 2, . . . ,m machine

Parameter:

λ — Graphical Lasso regularization parameter

begin
RECEIVE and AVERAGE (μ̂, μ̂+, μ̂−)i from all machines;
/* i ∈ {1, 2 . . . S } (start from S leaders) */

(μ̂∗, μ̂∗+, μ̂
∗
−) ← 1

S

S∑
i=1

(μ̂, μ̂+, μ̂−)i ;

/* Sample covariance matrix estimation */

Σ̄
j
+ = (T

j
+ − μ̂∗+) (T

j
+ − μ̂∗+)T

Σ̄
j
− = (T

j
− − μ̂∗−) (T

j
− − μ̂∗−)T

Σ̄j = 1
2 (Σ̄

j
+ + Σ̄

j
−)

/* Precision matrix estimation through Graphical Lasso [44] */

Θ̂j ← дlasso(Σj , λ)
/* De-sparsify precision matrix */

D̂ j ←
(
2Θ̂j − Θ̂j Σ̄j Θ̂j

)
/* Obtain the de-sparsified covariance matrix */

Σ̂j ← (D̂ j)−1

/* Continuing on next machine */

LS ← LearderSetElection(S);
if j ∈ LS then

INITIALIZE (0, 1) to (β̂∗, t);
Draw jnext ∈ {1 . . .m} uniformly at random;

SEND (β̂∗, t) to the jnext machine for Algorithm 4;
end

end

4.4 Stage II: Local Covariance Matrix Estimation

At the beginning of the Algorithm 3, all machines receive the same group of global mean vec-
tors and average them to obtain the averaged global mean vectors. Based on the averaged global
mean vectors μ̂∗+ and μ̂∗−, MP2SDA runs Algorithm 3 in parallel on each machine without any inter-
machine communication requirement. Specifically, this stage first estimates the sample covariance
matrix Σ̄j using the averaged global mean vectors. Then, to handle the HDLSS settings, the algo-

rithm leverages the de-sparsified Graphical Lasso estimator [21] (D̂ j) to improve the estimation of

the inverse covariance matrix. Finally, matrix inverse is used to estimate the covariance matrix Σ̂j

on the jth machine.
Moreover, Algorithm 3 also executes another LeaderSetElection() function to reselect “Leaders”

to run Algorithm 4 in the next stage. Specifically, MP2SDA randomly picks up a group of machines

and initializes (0, 1) to (β̂∗, t) on these machines, where 0 refers to a p-dimensional vector with all

zero elements and 1 refers to the first update of the algorithm. Then, these initialized (β̂∗, t) pairs
are sent to the next selected machine for Algorithm 4.

4.5 Stage III: Sparse Discriminant Projection Vector Estimation

Given the local covariance matrix Σ̂ on each machine j and the averaged global mean vectors μ̂∗+
and μ̂∗−, this stage intends to approximate the global estimation of β̂∗ via gossip-based stochastic
gradient decent. Indeed, Algorithm 4 minimizes the following loss function over the m machines

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

MP2SDA: Multi-Party Parallelized Sparse Discriminant Learning 26:11

ALGORITHM 4: β̂∗ Estimation on the jth Machine

Data:

Σ̂j — the local covariance matrix on the jth machine

Parameter:

η — step size

Δmin — minimum allowed perturbation

tmax — maximum number of allowed updates

λ — regularization parameter

begin
/* On receiving the message from the previous machine */

RECEIVE (β̂∗, t)
/* Selecting the k th row of vector (Σ̂j β̂ ∗ − (μ̂+ − μ̂−)) with the maximal absolute value */

k ← arдmax
1≤k ′ ≤p

���
(
Σ̂j β̂∗ − (μ̂+ − μ̂−)

)
k ′
���

/* Updating each row of β̂ ∗ on the jth machine */

β ′ ← 〈0, 0, . . . , 0〉T
/* initializing β with a p-dimensional 0 vector */

foreach 1 ≤ l ≤ p do
/* Note: Σ̂j,k,l is the scaler on the k th row and the l th column of the matrix Σ̂j */

дl ← siдn(β̂∗
l

) · λ + siдn(Σ̄j,k β̂∗ − (μ̂+ − μ̂−)) · Σ̂j,k,l

/* Update each row of local β based on β̂ ∗ */

β ′
l
← β̂∗

l
− η · дl

end

t ← t + 1
/* Checking convergence conditions */

Δ = ���β̂∗ − β ′���1
/* Update β̂ ∗ after calculating the Δ */

β̂∗ ← β ′

if Δ ≥ Δmax AND t ≤ tmax then
/* Not converged, continuing the algorithm */

Draw jnext ∈ {1 . . .m} uniformly at random;

SEND (β̂∗, t) to the jth
next machine;

else
/* Converged, sharing the estimates to all machines */

BROADCAST β̂∗ to All machines;

end

end

through gossip-based stochastic gradient decent:

β̂∗ ← arдmin
β ∈Rp

λ · |β |1 +
1

m

m∑
j=1

���Σ̂jβ − (μ̂+ − μ̂−)���∞ , (12)

where λ is a regularization parameter. Specifically, Algorithm 4 first receives the input β̂∗ for up-

dating (initialed as 0 in the first run), then it updates the inputed β̂∗ vector using Σ̂j and μ̂+/μ̂−, and

randomly picks up the next machine and sends the updated β̂∗ for further updating. Algorithm 4
keeps picking up the next machine for the updating, until (1) the times of updates t exceeds the
maximal number of updates or (2) the updating process converges. Once the updating process

completes, Algorithm 4 broadcasts all m machines with the final global estimation of β̂∗. To this

end, each machine receives the same group of β̂∗ (start from S “Leaders”), which is shown in

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

26:12 J. Bian et al.

ALGORITHM 5: Averaging and Truncating on the jth Machine

begin

RECEIVE and AVERAGE β̂∗i from all machines;
/* i ∈ {1, 2...S } (start from S leaders) */

β̄∗ ← 1
S

S∑
i=1

β̂∗i ;

β̂∗
T
← Truncate (β̄∗);

end

Algorithm 5. The same as the Stage I, MP2SDA averages these received β∗ and run the Truncate(x)

function, where this function can set all elements in vectorx with relatively small value (|x | ≤ 10−4)
to zero, to obtain the final β∗T . Finally, each machine has the well estimated β∗T and μ̂∗ as the trained
SDA model.

