
Mixed-criticality scheduling upon non-monitored

varying-speed processors

Zhishan Guo Sanjoy Baruah

The University of North Carolina at Chapel Hill

Abstract—A varying-speed processor is characterized by two

execution speeds: a normal speed and a degraded speed. Un-

der normal circumstances it will execute at its normal speed;

unexpected conditions may occur during run-time that cause it

to execute slowly (but no slower than at its degraded speed).

A processor that is self-monitoring immediately knows if its

speed falls below its normal speed during run-time; by contrast,

a non-monitored processor cannot detect such degradation in

performance during run-time. The problem of executing an inte-

grated workload, consisting of some more important components

and some less important ones, upon a non-monitored varying-

speed processor is considered. It is desired that all components

execute correctly under normal circumstances, whereas the more

important components should execute correctly (although the less

important components need not) if the processor runs at any

speed no slower than its specified degraded speed.

Keywords—Mixed-criticality scheduling; varying-speed proces-

sors; non-monitored processors; speedup bounds.

I. INTRODUCTION

Conditions during run-time, such as changes to the ambient
temperature, the supply voltage, etc., may result in variations
in the clock speed of a processor. While at the hardware
level, innovations in computer architecture for increasing clock
frequency can lead to varying-speed clocks during run time.
Existing worst-case execution time (WCET) tools must make
the most pessimistic assumptions regarding clock speed, which
may result in a a significant under-utilization of the CPU’s
computing capacity since the lowest possible clock speed is
highly unlikely to be reached in practice.

In this paper we consider a mixed-criticality (MC) real-
time workload comprised of multiple independent jobs under
such varying-speed processor. Each job is characterized by
a release date, a worst-case execution time (WCET), and a
deadline; each job is further designated as being either HI-
criticality (more important) or LO-criticality (less important).
It is desired to execute this workload upon a single shared
preemptive processor. Let the function s : R → R denote the
speed or computing capacity of this processor as a function
of time, in the sense that the amount of execution completed
by executing a job over the time-interval [a, b) is equal to
∫ b

a
s(t) dt. So long as s(t) ≥ sn for some (known) constant

sn, the processor is said to be operating in normal mode. If
s(t) falls below sn but remains above sd for another known
constant sd < sn, the processor is said to be operating in
degraded mode. Note that here s(t) can be any real value

at any time, we are only defining these two thresholds for
separating functionality of the processor. If s(t) falls below
sd, the processor is said to be non-functional. Moreover, the
function s(t) is not known beforehand: it is revealed during
run-time as the processor executes. We seek a scheduling
strategy that guarantees to complete all jobs by their deadlines
if the processor remains in normal mode (i.e., s(t) ≥ sn for
all t ≥ 0), while simultaneously guaranteeing to complete all
HI-criticality jobs so long as the processor does not become
non-functional (i.e., s(t) ≥ sd for all t ≥ 0).

We have recently [4] considered the scheduling of such
mixed-criticality workloads under the assumption that the
platform upon which the workload is being executed is self-

monitoring during run-time, in the sense that it immediately
knows if it transits from normal to degraded mode (i.e., if its
speed falls from ≥ sn to below sn).

In this paper, we remove this assumption, and consider
platforms that lack the ability to self-monitor.

A natural question arises: does the lack of such an ability
even matter? We construct a simple example mixed-criticality
instance below that shows that it does. This example instance
consists of one LO-criticality job J1 and one HI-criticality job
J2, that are to be preemptively scheduled on a processor with
normal speed sn = 1 and degraded speed sd = 1

2
. Both

jobs arrive at time-instant zero; J1’s WCET is one and its
deadline is at time-instant two, while J2’s WCET is two and
its deadline is at time-instant four. Upon a self-monitoring
processor, we could start out scheduling the system according
to the following scheduling table:

- time
0 1 2 3 4

J1’s deadline

?

J2’s deadline

?
J2

J1 J2

If at any instant during this execution the processor deter-
mines that its execution speed has degraded below sn, then
J1 is immediately discarded and the processor executes J2
exclusively. It may be verified, by exhaustive consideration of
all possible instants at which such degradation occurs, that this
scheduling strategy will result in J2 completing by its deadline
regardless of when (if at all) the processor degrades, and in978-1-4799-0658-1/13/$31.00 c© 2013 IEEE

8th IEEE International Symposium on Industrial Embedded Systems (SIES 2013)

161

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:29:35 UTC from IEEE Xplore.  Restrictions apply. 



both deadlines being met if the processor remains normal (or
degrades at any instant ≥ 2).

