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Abstract—The availability of Electronic Health Records (EHR)
in health care settings has provided tremendous opportunities for
early disease detection. While many supervised learning models
have been adopted for EHR-based disease early detection, the
ill-posed inverse problem in the parameter learning has imposed
a significant challenge on improving the accuracy of these algo-
rithms. In this paper, we propose CRLEDD – Causality-Regularized
Learning for Early Detection of Disease, an algorithm to improve
the performance of Linear Discriminant Analysis (LDA) on top
of diagnosis-frequency vector data representation. While most
existing regularization methods exploit sparsity regularization to
improve detection performance, CRLEDD provides a unique per-
spective by ensuring positive semi-definiteness of the sparsified
precision matrix used in LDA which is different from the regular
regularization method (e.g., L2 regularization). To achieve this goal,
CRLEDD employs Graphical Lasso to estimate the precision matrix
in the ill-posed settings for enhanced accuracy of LDA classifiers.
We perform extensive evaluation of CRLEDD using a large-scale
real-world EHR dataset to predict mental health disorders (e.g.,
depression and anxiety) of college students from 10 universities in
the U.S. We compare CRLEDD with other regularized LDA and
downstream classifiers. The result shows that CRLEDD outper-
forms all baselines in terms of accuracy and F1 scores.

Index Terms—Classification algorithms, detection algorithms,
linear discriminant analysis.

I. INTRODUCTION

THE early disease detection is one of the most prevalent
tasks in statistical learning and machine learning, and
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it plays an important role in modern medical diagnosis and
pre-treatment systems. From the aspect of feature extraction,
image is the mainstream data type for discovering the latent
correlation among the factor of diseases and thereby helps us
recognize or classify them. For example, [1], [2] propose to use
SAR [3] image data to process the object recognition and the
target segmentation, where the statistical-based texture features
such as KWE [4] and KCE [5] are well-studied [6] as the basis to
support the classification. From the aspect of learning model, [7]
propose a hierarchical learning architecture which integrates the
well-known CNN [8] and MLP [9] to recognize the target image
object. However, most of theses preliminary work are based on
the image data, where sometimes it is difficult to collect such
highly related image data in disease detection task due to the
privacy and technical issue (e.g., for some disease, we do not
even know the source of the lesion). Fortunately, for general
diagnosis, we still have the common electronic health records
associated with each patient, which has been wide-used in the
medical systems.

Electronic Health Records (EHR) [10] play a critical role
in modern health information management and service inno-
vations. A patient’s EHR contains his/her medical visit history,
medication, diagnoses, treatment plans, allergies and so on. One
significant feature is the interchangeability of EHR, as a stan-
dard protocol for medical/health data generation, storage and
communication. The health information is built and managed by
authorized institutions in a unified digital format (e.g., ICD-9/10,
CPT-9/10 used in EHR standards) such that researchers and sci-
entists can share and analyze the EHR data to enable innovative
health services, such as providing computer-assisted diagnosis
and offering medication advice. Among these services, early
detection of diseases, using their past longitudinal health in-
formation of the EHR system, has recently attracted significant
attention from the research community. There has been a series
of works [10]–[15], which attempt to predict future disease
of patients, through data mining techniques using EHR data.
Prior literature usually first selected important features, such as
diagnosis-frequencies [10], pairwise diagnosis transitions [13],
and graphs of diagnosis sequences [15], to represent the EHR
data of the patients. Then, a wide range of supervised learning
algorithms were adopted to build predictive models for early
disease detection, on top of well-represented EHR data.

Specifically, supervised learning tools such as Linear Clas-
sification, Logistic Regression, Linear Discriminant Analysis
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(LDA), Decision Tree (DT), Random Forest (RF), and Bayesian
Network [10], [13] have been adopted to train various predictive
models, where a critical step is to learn model parameters from
training dataset. However, from the viewpoint of “inverse prob-
lem” [1], [16], [17], learning parameters from training data is
frequently ill-posed [18]. It is difficult to recover the patterns of
causalities between variables (e.g., evidence of diagnosis in EHR
data), when the number of training samples is limited but the di-
mension of EHR data (e.g., types of evidence used in prediction)
is large. Such causalities consist of discriminative information
and thus are the keys to build predictive models. For example,
to train a linear classifier for discriminant projection, we need to
first learn an optimal Slope Vector. Literature [19] has shown that
when the size of training data is less than the dimension of the
data (aka EHR data), the estimated slope vector would be “ill-
posed” with weak capacity of discrimination, when using tradi-
tional Ordinary Least Squares (OLS) or Maximum Likelihood
Estimation (MLE) estimator [20], [21]. In this case, the perfor-
mance of such linear classifiers with ill-posed estimation of pa-
rameters will be degraded significantly [22]. Thus, we consider
the key challenge of training predictive models for EHR-based
early detection of diseases as a type of ill-posed inverse problem.

