
Mixed-criticality scheduling upon varying-speed

multiprocessors

Zhishan Guo Sanjoy Baruah

The University of North Carolina at Chapel Hill

Abstract—An increasing trend in embedded computing is
the moving towards mixed-criticality (MC) systems, in which
functionalities of different importance degrees (criticalities) are
implemented upon a common platform. Most previous work
on MC scheduling focuses on the aspect that different timing
analysis tools may result in multiple WCET estimations for each
“job” (piece of code). Recently, a different MC model has been
proposed, targeting systems with varying execution speeds. It is
assumed that the precise speed of the processor upon which the
system is implemented varies in an a priori unknown manner
during runtime, and estimates must be made as to how low the
actual speed may fall. Prior work has dealt with uniprocessor
platforms of this kind; the research reported in this paper seeks to
generalize this prior work to be applicable to multicore platforms.
In our method, a linear program (LP) is constructed based on
necessary and sufficient scheduling conditions; and according
to its solution, jobs are executed in a processor-sharing based
method. Optimality of the algorithm is proved, and an example
is constructed to show the necessity of processor sharing.

I. INTRODUCTION

There is an increasing trend in embedded computing on

moving towards mixed-criticality systems, where function-

alities of different degrees of importance are implemented

upon a common platform. This is evidenced by industry-

wide initiatives such as IMA (Integrated Modular Avionics)

for aerospace, and AUTOSAR (AUTomotive Open System

ARchitecture) for the automotive industry.

Mixed-Criticality. Most prior work on mixed-criticality

(MC) scheduling has focused on the model in which multiple

worst case execution time (WCET) parameters are specified

for each job. Under such a model, the larger value repre-

sents a “safer” estimate of the job’s true WCET, while the

smaller WCET is a less conservative one. Some of the jobs

are designated as being safety-critical, and are assigned HI-

criticality; the remaining ones are called LO-criticality jobs.

In many cases, it may not be necessary to use the most

conservative tool for validating the correctness of the system

– less conservative tools should be sufficient, especially for

less critical functionalities.

Since Vestal’s pioneering work [13], there has been a large

amount of research in mixed-criticality scheduling (see [7] for

a review), where in the model each job is characterized by

multiple WCETs. The general goal is to validate the correct-

ness of highly critical functionalities under more pessimistic

Work supported by NSF grants CNS 1016954, CNS 1115284, and CNS
1218693; and ARO grant W911NF-09-1-0535.

assumptions, while guaranteeing the correctness of less critical

functionalities under less pessimistic ones.

Varying-Speed Processor. WCET tools make certain as-

sumptions about the run-time behavior of the processor upon

which the code is to execute; for example, the clock speed of

the processor during run-time must be known to determine the

rate at which instructions will execute. However, conditions

during run-time, such as changes to the ambient temperature,

the supply voltage, etc., may result in variations of the clock

speed. In addition, processor speed could change during run-

time in embedded devices that use dynamic frequency scaling

in order to reduce energy consumption. Moreover, at the hard-

ware level, innovations in computer architecture for increasing

clock frequency can lead to varying speed clocks during run-

time1.

More recently, regarding this varying-speed property, a

different MC model has been proposed [8] [5] in which it is

assumed that the precise speed of the processor upon which the

system is implemented varies in an a priori unknown manner

during runtime. These studies suggest that when estimates are

avaliable on how low the actual speed may drop to, there exists

polynomial time optimal scheduling strategy for uniprocessor

case.

Multiprocessor System. Embedded systems, especially

safety-critical ones are increasingly implemented on multicore

platforms. Furthermore, as these multicore platforms become

more complex and sophisticated, their behaviors become less

predictable. Larger variations will cause an increase of the

pessimism to any conservative WCET-analysis tools.

Generally speaking, uniprocessor MC scheduling algo-

rithms perform poorly on multicore platforms [4]. Regard-

ing this issue, some recent studies have focused on mixed-

criticality scheduling of multiprocessor systems; see, e.g.,

[1] [3] [2] [12] [14]. However, all of them address the multi-

WCET model, which is generally NP hard even in uniproces-

sor case, and thus only provides non-optimal (approximated)

solutions. Since it has been shown (in the uniprocessor case)

that such NP-hardness no longer exists for varying-speed MC

scheduling [5], in this paper we seek to propose optimal

MC scheduling strategies specifically targeting varying-speed

multiprocessors. To the best of our knowledge, there is no prior

1For example, ARM recently introduced a technique [6] for detecting
whether signals are late at the circuit level within a CPU micro-architecture.
Logical faults are prevented or recovered by delaying the next clock tick.
This certainly introduces varying-speed property to higher (i.e., the software)
levels.

2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing

978-1-4799-5079-9/14 $31.00 © 2014 IEEE

DOI 10.1109/DASC.2014.50

237

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:42:16 UTC from IEEE Xplore. Restrictions apply.

work that targets mixed-criticality scheduling on varying-speed

multiprocessors.