Suppose, however, that the processor cannot self-monitor:
it does not know what its speed is at each instant during run-
time. The schedule above is no longer acceptable: it is possible
that the processor had degraded at the very beginning and was
already operating at a reduced speed of 1/2 throughout the
interval [0, 4), in which case neither job J1 nor job J2 would
complete on time. This remains true even if J2 were allocated
execution over [3, 4) upon it being discovered that it had not
completed execution at time-instant 3. Indeed, there will not
be any scheduling strategy for this example instance that meets
all our requirements upon a non-monitoring processor, since
the only scheduling strategy that can ensure that J2 completes
on a degraded processor would first execute J2 to completion,
but such a schedule would necessarily miss J1’s deadline even
when the processor does not degrade.

Generally speaking, a self-monitoring processor knows its
degradation as soon as it occurs, and can make the best choice
such as drop LO-criticality jobs to save enough capacity for HI-
criticality jobs. However if the processor cannot self-monitor,
it won’t realize such degradation until a job received enough
execution time and hasn’t got finished - LO-criticality jobs
will continue to receive execution even when the processor
is running at a degraded speed.

Contributions. Our contribution in this paper is twofold.
First in Section III, we present strategies for scheduling MC
workloads on non-monitored processors. Second, the example
above illustrates that there are indeed systems that can be
scheduled correctly by a self-monitoring processor but not
by an unmonitored one. However, the ability to self-monitor
comes at a price: processors with this capability are likely to
be more complex (particularly since the self-monitoring facility
needs to be accurate in order to be useful). In Section IV we
seek to quantify the benefit of such self-monitoring.

II. MODEL

In our model, a mixed-criticality real-time workload is
comprised of basic units of work known as mixed-criticality
jobs. Each mixed-criticality (MC) job Ji is characterized by a
4-tuple of parameters: a release date ai, a WCET ci, a deadline
di, and a criticality level χi ∈ {LO, HI}. A mixed-criticality
instance I is specified by specifying

1) a finite collection J of MC jobs: J = {J1, J2, . . . , Jn},
and

2) an unreliable processor that is characterized by both a
normal speed sn and a degraded speed sd < sn.

The interpretation is that the jobs in J are to execute on
a single shared processor that has two modes: a normal

mode and a degraded or faulty mode. In normal mode, the
processor executes as a speed-sn (or faster) processor and
hence completes sn (or more) units of execution per unit time,
whereas in degraded mode it completes less than sn, but at
least sd, units of execution per unit time.

For each t ∈ R≥0, let s(t) denote the speed of the processor
at time-instant t. The processor starts out executing at or above
its normal speed: s(0) ≥ sn. It is not a priori known when,
if at all, the processor will degrade. We seek to determine a
correct scheduling strategy, which is defined as follows:

Definition 1 (correct scheduling strategy): A scheduling
strategy for MC instances is correct if it possesses
the property that upon scheduling any MC instance
I = ({J1, J2, . . . , Jn}, sd, sn),

• if s(t) ≥ sn for all t ∈ [mini{ai},maxi{di}), then
all jobs complete by their deadlines; and

• if s(t) ≥ sd for all t ∈ [mini{ai},maxi{di}), then
all jobs Ji with χi = HI complete by their deadlines.

That is, a correct scheduling strategy ensures that HI-
criticality jobs execute correctly regardless of whether the
processor executes in normal or degraded mode; LO-criticality
jobs are required to execute correctly only if the processor
executes throughout in normal mode.

A. Related work

A lot of research has recently been done on various
aspects of mixed-criticality scheduling. Although most of prior
work draws inspiration from the seminal work of Vestal [8],
which asked how a single MC system could be subject to
multiple different analyses, each under different assumptions
and with different requirements on the system’s behavior.
Apart from our own recent efforts (reported in [4]), we
are not aware of other work in real-time mixed-criticality
scheduling theory that addresses our model: all jobs should
complete under normal circumstances and HI-criticality jobs
should complete (although LO-criticality jobs may not) under
degraded conditions. To the best of our knowledge, current
practice in implementation of such mixed-criticality systems
assigns greater scheduling priority to HI-criticality jobs, but
this approach can easily be seen to perform arbitrarily poorly
even in scheduling under non-degraded conditions.