4.6 Remark on the Algorithm

In this section, we first analyze the optimality of the algorithm in a Bayesian estimator point of
view, then we brief the algorithm in a multi-party computing viewpoint.

Convergence of ̂β∗
T

. Suppose the size of training set on each machine n is sufficiently large

and all these samples are drawn i.i.d. from Gaussian distributionsN (μ+, Σ) andN (μ−, Σ). We can
assume that the local sample covariance matrix Σ̄j estimated from local raw data on each (the jth)
machine should follow an inverse wishart distributionW−1 (Σ,v (n)), where v (n) is a function on
n for the degree of freedom. With infinite number of machines m → ∞ and infinite number of

gossip message passing (i.e., t → ∞), the algorithm can converge to the minimum of R̂ (β) (as the

loss function R̂ is convex [8]), where

R̂ (β) = EΣ∼W−1 (Σ,v (n))
(
λ · |β |1 + ��Σβ − (μ̂+ − μ̂−)��∞) . (13)

According to the definition of Bayes estimator [2], this loss function can be viewed as a Bayes
estimator based on the posterior expectation on risk. We first denote the optimal solution of orig-
inal sparse LDA listed Equation (2), based on the population parameter Σ and μ+/μ−, as β∗SDA.
Regarding to the asymptotic efficiency of the Bayes estimator, we conclude:

√
m × n · (β̂∗ − β∗SDA) → N

(
0, I (β∗SDA)−1

)
,

where I (β∗SDA) refers to the fisher information of β∗SDA.

Communication Complexity of MP2
SDA Algorithm. Due to the property of parallelized

SGD adopted in our work, we mainly discuss the communication complexity of the proposed
MP2SDA algorithm. Suppose the total training sample size is N , the number of dimensions of
the data sample is p, the number of the machine is m and the total number of iteration is T , then
the communication complexity of MP2SDA is O (S · p ·T).

Multi-Party Computing Properties. Apparently, the proposed algorithm works efficiently,
without sharing raw data directly between each machine. Thanks to �∞-norm loss function used
for global mean estimation, the local means on each machine are not shared with others directly.
Further, the local covariance matrices are not shared due to the same reason. Note that, according
to the above asymptotic analysis, the performance of MP2SDA is comparable to those centralized
methods that raw data sharing is required. Our subsequent experimental analysis based on real-
world data will further verify this point—in most cases, MP2SDA achieves comparable performance
to the centralized method derived from [8] using all aggregated data, with similar accuracy and
F1-Score.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

MP2SDA: Multi-Party Parallelized Sparse Discriminant Learning 26:13

5 EXPERIMENT

In this section, we use both synthetic data and real-world data to evaluate the performance of
MP2SDA algorithm. Specifically, we compare our algorithm with distributed SDA algorithm and
centralized SDA algorithm. For centralized SDA, all samples are collected on one machine based on
the algorithm proposed by [8]. For distributed SDA, we adopt the algorithm proposed by [40] which
estimate the global estimator by aggregating local unbiased estimators through averaging with a
hard threshold. Note that we fix the size of the leader set as 10% of the total number of machines
in each setting as follow to observe the performance of the parallel computing mechanism. Please
also refer to the source code for further detailed implementations.2

5.1 Synthetic Data Experiments

Experiment Setup. To validate our algorithm, we evaluate our algorithm on a synthesized
dataset, which is obtained through a pseudo-random simulation. The synthetic data are generated
by two predefined Gaussian distributionsN (μ∗+, Σ

∗) andN (μ∗−, Σ
∗) with equal priors. The settings

of μ∗+, μ∗− and Σ∗ are as follows: Σ∗ is ap × p symmetric and positive-definite matrix, wherep = 200,
each element Σ∗i, j = 0.8 |i−j | , 1 ≤ i ≤ p, and 1 ≤ j ≤ p. μ∗+ and μ∗− are both p-dimensional vectors,

where μ∗+ = 〈1, 1, . . . , 1, 0, 0, . . . , 0〉T (the first 10 elements are all 1’s, while the rest p − 10 elements
are 0’s) and μ∗− = 0. While noting that the number of samples from two Gaussian distributions are
equal on each machine. (Settings of the two Gaussian distributions first appear in [40].) In order to
evaluate the performance of algorithms for comparison, we obtain the accuracy, F1-score, receiver
operating characteristic (ROC) curve and area under the ROC curve (AUC) from the classification
results. Specifically, accuracy and F1-score are calculated by maximizing the accuracy/F1-score
across all possible cutoffs in ROC curve and AUC stands for the area under the ROC curve. Usu-
ally, a higher AUC means the model has a better fit on the datasets.

Parameters Tuning: For the centralized SDA algorithm, there is only one regularization pa-
rameter λGlasso in Algorithm 2. By the theoretical result in [8], we can tune a proper λGlasso in

the order of O
√

loд (p)
N

. Therefore, we set λGlasso = C
√

loд (p)
N

and tune C by grid search. For the

proposed algorithm MP2SDA, other than λGlasso , there is one more parameter to be tuned – λ in
Algorithm 3. We process a similar grid search directly on this λ. For the distributed SDA algorithm,
we follow the same procedure to tune key parameters described in the experiment section of [40]
by Tian and Gu (2016). We report the best results based on fine-tuned parameters for all methods.
Also, we fix the testing samples at 400 for all the following experiments.

For better comparing the proposed MP2SDA with centralized SDA and distributed SDA, we arti-
ficially set up two experimental settings. On the one hand, for distributed computing, the number
of workload is the critical factor which may affect the performance of the algorithm. In this case,
we keep the total number of sample fixed to all the algorithms to check whether varying num-
ber of machines can bring some differences, which means the number of samples distributed on
each machine is decreasing with growth of the number of machines. Since the number of sam-
ples on each machine represent the workload for each machine, this setting intend to measure the
performance trading-off between the parallelism and the computing power of the machines. The
detailed settings are illustrated in Setting 1. On the other hand, if we fix the number of samples
on each machine instead of fixing the total number of samples, the workload of each machine will
be same so as to guarantee the same computing power. In such a setting, the primary goal is to
explore how parallelism can benefit the party of machines without the limit of the total number of
samples. The detailed settings are presented in Setting 2. Note that the Setting 2 is more suitable

2https://github.com/Fred1991/2017Jiang_Bian_ICDM_MultipartySDA.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

https://github.com/Fred1991/2017Jiang_Bian_ICDM_MultipartySDA

26:14 J. Bian et al.