Paper Organization. In this paper, we target the scheduling

problem on multiprocessor platform, where mixed-criticality

arises from the varying-speed property of the system. The

remainder of this paper is organized as follows. In Section

II we formally describe the platform and workload models

assumed in this work. In Section III we give a detailed

description of our algorithm. Further discussions about both

the problem and the proposed algorithm are provided in

Section IV. Finally, Section V concludes the work and points

out some further research directions.

II. MODEL

In this paper, we will be studying the scheduling of real-

time jobs on multiprocessor platforms, under the following

assumptions:

• Job preemption is permitted, with zero cost.

• Job migration is permitted, also with no penalty associ-

ated.

• Job parallelism is forbidden; i.e., each job may execute

on at most one processor at any given instant.

We consider a workload model consisting of independent
jobs2. In our model, a mixed-criticality real-time workload

consists of basic units of work known as mixed-criticality jobs.

Each MC job Ji is characterized by a 4-tuple of parameters:

a release date ai, a WCET ci, a deadline di, and a criticality

level χi ∈ {LO, HI}.
A mixed-criticality multiprocessor instance I is specified

by

• a finite collection of MC jobs J = {J1, J2, . . . , Jn}, and

• m identical varying-speed processors that are character-

ized by both a normal speed (without loss of generality,

assumed to be 1) and a specified degraded processor
speed threshold s < 1.

Let si(t) denote the processing speed of processor i at time

t, i = 1, ...,m. The interpretation is that the jobs in J are

to execute on a multiprocessor system that has two modes: a

normal mode and a degraded mode.

Definition 1 (degraded mode): A system with m proces-

sors is in degraded mode at a given instant t if there exists

at least one processor executing at a speed less than one;

i.e., ∃i, si(t) < 1; and moreover, all processors execute at

a minimum speed of s; i.e., ∀i, si(t) ≥ s.

In normal mode, m processors execute at unit-speed and

hence each completes one unit of execution per unit time,

whereas in degraded mode, according to the definition, each

processor completes at least s units of execution per unit time.

It is not a priori known when, if at all, any of the processors

will degrade: this information only becomes revealed during

run-time when some processors actually begin executing at a

2Finite collections of independent jobs may arise in frame-based approaches
to real-time scheduling: the frame represents a collection of periodic jobs
sharing a common period (or the frame is extended to the least common
multiple of different tasks’ periods and every job of each task is represented
individually within the frame) with the entire frame repeatedly executed.

slower speed. Besides the given two modes, we call the system

in error mode if some processor executes below s.

We seek to determine a correct scheduling strategy:

Definition 2 (correct scheduling strategy): A scheduling

strategy for MC instances is correct if it possesses

the properties that upon scheduling any MC instance

I = (J ,m, s),

• if the system remains in normal mode throughout the

interval [mini{ai},maxi{di}), then all jobs complete by

their deadlines; and
• if the system never operates at error mode, then HI-

criticality jobs (Ji with χi = HI) complete by their

deadlines.

That is, a correct scheduling strategy ensures that HI-criticality

jobs execute correctly regardless of whether the system runs in

normal or degraded mode; LO-criticality jobs are required to

execute correctly only if all processors execute throughout in

normal mode. (One may argue that this is a rather restrictive

definition, since we do not allow the case that a few processors

to being nonfunctional, even when others execute at full speed.

In Section IV-B we will discuss the problem based on an

alternative, less restrictive, definition to degraded mode, where

as far as all processors altogether, as a system, execute at an

average speed of s, correctness to HI-criticality jobs will be

guaranteed.)

Based on the definition of correctness, we can now define

optimality in the following way:

Definition 3 (optimal scheduling strategy): An optimal

scheduling strategy for MC instances possesses the property

that if it fails to maintain correctness for a given MC instance

I, then no non-clairvoyant algorithm can ensure correctness

for the instance I.

III. PREEMPTIVE SCHEDULING

In this section we present, and show the correctness of, a

simple polynomial-time algorithm for scheduling preemptable

mixed-criticality instances. Its optimality is proved as well.

We start out with a general overview of our strategy. Given

an instance I = {J ,m, s}, prior to run-time we will construct

a linear program to determine the amount of execution to be

completed for each job within each interval. Such assignment

will possess the property that each job Ji receives ci units of

execution over its scheduling window [ai, di). Details on this

linear program construction will be provided in Subsection A,

with an illustrative example alongside. During run-time, we

will mimic a processor sharing strategy, under which the time

line is partitioned into quanta. The length of each quantum is

assumed to be small enough so that each processor will run at

a “predictable” (and thus known) speed within it. Scheduling

decisions are made according to assignments derived from

the previous step. Degradation may occur at the beginning of

any quantum. To guarantee that HI-criticality jobs will meet

their deadlines if the system degrades, each HI-criticality job

needs to be executed at its designated fraction over any past

238

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:42:16 UTC from IEEE Xplore. Restrictions apply.

period of the interval. A detailed description will be provided

in Subsection B.