III. A SCHEDULING ALGORITHM

The high-level description of our algorithm is as follows.
Given an MC instance I = (J , sn, sd), we aim to derive
offline (i.e., prior to run-time) a total priority ordering of
the jobs of J such that scheduling the jobs according to
this priority ordering constitutes a correct scheduling strategy,
where scheduling according to priority means that at each
moment in time the highest-priority available job is executed.

The priority list is constructed recursively using the ap-
proach commonly referred to in the scheduling literature as
“Lawler’s algorithm” [7] or the “Audsley approach” [1], [2].
We first determine (as described below) some job that may
be assigned lowest priority, and assign it the lowest priority.
Then the procedure is repeated upon the set of jobs excluding
the lowest priority job, until all jobs are ordered, or at some
iteration a lowest priority job cannot be found.

162

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:29:35 UTC from IEEE Xplore.  Restrictions apply. 



Ji ai ci di χi

J1 0 2 5 LO

J2 0 3 10 HI

J3 3 1 5 HI

J4 2 4 10 LO

Fig. 1. Mixed-criticality instance considered in Example 1.

Determining a lowest-priority job. It can be shown, using
techniques very similar to those used in, e.g. [5], that if any
LO-criticality job may be assigned lowest priority then so may
the LO-criticality job with the latest deadline, and that if any
HI-criticality job may be assigned lowest priority then so may
the HI-criticality job with the latest deadline. Hence we only
need to determine whether one of the two jobs, the latest-
deadline LO-criticality job or the latest-deadline HI-criticality
job, may be assigned lowest priority.

• We assign lowest priority to the latest-deadline LO-
criticality job if it would complete by its deadline on
a speed-sn processor if every other job were assigned
higher priority.

• Else, we assign lowest priority to the latest-deadline
HI-criticality job if it would complete by its deadline
on a speed-sd processor if every other job were
assigned higher priority. Here no LO-criticality job
is allowed to execute more than the duration of its
WCET on a speed-sn processor 1.

• Else, we declare failure

(Note that at this point in time we do not check to determine
whether the jobs assigned higher priority would meet their
own deadlines or not – we are simply assuming that they each
execute to completion in a work-conserving manner.)

We illustrate the priority-assignment process by means of
a simple example.

Example 1: Consider the instance consisting of the four
jobs J1–J4 shown in tabular form in Figure 1, to be im-
plemented upon a processor of normal speed sn = 1 and a
degraded speed sd = 0.75.

• It may be verified that J4 would meet its deadline
on a unit-speed processor if it were assigned lowest
priority. We therefore assign J4 the lowest priority.

• Next, we must determine which of the remaining three
jobs may be assigned lowest priority amongst them.

◦ If J1 were assigned lower priority than both
J2 and J3, then upon a unit-speed processor
J2 would execute over [0, 2), and J2 and J3
together would execute over [2, 4). That leaves
J1 just one unit of execution by its deadline,

1The intuition behind this is that although the processor is not self-
monitoring, we still know its degradation when a job has been executed for

enough time and is still not finished; i.e., a LO-criticality job should be dropped
if is not finished after executing enough time units – its WCET divided by
sn.

which is not enough to allow it to meet its
deadline.

◦ If J2 were assigned lower priority than both
J1 and J3, then on a speed-0.75 processor
J3 would execute for 1/0.75 time units, and
J1 would still execute for 2 time units as a
LO-criticality job (since it should be dropped
when not finished after receiving this much
execution time). Thus J1 and J3 will execute
3.33 time units over the interval [0, 3.33),
which would allow J2 to execute over the in-
terval [3.33, 7.33) and consequently receive the
required units of execution (3/0.75 = 4). We
therefore assign J2 the second-lowest priority
from amongst the four jobs.

• That leaves us with J1 and J3. Suppose J1 is assigned
lower priority than J3. Then on a unit-speed processor
J1 would execute over [0, 2), and complete by its
deadline. It may therefore be assigned the third-lowest
priority.

• The remaining job J3 is therefore assigned lowest
priority.

The final priority ordering is thus as follows (letting Ji � Jj
denote that Ji has greater priority than Jj):

J3 � J1 � J2 � J4

It is evident that this algorithm for assigning priorities is
very efficient – it has a run-time that is a low-order polynomial
in the number of jobs – and it is guaranteed to find a
total priority ordering of the jobs, if one exists, such that
scheduling according to this priority ordering is a correct on-
line scheduling strategy.