Fig. 2. Performance Comparison among MP2
SDA, SDA (centralized) and SDA (distributed) on synthetic

datasets. We compare the accuracy, F1-score, AUC, and ROC curve of each algorithm when the total train-

ing sample size is fixed as 20,000. (Note that the ROC curve is drawn when the number of machines is 100)

Fig. 3. Performance comparison among MP2
SDA, SDA (centralized) and SDA (distributed) on synthetic

datasets. We compare the accuracy, F1-score, AUC, and ROC curve of each algorithm when the train-

ing sample size on each machine is set as 400. (Note that the ROC curve is drawn when the number of

machines is 100)

to reveal the effect of parallelism, while Setting 1 is more reasonable in practice since most of the
time the number total samples (data) are limited.

Setting 1 – Fix the total training sample size and vary the number of machines: To
investigate the effect of the number of machinesm, we fix the total training sample size N = 20,000
and vary the number of machines. Figure 2 shows how the accuracy, F1-score and AUC of MP2SDA

(we use MP2SDA in all the figures), centralized SDA and distributed SDA change as the number of
machines grows. For eachm, we repeat each algorithm for 10 times and report the average value.

From Figure 2, we can find that MP2SDA algorithm outperforms distributed SDA algorithm on
accuracy, F1-score and AUC. It is unsurprising that centralized SDA outperforms both MP2SDA

and distributed SDA on accuracy, F1-score and AUC.
Setting 2 – Fix the training sample size on each machine and vary the number of ma-

chines: We alter the settings to evaluate the effect of averaging. We increase the number of ma-
chinesm linearly as the total training sample size N , that is, the sample size on each machine n is
fixed. More specifically, we choose n = 400. Figure 3 displays the accuracy, F1-score and AUC of
the three algorithms.

The result shows that the performance of MP2SDA still outperforms distributed SDA algorithm
on accuracy, F1-score, and AUC. Similarly, centralized SDA outperforms both MP2SDA and dis-
tributed SDA algorithm. We notice that the performance of MP2SDA is close to the performance
(accuracy, F1-score, and AUC) of centralized SDA when the number of machines is equal to or less
than 20. The same situation occurs when the number of machines is equal to or greater than 100.

Supplement – ROC curves: Additionally, we present the ROC curves of three algorithms as
an auxiliary indicator to analyze the performances. The setting is picked up among the above
experiments. Specifically, we run the simulation at the setting of 100 machines and choose the data
from the last repeat to draw the ROC curve. When the total training sample size is fixed, the ROC

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

MP2SDA: Multi-Party Parallelized Sparse Discriminant Learning 26:15

curve in Figure 1 shows that MP2SDA algorithm outperforms distributed SDA, although it does not
surpass the performance of centralized SDA. While when the training sample size on each machine
is fixed, the ROC curve of MP2SDA overlaps with or even covers the ROC curve of centralized
SDA in Figure 2, which shows that the performance of MP2SDA algorithm is comparable to the
performance of centralized SDA. This result is consistent with the variation tendency of the result
on accuracy, F1-score, and AUC in Setting 2.

Summary: In synthetic data experiments, we compare the performance of MP2SDA with dis-
tributed SDA and centralized SDA in two settings. At most circumstance, centralized SDA has the
best performance compared to the other two algorithms. Typically, the performance of MP2SDA

can approach the performance of centralized SDA in Setting 2 with the sample size on each ma-
chine increased (� 100) or stayed relatively low (� 20). Note that, in both settings, MP2SDA out-
performs distributed SDA significantly.

Moreover, according to the stable trends of each of the indicators (accuracy, F1-score, and AUC),
we can conclude that the parallelism or the distributed assignment does not harm the overall per-
formance and reach the saturation interval for our specific settings. Then, the stable performance
provides us an excellent computing environment that we can fully leverage the advantages of the
multi-party computing, where we will show the high efficiency it can achieve in the next section.

5.2 Benchmark Data Experiments

Experiment Setup: To verify the effectiveness of MP2SDA algorithm on real datasets, we use
Phishing, Splice, and Mushrooms datasets [29] to conduct the comparison. Specifically, we set the
size of total training samples varied from 200 to 2000 with 400 testing samples, while the numbers
of dimensions p are p = 54 (Phishing), p = 35 (Splice), and p = 60 (Mushrooms), respectively. The
number of machines is fixed at 4. We repeat each algorithm for 10 times and report the average
value. The adopted well-tuned parameters for the regularization terms are as follow: For MP2SDA,
λ = 15 and λдlasso = 1; For MPSDA, λ = 10 and λдlasso = 1; For centralized SDA, λдlasso = 0.01;
For distributed SDA, λдlasso = 0.1.

In this experiment, we compare the classification accuracy and F1-score of MP2SDA with dis-
tributed SDA and centralized SDA on each benchmark datasets. Figure 4(a) and (b) presents the
performance of each algorithm on Phishing datasets. We can observe that MP2SDA obviously out-
performs distributed SDA and centralized SDA when the training sample size is smaller than 250,
even when the training sample size is greater than 250, MP2SDA is still comparable to centralized
SDA and obviously superior to distributed SDA. Figure 4(c) and (d) shows that MP2SDA outper-
forms distributed SDA and centralized SDA on Mushrooms dataset. The performance gap between
MP2SDA and the other two alternatives tends to be stable when the training sample size grows.
In Figure 4(e) and (f), the performances of these three algorithms are close to each other on Splice
dataset. In most cases, MP2SDA slightly outperforms distributed SDA and centralized SDA.

Further, we compare MP2SDA algorithm with other centralized baseline algorithms in the
same setting. For comparison, we categorize MP2SDA and the baseline algorithms into groups
of distributed algorithms and centralized algorithms. The distributed algorithms include MP2SDA,
MPSDA, and distributed SDA. The centralized algorithms include centralized SDA, centralized
two-stage LDA (Ye-LDA), centralized Linear SVM, centralized Kernel SVM, centralized Random
Forest and centralized Decision Tree. All the algorithms are fine-tuned. Tables 2–4 presents the
accuracy with the standard deviation of each algorithm in varying total training sample size. We
notice that for two groups, the centralized algorithms have overall better performance compared
to distributed algorithms. For comparison in the distributed group, MP2SDA significantly outper-
forms distributed SDA on Mushrooms and Phishing datasets. On Splice dataset, MP2SDA slightly
outperforms distributed SDA in most cases.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

26:16 J. Bian et al.

