
Protoformer: Embedding Prototypes for
Transformers

Ashkan Farhangi?, Ning Sui, Nan Hua, Haiyan Bai, Arthur Huang, and
Zhishan Guo

University of Central Florida, Orlando FL, USA
ashkan.farhangi@ucf.edu, zhishan.guo@ucf.edu

Abstract. Transformers have been widely applied in text classifica-
tion. Unfortunately, real-world data contain anomalies and noisy labels
that cause challenges for state-of-art Transformers. This paper proposes
Protoformer, a novel self-learning framework for Transformers that can
leverage problematic samples for text classification. Protoformer fea-
tures a selection mechanism for embedding samples that allows us to
efficiently extract and utilize anomalies prototypes and difficult class
prototypes. We demonstrated such capabilities on datasets with diverse
textual structures (e.g., Twitter, IMDB, ArXiv). We also applied the
framework to several models. The results indicate that Protoformer can
improve current Transformers in various empirical settings.
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1 Introduction

For real-world textual datasets, anomalies are known as samples that depart
from the standard samples. Such anomalies tend to have scattered textual dis-
tributions, which can cause performance drops for state-of-art Transformer mod-
els [13]. Moreover, models that rely on supervised learning can suffer from in-
correct convergence when provided with noisy labeled data gathered from In-
ternet [14]. Hence, there is a need to automatically detect the anomalies and
adjust noisy labels to make the model more robust to complex noisy datasets.

As human annotations can be highly time-and-cost inefficient, it is more
common that noisy labels are gathered from the Internet. For instance, Twitter
has been increasingly adopted to understand human behavior [3]. However, such
data tend to complex and often contain noisy labels. This can make the standard
supervised learning objective lead to incorrect convergence [4].

One of the applications of this study is to classify college students’ academic
major choices based on their historical Tweets. When students follow a certain
college’s official account, it might indicate that the student belongs to that
major. However, there are uncertainties about the correctness of the labels.
Therefore, the supervised model’s results can become untrustworthy.
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Fig. 1. Distribution of embeddings for real world data samples is often scatterd. Al-
though conventional class prototypes are easier to select, difficult class prototypes and
anomaly prototypes require a more careful approach in selection and play a critical
role in improving the decision boundary.

There are some prior works on prototype embeddings. CleanNet [7] proposes
providing extra supervision for the training. Subsequently, SMP [5] proposes us-
ing multiple prototypes to capture embeddings with high density without extra
human supervision. However, both approaches do not provide a solution for
troublesome embeddings that are scattered and are often minorities, as shown
in Figure 1. To alleviate this issue, we select prototypes through their contextual
embeddings in a way to not only cover the difficult-to-classify samples but also
represent minority samples of the dataset (i.e., anomalies).

We propose Protoformer framework that selects and leverages multiple em-
bedding prototypes to enable Transformer’s specialization ability to classify
noisy labeled data populated with anomalies. Specifically, we improve the gen-
eralization ability of Transformers for problematic samples of a class through
difficult class prototypes and their specialization ability for minority samples
of a class through anomaly prototypes. We show that the representations of
both prototypes are necessary to improve the model’s performance. Protoformer
leverages these prototypes in a self-learning procedure to further improve the
robustness of textual classification. To our best knowledge, this is the first study
that extracts and leverages anomaly prototypes for Transformers.

In summary, the contributions are threefold:

• We propose a novel framework that learns to leverage harder to classify and
anomaly samples. This acts as a solution for classifying datasets with complex
samples crawled from the Internet.

• The framework contains a label adjustment procedure and thus is robust to
noise. This makes the framework suitable for noisy Internet data and can be
used to promote a more robust Transformer model. Leveraging the similarity in
the embedding space and a ranking metric, we can identify questionable labels
and provide a certain level of adjustment. This mitigates the potential negative
impact on the training.
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• We evaluate the framework based on multiple datasets with both clean and
noisy labels. Results show that our model improves the testing accuracy from
95.7% to 96.8% on the IMDB movie review dataset. For a self-gathered Twitter
dataset with noisier labels, the classification accuracy improved with a greater
margin (from 56.7% to 81.3%).