To understand the ill-posed inverse problem in machine learn-
ing, Vapnik and Chervonekis proposed Structural Risk Min-
imization (SRM) theory [23]. The SRM theory decomposes
the error of predictive model into two parts: training error and
generalization error. According to the SRM theory [24], the
training of traditional models mainly focuses on minimizing
the training error over the training set, without appropriately
controlling the generalization error. To understand the general-
izability of the model, they further proposed VC dimension [25]
(Vapnik-Chervonenkis dimension) as a measure of potential
generalization error, leveraging the complexity of the model.
More recently, they proposed the regularization method to bal-
ance training error and generalization error, with respect to
the VC dimension of the trained model, to tackle the ill-posed
inverse problem in parameter learning. Usually, these regular-
ization methods intend to approximate the sparse(st) parameter
estimation, while lowering the training error [26].

For example, to regularize linear classification, Support Vec-
tor Machine (SVM) [27] has been proposed to leverage the
sparse estimation of the slope vector for discriminative linear
projection, where a Lasso [28] estimator is used to balance
the training error and �1-norm of the slope vector [29] (which
is closely related to the VC dimension of linear classification
model). Another example, to improve the performance of Logis-
tic Regression [30], �1-norm regularization has been applied to
balance the trade-off between training error and generalization
error. Further, even for more complicated classification tools
such as neural network [31], the regularization is frequently
used to avoid over-fitting (control the generalization error) of
the model.

In this paper, we focus on another commonly-used linear
classification model LDA in early detection of diseases [10],
[13]. In LDA, two parameters [32] need to be estimated, i.e.,
the mean vectors of the training samples, and the precision
matrix which represents the causalities between variables (label

or diagnosis of diseases). The precision matrix can be estimated
by the inverse of sample covariance matrix in LDA. How-
ever, when the dimensionality of the training samples is larger
than the sample size, the sample covariance matrix becomes
singular/noninvertible. Even if the dimension of the training
samples is less than the training sample size, this matrix is
invertible but still ill-posed [18], [33]. As mentioned before, the
regularization techniques are assumed to be able to improve
the estimation through sparsifying the parameters. Traditionally,
the �1-norm regularization (e.g., Lasso) is an option to handle the
ill-posed problem such as �1-norm SVM. Unfortunately, it can-
not guarantee the Symmetric Positive Definiteness (SPD) [34]
of the covariance matrix. Another common regularized method
– Shrinkage [35] can ensure the SPD property of the covariance
matrix, whereas it may not be optimal. In order to better estimate
the precision matrix, the estimation result is required to be
optimal and the SPD property needs to be satisfied as well.

To achieve the above goals, we propose Causalities-
Regularized Learning,1 for Early Detection of Disease based on
Linear Discriminant Analysis. This algorithm aims to improve
the performance of LDA on top of diagnosis-frequency vector
data representation. Specifically, to achieve both the positive
semi-definiteness and the optimal estimation, CRLEDD employs
Graphical Lasso to estimate the precision matrix, and then boost
the accuracy of LDA classifiers. The paper is organized as
follows: We first introduce some preliminaries and problem
formulation in Section II. The framework of CRLEDD in early
detection of disease is described in Section III. Section IV
presents the details of the key algorithm used in CRLEDD. Then,
we evaluate CRLEDD using large-scale empirical EHR dataset
for predicting mental health disorders in Section V. Based on the
comparison results presented in Section V, we further analyze
and discuss both advantage and disadvantage of CRLEDD in
Section VI. Finally, in Section VII, we conclude that CRLEDD
clearly outperforms the baseline algorithms in terms of overall
accuracy and F1-score in all settings, with lower precision matrix
estimation error.

II. PRELIMINARY WORK AND PROBLEM FORMULATION

In this section, we first summarize previous studies and back-
ground related to this paper from two aspects, i.e., data mining
approaches to early detection of diseases, and linear models for
classification and the regularization for linear models. Then we
formulate our research problem on top of the existing works.

A. Data Mining Approaches to EHR-Based Early
Detection of Disease

Given the raw EHR data, existing data mining efforts to EHR-
based early detection first learn a set of features from EHR data to
represent each patient. Specifically, the EHR data of each patient
was represented as a vector consisting of the frequency of each
diagnosis code that has been discovered in previous visits [10]–
[12]. EHR data can also be represented using N-gram-like [37]
graphs, through counting the pairwise transitions between each

1This work is an extension of our previous paper [36].
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pair of diagnosis codes in every visit [13], [14]. Most recently,
Liu et al. proposed to represent the EHR of a patient using
the temporal graphs, in order to preserve the temporal order of
diagnoses partially [15]. To reduce the dimensionality of EHR
data, clustered ICD-9 codes [38] have been frequently used in
practice, where each ICD-9 diagnosis code can map to one of
295 groups, compressing each raw diagnosis-frequency vector
(≥15,000 dimensions) to roughly 295 dimensions. Liu et al.
discussed the method of dimensionality reduction for temporal
EHR graphs through edge selection [15].

Given EHR data represented as vectors and graphs, re-
searchers have proposed to predict the target disease through
supervised learning, using downstream classifiers [13] or sim-
ilarity search [10]–[12]. Given EHR data with rich structures,
sub-sequential pattern matching and sub-graph pattern match-
ing are also leveraged to identify the disease risk of patients
[14], [15].