Lemma 1: Priority-based scheduling according to the pri-
orities derived as described above constitutes a correct schedul-
ing strategy.

Proof: Suppose for a contradiction that our priority-assignment
procedure was successful in assigning priorities to all the jobs
in instance I = (J , sn, sd), but that job Ji ∈ J misses its
deadline during run-time.

• Suppose first that Ji is a LO-criticality job (χi = LO).
It follows from the manner in which priorities were
assigned and the sustainability [3] of preemptive
fixed-priority scheduling with respect to processor
speed, that Ji would have met its deadline despite
the interference of jobs assigned greater priority, if
the processor had executed throughout at a speed
of sn or greater. For the deadline miss to occur,
hence, the processor must have executed at some
speed strictly less than sn at some instant prior to
Ji’s deadline. By the definition of correct scheduling
strategy (Definition 1), Ji does not need to meet its
deadline.

163

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:29:35 UTC from IEEE Xplore.  Restrictions apply. 



• Suppose now that Ji is a HI-criticality job (χi = HI). It
once again follows from the manner in which priorities
are assigned, and the sustainability property, that Ji
would have met its deadline despite the interference
of jobs assigned greater priority, if the processor had
executed throughout at a speed of sd or greater. For the
deadline miss to occur, the processor must therefore
have executed at some speed strictly less than sd at
some instant prior to Ji’s deadline. By the definition
of correct scheduling strategy (Definition 1), Ji does
not need to meet its deadline.

We thus see that deadlines are missed only when doing so does
not violate the requirements of correct scheduling.

A. Optimization versions of the problem

Given an MC instance I = (J , sn, sd), we derived above
an algorithm for determining a correct scheduling strategy for
instance I . Two optimization versions of the MC scheduling
problem can also be defined:

1) Given a collection of MC jobs J and a normal processor
speed sn, what is the smallest degraded processor speed
sd such that we can determine a correct scheduling
strategy for the MC instance I = (J , sn, sd)?

2) Given a collection of MC jobs J and a degraded pro-
cessor speed sd, what is the smallest normal processor
speed sn such that we can determine a correct scheduling
strategy for the MC instance I = (J , sn, sd)?

It is evident that both these optimization problems can be
approximately solved to any desired degree of accuracy by
applying the technique of “binary search” in conjunction with
the algorithm for determining a correct scheduling strategy for
a given instance (in which all three parameters – J , sn, and sd
– are specified). Consider, for example, the first optimization
problem listed above, in which J and sn are specified and
the objective is to determine the smallest sd. An upper bound
on the value of sd is sn; a lower bound is zero. We could
therefore repeatedly guess a value for sd within this interval,
seeking the smallest value for which we are able to construct
a correct scheduling strategy for I = (J , sn, sd).

However, it turns out that we can in fact solve the problem
directly, without needing to do binary search. For the first
optimization problem listed above, the pseudo-code for doing
so is given in Figure 2. We start out “guessing” that the
value of sd is zero (line 2 of the pseudo-code), and repeatedly
seeking to determine whether some job can be assigned lowest
priority for this value of sd. If so, we continue; if not, we
increase the guessed value of sd to the smallest value needed
to be able to assign some job the lowest priority and then
continue. (If follows from the sustainability property of fixed-
priority scheduling with respect to processor speed that if
lower-priority jobs met their deadlines with the smaller values
of sd, they will continue to do so when sd’s value is increased.)

An analogous strategy can be obtained for the second
optimization problem, with the value of sd fixed and a value
guessed for sn. We omit the details.

OPTI-1(J , sn)

1 J ′ ← J
2 sd ← 0
3 repeat

4 Let JL be the latest-deadline LO-criticality job in J ′

5 Let JH be the latest-deadline HI-criticality job in J ′

6 if JL meets its deadline as the lowest-priority job on
a speed-sn processor

7 then JL gets lowest priority
8 J ′ ← J ′ \ {JL}
9 else

Determine s′, the smallest speed such that JH meets
its deadline as the lowest-priority job on a speed-
s′ processor, where LO-criticality job in J ′ receives
execution time of at most its WCET divided by sn

10 sd ← max{sd, s
′}

11 JH gets lowest priority
12 J ′ ← J ′ \ {JH}
13 sd ← max{sd, s

′}
14 until J ′ is empty

Fig. 2. Determining the smallest degraded processor speed.