2 Problem Formulation

Given a sample text as xi, X = {x1,x2, · · · ,xN} represents all the N samples of
the dataset, while Ŷ = {ŷ1, ŷ2, · · · , ŷN} indicates the corresponding noisy labels
from the Internet. The noisy label ŷi ∈ {0, 1}c̄ is a binary vector format with
only one non-zero element, indicating the class label of xi, where c̄ is the total
number of classes. A Transformer model FW can be used as a classification
model to produce an estimated label FW (xi) ∈ [0, 1]c̄, where W represents
the parameters. The optimization strategy is based on the cross-entropy loss
function:

L(FW (xi), ỹi) = −
c̄∑

j=1

ỹi,j log (FW (xi)j) , (1)

In addition, labels from the internet are often noisy. Hence, as detailed in
Section 3.4, the labels can be adjusted according to the similarities of the class
prototypes, resulting in adjusted labels ỹi ∈ [0, 1]c̄—it is a probability distribu-
tion, and thus

∑c̄
j=1 ỹi,j = 1. Even when we have sufficient confidence in the

original labels, we can use it as a complementary supervision.
Specifically, for each batch with m samples, we would pursue the following

optimization problem:

W ∗ = argminW

1

m

m∑
i=1

L (FW (xi), ỹi) (2)

3 Design of Protoformer

This section provides the details of Protoformer. Specifically, we describe a pro-
cedure for extracting the difficult class prototypes (Section 3.1). Subsequently,
we describe a procedure for extracting anomaly prototypes (Section 3.2). Both
types of prototypes are then used in a multi-objective self-learning training pro-
cess that optimizes the network parameters for robust text classification (Section
3.3). In order to handle noisy labeled data, we adjust the noisy labels through
a label adjustment procedure that uses the prototype similarities (Section 3.4).

3.1 Difficult Class Prototypes

Difficult class prototypes act as the representatives for the problematic samples
of the dataset. For example, Figure 2 showcases the fine-tuned embeddings of
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Fig. 2. Left: distribution of the embedding for IMDB dataset. Presence of anomalies
aand problematic samples cause misclassification. Right: Distribution of the highest
output logits (scaled 0-1) for the same model. The higher values of the largest logits
can represent the confidence of the network’s classification.

a benchmark dataset gathered from the Internet (i.e., IMDB). Although the
majority of samples of each class are located closely together, there are anomaly
samples that are scattered and often far from the majority. Unfortunately, these
harder-to-classify samples are not the target focus of the state-of-art models
in text classification. Moreover, traditional clustering methods (e.g., K-means)
are not designed to capture or cluster such samples that are scattered and
distributed throughout the embedding space.

Intuitively, these problematic samples can cause the greatest error. For in-
stance, Figure 2 also shows the classification error of the fine-tuned BERT [2]
model where the majority of the classification error stems from harder-to-classify
samples (over 51%). Such error arises when the highest classification logit val-
ues are still low and in between classes, which indicates the indecisiveness of the
Transformer. Following [5], we define the similarity of the extracted embeddings
through pairwise similarity score (i.e., cosine distance) of any two inputs xi

and xj as:

sij =
e (xi)

T · e (xj)

‖e (xi)‖2 ‖e (xj)‖2
, (3)

where e(x) is the embedding vector of sample x, extracted from the first layer
of the Transformer1.

To determine the closeness of embeddings, we also define the proximity
metric p for each embedding as:

pi =

m∑
j=1

sign (sij − sc) , (4)

1 For large-scale datasets, one can randomly choose a limited number (e.g., q) of samples per
class to develop a triangular similarity matrix Sq×q which can enhance the computational
efficiency.
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Fig. 3. Selected embedding prototypes of a single class of Twitter dataset. Difficult
class prototypes have higher proximity, while anomaly prototypes suffer from low prox-
imity due to their complex nature.

where sign(x) is a sign function2 and sc is an arbitrary value from the similarity
matrix (default as 20-percentile). Intuitively, a higher proximity indicates that
the textual embeddings have more similar embeddings around them and are
‘closer’ to every other sample in the embedding space.

Follwing [12], problematic samples cause low confidence in output logits of
the model. Hence, we define the confidence metric c as:

ci = |

largest logit︷ ︸︸ ︷
maxĉ1 FW (xi)ĉ1 −

second largest logit︷ ︸︸ ︷
maxĉ2 FW (xi)ĉ2 | (5)

where logits are scaled (0-1 range) and are taken from the output before the
softmax layer after a preliminary training stage. Intuitively, when the confidence
is low (near zero), the model indecisivess is the highest.