B. Linear Models for Binary Classification and Regularization

Given the training set {(xi, yi), i = 1, 2, . . .,m}, xi ∈ Rd.
Let X = [xT

1 , x
T
2 , . . ., x

T
m]T , Y = [y1, y2, . . ., ym] and β =

[β1, β2, . . ., βd]
T . Normally, the basic linear model is as follow,

Y = βTX (1)

where β is the slope vector which can represent discriminative
property between variables. Based on the above model, the linear
classification model can be described here as Y = Sign(βTX).
In order to build the linear classification model, we need to
estimate the β from the training samples.

Direct β-based Regularization — Typically, the optimal β∗

is estimated by an optimization problem formulated as below,

β∗ = argmin
β

(
m∑
i=1

(
Sign(βTxi)− yi

)2
+ λ|β|

)
(2)

where m is the number of training samples. Specifically, when
λ = 0, Eq. (2) is a standard form without any regularization.
To further improve the performance of the model, a weighted
�1-norm (also Lasso) regularization is adopted (λ �= 0) to con-
strain (sparsifying) the β in the estimation [39]. For example,
the linear SVM is a type of β-based linear classification model.
Correspondingly, the �1-norm SVM can sparsify the param-
eter estimation by shrinking the small coefficients β of the
hyperplane to exactly zero. Especially in High Dimension Low
Sample Size (HDLSS) settings, the �1-norm SVM performs well
compared to the normal linear SVM [40].

Covariance-based Regularization — In this paper, we focus
on another well-studied linear model – Linear Discriminant
Analysis (LDA). Based on the basic linear model,

β = (XTX)−1XTY (3)

whereXTX can be considered the covariance matrixΣ. Instead
of using β vector in linear model, the LDA leverages precision
matrix (inverse covariance matrix) Θ = Σ−1 as the parameter
to represent the causality between the variables. However, the
estimation of Θ is invalid in HDLSS settings due to the loss of
positive semi-definite property of Σ. Thus, ensuring the SPD of

the covariance matrix Σ is critical for estimating Θ. Although a
common regularized technique of shrinkage can guarantee the
SPD of Σ [41], the results of the estimation are usually not
optimal.

C. Problem Formulation

To estimate the precision matrix Θ, the maximum likelihood
estimation problem is shown below,

Θ∗ = argmin
Θ∈I+

p×p

(
−

m∑
i=1

log p(xi|μ,Θ) + λ|Θ|1
)
, (4)

where μ is the mean vector of the m samples. Specifically, the
first term −∑m

i=1 log p(xi|μ,Θ) is an expression of negative
Logarithm maximum likelihood which can be expanded as

−log(p(x1|μ,Θ)× p(x2|μ,Θ)× · · · × p(xm|μ,Θ)). (5)

However, the optimization problem (4) is intractable. To
address this problem, we reduce the intractable formulation to:

tr(Σ̄Θ)− log det(Θ), (6)

where tr() is the trace of square matrix and Σ̄ is the sample
covariance matrix. In the estimation of Θ, the �1-norm regular-
ization is adopted to provide a sparse precision matrix which
can be used as an optimal approximation of the inverse sample
covariance matrix Σ−1. This method is also called Graphical
Lasso [42], it can ensure the SPD of sample covariance matrix
and while simultaneously provide an optimal solution for the
precision matrix. When using EHR data with HDLSS settings
as training samples, we employ Graphical Lasso to improve
the performance of original LDA model by providing a better
estimation of precision matrix.

III. FRAMEWORK

In this section, we introduce the CRLEDD framework.
CRLEDD consists of three phases as shown in Fig. 1. First,
we use diagnosis-frequency vectors to represent the EHR data.
Then, we estimate the covariance matrices used in LDA with
respect to our problem formulation and estimate sparse covari-
ance matrix via Graphical Lasso. After that, we adopt LDA with
newly estimated parameters to predict whether the new patient
will develop the targeted disease.

Phase I: EHR Data Representation — There are many existing
approaches to represent EHR data including the use of diagnosis-
frequencies [10], [11], pairwise diagnosis transition [13], and
graph representations of diagnosis sequences [15]. Among these
approaches, the diagnosis-frequency is a common way to repre-
sent EHR data.

Given each patient’s EHR data, the proposed method first
retrieves the diagnosis codes [43] recorded during each visit.
Next, the frequency of each diagnosis in all past visits is counted,
followed by further transforming the frequency of each diagnosis
into a vector of frequencies. For example, 〈1, 0, . . . , 3〉, where
0 means that the second disease has not been diagnosed in
any of the past visits. In this paper, we denote the dimension
of diagnosis-frequency vectors as p. Note that the dimension
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Fig. 1. Overview of the three-phase framework: CRLEDD – Regularized Causalities Learning for Early Detection of Diseases using Electronic Health Record
(EHR) Data. Depending on the functionality, the framework are divided into three phases which are Data Representation, Correlation Analysis, Supervised
Learning and Prediction.

p ≥15,000 when using ICD-9 codes, p ≥250 even when using
clustered ICD-9 codes [38], while the number of samples for
training m is significantly less than p.