IV. QUANTIFYING THE BENEFITS OF SELF-MONITORING

In Section I, we had identified two sets of contributions of
this paper. The first set concerned the design of algorithms for
obtaining correct scheduling strategies for MC systems: these
were presented in Section III above. We now turn to the second
set of contributions: a quantitative evaluation of the benefits of
providing self-monitoring facilities to processors.

If a MC instance I = (J , sn, sd) can be scheduled by a
correct scheduling strategy upon a self-monitoring processor,
then it is evident that the jobs in J can be scheduled by
a correct scheduling strategy upon an unmonitored processor
in which the normal and the degraded speeds are both equal
to sn (equivalently, the processor does not have a non-trivial
degraded mode). The following lemma shows that this is the
best general result we can come up with:

Lemma 2: There are MC instances I = (J , sn, sd) that
can be scheduled by a correct scheduling strategy upon a
self-monitoring processor, but for which (J , sn, s′) cannot be
scheduled by a correct scheduling strategy upon an unmoni-
tored processor for all s′ < sn.

In other words, such instances can only be scheduled upon an
unmonitored processor if the processor does not have a non-
trivial degraded mode.

Proof: We prove this lemma by demonstrating the existence of
such an instance I . Let sn ← 1, and let sd be any constant less
than one. Let k denote some large positive constant. Consider
the collection of MC jobs J = {J1,, J2} as listed below:

Ji ai ci di χi

J1 0 (k + 1) (k + 1)/sd HI

J2 0 k(1− sd)/sd k/sd LO

For instance if sd were 1/2 and k is chosen equal to 9, J1
would have a WCET of 10 and a deadline at 20, while J2

164

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:29:35 UTC from IEEE Xplore.  Restrictions apply. 



would have a WCET of 9 and a deadline at 18.

Upon a self-monitoring processor we could construct a
scheduling table that executes the HI-criticality job J1 over
[0, k), J2 over [k, k/sd), and J1 again over [k/sd, k/sd + 1).
For the example parameters of sd = 1/2 and k = 9, this would
correspond to scheduling J1 over [0, 9) and [18, 20), and J2
over [9, 18).

It is evident that a self-monitoring processor would com-
plete both jobs on a processor that executes throughout in
normal mode. If the speed of the processor falls to below sn
(which, for our example, is 1) at any instant, the LO-criticality
job J2 is immediately discarded and J1 executed – it may be
validated that this strategy results in J1 always meeting its
deadline as long as the processor speed remains at least sd
(for our example,1/2).

Upon a non-monitored processor with normal speed also
equal to 1 and degraded speed s′, we must execute J2 for
its WCET prior to its deadline (since we cannot determine,
prior to J2’s deadline, whether the processor is in normal or
degraded mode). Since J1’s deadline is after J2’s, the duration
for which J1 will execute is hence bounded by

(d1 − a1)− c2

=
k + 1

sd
− k(1− sd)

sd

=
1 + ksd

sd

Suppose that the processor were to be degraded mode through-
out; i.e., starting at time-instant zero. For J1 to execute to
completion by its deadline, we need that

s′ ×
(

1 + ksd
sd

)

≥ c1

⇔ s′ ×
(

1 + ksd
sd

)

≥ (1 + k)

⇔ s′ ≥ sd + ksd
1 + ksd

from which it follows that s′ approaches one as k →∞. The
lemma is thus proved.

A. The speedup cost of not monitoring

As discussed in Section II-A, much previous work on MC
scheduling has focused upon a model in which the processor
speed is assumed to remain constant throughout run-time but
each job is characterized by two different WCET values:
a LO-criticality value and a larger HI-criticality value. An
algorithm titled OCBP for Own Criticality-Based Priorities

was proposed in [5], [6] for scheduling such MC systems, and
the following speedup bound proved (as, e.g., [5, Lemma 5]):
If an MC instance is schedulable on a given processor, then
it is OCBP-schedulable on a processor that is (1 +

√
5)/2 (or

approximately 1.618) times as fast.