Fig. 4. Performance Comparison among MP2
SDA, SDA (centralized) and SDA (distributed) with different

benchmark datasets (testing sample size = 400 and machine number = 4)

Efficiency Comparison. Also, we compare the time consumption of MP2SDA algorithm (0.61 ×
103 seconds, 2 leader machines) and MPSDA (1.13 × 103 seconds) with centralized SDA algorithm
(3.97 seconds) on Mushrooms datasets (4 machines with 2,000 total training samples). Note that
the communication time between each machine account for a large proportion in the total time
consumption of MP2SDA. Actually, on each machine, MP2SDA and MPSDA only take 0.93 seconds
which is much less than the centralized SDA algorithm. (The experiment platform is Windows OS
with 2.8GHz CPU).

Summary: In benchmark data experiments, we first compare the performance of MP2SDA

with distributed SDA and centralized SDA on real-world benchmark datasets. In most instances,
MP2SDA can compete with centralized SDA, even outperform centralized SDA on Mushrooms and
Phishing datasets. Like the results on synthetic datasets, MP2SDA overall outperforms distributed
SDA on three benchmark datasets. Then, we additionally compare MP2SDA with other central-
ized baseline algorithms. The result shows that these well-tuned centralized baseline algorithms
dominantly outperform MP2SDA and distributed SDA. While in the distributed algorithm group,
MP2SDA still outperforms distributed SDA. The additional efficiency comparison among MP2SDA,
MPSDA, and centralized SDA shows that MP2SDA is more efficient than MPSDA (also centralized
SDA on each machine) due to its fast convergence rate which is benefited by the parallel computing
mechanism.

6 DISCUSSION

In this section, we compare MP2SDA with our previous studies and discuss the open issues.
Compare to the previous version. The proposed MP2SDA is an extension of the previous

work MPSDA [5]. Specifically, we mainly target on the following four novel parts to improve the
previous version MPSDA: (1) To further accelerate the optimization process of the previous version

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

MP2SDA: Multi-Party Parallelized Sparse Discriminant Learning 26:17
T
a
b

le
2.

A
cc

u
ra

cy
C

o
m

p
a
ri

so
n

a
m

o
n

g
M
P

2
S
D

A
,S

D
A

(C
en

tr
a
li

ze
d

),
a
n

d
S

D
A

(D
is

tr
ib

u
te

d
)

o
n

P
h

is
h

in
g

D
a

ta
se

ts

T
o

ta
l

T
ra

in
in

g
Se

t
Si

ze

A
lg

o
ri

th
m

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

D
is

tr
ib

u
te

d
A

lg
o

ri
th

m
(n

u
m

b
e

r
o

f
m

a
c

h
in

e
s,

m
=

4)

M
P

2
S
D

A
0

.9
1

8
±0

.0
0

1
0

.9
1

8
±0

.0
0

1
0

.9
1

8
±0

.0
0

0
0

.9
1

8
±0

.0
0

0
0

.9
1

9
±0

.0
0

2
0

.9
1

8
±0

.0
0

0
0

.9
1

8
±0

.0
0

0
0

.9
1

8
±0

.0
0

2
0

.9
1

8
±0

.0
0

0
0

.9
1

8
±0

.0
0

0

M
P

SD
A

0.
91

4±
0.

00
1

0.
91

1±
0.

00
5

0.
90

9±
0.

00
1

0.
91

1±
0.

00
1

0.
91

4±
0.

00
1

0.
91

4±
0.

00
1

0.
91

4±
0.

00
0

0.
91

6±
0.

00
1

0.
91

4±
0.

00
0

0.
91

4±
0.

00
0

SD
A

(D
is

tr
ib

u
te

d
)

0.
88

5±
0.

00
0

0.
88

5±
0.

00
0

0.
88

8±
0.

00
0

0.
87

8±
0.

00
0

0.
88

5±
0.

00
0

0.
88

5±
0.

00
0

0.
88

8±
0.

00
0

0.
88

5±
0.

00
0

0.
88

5±
0.

00
0

0.
88

5±
0.

00
0

C
en

tr
al

iz
ed

A
lg

o
ri

th
m

SD
A

(C
en

tr
al

iz
ed

)
0.

89
8±

0.
00

0
0.

89
0±

0.
00

0
0.

90
8±

0.
00

0
0.

91
0±

0.
00

0
0.

91
8±

0.
00

0
0.

91
5±

0.
00

0
0.

91
5±

0.
00

0
0.

91
5±

0.
00

0
0.

91
3±

0.
00

0
0.

91
3±

0.
00

0

Y
e-

L
D

A
0.

93
2±

0.
02

4
0.

94
9±

0.
01

7
0.

94
7±

0.
02

0
0.

95
4±

0.
01

6
0.

95
4±

0.
01

8
0.

94
8±

0.
01

9
0.

95
1±

0.
01

5
0.

94
5±

0.
02

0
0.

95
3±

0.
01

6
0.

95
0±

0.
01

7

L
in

ea
r

SV
M

0.
98

4±
0.

01
0

0.
99

8±
0.

00
2

0.
99

8±
0.

00
2

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

K
er

n
el

SV
M

0.
96

9±
0.

02
5

0.
99

5±
0.

00
4

0.
99

6±
0.

00
4

0.
99

8±
0.

00
2

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

R
an

d
o

m
Fo

re
st

0.
94

7±
0.

02
7

0.
96

2±
0.

01
7

0.
98

4±
0.

01
2

0.
96

2±
0.

02
0

0.
99

1±
0.

00
7

0.
98

7±
0.

00
8

0.
98

5±
0.

00
7

0.
96

0±
0.

01
8

0.
99

3±
0.

00
5

0.
99

5±
0.

00
4

D
ec

is
io

n
T

re
e

0.
98

1±
0.

01
6

0.
99

4±
0.

00
6

0.
99

8±
0.

00
2

0.
99

7±
0.