Phase II: Correlation Analysis — Given the patients’ EHR
data as a training set, this phase estimates the sparse precision
matrices for each type of the disease for two classes of patients
(diagnosed with target disease or not) with following two steps:

1) Sample Covariance Matrix Estimation With Extracted
Diagnosis-frequency Vector — CRLEDD combines
diagnosis-frequency vector for each patient with his/her
label (indicating whether the patient has been diagnosed
with the targeted disease). Then we estimate the sample
covariance matrices using maximized likelihood estima-
tor.

2) Sparse Precision Matrix Estimation Using Graphical
Lasso — Given sample covariance matrices Σ̄, CRLEDD
estimates the sparse precision matrix using Graphical
Lasso estimator.

Note that the covariance matrices for the two classes of
patients are estimated in this phase through a unified process.

Phase III: Supervised Learning and Prediction — Given the
estimated matrices Σ̄ as well as the training samples, this phase
first trains the optimal model for LDA prediction. Then, it uses
the LDA model for new patient prediction.

Given all parameters Σ̄, μ̄+1 (the mean vector of the sample
consisting of the patients with target disease), and μ̄−1 (the
mean vector of sample consisting of the patients without target
disease), the LDA model classifies a new patient’s data x as the
result of:

argmax
l∈{+1,−1}

(
xT Σ̄−1μ̄l − 1

2
μ̄T
l Σ̄
−1μ̄l + logαl

)
, (7)

where l is the label needs to be identified to predict if a certain
patient is diagnosed with the target disease or not. l can be either
positive one or negative one. Positive one means the patient will
be predicted to have the target disease, while negative one means
the patient will not be predicted to have the target disease. α+1

and α−1 refer to the empirical frequencies of positive samples
(i.e., patients with the target disease) and negative samples (i.e.,
patients without the target disease) in the whole population.

IV. KEY ALGORITHM OF CRLEDD

In this section, we introduce the design of implementation
of key algorithm used in CRLEDD. Section A describes the
Causality-Regularized LDA classifier, and Section B presents
the Graphical Lasso algorithm.

A. Causalities-Regularized LDA for Diagnosis Frequency
Vector Classification

Given m samples (i.e., EHR frequency vectors) which will be
used to train the estimator along with corresponding labels, i.e.,
(x0, l0) . . . (xm−1, lm−1) — li ∈ {−1,+1}, the early disease
detection procedure is designed to determine if a new patient
with its data vector x would develop into the target disease by
projecting the vector x to +1 (positive) or −1 (negative).

To enable the classification with LDA, CRLEDD first esti-
mates the sample covariance matrix using the pooled maximized
likelihood estimator:

Σ̄ =
1

m

∑
l∈{+1,−1}

∑
xi∈Xl

(xi − μ̄l)(xi − μ̄l)
T , (8)
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where Xl refers to the set of patients with the label l (i.e.,
l ∈ {−1,+1} referring to the patients without/with the tar-
get diseases respectively), specifically, Xl = {xi|(xi, li) and
li = l}.

Given the sample covariance matrix Σ̄, this method estimates
a sparse precision matrix Θ̂ using the Lasso-alike regularization
estimator:

Θ̂ = argmin
Θ∈I+

p×p

⎛
⎝tr(Σ̄Θ)− log det(Θ) + λ

∑
j �=k

|Θjk|
⎞
⎠. (9)

It is considered a �1-penalized negative log-likelihood minimiza-
tion estimator, which can be implemented as Graphical Lasso
under SPD constraint.

B. Implementation of the Log-Divergence Minimization
Algorithm via Graphical Lasso

Suppose we have m samples with dimension p and sample
covariance matrix Σ̄. In order to solve the optimization problem
in Eq. (9) to obtain the Θ̂, the Graphical Lasso algorithm [42]
is used to estimate Θ̂−1 and recover Θ̂ after convergence. The
details of this algorithm are listed as follow.

Let W = Θ−1 and S = Σ̄, then partitioning W and S

W =

(
W11 w12

wT
12 w22

)
,S =

(
S11 s12

sT12 s22

)
(10)

The solution for w12 satisfies

w12 = arg miny

{
yTW−1

11 y : ‖y − s12‖∞ ≤ λ
}

(11)

This is a box-constrained quadratic program that was once
solved by Banerjee et al. [44] using an interior point procedure.
It has been illustrated that the iterates in this procedure remain
positive definite and invertible, even if P > N when the proce-
dure is initialized with a positive definite matrix. Thus, here the
SPD of W can be ensured.

Using convex duality, Banerjee et al. [44] showed that solving
Eq. (11) is equivalent to solving the dual problem

min
β

{
1

2

∥∥∥W 1
2
11β − b

∥∥∥2 + λ ‖β‖1
}
, (12)

where b = W
1
2
11s12. If β solves Eq. (12), then w12 = W11β

solves Eq. (11). Expression of Eq. (12) resembles a Lasso form,
and is the basis for the approach of Graphical Lasso.