A. Linear Program for Table Construction

We now describe how to construct a linear program such

that a feasible solution for this linear program can be further

used to construct the schedule. Without loss of generality,

assume that the HI-criticality jobs in I are indexed 1, 2, . . . , nh

and the LO-criticality jobs are indexed nh+1, . . . , n. Let

t1, t2, . . . , tk+1 denote the at most 2n distinct values for

the release date and deadline parameters of the n jobs, in

increasing order (tj < tj+1 for all j). These release dates and

deadlines partition the time-interval
[
mini{ai},maxi{di}

)
into k intervals, which will be denoted as I1, I2, . . . , Ik, with

Ij denoting the interval [tj , tj+1).
To construct our linear program we define n · k variables

xi,j , 1 ≤ i ≤ n; 1 ≤ j ≤ k. Variable xi,j denotes the amount

of execution we will assign to job Ji in the interval Ij , in the

scheduling table that we are seeking to build.

First of all, since no job can be executed on more than one

processor in parallel, the following two sets of inequalities

need to be introduced for ensuring no capacity constraint is

violated:

0 ≤ xi,j ≤ s(tj+1 − tj), ∀(i, j), 1 ≤ i ≤ nh, 1 ≤ j ≤ k; (1)

0 ≤ xi,j ≤ tj+1 − tj , ∀(i, j), nh < i ≤ n, 1 ≤ j ≤ k. (2)

The following n constraints specify that each job receives

adequate execution when system remains in normal mode:
(∑
j|tj≥ai ∧ di≥tj+1

xi,j

)
≥ ci, ∀i, 1 ≤ i ≤ n. (3)

The following k inequalities specify the capacity constraints

of each interval:

(n∑
i=1

xi,j

) ≤ m(tj+1 − tj), ∀j, 1 ≤ j ≤ k. (4)

It should be evident that any scheduling table generated in

this manner from xi,j values satisfying the above constraints

will execute all jobs to completion upon a normal-mode

(non-degraded) system. It now remains to add constraints

for specifying the requirements that the HI-criticality jobs

complete execution even in the event of the system degrading

into faulty mode. It is evident that we only need to specify

constraints for the most pessimistic degradation case – full

degradation, where all processors run at the threshold speed

s.

Considering the case when full degradation occurs at the

beginning of each interval, capacity constraints of each interval

need to be specified for all HI-criticality amounts:

(nh∑
i=1

xi,j

) ≤ s ·m(tj+1 − tj), ∀j, 1 ≤ j ≤ k. (5)

It is not hard to observe that the worst-case scenarios occur

when the system transits to full degraded mode at the very

beginning of an interval – that would leave the maximum

load of HI-criticality execution remaining to be done on the

degraded system. For each �, 1 ≤ � ≤ k, suppose that the full

degradation of the system occurs at time-instant t�; i.e., the

start of the interval I�. Henceforth, only HI-criticality jobs need

to be guaranteed meeting deadlines. Thus for each possible

deadline tm ∈ {t�+1, t�+2, · · · , tk+1}, constraints must be

introduced to ensure that the cumulative remaining execution

requirement of all HI-criticality jobs with deadline at or prior

to tm can complete execution by tm on a system with m
processors each of minimum speed s. This is ensured by the

following constraint:

(∑
i:(χi=HI)∧(di≤tm)

(m−1∑
j=�

xi,j

)) ≤ s ·m(tm − t�). (6)

To see why this represents the requirement stated above, note

that for any job Ji with di ≤ tm,
(∑m−1

j=� xi,j

)
represents the

remaining execution requirement of job Ji at time-instant t�.
The outer summation on the left hand side of Equation (6)

is simply summing this remaining execution requirement over

all the HI-criticality jobs that have deadlines at or prior to tm.
A moment’s thought should convince the reader that rather

than considering all tm’s in {t�+1, t�+2, · · · , tk+1} as stated

above, it suffices to only consider those that are deadlines for

HI-criticality jobs.
The entire linear program is listed in Figure 1. It is trivial

that violating any of the constraints will result in incorrectness
of the scheduling. Thus we conclude that these conditions

are necessary. If it could be further shown that they are also

sufficient, we may conclude the optimality of our algorithm.
However, unlike the uniprocessor case studied in previous

work [5], to make these conditions sufficient here, we need to

mimic a processor-sharing scheduling strategy. Discussions

on converting the solution of LP into a correct schedule with

processor-sharing will be provided in a later subsection, and

optimality will be shown based on the assumption that we

can partition each interval into small enough quanta so that

processor speed does not change inside each quantum.

Bounding the size of this LP. It is not difficult to show that

the LP with linear constraints (1) - (6) is of size polynomial

in the number of jobs n in MC instance I:

• The number of intervals k is at most 2n− 1. Hence the

number of xi,j variables is O(n2).
• There are n constraints of the forms (1) or (2), n

constraints of the form (3), and 2k constraints of the

forms (4) and (5). The number of constraints of the

form (6) can be bounded by (k · nh), since for each

� ∈ {1, . . . , k}, there can be no more than nh of tm’s

corresponding to the deadlines of HI-criticality jobs. Since

nh ≤ n and k ≤ (2n− 1), it follows that the number of

constraints is O(n) + O(n) + O(n) + O(n2), which is

O(n2).