Consider a single job with WCET of c upon unit speed
processor (sn = 1). Upon an unreliable processor where s(t)
varies from sd to 1, it may need up to c/sd units of time

to finish execution. Under the assumptions of our model, a
slower non-monitored processor can be modeled as a longer
WCET, and thus we can re-formulate the MC model that is
described in Section II above into the 2-WCET model assumed
by the OCBP algorithm, in the following manner. Given a MC
instance I = (J , sn, sd) in the model described in Section II,
each job Ji = (ai, ci, di, χi) in J is modeled as a job J ′

i

with the same criticality, release date, and deadline, and with
LO-criticality WCET equal to ci/sn and HI-criticality WCET
equal to ci/sd. Hence for instance if sn were equal to one and
sd one-half, J ′

i’s LO-criticality WCET would equal ci and its
HI-criticality WCET would be equal to 2ci.

Upon such translation, the algorithm that we described in
Section III behaves in essentially the same manner as OCBP,
and as a consequence similar speedup bounds can be derived:
If an instance can be scheduled on a self-monitoring processor,
then it can be scheduled on a non-monitoring processor that is
(1+

√
5)/2 times as fast in both the normal and the degraded

mode.

Furthermore, in our speed-varying processor model, an
lower bound sd for the processor speed is given a priori; which,
under the translation, provides an additional upper bound to the
ratio between two WCET’s of a HI-criticality job in previous
2-WCET model. As a result, we are able to prove a tighter
speed up factor bound – that is related to the given sd – in the
following theorem.

Theorem 1: Let I = (J , 1, s) denote a MC instance
that can be correctly scheduled by an optimal scheduling
strategy upon a self-monitoring processor. If the instance
I ′ = (J , φ, φ× s) is not correctly scheduled by the algorithm
described in Section III, then φ < min{2− s,

√
s+ 1}.

Proof: For a given s, let I = (J , 1, s) denote some minimal
instance that can be scheduled correctly by an optimal algo-
rithm on a self-monitoring processor, but I ′ = (J , φ, φ s) is
not correctly scheduled on a non-monitoring processor using
the algorithm of Section III.

Let dLO denote the latest deadline of any LO-criticality job,
and dHI the latest deadline of any HI-criticality job; let cLO and
cHI denote the cumulative WCET’s of the LO- and HI-criticality
jobs respectively:

dLO = max
j|χj=LO

dj ,

dHI = max
j|χj=HI

dj ,

cLO =
∑

j|χj=LO

cj ,

cHI =
∑

j|χj=HI

cj .

Consider now any work-conserving schedule of J upon a
speed-φ processor, when each job Ji requests exactly ci
units of execution2. Let Λ1,Λ2, . . . denote the intervals, of

2We are not attempting to meet deadlines in this schedule, simply keeping
the processor active whenever there are jobs remaining that have arrived but
not completed execution, regardless of whether their deadlines are met or not.

165

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:29:35 UTC from IEEE Xplore.  Restrictions apply. 



cumulative length λ, during which the processor is idle in this
schedule.

Observation 1: No LO-criticality job has a scheduling win-
dow that overlaps with Λ`, for any `.

Proof: Suppose that some LO-criticality job Ji were to overlap
withΛ` for some `. This means that all the jobs which arrive
prior to Λ` complete by the beginning of Λ`. Hence, Ji would
complete by its deadline upon a speed-φ processor, if it were
assigned lowest priority. But this contradicts the assumption
that I ′ = (J , φ, φ s) is a minimal instance that is not correctly
scheduled on a non-monitoring processor using the algorithm
of Section III.

Since I = (J , 1, s) is assumed to be schedulable on a self-
monitoring processor, all LO-criticality jobs would complete by
dLO, the latest deadline of any LO-criticality job, on a speed-
1 processor. It therefore follows from Observation 1 that the
cumulative WCET’s of all LO-criticality jobs cannot exceed
(dLO − λ):

cLO ≤ dLO − λ (1)

Since we are assuming that the instance I ′ = (J , φ, φ s)
is not correctly scheduled by the algorithm described in
Section III, it must be the case that the LO-criticality job with
the latest deadline cannot be the lowest-priority job on a speed-
φ processor. Hence, it is necessary that

cLO + cHI > (dLO − λ)φ (2)

We now argue from the schedulability of I = (J , 1, s) on
a self-monitoring processor that

• All the jobs would complete by dHI, the latest deadline
of any job, upon a speed-1 processor. Inequality 3
below, immediately follows.

cLO + cHI ≤ dHI (3)

• All HI-criticality jobs would complete by dHI upon a
speed-s processor. Inequality 4 follows:

cHI

s
≤ dHI (4)

Observation 2: Consider now any work-conserving sched-
ule of J upon a speed-φ processor, when each LO-criticality
job Ji executes for exactly ci time-units, and each HI-criticality
job Ji executes for exactly (ci/s) time-units3. There are no idle
intervals in this schedule.