To verify the equivalence of the solutions between Eq. (9)
and Eq. (12) directly, the relation WΘ = I can be expanded as
below: (

W11 w12

wT
12 w22

)(
Θ11 θ12

θT12 θ22

)
=

(
I 0

0T 1

)
. (13)

Now the sub-gradient equation [45] for the maximization of
the log-likelihood of Eq. (9) is

W − S− λSign(Θ) = 0, (14)

using the fact that the derivative of log det(Θ) equalsΘ−1 = W.

Algorithm 1: The �1-Penalized Log-Divergence Minimiza-
tion via Graphical Lasso.
1, Initialize W = S+ λI. The diagonal of W remains

unchanged in what follows.
2, Repeat for j = 1, 2, . . .p, 1, 2, . . .p, . . . until

convergence:
(a) Partition the matrix W into two parts.
Part 1: all but the jth row and column.
Part 2: the jth row and column.
(b) Solve the estimating equation

W11β − s12 + λSign(β) = 0
using the cyclical coordinate-descent algorithm for the
modified Lasso.
(c) Update w12 = W11β̂.

3, In the final cycle (for each j) solve for θ̂12 = −β̂ · θ̂22,
with 1/θ̂22 = w22 − wT

12β̂.

The upper right block of the gradient equation from Eq. (14)
is

w12 − s12 − λSign(θ12) = 0. (15)

On the other hand, the sub-gradient equation from Eq. (12)
works out to be

W11β − s12 + λSign(β) = 0, (16)

where w12 = −W11θ12/θ22 = W11β. The equivalence of
the first two terms is obvious. For the sign terms, since
W11θ12 + w12θ22 = 0 from Eq. (14), we have that θ12 =
−θ22W−1

11w12. Since θ22 > 0, it follows that Sign(θ12) =
−Sign(W−1

11w12) = −Sign(β). This proves the equivalence.
Thus, we can solve the Lasso problem Eq. (12) instead of solving
the original Eq. (9).

In terms of inner products, the lasso estimates for the pth
variable on the others take S11 and s12 as the input data, where
p is the dimension of the samples. To solve Eq. (12), we instead
use W11 and s12, where W11 is our current estimate of the
upper block of W. We then update w and cycle through all of
the variables until convergence. The main steps of this estimation
process are shown in Algorithm 1.

Note that the Lasso [28] problem in step (b) above can be
efficiently solved by cyclical coordinate-descent algorithm [46].
Here are the details. Let V = W11, then the update has the form

β̂i ← S((s12)j −
∑
k �=j

Vkj β̂k, λ)/Vjj (17)

for j = 1, 2, . . .p, 1, 2, . . .p, . . ., where S is the soft-threshold
operator:

S(x, t) = sign(x)(|x| − t)+. (18)

It cycles through the predictors until convergence.
Although step 2 has estimated Θ̂−1 = W, it can recover

Θ̂ = W−1 relatively cheaply. Note that from the partitioning
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in Eq. (14), we have

W11θ12 + w12θ22 = 0

wT
12θ12 + w22θ22 = 1,

(19)

from which we derive the standard partitioned inverse expres-
sions

θ12 = −W−1
11w12θ22

θ22 = 1/(w22 − wT
12W

−1
11w12).

(20)

According to Eq. (20), θ̂22 and θ̂12 can be easily computed in
step 3. The Graphical Lasso algorithm stores all the coefficients
β for each of the p problems in a p× p matrix, and compute
θ̂ after convergence. As was discussed in [44], the estimator
θ̂ should be Symmetric Positive-Definite (SPD) and Sparse.
Furthermore, the recent work [47] leverages the similar method
to estimate covariance matrix and proves its superiority under
HDLSS settings.

V. EXPERIMENTAL RESULTS

In this section, we first introduce the data preprocessing based
on the raw EHR data. After that, the existing algorithms that will
be used as the baseline settings when comparing with CRLEDD
are given. Then, the experimental results are demonstrated and
discussed.

A. Data Preparation

To evaluate CRLEDD, we select the de-identified EHR data
of 10 participating schools from the entire dataset including 31
student health centers across the U.S. with totally over 1 million
patients and 6 million visits records provided by the College
Health Surveillance Network (CHSN) [48]. The available in-
formation includes ICD-9 diagnostic codes, CPT procedural
codes, and limited demographic information. There are over
200,000 enrolled students in those 10 schools representing all
geographic regions of the U.S. The demography of enrolled
students (sex, race/ethnicity, age, undergraduate/graduate status)
in the selected dataset closely matches the demography of the
students in the universities throughout the U.S.

We select the most common mental health disorders, anxiety
and mood disorders from primary care data, as the target disease
for early detection. Thousands of ICD-9 codes are clustered into
283 categories according to the AHRQ Clinical Classification
Software and expert opinions [38]. We use his/her diagnosis-
frequency vector based on the clustered code set to represent
each patient, where four clustered codes (i.e., 651, 657, 658,
662) represent anxiety and mood disorders.