Since it is known that a linear program can be solved in

time polynomial of its representation [11] [10], our algorithm

for generating the scheduling tables for a given MC instance

I takes time polynomial in the representation of I .

239

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:42:16 UTC from IEEE Xplore. Restrictions apply.

Given MC instance I = (J ,m, s), with job release-dates and
deadlines partitioning the time-line over [mini{ai},maxi{di}) into
the k intervals I1, I2, . . . , Ik.
Determine values for the xij variables, i = 1, . . . , n, j = 1, . . . , k
satisfying the following constraints:

• For each pair (i, j), 1 ≤ i ≤ nh, 1 ≤ j ≤ k,

0 ≤ xi,j ≤ s(tj+1 − tj).

• For each pair (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ k,

0 ≤ xi,j ≤ tj+1 − tj .

• For each i, 1 ≤ i ≤ n,(∑
j|tj≥ai ∧ di≥tj+1

xi,j

)
≥ ci.

• For each j, 1 ≤ j ≤ k,

(n∑
i=1

xi,j

)
≤ m(tj+1 − tj);

(nh∑
i=1

xi,j

)
≤ s ·m(tj+1 − tj).

• For each pair (�,m), 1 ≤ � ≤ k, � < m ≤ (k + 1)

(∑
i:(χi=HI)∧(di≤tm)

(m−1∑
j=�

xi,j

))
≤ s ·m(tm − t�).

Fig. 1. Linear program for determining the amounts to be finished for each
job within each interval.

B. Run-Time Scheduling
Given a solution to the linear program constructed in

the previous subsection, we now need to derive a run-time

scheduling strategy that assigns an amount of execution xi,� to

processors during the interval I�, for each pair (i, �). Accord-

ing to the design of the linear program, run-time scheduling

is now an interval-by-interval business – arrangements need

to be made according to the table (calculated by the LP). We

will show in this subsection how to mimic a processor-sharing

schedule to execute mixed-criticality amounts within each
interval in this possibly heterogenous system (some processors

may degrade while others may not at certain instants in time).
Within a given interval I�, we denote fi,� = xi,�/(t− t�) as

the allocated fraction for a given amount xi,�. According to

Inequalities (4) and (5), we can derive the following bounds

of these fractions:

fi,� ≤ s,∀1 ≤ i ≤ nh; (7)

fi,� ≤ 1, ∀nh < i ≤ n. (8)

Definition 4 (lag): For any interval I� and an assigned

amount xi,�, its lag at any instant t ∈ [t�, t�+1) (within the

interval) is given by:

lag(xi,�, t) = t · fi,� − executed(Ji, t). (9)

Equation 4 defines a measurement to the difference between

an ideal schedule and the actual execution of a given job.

Under such a definition, we know that at any instant, non-

negative lag for a job indicates that the schedule is correct so
far with respect to this job. We will provide a strategy that

guarantees zero lag at the end of each interval for all jobs

while the system remains normal, and only for HI-criticality

ones otherwise.
It should not be surprising that with (sufficient) preemption

and migration, we can mimic a processor-sharing scheduling

strategy that deals with this problem correctly. To mimic a

processor-sharing scheduling strategy, jobs are simultaneously

assigned fractional amounts of execution according to the

solution of the LP. This can be done by partitioning the time-

line into quanta of length Δ, where Δ is an arbitrarily small

positive number. For each quantum, each job is executed for

a duration of fi,� · Δ, where fi,� has been defined to be the

fraction of the job within Interval I�. In this way, by the end

(and also at the beginning) of each quantum, lag for any job is

zero, which leads to correctness of the scheduling (thus far).
Now we have further reduced the original scheduling prob-

lem into the following: given a quantum of length Δ, m
ordered processing speeds {s1 ≥ s2 ≥ ... ≥ sm ≥ s}, and as-

signed fractions of mixed-criticality amounts {f1, f2, ..., fn},
how to construct a feasible schedule on this heterogenous

system 3? We can use the following algorithm to schedule

the amounts for each quantum (with length Δ), which is, in

a larger picture, mimicking a processor-sharing schedule over

the whole interval I�.
Without loss of generality, we assume that all fractions are

sorted into decreasing order, and job IDs change accordingly

for each quantum; i.e., s ≥ f1 ≥ ... ≥ fnh
, and 1 ≥ fnh+1 ≥

... ≥ fn
Algorithm Wrap-Around-MC(Δ, f)
• At the beginning of each quantum (with length Δ), sort

both processor speeds s1, ..., sn and assigned fractions

f1, ..., fn in decreasing order.

• Use slower processors to execute HI-criticality jobs. Con-

sider HI-criticality fractions one by one in increasing

order (smallest fit first), where a processor will not be

used until all slower processors has been fully utilized

(wrap-around).

• If the system is in normal node; i.e., si ≥ 1, ∀i, continue

the “wrap-around” process for LO-criticality jobs on

remaining faster processors.