00
3

0.
99

7±
0.

00
3

0.
99

9±
0.

00
1

0.
99

8±
0.

00
2

0.
99

8±
0.

00
2

0.
99

8±
0.

00
2

0.
99

9±
0.

00
1

T
a
b

le
3.

A
cc

u
ra

cy
C

o
m

p
a
ri

so
n

a
m

o
n

g
M
P

2
S
D

A
,S

D
A

(C
en

tr
a
li

ze
d

),
a
n

d
S

D
A

(D
is

tr
ib

u
te

d
)

o
n

M
u

sh
ro

o
m

s
D

a
ta

se
ts

T
o

ta
l

T
ra

in
in

g
Se

t
Si

ze

A
lg

o
ri

th
m

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

D
is

tr
ib

u
te

d
A

lg
o

ri
th

m
(n

u
m

b
e

r
o

f
m

a
c

h
in

e
s,

m
=

4)

M
P

2
S
D

A
0

.9
3

5
±0

.0
0

1
0

.9
4

7
±0

.0
1

6
0

.9
8

0
±0

.0
0

0
0

.9
8

1
±0

.0
0

2
0

.9
8

7
±0

.0
0

6
0

.9
9

7
±0

.0
0

4
0

.9
9

9
±0

.0
0

3
0

.9
9

6
±0

.0
0

4
0

.9
9

9
±0

.0
0

0
0

.9
9

9
±0

.0
0

1

M
P

SD
A

0.
93

3±
0.

00
5

0.
93

9±
0.

00
5

0.
95

7±
0.

00
9

0.
96

6±
0.

00
3

0.
97

1±
0.

01
0

0.
97

7±
0.

00
6

0.
98

8±
0.

00
7

0.
98

7±
0.

00
4

0.
98

7±
0.

00
2

0.
98

9±
0.

00
2

SD
A

(D
is

tr
ib

u
te

d
)

0.
82

3±
0.

00
0

0.
83

3±
0.

00
0

0.
84

0±
0.

00
0

0.
90

0±
0.

00
0

0.
94

3±
0.

00
0

0.
96

3±
0.

00
0

0.
96

5±
0.

00
0

0.
97

0±
0.

00
0

0.
97

5±
0.

00
0

0.
96

3±
0.

00
0

C
en

tr
al

iz
ed

A
lg

o
ri

th
m

SD
A

(C
en

tr
al

iz
ed

)
0.

82
3±

0.
00

0
0.

83
3±

0.
00

0
0.

93
5±

0.
00

0
0.

99
0±

0.
00

0
0.

97
5±

0.
00

0
0.

96
8±

0.
00

0
0.

96
8±

0.
00

0
0.

95
8±

0.
00

0
0.

95
0±

0.
00

0
0.

95
0±

0.
00

0

Y
e-

L
D

A
0.

93
2±

0.
02

4
0.

94
9±

0.
01

7
0.

94
7±

0.
02

0
0.

95
4±

0.
01

6
0.

95
4±

0.
01

8
0.

94
8±

0.
02

0
0.

95
1±

0.
01

5
0.

94
5±

0.
02

0
0.

95
3±

0.
01

6
0.

95
0±

0.
01

7

L
in

ea
r

SV
M

0.
98

4±
0.

01
0

0.
99

8±
0.

00
2

0.
99

8±
0.

00
2

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
17

0.
99

9±
0.

00
1

K
er

n
el

SV
M

0.
96

9±
0.

02
5

0.
99

4±
0.

00
4

0.
99

6±
0.

00
4

0.
99

8±
0.

00
2

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

0.
99

9±
0.

00
1

R
an

d
o

m
Fo

re
st

0.
94

7±
0.

02
7

0.
96

2±
0.

01
7

0.
98

4±
0.

01
3

0.
96

2±
0.

01
8

0.
99

1±
0.

00
7

0.
98

7±
0.

01
0

0.
98

5±
0.

00
7

0.
96

1±
0.

01
8

0.
99

3±
0.

00
5

0.
99

5±
0.

00
3

D
ec

is
io

n
T

re
e

0.
98

1±
0.

01
6

0.
99

4±
0.

00
6

0.
99

8±
0.

00
2

0.
99

7±
0.

00
3

0.
99

7±
0.

00
3

0.
99

9±
0.

00
1

0.
99

8±
0.

00
2

0.
99

9±
0.

00
1

0.
99

8±
0.

00
2

0.
99

9±
0.

00
1

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

26:18 J. Bian et al.

T
a
b

le
4.

A
cc

u
ra

cy
C

o
m

p
a
ri

so
n

a
m

o
n

g
M
P

2
S
D

A
,S

D
A

(C
en

tr
a
li

ze
d

),
a
n

d
S

D
A

(D
is

tr
ib

u
te

d
)

o
n

S
p

li
c
e

D
a

ta
se

ts

T
o

ta
l

T
ra

in
in

g
Se

t
Si

ze

A
lg

o
ri

th
m

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

D
is

tr
ib

u
te

d
A

lg
o

ri
th

m
(n

u
m

b
e

r
o

f
m

a
c

h
in

e
s,

m
=

4)

M
P

2
S
D

A
0

.8
2

7
±0

.0
0

4
0

.8
5

5
±0

.0
0

2
0

.8
7

7
±0

.0
0

3
0

.8
7

6
±0

.0
0

3
0

.8
8

0
±0

.0
0

3
0

.8
9

0
±0

.0
0

1
0

.8
8

7
±0

.0
0

3
0

.8
8

1
±0

.0
0

2
0

.8
8

5
±0

.0
0

2
0

.8
8

0
±0

.0
0

3

M
P

SD
A

0.
81

7±
0.

00
1

0.
83

9±
0.

00
3

0.
85

7±
0.

00
6

0.
86

1±
0.

00
7

0.
86

5±
0.

01
0

0.
87

6±
0.

00
6

0.
87

9±
0.

00
4

0.
87

8±
0.

00
9

0.
88

0±
0.

00
5

0.
87

9±
0.

00
5

SD
A

(D
is

tr
ib

u
te

d
)

0.
80

8±
0.

00
0

0.
83

0±
0.

00
0

0.
86

5±
0.

00
0

0.
85

5±
0.

00
0

0.
86

0±
0.

00
0

0.
88

0±
0.