Note that in our research, we do not predict these four types
of mental disorders separately, as these four disorders are often
co-occurring in clinical practices [49]. Further, patients with less
than two visits were excluded from the analysis.

Notably, the visit data and corresponding diagnosis in-
formation within one-month of the first diagnosis of anxi-
ety/depression in the target group is excluded for the aim of
early detection at least one to three-month prior to diagnosis. The

diagnosis-frequency vectors are used as predictors in our exper-
iment and only include the diagnosis frequency of non-mental
health diagnoses with all mental health related information
removed. In this case, our experiment is equivalent to predicting
whether a patient is likely to have or develop a mental health
disorder based on their diagnosis history.

B. Baseline Algorithms and Comparison Settings

To understand the performance impact of CRLEDD beyond
classic LDA, we first propose two kinds of baseline approaches
to compare against CRLEDD, then two types of discriminative
learning models are prepared for the comparison:

Regularized LDA Classifiers (three algorithms) – First, we use
the typical LDA classifier, which employs the sample covariance
estimation. Then, we consider the Shrinkage LDA [50] using
shrinkage covariance estimator with the sparsity parameter β.
Finally, we propose to use DIAG–a special Shrinkage with β =
0.0.

Downstream Classifiers (four algorithms) – We start with
Support Vector Machine (SVM, with regularization param-
eter C = 1.0) [10], and then use Logistic Regression (Log.
Reg.) [51]. Finally, we adopt two Adaboost classifiers ensem-
bling 10 and 50 logistic regression classifiers (AdaBoost(10) and
AdaBoost(50)).

With the seven baseline algorithms, we perform experiments
with training samples and testing samples. We randomly select
50, 100, 150, 200, and 250 patients with mental health disorders
as the positive training samples, and randomly select the same
number of patients without a mental health diagnosis as negative
training samples to maintain the balance. In terms of testing
samples, we randomly select 500, 1000, 1500, and 2000 patients
from each of the two patient classes (positive/negative) to build
the testing set.

Then, we reveal the initial settings of some key parameters in
proposed CRLEDD algorithm. The L1 regularization parameter
λ is set to be 1, 10, 100 for comparison. The tolerance to declare
convergence for graphical lasso is set to be 10−4, and the number
of maximum iteration for its optimization is set to be 100. For
each setting, we execute the seven algorithms and repeat 30
times. Then, we compare the accuracy and F1-Score of different
algorithms.

Also we perform an experiment to compare �1-norm error
of estimator between LDA and CRLEDD with different sample
sizes. Specifically, we randomly select 100 and 200 patients from
each of the two patient classes (positive/negative) to build the
testing samples.

C. Experiment Results

In this experiment, two types of comparison results are
demonstrated:

1) Accuracy and F1-Score Comparison: Figs. 2 and 3 present
the performance in terms of accuracy and F1-score of our
method and baselines with various sizes of testing samples given
different training sample sizes (more results are attached in the
appendix). As can be seen from the experiment results, CRLEDD
clearly outperforms the baseline algorithms in terms of overall
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Fig. 2. Accuracy Performance Comparison between CRLEDD and Baselines with Small Training Datasets (Testing Sample Size=500× 2, 1000× 2, 1500× 2,
2000× 2 from left top to right bottom, 90 days in advance).

accuracy, and F1-score, in all settings. Specifically, CRLEDD
achieves 3.1%–20.9% higher accuracy and 11.7%–31.9% higher
F1-score, compared to the typical LDA; CRLEDD achieves
7.5%–15.7% higher accuracy and 13.8%–41.9% higher F1-
score, compared to the DIAG; CRLEDD achieves 6.7%–19.2%
higher accuracy and 12.3%–71.6% higher F1-score, compared
to the Shrinkage. Compared to those robust classifiers such as
SVM, Logistic Regression, and AdaBoost, CRLEDD still clearly
outperforms these baseline algorithms. Thus we can conclude
that CRLEDD overall outperforms the baseline algorithms in all
experimental settings.

2) Sensitivity and Specificity Comparison: Table I addition-
ally presents the performance with regards to sensitivity and
specificity. The sensitivity is the percentage of patients who are
correctly diagnosed as having the corresponding disease. As
can be seen in the table, when training sample is 100 and testing
sample is 1000, the sensitivity of CRLEDD is 0.842 in average,
obviously higher than the sensitivity of SVM that have the
highest value 0.633 among other baseline algorithms, which can
explain that the CRLEDD has greater ability to correctly detect
patients than the other baseline algorithms. The specificity which
measures the proportion of people who are correctly identified as
not having the disease, provided by the CRLEDD is lower than
the other baseline algorithms. According to the table, CRLEDD
achieves the highest value of the specificity as 0.510 when λ = 1,

which is still lower than the LDA that have the lowest value
0.571 among other baseline algorithm. Similarly, this also occurs
when the training sample is 500 and the testing sample is 4000.
While, the CRLEDD is not better than the baseline algorithms in
regards to specificity, it performs better with regards to correctly
identifying those individuals with the disease. Further, we expect
a high number of false positives because mental health disorders
are often unrecognized in primary care settings such as the
student health centers. This oversight leads to adverse outcomes
and higher costs when patients with anxiety/depression cannot
receive proper treatment on time.