• During execution, execute jobs on each processor follow-

ing the same (priority) order of assignments in previous

steps.

The following example shows how Wrap-Around-MC algo-

rithm works.

3An important assumption is that changes to the speed of any processor only
occur at quantum boundaries. In some sense this assumption is impractical.
However, we may assume any processor’s execution speed will not change
dramatically within a short period (with length Δ). In this way, one can always
“predict” how slow the processor can be in the near future. This pessimistic
prediction will give us a lower bound on the execution speed of the following
short period, and can serve as the “current” processor speed in our model.

240

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:42:16 UTC from IEEE Xplore. Restrictions apply.

Example 1: Consider five jobs J1 = J2 =
{0, 0.4, 1, HI}, J3 = {0, 0.5, 1, HI}, J4 = {0, 0.3, 1, LO}, J5 =
{0, 0.7, 1, LO}, to be scheduled on a platform of three

varying-speed processors with degraded speed 0.5. Since

all jobs share the same scheduling window, there is only

one interval Ii = [0, 1), and the LP has the solution

x11 = x21 = 0.4, x31 = 0.5, x41 = 0.3, x51 = 0.7. Figures 2

and 3 show how Wrap-Around-MC would schedule these jobs

under normal and a possible degraded mode respectively. For

easier representation and understanding, we assume Δ = 1
in the example without loss of generality – a smaller Δ
would result in repeating of a shrinking version of the same

schedule.

Fig. 2. The schedule constructed by Wrap-Around-MC under normal mode
in Example 1.

Fig. 3. The schedule constructed by Wrap-Around-MC under a given
degraded mode in Example 1.

Theorem 1: Algorithm Wrap-Around-MC (in addition to

the linear program construction) is an optimal correct schedul-

ing strategy for the preemptive multiprocessor scheduling of

a collection of independent MC jobs.

Proof: By optimal, we mean that if there exists a correct

scheduling strategy (Definition 2 above) for an instance I,

then our scheduling strategy will succeed. From the definition,

the obligation is to show that Wrap-Around-MC is able to

correctly schedule any instance that can be correctly scheduled

by any non-clairvoyant algorithm.

All inequalities defined in the linear program (1) – (6)

have been shown to be necessary conditions. The optimality

will come from the necessity of them – whenever Wrap-

Around-MC returns fail, there must be some violations to the

conditions, and thus no other non-clairvoyant algorithm can

schedule this instance correctly.

What remains to be proved is this: given any solution to

the LP, Algorithm Wrap-Around-MC will construct a correct

scheduling strategy, so that these conditions are also sufficient.

We now show that parallel execution does not occur. In

degraded mode, each processor remains a minimum execution

speed of at least s. Since HI-criticality fractions are upper

bounded by the same value (s), it is guaranteed that any HI-

criticality job will not require a total execution time exceeding

Δ. Thus with “wrap-around”, the migrating jobs will not

have any overlapping execution upon two different processors.

Similar argument can be made regarding the LO-criticality

jobs according to constraints (8) and normal mode processing

speeds.

As far as each quantum follows Algorithm Wrap-Around-

MC, lag of all jobs remains zero under normal mode, while

lag of HI-criticality ones remains zero under degraded mode

as well. From the definition of lag, we have shown that the

conditions in LP are sufficient for the given algorithm to

construct a correct schedule, and thus can conclude optimality
of our algorithm.

The optimality of the algorithm tells us: (i) if all processors

run in normal speed, all jobs will meet their deadlines; and (ii)

if some (maybe all) processors run no slower than degraded

speed s, HI-criticality jobs will meet their deadlines. We

have not talked about how do deal with possible idleness

during execution. Idleness is a critical issue in multi-processor

platforms, and is difficult to treat optimally in varying-speed

systems. The following item may be added into Algorithm

Wrap-Around-MC:

• Whenever some processor idles (which indicates this

processor will remain idle for the rest of this quantum),

execute the LO-criticality job with earliest deadline that is

assigned to next interval. If there is no LO-criticality job

active, execute HI-criticality ones with similar attributes.

Update the assigned value to further intervals by reducing

the finished amount at the end of each interval.

Note that this item has nothing to do about optimality of the

algorithm; i.e., leaving any processor idle as it is according to

Algorithm Wrap-Around-MC will still result in correctness.

IV. DISCUSSION

In this section, some further discussions about the problem

and also the algorithm will be provided.

241

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:42:16 UTC from IEEE Xplore. Restrictions apply.

A. Processor-Sharing
We first show that processor-sharing is necessary in order to

ensure that any instance for which the LP generates a solution

can be scheduled during run-time.
In the following example, the mixed-criticality instance is

compromised of three jobs and two processors. We will show

that although the Linear Program has a feasible solution for

this instance,, there does not exist a feasible schedule for this

job set without processor-sharing.
Example 2: Consider three independent jobs J1 = J2 =

{0, 1, 2, HI}, J3 = {0, 2, 2, LO}, to be scheduled on a platform

of two varying-speed processors with degraded speed 0.5.