00
0

0.
87

8±
0.

00
0

0.
88

3±
0.

00
0

0.
88

5±
0.

00
0

0.
88

5±
0.

00
0

C
en

tr
al

iz
ed

A
lg

o
ri

th
m

SD
A

(C
en

tr
al

iz
ed

)
0.

84
5±

0.
00

0
0.

87
0±

0.
00

0
0.

87
5±

0.
00

0
0.

87
3±

0.
00

0
0.

87
3±

0.
00

0
0.

87
8±

0.
00

0
0.

86
8±

0.
00

0
0.

86
8±

0.
00

0
0.

87
0±

0.
00

0
0.

87
3±

0.
00

0

Y
e-

L
D

A
0.

78
1±

0.
02

0
0.

80
2±

0.
01

6
0.

81
7±

0.
02

0
0.

83
2±

0.
01

6
0.

82
9±

0.
01

9
0.

82
7±

0.
01

8
0.

82
7±

0.
01

9
0.

82
4±

0.
01

8
0.

83
6±

0.
01

8
0.

83
7±

0.
01

9

L
in

ea
r

SV
M

0.
74

5±
0.

03
0

0.
80

3±
0.

01
5

0.
81

9±
0.

01
6

0.
83

7±
0.

01
8

0.
83

5±
0.

01
7

0.
83

8±
0.

01
7

0.
83

8±
0.

01
9

0.
82

9±
0.

01
6

0.
84

5±
0.

02
0

0.
84

9±
0.

02
0

K
er

n
el

SV
M

0.
80

9±
0.

00
9

0.
83

2±
0.

01
6

0.
84

4±
0.

02
5

0.
86

5±
0.

05
4

0.
86

7±
0.

02
8

0.
86

4±
0.

04
2

0.
86

8±
0.

05
1

0.
86

6±
0.

06
3

0.
87

6±
0.

03
1

0.
88
±0

.0
44

R
an

d
o

m
Fo

re
st

0.
88

2±
0.

03
4

0.
86

9±
0.

02
9

0.
93

4±
0.

01
3

0.
87

4±
0.

03
3

0.
95

3±
0.

01
2

0.
93

9±
0.

01
1

0.
94

7±
0.

01
2

0.
87
±0

.0
29

0.
96

1±
0.

00
9

0.
94

6±
0.

01
4

D
ec

is
io

n
T

re
e

0.
85

7±
0.

03
0

0.
89

7±
0.

02
2

0.
90

2±
0.

02
8

0.
91

3±
0.

02
2

0.
91

7±
0.

02
1

0.
91

9±
0.

02
3

0.
92
±0

.0
20

0.
91

6±
0.

02
0

0.
91

7±
0.

02
4

0.
92
±0

.0
22

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

MP2SDA: Multi-Party Parallelized Sparse Discriminant Learning 26:19

MPSDA, we adopt a parallelized framework, where the multiple threads take the place of single
thread, and add two more algorithms with the revised original algorithms to make it happen. All

the details are presented in the new Section 3. (2) We also analyze the new convergence of β̂∗T ,
where we not only cover the asymptotic rate, but also combine the convergence rate of paral-
lelized SGD and the convergence rate of SDA estimator. The detailed problems are addressed in
Section 3-F. (3) According to the aforementioned changes in algorithms and theoretical properties,
we conduct more complementary experiments which include threads impact experiments, new
performance comparison experiments among the baseline algorithm on synthetic and benchmark
datasets. The extended results are shown in the new Section 4. (4) Further, we make a discussion
on the time complexity of MP2SDA compared to the baseline algorithms and the previous version
MPSDA in Section 4-Summary.

Open Issues. We divide open issues into four respects as follows:

—Data and Metrics. In the experiment section, we train the estimator using the balanced
sample data, wherein the future, we can directly work on unbalanced datasets [1] which
are more common in real-world datasets. Further, we can evaluate the classification model
of MP2SDA from other perspectives (e.g., precision and recall [41]).

—Optimization Algorithms. In this research, we adopted gossip-based SGD to solve the
distributed optimization problem for SDA training. However, there are some other advanced
optimization methods that can obtain better performance. For example, De and Goldstein
have proposed an efficient distributed SGD algorithm with variance reduction [13]. We can
also extend the proposed algorithm MP2SDA on the Non-convex optimization function [11,
33].

—Models and Inference. In this article, we mainly focus on the linear discriminant model
for classification. In future work, we plan to further improve the performance of distributed
classifier training by leveraging more complex models, such as deep neural network [14, 19].
On the other hand, we also plan to leverage our MP2SDA model for distributed statistical

inference. For example, the non-zero elements of β̂∗ should be variables that significantly
correlate to the response of statistics.

—Multi-Party Computing. In this article, we assume the local raw data and basic statistics
(on each party/machine) are not accessible by others, and make no assumption on cryptog-
raphy issues that frequently appear in multi-party computing research [7, 10]. Indeed, the
security and privacy of MP2SDA can be enhanced by addressing these issues. In our future
work, we plan to study the secured communication and computation schemes to further
improve multi-party SDA learning.

In this section, we summarized key open issues of our research. In future work, we will try to
address these issues.

7 CONCLUSION

In this article, we proposed MP2SDA—a set of novel multi-party SDA algorithms. Specifically,
MP2SDA is designed to enable sparse discriminant learning effectively without sharing any raw
data and basic statistics (means and covariance matrix estimated using the data on specific ma-
chine) between machines. Based on our original conference paper [5], we design a multi-party
random message passing mechanism to satisfy the need of parallel computing, and a revised sta-
ble three-stage training procedure for SDA estimation is proposed on top of multi-party parallel
computing platform, where gossip-based SGD algorithms are used to minimize a bootstrapping
loss function derived from Cai et al. [8]. We also extend the analysis of parallel stochastic gradient

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

26:20 J. Bian et al.

decent method to support our design. Note that, during the optimization procedures, only the gra-
dients of loss function are exchanged between machines in a gossip manner and no raw data or
basic statistics are shared directly. The experimental results on synthetic datasets and real-world
benchmark datasets for classification show that that MP2SDA is comparable to the aggregated
SDA with similar performance. Furthermore, MP2SDA significantly outperforms state-of-the-art
distributed SDA algorithm based on model average in most cases.