We can now represent the embeddings in a three-dimensional space as shown
in Figure 3 (similarity-proximity-confidence). The difficult class prototype se-
lection follows three general rules: (i) it should prioritize low confidence samples
(i) it should be ‘far’ enough from existing prototypes (if any), (iii) it should
have high ‘proximity’ when possible. To this end, the first prototype with the
lowest confidence, highest proximity, and highest similarity is chosen. Then, the
subsequent difficult class prototypes are chosen in a logsparse [8] manner for
every round with an exponential selection step of sample size (log2(N)). Note
that the samples are selected based on the low confidence, then high proxim-
ity but should have the lowest average similarity with the previously selected
prototypes to be distinctive from each other. This strategy ensures us that the
difficult class prototype are well represent problematic samples of the dataset.

2 sign(x) = 1 for x > 0, sign(x) = 0 for x = 0, and sign(x) = −1 otherwise.
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Next, at a certain round (t), a prototype set Xc =
{

x
(1)
c , . . . ,x

(t)
c

}
is already

formed for the c-th class, c = 1, ..., c̄. Given any text xi, we can calculate the
average cosine similarity between sample xi and the selected prototype embed-
dings as:

sci,(c) =
1

t

t∑
j=1

si,c(j) , (6)

where sci,(c) is the average similarity of difficult class embeddings in the jth
iteration for the c-th class. This average similarity can then be used as a com-
plementary supervsion:

zci = argmaxc{sci,(c)|c = 1, ..., c̄}. (7)

As shown in Figure 3, difficult prototypes are chosen with low confidence
levels, where they have the least similarity among the previously selected pro-
totypes. During this process, we ensure that the subsequent prototypes stay far
enough from existing prototypes so that there are limited redundant represen-
tations of the similar samples.

3.2 Anomaly Prototypes

Anomaly prototypes are the selected sample prototypes that represent the scat-
tered and shattered minority samples of a dataset. Such samples are often harder
to detect and tend to deviate from normal samples.

Given that the remaining classification error can be caused by such anoma-
lies, it’s important to not only capture such anomalies robustly but also leverage
them for the optimization objectives of Transformers.

So far, difficult class prototypes can cover the problematic samples as they
are detected by having high proximity and similarity. However, a certain portion
of prototypes may be located ‘far’ from the difficult class prototypes and often
represent the minority members of a class, as indicated by the red dots in the
in Figure 3. Such prototypes represent the minority of samples as they have a
lower density.

The prototype with the least proximity pmin is selected in the first round.
This ensures us that the elected prototype is representative of the minority
samples. We then select the subsequent ones in the same logsparse manner as
before, ensuring that the prototypes have the least similarity. The similarity
score is calculated in a similar manner to Equation (6) while including the
anomaly prototypes in the summation.

Figure 2 also illustrates the process, where gray dots represent all sample
embeddings, and red dots indicate the embeddings of selected anomaly proto-
types.

3.3 Multi-Objective Self-Learning

Transformers used in text classification often rely on a single source of super-
vision which is the given labels. However, such design choice limits the Trans-
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Fig. 4. Protoformer leverages the embedding space to derive the difficult class and
anomaly prototypes. The network is trained jointly on Transformer and similarity of
embedding prototypes. The total loss is dependent on the α and β values which are
estimated in the training phase.

former’s ability to perform well when the datasets are noisy labeled. Moreover,
anomaly samples appear less in training compared to samples with high sim-
ilarity. Note that majority of self-learning objectives for Transformers are to
provide the greatest level of classification accuracy for all samples regardless of
whether they are in the majority or minority. Intuitively, such a self-learning
objective does not guarantee that the model suits well for minority classes due
to their lower occurrence. In order to incorporate our prototypes during the
training and test stage, we introduce a multi-objective self-learning mechanism
to Protoformer.

As shown in Figure 4, the similarities of embedding prototypes are used as
self-supervision to train the Protoformer FW after its fine-tuning state. The
self-supervision is provided by the class prototype as below:

Lproto =
1

m

m∑
i=1

(α · L(FW (xi), z
c
i ) + β · L(FW (xi), z

a
i )), (8)

where the weight factors α, β ∈ [0, 1) and α+β < 1 indicate the concentration of
Transformer on the similarities of self-supervision of difficult class prototypes zci
and anomaly prototypes zai . Hence, the overall loss is calculated by minimizing
the classification loss based on three components:

Ltotal = (1− (α+ β)) · 1

m

m∑
i=1

(L(FW (xi), ŷi) + Lproto, (9)

To this end, when the network’s predictions are in between classes, the net-
work can improve its training by the self-supervision provided by the similarity
of difficult class prototype zci and anomaly prototype zai . Hence, we continue the
training procedure iteratively until convergence: W (t+1) ← W (t) − ξ∇ (Ltotal) ,
where the gradient descent vector ∇(Ltotal) holds the partial derivatives of
weights and biases of the total loss function, and ξ is the learning rate. We use
a fully connected layer over the final hidden state corresponding to the output
token of the Transformer (i.e., [CLS] token). The softmax activation function
is then applied to the hidden layer to provide classification. It is important to
note that this procedure can also be implemented solely during the test stage,
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which can make the calculation timing complexity of Protoformer similar to the
fine-tuning process.