Since all jobs share the same scheduling window, there is

only one interval Ii = [0, 2), and the LP has the solution

x11 = x21 = 1 and x31 = 2.
Wrap-Around-MC will execute this set of jobs easily by

combining the HI-criticality ones together and executing them

on one processor while the system remains normal. Job J3
can be dropped whenever the system begins to suffer from

degradation. Here processor-sharing gives us the ability to

execute any fraction of a job within a short enough quantum

(with length Δ).
Under the case where processor-sharing is forbidden, we can

still assume processors do not change their speeds during each

quantum. The only difference is that we can no longer assign

a fraction of capacity to each quantum; one certain job needs

to be assigned to a given processor within each quantum. We

will show that no matter how small Δ is, there does not exist a

feasible schedule for this job set (without processor-sharing).
Consider two possible decisions at time t = 0 (for the next

quantum) – we may either assign both two processors the

HI-criticality jobs, or allocate the LO-criticality job to one of

them.
The first choice is certainly not correct in the case both

processors never degrades. To make sure the LO-criticality job

with utilization of 1 meets its deadline, it needs to be executing

for the whole interval. However, the LO-criticality job will not

start to execute until t = Δ under this decision. Since a job

cannot be executed on both processors in parallel, remaining

capacity 2−Δ on either processor is not enough for the LO-

criticality job to meet its deadline.
For the second choice, consider the case that both processors

degrade into 0.5-speed at instant t = Δ. There remains a HI-

criticality job (assumed to be J2, without loss of generality)

which requires an execution of 1 time unit within the interval.

However each processor has a remaining capacity of (2−Δ) ·
0.5, which is smaller than 1. Since a job cannot be executed on

both processors in parallel, the remaining capacity on either

processor is not enough for J2 to be finished on time. The

wasted Δ capacity (used for executing the LO-criticality job)

of the system is crucial (and unavoidable).

The problem without processor-sharing is that we can no

longer guarantee that upon any instant that the system may

degrade, we will execute a fraction of 0.5 to both HI-criticality

jobs on one processor. The lag of some HI-criticality job may

be negative, which means the constructed schedule is “left

behind” when compared to the ideal case. The key assumption

in processor-sharing is that processor speed will not change

throughout each quantum. This gives us the ability to execute

each job a proper length which leaves a zero lag after each

period of length Δ.

B. Weak Degradation

So far we have focused upon a rather restrictive model that

places a relatively strong requirement on system behavior dur-

ing degraded mode: all processors must execute at a minimum

speed of s. The requirement is strong since we eliminate the

case when only a few among m processors are not functional,

while most ones execute at full speed – the whole system may

still be able to ensure a cumulative speed of s ·m.

We now introduce a somewhat different definition of system

degradation described as follows.

Definition 5 (weak degraded mode): A system with m pro-

cessors is said to be in weak degraded mode at a given instant

if the processing speeds {si} of all processors satisfy:

m∑
j=1

si ≥ s ·m. (10)

The requirement is considered weak because if the m

processors are executing with an average speed no slower than

s, correctness must be guaranteed for HI-criticality jobs. Now

it includes the annoying case that several processors may run

at a very low (but not zero) speed, and they need to be well

utilized for some heavy load instances.

The following simple example shows how Algorithm Wrap-

Around-MC will fail in weak degraded mode for a feasible job

set.

Example 3: Consider two jobs J1 = J2 = {0, 0.5, 1, HI},
to be scheduled on a varying-speed platform of two processors

with degraded speed 0.5. Since both jobs share the same

scheduling window, solution x11 = x12 = 0.5 to the LP is

trivial.

Now consider the case if at the very beginning Processor

1 degrades into speed 0.75, while Processor 2 degrades into

speed 0.25. Although the system is no longer in degraded

mode; it still satisfies the weak degradation definition. Figure 4

compares the incorrect result by Wrap-Around-MC (where the

dotted box marks the parallel execution period) and a possible

correct scheduling strategy.

Fig. 4. The incorrect schedule constructed by Wrap-Around-MC (left), and
a feasible one (right) under weak degraded mode in Example 3.

242

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:42:16 UTC from IEEE Xplore. Restrictions apply.

This example shows that wrap-around is no longer optimal

under weak degraded mode. Additional “slices” inside each

quantum need to be made, so that jobs will migrate and get

rid of parallel execution. In general, for optimal scheduling

on this kind of heterogenous system, studies have been made,

and the current state of art suggests the adaptation of the Level

Algorithm [9].
The Level Algorithm creates a significantly large number

(O(m2)) of preemptions and migrations for each short period

(quantum), in order to fully utilize all slow processors with

jobs that need to execute for a considerable duration during

this quantum without running into the parallel execution prob-

lem. With the help of (the optimal) Level Algorithm, we can

extend Algorithm Wrap-Around-MC as follows to correctly

deal with systems in weak degraded mode.
Algorithm Level-MC(Δ, f)
• At the beginning of each quantum (with length Δ), order

both the processor speeds s1, ..., sn and the assigned

fractions f1, ..., fn in decreasing order.