Proof: If there were an idle interval, any job whose scheduling
window spans the idle interval would meet its deadline upon
the speed-φ processor if it were assigned lowest priority. But
this contradicts the assumption that I ′ = (J , φ, φ s) is a
minimal instance that is not correctly scheduled on a non-
monitoring processor using the algorithm of Section III.

Since we are assuming that I ′ = (J , φ, φ s) is not correctly
scheduled on a non-monitoring processor using the algorithm

3As in Observation 1, we are not attempting to meet deadlines in this
schedule.

of Section III it must be the case that the latest-deadline HI-
criticality job will not meet its deadline if it were assigned the
lowest-priority. Given Observation 2 above, it must then be the
case that

cLO +
cHI

s
> dHI φ (5)

Suppose that the value of s is known, by multiplying both
sides of Inequality (1) by a factor φ and combining with
Inequality (2), we have

cLO + cHI > cLOφ. (6)

By chaining Inequalities (5) and (3), we get

cLO +
cHI

s
> (cLO + cHI)φ (7)

while by chaining Inequalities (5) and (4), we get

cLO +
cHI

s
>

cHI

s
φ (8)

Let y denote the ratio of cumulative WCET length of differ-
ent criticality jobs; i.e., y := cHI/cLO. From Inequalities (6)-(8),
we conclude that

φ < 1 + min{y, (1− s)/(y + s), s/y}. (9)

It is evident that (1− s)/(y + s) and s/y decreases, with
increasing y ∈ R

+ and any fixed s ∈ (0, 1). Let (1− s)/(y +
s) = s/y, and we have y = s2/(1 − 2s) which helps break
Inequality (9) above into the following two inequalities:

φ < 1 + min{y, (1− s)/(y + s)}, if x <
s2

1− 2s
(10)

φ < 1 + min{y, φ/s}, otherwise (11)

By solving the two equations y = (1 − s)/(y + s) and
y = s/y, noticing that y > 0, we get solutions y∗1 = (1−s) and
y∗2 =

√
s. As a result, by substituting the min functions over

y in Inequalities (10) and (11) and combining them together,
we obtain the following relationship between φ and s:

φ < 1 + min{1− s,
√
s} = min{2− s,

√
s+ 1}. (12)

Figure 3 shows the bound on the speedup factor φ as a
function of the ratio u of degraded processor speed to normal
processor speed: u := (sd/sn).

By solving the equation 2 − s =
√
s + 1, we get s∗ =

(3−
√
5)/2 and φ← (2− s) = (1 +

√
5)/2. Figure 3 shows

the 1.618 speed-up factor upper bound, which matches the
results in previous works.

Corollary 1: Let I = (J , 1, s) denote a MC instance
that can be correctly scheduled by an optimal scheduling
strategy upon a self-monitoring processor. If the instance
I ′ = (J , φ, φ× s) is not correctly scheduled by the algorithm
described in Section III, then φ < (1 +

√
5)/2.

From Figure 3, we can see that compared to results in
prior work [5], we can achieve a lower speed-up factor when

166

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:29:35 UTC from IEEE Xplore.  Restrictions apply. 



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 s

 φ

 

 

min{2 − u,
√

s + 1}

(
√

5 − 1)/2

s ∗ φ

Fig. 3. Lower bound on the speedup factor φ as a function of s - the ratio
of the degraded to the normal processor speed.

the given s varies according to Theorem 1 for the non-self-
monitoring case. The slashed line shows how s× φ is related
to s. s× φ gives the actual minimum degraded speed that our
algorithm need, and can be recognized as a measurement of
CPU resource usage, which is the lower the better. The case
s × φ = 1 means that we need exactly a processor that runs
1/s times faster for a degraded speed s, which is equivalent to
having a processor running at minimum speed 1 in degraded
mode; and as s × φ < 1, we are doing better – giving the
speed-up tradeoff, the processor no longer needs to run at unit
speed in degraded speed while all jobs are still guaranteed to
be finished on time regarding their criticality levels.