3.4 Noisy Labels Enhancement

To mitigate the effect of noisy labels throughout the datasets, we are enhancing
the labels through the similarities of embedding prototypes. This allows Proto-
former to be robust toward datasets when the labels are not fully trustworthy.
Consequently, when the labels are wrong, the training procedure of Transformers
provides suboptimal weights, which makes the classification results untrustwor-
thy.

Specifically, we can obtain the adjusted label of the a noisy labeled sample
through maximum similarity to the difficult class prototype:

ỹi = argmaxc{si,(c)|c = 1, ..., c̄}, (10)

where si,(c) is the cosine similarity defined in Equation (6) and the enhanced
labels ỹ can be used as a replacement for the noisy labels. Thus, the overall loss
is calculated in a similar manner as Equation (9), while we are replacing the
original noisy labels with the adjusted label.

4 Experiments

In this section, we provide descriptions for the datasets. We also describe the ex-
perimental settings and evaluation results. Lastly, we provide an analysis section
that further discusses the effectiveness of Protoformer components.

4.1 Benchmark Datasets & Baselines

We have experimented with three challenging real-world datasets3. The brief
discussion for each dataset is as follows:

Table 1. Summary statistics of the evaluation dataset.

Dataset Twitter-Uni IMDb Arxiv-10

# Examples 25,000 25,000 100,000
# Train 20,000 20,000 80,000
# Validation 2,500 2,500 10,000
# Test 2,500 2,500 5,000
# Classes 8 2 10

Twitter-Uni3. We crawled over 12 million historical Tweets of 25,000 Twit-
ter profiles from 8 U.S. college followers. As an example, the college of engineer-
ing holds near 3000 followers, which are labeled as engineering. Note that most
existing benchmark Twitter datasets fail to hold high-quality labels that are

3 Self-gathered datasets are accessible at https://github.com/ashfarhangi/Protoformer
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provided by the original Twitter users. To alleviate this issue, we extracted a
set of students that stated their major in their Twitter bio. This set can serve as
ground truth of the clean labels. We made this challenging new dataset available
online, which can be used for future text classification or noisy label correction
studies.

ArXiv-103. We also crawled the abstracts and titles of 100 thousand ArXiv
scientific papers on ten research categories that include subcategories of com-
puter science, physics, and math. The dataset is downsampled to contain exactly
10 thousand samples per category.

IMDB. The third dataset is the benchmark IMDb movie reviews [10]. The
dataset is widely used as the sentiment classification task. It contains 25 thou-
sand samples per sentiment (positive or negative). Both IMDb and ArXiv-10
datasets are originally labeled by the authors. It is however good to note that
the labels are still susceptible to noisy labels.

The baseline methods for comparison include:

– SVM [11], supervised learning with a linear separator to maximize the mar-
gin between classes, with the fine-tuned embeddings derived from the Trans-
formers.

– HAN [6], a hierarchical attention network for textual classification with word
and sentence-level attention mechanisms.

– DocBERT [1], a document Transformer model with an LSTM architecture
rather than a fully connected layer.

– RoBERTa [9], a Transformer with an improved pretraining procedure. Specif-
ically, showing improvement by removing the next sentence prediction pre-
training objective.

Table 2. Hyperparameters of the Protoformer used for each dataset.

Parameter Twitter-Uni IMDb Arxiv-10

Batch size 32 64 32
Learning rate 5 × 10−5 3 × 10−5 5 × 10−5

Weight decay 5 × 10−5 1 × 10−5 1 × 10−4

Preliminary training epochs 5 3 2
Fine-tuning epochs 20 10 10
Training time 1:49h 1:32h 1:45h
Transformer DistilBERT BERT RoBERTa

4.2 Experimental Settings

To showcase the generalization ability of our framework, we selected a unique
Transformer for each dataset (Table 2). The hyperparameters are based on the
highest Macro-F1 score obtained on the validation set for all models (following
the standard 80-10-10 split). We used a grid search approach to explore the
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Table 3. Evaluation of the Protoformer and baseline methods.