• If the system is in normal mode, “wrap-around” all jobs.

• Elseif the system is in degraded mode, “wrap-around”

HI-criticality jobs.

• Elseif the system is in weak degraded mode, apply the

Level Algorithm to HI-criticality jobs.

• During run-time, in both the normal and the degraded

modes, jobs are assigned the priority order same as the

assignment order in the steps above, and are executed

on their allocated processors. In weak degraded mode,

priorities of jobs are not fixed, and the detailed schedule

is given by the Level Algorithm.

The following example illustrates how Algorithm Level-MC

works under weak degraded mode.
Example 4: Consider four HI-criticality jobs

J1 = {0, 0.2, 1, HI}, J2 = {0, 0.25, 1, HI}, J3 =
{0, 0.4, 1, HI}, J4 = {0, 0.5, 1, LO}, to be scheduled on

a platform of three varying-speed processors with a minimum

weak degraded speed threshold of 0.5. Consider the weak

degraded case where three processors run at speeds of

0.3, 0.4, and 0.8, respectively (the average speed of the

system is 0.5).
Since all jobs share the same scheduling window, there is

only one interval Ii = [0, 2), and the LP has the solution

x11 = 0.2, x21 = 0.25, x31 = 0.4, and x41 = 0.5. Figure 5

shows how Level-MC would schedule these jobs under such

weak degraded mode for the next quantum. Without loss of

generality, we assume unit length for each quantum; i.e., Δ =
1. A shorter quantum length would result in repeating of a

shrunk version of the same schedule pattern.
In the schedule shown in Figure 5, jobs are jointly executing

on more than one processor during some intervals; e.g., jobs

J1 and J2 during interval [0.133, 0.5), jobs J3 and J4 during

interval [0.25, 0.5), and all jobs during interval [0.5, 0.9). The

Level Algorithm designs the schedule in a way that capacity

as well as execution speeds are evenly divided (shared) by

combined jobs. The intuition is that since a heavy job executes

Fig. 5. The schedule constructed by Level-MC under weak degraded mode
in Example 4.

on a high-speed processor, there may be an instant that two

(or more) jobs have the same amount left (to be executed). For

example, in the schedule given by Figure 5, both J1 and J2
require 0.2 time units of further execution at time t = 0.133.

From then on, they should execute at the same speed, and thus

are joined by the Level Algorithm.

To jointly execute n jobs on m processors, where n ≥ m,

the Level Algorithm divides the period into n equal sub-

periods, and makes the assignment that each processor exe-

cutes (and only executes) each job for one subperiod. Figure

6 expresses the schedule for all the jobs by this divide-and-

assign scheme.

Fig. 6. Joint execution of all jobs on the system by Level Algorithm during
[0.5, 0.9) of Example 4.

Theorem 2: Algorithm Level-MC (in addition to the linear

program construction) is an optimal correct scheduling strat-

egy for the preemptive multiprocessor scheduling of collec-

tions of independent MC jobs.

Proof: Similar to the proof in Theorem 1, we only need to

show that the weak degraded condition is also sufficient for

Level-MC to construct a correct schedule.

According to [9], the Level Algorithm will always return a

feasible schedule if the following m constraints hold (assume

both {fi} and {sj} are in decreasing order):

i∑
j=1

fj ≤
i∑

j=1

sj , ∀i, 1 ≤ i ≤ m− 1; (11)

nh∑
j=1

fj ≤
m∑
j=1

sj . (12)

243

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:42:16 UTC from IEEE Xplore. Restrictions apply.

From Inequality (7), we have fj ≤ s, for any j. Since

{sj} are ordered in decreasing order, from the property of

“average”, we know that s · i ≤ ∑i
j=1 sj holds true for any

i. Putting these together, we have Inequality (11). Inequality

(12) follows directly from the capacity constraint (5).

As a consequence, under such a processor-sharing protocol,

the Level Algorithm returns a feasible schedule within each

quantum (a small enough interval of length Δ). Here feasibility

indicates that no job gets executed simultaneously on more

than one processor, and all jobs receive their designated

amounts by the end of the quantum. As the system continues

to run quantum by quantum, the HI-criticality amounts are

guaranteed to be finished by their assigned fractions (with

zero lag). This indicates all HI-criticality jobs will meet their

deadlines when the system is in weak degraded mode.

Correctness in both normal mode and degraded mode (each

with a processing speed no less than s) follows from Theorem

1 since no change has been made from Algorithm Wrap-

Around-MC for these cases.

We have shown that Inequalities (1) – (6) are sufficient for

Algorithm Level-MC to construct a correct schedule. Since it

has been shown that these conditions are also necessary, we

can conclude the optimality of the algorithm.

Dropping LO-criticality jobs. Under the definition of cor-
rectness, the two algorithms proposed so far drop all LO-

criticality jobs whenever degradation occurs (even to only one

of the processors). One can certainly argue that such sacrifice

may not be necessary.