Trade-off: Moreover, we can observe that the CRLEDD sacri-
fices some specificity to achieve high sensitivity to some degree
(33% gain in sensitivity VS 17% loss in Specificity when com-
paring with LDA). However, we see the utility of CRLEDD as
an opportunity to perform psychological screening (e.g.; PHQ-9
[52]) in a primary care setting which could further identify the
student’s risk of a mental health disorder. Because of this, we
focus more on correctly diagnosing those patients with the target
disease.

3) Estimator Error Comparison: We assume CRLEDD im-
proves LDA because that the sparse precision matrix used in
CRLEDD is more “precise” than the sample precision matrix
used in simple LDA models when the training sample size is lim-
ited. Thus, we compare the �1-norm error of these two estimators
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Fig. 3. F1-Score Performance Comparison between CRLEDD and Baselines with Small Training Datasets (Testing Sample Size=500× 2, 1000× 2, 1500× 2,
2000× 2 from left top to right bottom, 90 days in advance).

Fig. 4. �1-norm Error Comparisons of Estimators on Different Sample Sizes.

and the results show that CRLEDD can always outperform with
less error in different sample sizes. Fig. 4 presents the average
error between precision matrices in �1-norm. The results show
that, compared to LDA (Σ−1S ), the precision matrix estimated
in CRLEDD (Θ̂) using small samples is closer to the precision
matrix estimated using large samples. Note that we repeat the

comparison in each setting for 30 times to estimate the average
errors.

4) Causality Graph Visualization: To validate the key algo-
rithm of CRLEDD, we draw a causality graph based on the
precision matrix in Eq. (9). Specifically, we randomly select
a training set with 4000 balanced samples and threshold [53]
the Graphical Lasso (λ = 0.1) at level

Φ−1
(
1− α

p(p− 1)

)
σ̂ij/
√
n (21)

where α = 0.05 and σ̂2
ij = Θ̂iiΘ̂jj + Θ̂2

ij . We leverage this
threshold to pick up the strong causalities node pairs at the 95%
significance level. As shown in Fig. 5, each node in the graph
represents a category of disorder and the thickness of the edge
shows the intensity of the causality. Further, we present the undi-
rected disorder pairs by ranking their causality in the Table II.
According to our results, we speculate that the disorders can be
grouped into those that are related to anxiety and mood disorders
such as other upper respiratory infections, other connective
tissue diseases, and administrative/social admission. Other di-
agnoses are the ones that are unrelated to anxiety/depression
such as immunizations and screening for infectious disease, and
contraceptive and procreative management. We hypothesize that
in the highest risk level that their are pairs of which both or only
one of diagnoses are related to anxiety/depression in the higher
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TABLE I
SENSITIVITY AND SPECIFICITY COMPARISON

Fig. 5. Causality Graph.

risk group. For example, prior epidemiological studies suggest
that upper respiratory infections affect mood and cognition, and
psychological stress which is a significant risk factor for upper
respiratory infections [54], [55]. Further clinical investigation
is needed to fully understand these disorder pairs, but in gen-
eral, these findings are informative for the early detection of
anxiety/depression.

D. Conclusion on Experiment Results

In the experiments, we evaluate CRLEDD using the empirical
EHR datasets, and compare the algorithm with other classifiers
under the same balanced dataset settings. The overall evaluation
result shows that our algorithm significantly outperforms the
existing linear discriminant analysis classifiers and other down-
stream classifiers, with both higher accuracy and F1-score. The
case studies based on the estimated precision matrix show that
the Graphical Lasso estimator used in CRLEDD can reduce the
�1-norm estimation error and improve the accuracy of classi-
fication, on top of the classical LDA classifiers. Further, we
visualize the graph of casualties discovered from the data, which
makes sense in the medical contexts [54], [55]. It is reasonable
to conclude that, through lowering the error of precision matrix
estimation, CRLEDD efficiently recovers the casualties between
diagnoses related to the social anxiety/depression population
from the data, then it improves the classification accuracy/F1-
score by incorporating the well-recovered casualties. Note that
our algorithm, along with all other baseline algorithms, is eval-
uated under balanced settings.

Efficiency Comparison: Also, we compare the time consump-
tion of CRLEDD algorithm with most competitive algorithm
SVM (500 patients for training and 2000 patients for testing). On
average, CRLEDD takes 334.75 seconds for training and testing
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TABLE II
CAUSALITY RANKING OF DISORDERS PAIRS (UNDIRECTED)

which is slightly more than the SVM algorithm (295.21 seconds)
but achieve 15% better accuracy. (The experiment platform is
Windows OS with 2.8 GHz CPU).

VI. DISCUSSION

In this section, we conclude the superiorities and limitations
of CRLEDD. Further, we come up with the plans to improve
CRLEDD in the future work.