REFERENCES

[1] Gustavo EAPA Batista, Andre CPLF Carvalho, and Maria Carolina Monard. 2000. Applying one-sided selection to

unbalanced datasets. In Mexican International Conference on Artificial Intelligence. Springer, 315–325.

[2] James O. Berger. 2013. Statistical Decision Theory and Bayesian Analysis. Springer Science & Business Media.

[3] Kanishka Bhaduri, Ran Wolff, Chris Giannella, and Hillol Kargupta. 2008. Distributed decision-tree induction in peer-

to-peer systems. Statistical Analysis and Data Mining 1, 2 (2008), 85–103.

[4] Jiang Bian, Laura E. Barnes, Guanling Chen, and Haoyi Xiong. 2017. Early detection of diseases using electronic health

records data and covariance-regularized linear discriminant analysis. In 2017 IEEE EMBS International Conference on

Biomedical & Health Informatics (BHI’17). IEEE, 457–460.

[5] Jiang Bian, Haoyi Xiong, Wei Cheng, Wenqing Hu, Zhishan Guo, and Yanjie Fu. 2017. Multi-party sparse discriminant

learning. In 2017 IEEE International Conference on Data Mining (ICDM’17). IEEE, 745–750.

[6] Jiang Bian, Haoyi Xiong, Yanjie Fu, and Sajal K. Das. 2018. CSWA: Aggregation-free spatial-temporal community

sensing. In 32nd AAAI Conference on Artificial Intelligence.

[7] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. 2012. High-performance secure multi-party compu-

tation for data mining applications. International Journal of Information Security 11, 6 (2012), 403–418.

[8] Tony Cai and Weidong Liu. 2011. A direct estimation approach to sparse linear discriminant analysis. Journal of the

American Statistical Association 106, 496 (2011), 1566–1577.

[9] T. Tony Cai, Zhao Ren, Harrison H. Zhou, et al. 2016. Estimating structured high-dimensional covariance and preci-

sion matrices: Optimal rates and adaptive estimation. Electronic Journal of Statistics 10, 1 (2016), 1–59.

[10] Hao Chen and Ronald Cramer. 2006. Algebraic geometric secret sharing schemes and secure multi-party computa-

tions over small fields. In Annual International Cryptology Conference. Springer, 521–536.

[11] Yiu-ming Cheung and Jian Lou. 2015. Efficient generalized conditional gradient with gradient sliding for composite

optimization. In International Joint Conferences on Artificial Intelligence. 3409–3415.

[12] Line Clemmensen, Trevor Hastie, Daniela Witten, and Bjarne Ersbøll. 2011. Sparse discriminant analysis. Technomet-

rics 53, 4 (2011), 406–413.

[13] Soham De and Tom Goldstein. 2016. Efficient distributed SGD with variance reduction. In 2016 IEEE 16th International

Conference on Data Mining (ICDM’16). IEEE, 111–120.

[14] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior, Paul Tucker, Ke

Yang, Quoc V. Le, et al. 2012. Large scale distributed deep networks. In Advances in Neural Information Processing

Systems. 1223–1231.

[15] Richard O. Duda, Peter E. Hart, and David G. Stork. 2001. Pattern Classification (2nd Ed). Wiley.

[16] Heinz W. Engl and Charles W. Groetsch. 2014. Inverse and Ill-posed Problems. Vol. 4. Elsevier.

[17] Zhi Fengy, Haoyi Xiong, Chuanyuan Song, Sijia Yang, Baoxin Zhao, Licheng Wang, Zeyu Chen, Shengwen Yang,

Liping Liu, and Jun Huan. 2019. SecureGBM: Secure multi-party gradient boosting. In IEEE International Conference

on Big Data (Big Data’19). IEEE.

[18] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2008. Sparse inverse covariance estimation with the graphical

lasso. Biostatistics 9, 3 (2008), 432–441.

[19] Suyog Gupta, Wei Zhang, and Fei Wang. 2016. Model accuracy and runtime tradeoff in distributed deep learning: A

systematic study. In 2016 IEEE 16th International Conference on Data Mining (ICDM’16). IEEE, 171–180.

[20] Wassily Hoeffding, Herbert Robbins, et al. 1948. The central limit theorem for dependent random variables. Duke

Mathematical Journal 15, 3 (1948), 773–780.

[21] Jana Jankova, Sara van de Geer, et al. 2015. Confidence intervals for high-dimensional inverse covariance estimation.

Electronic Journal of Statistics 9, 1 (2015), 1205–1229.

[22] Adel Javanmard and Andrea Montanari. 2014. Confidence intervals and hypothesis testing for high-dimensional

regression. Journal of Machine Learning Research 15, 1 (2014), 2869–2909.

[23] W. J. Krzanowski, Philip Jonathan, W. V. McCarthy, and M. R. Thomas. 1995. Discriminant analysis with singular

covariance matrices: Methods and applications to spectroscopic data. Applied Statistics 44, 1 (1995), 101–115.

[24] Christopher Z. Mooney, Robert D. Duval, and Robert Duvall. 1993. Bootstrapping: A Nonparametric Approach to Sta-

tistical Inference. Sage, 94–95.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

MP2SDA: Multi-Party Parallelized Sparse Discriminant Learning 26:21

[25] Per Aslak Mykland. 1992. Asymptotic expansions and bootstrapping distributions for dependent variables: A mar-

tingale approach. The Annals of Statistics 20, 2 (1992), 623–654.

[26] Róbert Ormándi, István Hegedűs, and Márk Jelasity. 2013. Gossip learning with linear models on fully distributed

data. Concurrency and Computation: Practice and Experience 25, 4 (2013), 556–571.

[27] Finbarr O’Sullivan. 1986. A statistical perspective on ill-posed inverse problems. Statistical Science 1, 4 (1986), 502–518.

[28] M. Hashem Pesaran, Yongcheol Shin, and Ron P. Smith. 1999. Pooled mean group estimation of dynamic heteroge-

neous panels. Journal of the American Statistical Association 94, 446 (1999), 621–634.

[29] John C. Platt. 1999. Fast training of support vector machines using sequential minimal optimization. Advances in

Kernel Methods—Support Vector Learning. MIT Press, Cambridge, MA, 185–208.