Inequalities (11) and (12) can also be applied to all jobs

(instead of only HI-criticality ones) to check the feasibility

of the current system (described by processing speeds). The

following item can be added into Algorithms Wrap-Around-

MC and Level-MC to further improve them by not dropping

the LO-criticality jobs in some of the degraded cases:

• If the system is in degraded (or weak degraded) mode,

check feasibility conditions for all jobs; i.e., Inequalities

(11) and (12). If they hold, apply the Level Algorithm

to all jobs; else follow the previous protocols to the HI-

criticality jobs only, and suspend the LO-criticality ones.

However, whether optimality can be proved under such

protocol remains unknown; i.e., if our algorithm drops any

LO-criticality job under certain degradation condition(s), is it

necessarily the case that other algorithm(s) must drop some

LO-criticality job(s) to guarantee correctness?

V. CONTEXT & CONCLUSIONS

We have recently begun studying the scheduling of mixed-

criticality systems upon platforms that may suffer degradations

in performance during run-time. We expect that these pro-

cessors are likely to execute at unit speed (or faster) during

run-time, and in some cases they execute slower, but each

at a speed no slower than some specified threshold s. Upon

such platforms, the scheduling objective is to ensure that all

jobs complete in a timely manner under normal circumstances,

while simultaneously ensuring that more critical jobs complete

in a timely manner under degraded conditions.

In this paper, we expand our previous investigations upon

uniprocessor platforms into the scheduling of mixed-criticality

jobs upon multicore systems. Upon such varying-speed multi-

processors, a correct and optimal scheduling algorithm named

Wrap-Around-MC has been proposed. During execution, our

algorithm mimics a processor-sharing scheme, which requires

sufficient preemption and migration (assumed to be zero cost).

We also initiate some studies on a weaker definition of

degradation to multicore systems, where processors on average

execute at a minimum speed of s. The Level Algorithm [9]

is executed within each quantum to maintain the optimality,

which results in much more (unavoidable) preemption and mi-

gration during execution. It would be interesting and important

to derive algorithms for scheduling mixed-criticality varying-

speed systems with limited (such as bounding their numbers)

or restricted (such as only allowing them at job boundaries)

preemption and migration.

So far we only considered collections of independent jobs.

We are certainly going to make an effort to better understand

the scheduling of sporadic task set in the future work.

REFERENCES

[1] Theodore Baker and Sanjoy Baruah. Sustainable multiprocessor schedul-
ing of sporadic task systems. In Proceedings of the EuroMicro Confer-
ence on Real-Time Systems. IEEE Computer Society Press, 2008.

[2] S. Baruah and et al. The preemptive uniprocessor scheduling of mixed-
criticality implicit-deadline sporadic task systems. In Proceedings of
the 2012 24th Euromicro Conference on Real-Time Systems, ECRTS
’12, Pisa (Italy), 2012. IEEE Computer Society.

[3] Sanjoy Baruah. Optimal utilization bounds for the fixed-priority
scheduling of periodic task systems on identical multiprocessors. IEEE
Transactions on Computers, 53(6), 2004.

[4] Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin.
Mixed-criticality scheduling on multiprocessors. Real-Time Systems,
50(1):142–177, 2014.

[5] Sanjoy Baruah and Zhishan Guo. Mixed-criticality scheduling upon
varying-speed processors. In Proceedings of the 34th IEEE Real-Time
Systems Symposium (RTSS). IEEE Computer Society Press, 2013.

[6] David Bull and et al. A power-efficient 32b arm isa processor using
timing-error detection and correction for transient- error tolerance and
adaptation to pvt variation. In Proceedings of the IEEE International
Solid-State Circuits Conference, pages 284–285, 2010.

[7] Alan Burns and Robert Davis. Mixed-criticality systems: A review.
http://www-users.cs.york.ac.uk/˜burns/review.pdf,
2013.

[8] Zhishan Guo and Sanjoy Baruah. Mixed-criticality scheduling upon un-
monitored unreliable processors. In Proceedings of the IEEE Symposium
on Industrial Embedded Systems (SIES). IEEE Computer Society Press,
2013.

[9] E.C. Horvath, S. Lam, and R. Sethi. A level algorithm for preemptive
scheduling. Journal of the ACM, 24(1):32–43, 1977.

[10] N. Karmakar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4:373–395, 1984.

[11] L.G. Khachiyan. A polynomial algorithm in linear programming.
Dokklady Akademiia Nauk SSSR, 244:1093–1096, 1979.

[12] Risat Pathan. Schedulability analysis of mixed-criticality systems on
multiprocessors. In Proceedings of the 2012 24th Euromicro Conference
on Real-Time Systems, ECRTS ’12, Pisa (Italy), 2012.

[13] Steve Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proceedings of the
Real-Time Systems Symposium, pages 239–243, Tucson, AZ, December
2007. IEEE Computer Society Press.

[14] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui
Sha. Memory access control in multiprocessor for real-time systems with
mixed criticality. In Proceedings of the 2012 24th Euromicro Conference
on Real-Time Systems, Pisa (Italy), 2012. IEEE Computer Society Press.

244

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:42:16 UTC from IEEE Xplore. Restrictions apply.