How tight is this relationship between speedup and s? To
answer this question, consider the MC instance I = (J , 1, s);
let σ denote 1/(1− s), and let J consist of the following two
jobs:

Ji ai ci di χi

J1 0 1 1 LO

J2 0 σ (σ − 1) HI

It has been shown [6, Proposition 2] that by taking σ =
(1 +

√
5)/2, this instance reaches its schedulablity bound.

Noticing that for such σ, s = (σ − 1)/σ = (3 −
√
5)/2

takes exactly the value of s∗ that is calculated above. This
implies that Inequality (12) provides a tight bound for the
speedup factor φ, and the upper bound of φ can be calculated
by max(φ) = 2− s∗ = 1 +

√
s∗ = (1 +

√
5)/2. We can also

tell from Figure 3 that for a given φ ∈ (0, 1), the upper bound
of speedup factor varies from 1 when the ratio of normal to
degraded speed is either zero or one, to (1+

√
5)/2 when this

ratio is equal to (3−
√
5)/2 (or ≈ 0.382).

V. CONCLUSIONS

We have recently [4] begun studying the scheduling of
mixed-criticality systems upon platforms that may suffer
degradations in performance during run-time. Upon such plat-
forms, the scheduling objective is to ensure that all jobs
complete in a timely manner under normal circumstances,
while simultaneously ensuring that more critical jobs complete
in a timely manner even under degraded conditions. This
prior work has assumed that a platform is self-monitoring: it
“knows” its execution speed at each instant during run-time.

In this paper, we reported the results of our investigations
into the scheduling of mixed-criticality systems upon proces-
sors that do not have such self-awareness. Upon such non-
monitored processors, we have designed scheduling algorithms
that guarantee to complete all jobs by their deadlines under
normal circumstances and guarantee that all HI-criticality jobs
will meet their deadlines even if the processor degrades,
without knowing during run-time whether the processor is
normal or degraded; in addition, we have provided quantitative
evaluations of the efficacy of these algorithms.

We have assumed here that a platform is not aware of its
execution speed during run-time. It would be interesting and
important to derive algorithms for scheduling mixed-criticality
systems upon platforms that have the ability of self- awareness,
where many works can be done besides [4]. Another further
direction would be integrating the model we are proposing
here with other mixed-criticality models [8], where multiple
WCET’s are specified in addition to varying-speed processors.

ACKNOWLEDGEMENTS

This research has been supported in part by NSF grants
CNS 0834270, CNS 0834132, and CNS 1016954; ARO grant
W911NF-09-1-0535; AFOSR grant FA9550-09-1-0549; and
AFRL grant FA8750-11-1-0033.

REFERENCES

[1] N. C. Audsley. Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times. Technical report, The University
of York, England, 1991.

[2] N. C. Audsley. Flexible Scheduling in Hard-Real-Time Systems. PhD
thesis, Department of Computer Science, University of York, 1993.

[3] Sanjoy Baruah and Alan Burns. Sustainable scheduling analysis. In
Proceedings of the IEEE Real-time Systems Symposium, pages 159–168,
Rio de Janeiro, December 2006. IEEE Computer Society Press.

[4] Sanjoy Baruah and Zhishan Guo. Mixed-criticality schedul-
ing upon unreliable processors. Under review; available at
http://www.cs.unc.edu/˜baruah/Pubs.shtml, 2013.

[5] Sanjoy Baruah, Haohan Li, and Leen Stougie. Towards the design of

certifiable mixed-criticality systems. In Proceedings of the IEEE Real-

Time Technology and Applications Symposium (RTAS). IEEE, April 2010.

[6] Sanjoy K. Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan

Li, Alberto Marchetti-Spaccamela, Nicole Megow, and Leen Stougie.
Scheduling real-time mixed-criticality jobs. IEEE Transactions on

Computers, 61(8):1140–1152, 2012.

[7] E. L. Lawler. Optimal sequencing of a single machine subject to
precedence constraints. Management Science, 19(5):544–546, 1973.

[8] Steve Vestal. Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance. In Proceedings of the Real-

Time Systems Symposium, pages 239–243, Tucson, AZ, December 2007.
IEEE Computer Society Press.

167

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:29:35 UTC from IEEE Xplore.  Restrictions apply. 