Twitter IMDb ArXiv

Model Ma-F1 Recall Acc Ma-F1 Recall Acc Ma-F1 Recall Acc

SVM [11] 0.384 0.361 0.391 0.744 0.733 0.748 0.691 0.654 0.708
HAN [15] 0.412 0.392 0.425 0.894 0.882 0.896 0.732 0.696 0.746
DocBERT [1] 0.521 0.506 0.534 0.932 0.921 0.936 0.752 0.727 0.764
RoBERTa [9] 0.555 0.531 0.567 0.952 0.941 0.957 0.769 0.732 0.779
Protoformer 0.802 0.784 0.813 0.964 0.952 0.968 0.784 0.744 0.794

hyperparameters: size of fully connected layer HD ∈ {256, 512, 768, 1024} and
dropout δ ∈ {0.0, 0.1, · · · , 0.9}. The experiments are conducted using PyTorch
on a cloud workstation using Nvidia Tesla A100 GPU.

4.3 Experimental Results

For a less noisy labeled datasets such as IMDB and Arvix, the evaluated meth-
ods performed comparatively. Note that the majority of the classification error
appears when the network does not show confidence in its classification, as was
previously shown for the IMDB dataset in Figure 5. The Protoformer is also
able to provide a competitive accuracy for cleaner datasets such as IMDb and
ArXiv-10. Among the baselines, the performance of RoBERTa [9] is favorable
compared to others. This is partly due to the different pretraining objectives
from DocBERT. As shown in Table 3, Protoformer resulted in the highest mar-
gin of accuracy for a noisy dataset, improving the Macro-F1 score from 55.5%
to 80.2% for the Twitter-Uni dataset. We observed that this dataset provides
the greatest difficulties for baseline methods where the models often misclassify
problematic samples. To this end, we report a detailed accuracy breakdown for
the Twitter dataset in Figure 5. The fine-tuning process for Transformers such
as DocBERT, RoBERTa results in suboptimal classification. Leveraging the se-
lected prototypes, Protoformer was able to improve its classification accuracy on
the harder and more complex samples (e.g., management students that are sim-
ilar to other classes). To this end, the fine-tuning process alone does not result
in adequate accuracy due to the noise of the dataset. The combination of both
embedding prototypes allows the Transformer to have a solution for anomalies
and problematic samples of the dataset and further improves its generalization
ability through difficult class prototypes.

4.4 Analysis

In this section, we provide an extensive analysis of the performance of Proto-
former, as well as the role of each type of prototype on the overall performance.
Hence, we limited the number of prototypes per class for the Twitter dataset
and reported the changes. The results in Figure 5 show that a single prototype is
not sufficient to provide competitive accuracy even with the help of a fine-tuned
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Fig. 5. Left: Accuracy increase from the initial (light blue), class protoype (blue)
and class anomalies (red), for Twitter dataset. Right: Influence of anomaly labeling of
hurricanes for Collier county gross hotel sales revenue. Middle: Number of anomaly
prototypes (AP) and difficult class prototypes (CP) per class for Twitter dataset.
Higher number of prototypes resulted in marginal improvement while the combination
of both category of prototypes gives us the optimal accuracy. Right: Testing accuracy
with respect to the weight factors (α and β) ranging from 0 to 1.

Transformer. However, as the number of prototypes increased, we observed im-
provements in the accuracy of the Protoformer. The prototype selection proce-
dure previously discussed ensures that there are multiple prototypes for every
proximity metric, and the calculation of them is computationally expensive even
for the large-scale dataset. Moreover, the weight factors are reported separately
to showcase the effect of their self-supervision for the Twitter dataset. The re-
sults show that relying on the noisy labels (α and β = 0) during training would
be suboptimal and perform poorly on confirmed test data. Moreover, the accu-
racy would be optimal when weight factors sum to 0.5 (i.e., α=0.2, β= 0.3).

5 Conclusion

In this work, we developed a novel Transformer framework, Protoformer, that
leverages the embedding prototypes of the dataset to enhance its generaliza-
tion and specialization abilities. It also includes a procedure for handling noisy
labels. Various experiments are conducted to demonstrate the effectiveness of
Protoformer over state-of-art topic and sentiment classification methods. For fu-
ture work, we are interested in applying Protoformer for the image recognition
tasks. We also like to explore the use of Protoformer on spherical and hyperbolic
embedding space.
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