[30] Foster J. Provost and Daniel N. Hennessy. 1996. Scaling up: Distributed machine learning with cooperation. In Annual

Conference on Innovative Applications of Artificial Intelligence, Vol. 1. 74–79.

[31] Guo-Jun Qi, Charu Aggarwal, Deepak Turaga, Daby Sow, and Phil Anno. 2015. State-driven dynamic sensor selection

and prediction with state-stacked sparseness. In 21st ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining. ACM, 945–954.

[32] Guo-Jun Qi, Jinhui Tang, Zheng-Jun Zha, Tat-Seng Chua, and Hong-Jiang Zhang. 2009. An efficient sparse metric

learning in high-dimensional space via l 1-penalized log-determinant regularization. In 26th Annual International

Conference on Machine Learning. ACM, 841–848.

[33] Hong Qian and Yang Yu. 2016. Scaling simultaneous optimistic optimization for high-dimensional non-convex func-

tions with low effective dimensions. In AAAI Conference on Artificial Intelligence. 2000–2006.

[34] Sarunas Raudys and Robert P. W. Duin. 1998. Expected classification error of the Fisher linear classifier with pseudo-

inverse covariance matrix. Pattern Recognition Letters 19, 5 (1998), 385–392.

[35] Jun Shao, Yazhen Wang, Xinwei Deng, Sijian Wang, et al. 2011. Sparse linear discriminant analysis by thresholding

for high dimensional data. The Annals of Statistics 39, 2 (2011), 1241–1265.

[36] Xiangbo Shu, Jinhui Tang, Guo-Jun Qi, Zechao Li, Yu-Gang Jiang, and Shuicheng Yan. 2016. Image classification with

tailored fine-grained dictionaries. IEEE Transactions on Circuits and Systems for Video Technology 28, 2 (2016), 454–467.

[37] Padhraic Smyth, Max Welling, and Arthur U. Asuncion. 2009. Asynchronous distributed learning of topic models. In

Advances in Neural Information Processing Systems. 81–88.

[38] Charles M. Stein. 1981. Estimation of the mean of a multivariate normal distribution. The Annals of Statistics 9, 6

(1981), 1135–1151.

[39] Jinhui Tang, Richang Hong, Shuicheng Yan, Tat-Seng Chua, Guo-Jun Qi, and Ramesh Jain. 2011. Image annotation by

k nn-sparse graph-based label propagation over noisily tagged web images. ACM Transactions on Intelligent Systems

and Technology 2, 2 (2011), 14.

[40] Lu Tian and Quanquan Gu. 2016. Communication-efficient distributed sparse linear discriminant analysis. In Pro-

ceeding of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS’16).

[41] Kai Ming Ting. 2011. Precision and recall. In Encyclopedia of Machine Learning. Springer, 781–781.

[42] Konstantinos I. Tsianos, Sean Lawlor, and Michael G. Rabbat. 2012. Consensus-based distributed optimization: Prac-

tical issues and applications in large-scale machine learning. In 50th Annual Allerton Conference on Communication,

Control, and Computing (Allerton’12). IEEE, 1543–1550.

[43] Jie Wen, Xiaozhao Fang, Jinrong Cui, Lunke Fei, Ke Yan, Yan Chen, and Yong Xu. 2018. Robust sparse linear discrim-

inant analysis. IEEE Transactions on Circuits and Systems for Video Technology 29, 2 (2018), 390–403.

[44] Daniela M. Witten, Jerome H. Friedman, and Noah Simon. 2011. New insights and faster computations for the graph-

ical lasso. Journal of Computational and Graphical Statistics 20, 4 (2011), 892–900.

[45] Daniela M. Witten and Robert Tibshirani. 2009. Covariance-regularized regression and classification for high dimen-

sional problems. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71, 3 (2009), 615–636.

[46] Zechao Li, Hanjiang Lai, Liyan Zhang, Shuicheng Yan, Xiangbo Shu, and Jinhui Tang. 2017. Personalized age pro-

gression with bi-level aging dictionary learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 40, 4

(2017), 905–917.

[47] Eric P. Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng, Pengtao Xie, Abhimanu

Kumar, and Yaoliang Yu. 2015. Petuum: A new platform for distributed machine learning on big data. IEEE Transac-

tions on Big Data 1, 2 (2015), 49–67.

[48] Eric P. Xing, Qirong Ho, Pengtao Xie, and Dai Wei. 2016. Strategies and principles of distributed machine learning

on big data. Engineering 2, 2 (2016), 179–195.

[49] Haoyi Xiong, Wei Cheng, Jiang Bian, Wenqing Hu, Zeyi Sun, and Zhishan Guo. 2018. DBSDA: Lowering the bound

of misclassification rate for sparse linear discriminant analysis via model debiasing. IEEE Transactions on Neural

Networks and Learning Systems 30, 3 (2018), 707–717.

[50] Haoyi Xiong, Wei Cheng, Yanjie Fu, Wenqing Hu, Jiang Bian, and Zhishan Guo. 2018. De-biasing covariance-

regularized discriminant analysis. In 27th International Joint Conference on Artificial Intelligence. 2889–2897.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

26:22 J. Bian et al.

[51] Haoyi Xiong, Wei Cheng, Wenqing Hu, Jiang Bian, and Zhishan Guo. 2017. AWDA: An adaptive wishart discriminant

analysis. In 2017 IEEE International Conference on Data Mining (ICDM’17). IEEE, 525–534.

[52] Shuangyan Yi, Zhenyu He, Yiu-Ming Cheung, and Wen-Sheng Chen. 2017. Unified sparse subspace learning via self-

contained regression. IEEE Transactions on Circuits and Systems for Video Technology 28, 10 (2017), 2537–2550.

[53] Jian-Pei Zhang, Zhong-Wei Li, and Jing Yang. 2005. A parallel SVM training algorithm on large-scale classification

problems. In 2005 International Conference on Machine Learning and Cybernetics, Vol. 3. IEEE, 1637–1641.

[54] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. 2008. Large-scale parallel collaborative filtering

for the Netflix prize. In International Conference on Algorithmic Applications in Management. Springer, 337–348.

[55] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J. Smola. 2010. Parallelized stochastic gradient descent. In

Advances in Neural Information Processing Systems. 2595–2603.

Received March 2019; revised October 2019; accepted December 2019

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 3, Article 26. Publication date: March 2020.