1) Clinical Relevance and the Motivation: It is well known
that the mental health diseases and disorders are hard to be
successfully diagnosed in clinical practice at its earlier stage
[56]. It can take months, and sometimes years, for clinicians to
accurately diagnose a mental illness partially due to the fact that
the sample size of the existing EHR data in terms of mental issues
is limited compared to the dimensionality of each individual
sample, which leads to huge errors in prediction using some
existing LDA based classifiers. Motivated by the status quo,
CRLEDD “Causality-Regularized Learning for Early Detection

of Disease” is proposed in this paper to help clinical practitioners
to implement effective initial screening to support and improve
an early detection of mental diseases. It can help clinicians
save diagnosis time and improve the efficiency. Specifically, the
empirical EHR data can be used to train the proposed estimator
and test its performance with the labeled diagnosis. Then, the
clinicians can use the predictions as an auxiliary diagnosis so that
further actions can be determined and adopted along with other
clinical information to treat the patients at early stage effectively.

2) Comparing to Existing Algorithm: The aforementioned
regularized method is a possible way to address the ill-posed in-
verse problem. For example, the Shrinkage LDA is a regularized
LDA estimator which leverages sparsity of the shrinkage covari-
ance matrix. In this paper, we proposed CRLEDD which em-
ploys graphical lasso to estimate the precision matrix to achieve
both the positive semi-definiteness and the optimal estimation. In
order to demonstrate the superiority of CRLEDD we compare
it with the regularized LDA (Shrinkage LDA and DIAG) and
other frequently-used algorithms (SVM, Decision Tree, Logistic
Regression and AdaBoost) in the experiment. The results show
the Accuracy and F1-score of CRLEDD is higher than the above
baseline algorithms. Although CRLEDD sacrifice its Specificity
comparing to the baseline algorithms, which can be regarded as
a trade-offs between Sensitivity and Specificity, CRLEDD still
overall outperforms other baseline algorithms especially when
applying to “early detection of disease” background, where
CRLEDD can try the best to find the patients with the target
disease (high Sensitivity) and further filter out the misclassified
patient through a traditional diagnosis.

Another possible way is to treat the problem as a sparse
data recovering. Since the sparse data are more commonly
encountered in industrial applications rather than complete data,
the researchers have investigated and proposed some efficient
algorithms [57]–[61] to solve the problem. We plan to initial
some comparisons between the sparse data recovering tech-
niques (e.g., matrix factorization [62]) and co-variance regu-
larized operations in the future work to deep understand the
correlation and the merits which can be leveraged in different
scenarios.

3) Data and Matrices: In the experiment section, we train the
estimator using the balanced sample data, where in the future,
we can directly work on unbalanced datasets [63] which are
more common in real-world datasets. Moreover, in our work, we
use the ICD-9 raw data by filtering out short time observations,
where CRLEDD has achieved a good performance in terms of
accuracy and F1 scores. In order to improve CRLEDD from the
aspect of data preparation, we consider the following measures
in our future work: (1) for the data pre-processing, we can use the
normalization techniques to avoid small snapshot of the patient
visit (e.g., length of the observation) or side-effect of social
factors (e.g., health care access); (2) for the data coding itself, we
can consider combining different quality levels of source data
(e.g., coarse level provided by CPT) to address more complicated
diagnosis records.

4) Computing Method and Optimization Algorithm: Our pro-
posed algorithm CRLEDD first collect all the relevant data from
each medical institution, then train and test the target classifier
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based on these aggregated data in a single institution. Due to the
practical situations, such as the privacy concern when gathering
all the data in one center/hub, the possibly large workload
in single institution and the needs for real-time medical data
updating, we might plan to improve the current CRLEDD with
distributed computing patterns. Further, we can also apply the
on-line optimization algorithm (e.g., on-line stochastic gradient
descent) to obtain the optimal coefficient parameters of the
estimator, which the real-time data updating can be achieved.

5) Compare to the previous version: This work is the extended
version of previous work [36]. We mainly target on the following
three new parts to supplement the previous work: (1) we present
the detailed techniques of Graphical Lasso in Section IV-B to
show how it benefit to the traditional LDA, where Graphical
Lasso ensures positive semi-definiteness of the sparsified preci-
sion matrix; (2) To validate the key algorithm of CREDD, we
present the causality graph visualization in the Experimental
Results section. Moreover, we also conduct more experiments
with the results based on a large range of parameters. Note that
the complete experimental results are listed in the Appendix A;
(3) We extend to discuss the superiorities and the limitation of
the proposed CREDD in this section.

VII. CONCLUSION

In this paper, CRLEDD is designed to lower the expected error
rate of LDA model for high-dimensional EHR data, through reg-
ularizing the precision matrix with Graphical Lasso. The experi-
mental results using real-world EHR dataset show that CRLEDD
has better performance compared with all baseline algorithms
in terms of overall accuracy, and F1-score in all settings. Also,
we compare the �1-norm error of LDA and CRLEDD, the results
show that CRLEDD always outperforms other methods with less
error in different sample sizes. Furthermore, we visualize the
causality between the disorders based on the precision matrix to
validate the algorithm in CRLEDD.
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