
The concurrent consideration of uncertainty in WCETs and
processor speeds in mixed-criticality systems∗

Zhishan Guo
The University of North Carolina at Chapel Hill

201 S Columbia Street
Chapel Hill, North Carolina 27599

zsguo@cs.unc.edu

Sanjoy Baruah
The University of North Carolina at Chapel Hill

201 S Columbia Street
Chapel Hill, North Carolina 27599

baruah@cs.unc.edu
ABSTRACT
Most prior work on mixed-criticality (MC) scheduling has
focused on a model in which multiple WCET parameters
are specified for each job, the interpretation being that the
larger values represent “safer” estimates of the job’s true
WCET. More recently, a different MC model has been stud-
ied in which it is assumed that the precise speed of the
processor upon which the system is implemented varies in
an a priori unknown manner during runtime, and estimates
must be made about how low the actual speed may fall.
The research reported in this paper seeks to integrate the

varying-speed MC model and the multi-WCET one into a
unified framework. A general model is proposed in which
each job may have multiple WCETs specified, and the pre-
cise speed of the processor upon which the system is im-
plemented may vary during run-time. We reinterpreted the
key idea behind the table-driven MC scheduling scheme pro-
posed in one of our recent work, and provide a more efficient
algorithm named LE-EDF. This algorithm strictly general-
izes algorithms that were previously separately proposed for
MC scheduling of systems with multiple WCETs as well
as for MC scheduling on variable-speed processors. It is
shown that LE-EDF outperforms (via simulation) and/or
dominates existing algorithms (under theoretical proof).
LE-EDF is also compared with optimal clairvoyant algo-
rithm using the metric of speedup factor.

1. INTRODUCTION
Special-purpose processors used in implementing safety-

critical systems are designed to be highly predictable: given
the specifications of the workload that is to be executed
upon such a processor, it is possible to provide tight bounds
on the worst-case run-time behavior of the system during
system design time, to a very high level of assurance. Such
design-time predictability is essential for safety-critical func-
tionalities, but is difficult to achieve with Commercial Off-

∗Work supported by NSF grants CNS 1115284, CNS
1218693, CPS 1239135, CNS 1409175, and CPS 1446631,
AFOSR grant FA9550-14-1-0161, ARO grant W911NF-14-
1-0499, and a grant from General Motors Corp.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
RTNS 2015, November 04-06, 2015, Lille, France
c⃝ 2015 ACM. ISBN 978-1-4503-3591-1/15/11 $15.00

DOI: http://dx.doi.org/10.1145/2834848.2834852

The-Shelf (COTS) processors that are typically engineered
to provide good average-case performance rather than worst-
case guarantees.

Estimating WCET. The worst-case execution time
(WCET) of a given piece of code upon a specified platform
represents an upper bound of the duration of time needed
for it to execute. The WCET abstraction plays a central
role in the analysis of real-time systems.

Determining the exact WCET of an arbitrary piece of
code is provably an undecidable problem. Even when se-
vere restrictions are placed upon the structure of the code
(e.g., loop bounds must be known at compile time), sophis-
ticated features that are found upon COTS processors that
are used in embedded systems today (such as multi-level
cache, deep pipelining, speculative out-of-order execution,
etc.) are hard to analyze and make it extremely difficult to
determine WCET precisely. Devising analytical techniques
for obtaining tight upper bounds on WCET is currently a
very active and thriving area of research, and sophisticated
tools incorporating the latest results of such research have
been developed (see [17] for an excellent survey).

A large body of prior research on mixed criticality (MC)
scheduling (see [6] for a review of some of this work) has
focused upon dealing with the phenomenon that multiple
WCET bounds may be provided by different WCET analysis
tools. Although it may be necessary (for instance, mandated
by a statutory Certification Authority) to use the most con-
servative WCETs for validating the correctness of safety-
critical functionalities, less conservative WCETs should suf-
fice for validating the correctness of less critical function-
alities. Such uncertainty is modeled by assigning each job
two WCET parameters – a larger, more conservative one,
and a smaller, less conservative one. Some of the jobs are
designated as being safety-critical; the remaining ones are
not safety-critical. The objective is to determine a run-time
scheduling strategy to ensure that (i) all jobs complete by
their deadlines if each job completes execution upon hav-
ing executed for no more than the smaller of its WCET
values; and (ii) the jobs designated as being safety-critical
continue to complete by their deadlines (although the non-
critical jobs may fail to do so) if some job does not complete
execution upon having executed for up to the smaller of its
WCET values, although each job does complete upon having
executed for the larger of its WCET values.

Varying-speed processors. Recently, some efforts have
been made (see, e.g., [9, 3]) to address another source
of modeling uncertainty inherent in characterizing the run-
time behavior of real-time systems (although not uncer-
tainty in WCET estimation alongside). Such modeling re-

247

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2834848.2834852&domain=pdf&date_stamp=2015-11-04

quires that some assumptions be made about the run-time
behavior of the processor upon which the code is to execute;
for example, the clock speed of the processor during run-time
must be known in order to be able to determine the rate at
which instructions will execute. However, conditions during
run-time, such as changes to the ambient temperature, the
supply voltage, etc., may result in variations in the clock
speed — for instance, a system programmer may use the
userspace Linux command cpuspeed to configure a system
to reduce CPU clock speeds if the core temperature gets too
high. Processor speed could additionally change during run-
time in embedded devices that use dynamic frequency scal-
ing in order to reduce energy consumption. At the hardware
level, too, innovations in computer architecture for increas-
ing clock frequency can lead to varying-speed clocks during
run-time: e.g., [5] describes a recently-introduced technique
for detecting whether signals are late at the circuit level
within a CPU micro-architecture, and if so to recover by
delaying the next clock tick so that logical faults do not
propagate to higher (i.e., the software) levels.
In order to be able to guarantee that deadlines are met

under all run-time conditions, conservative analysis prior to
run-time must make the most pessimistic assumptions re-
garding clock speed: that during run-time the clock speed
takes on the lowest possible value. If this lowest possible
value is highly unlikely to be reached in practice during ac-
tual runs, then a significant under-utilization of the CPU’s
computing capacity will be observed during run-time. A
less conservative analysis, on the other hand, may assume a
less pessimistic (i.e., larger) lower bound on the clock speed
during run-time. Using such an assumption as the basis for
making resource-allocation decisions will likely lead to more
efficient usage of the CPU’s computing capacity during run-
time; however, there is a possibility that the actual processor
speed will fall below the lower-bound estimate used in the
analysis (thereby invalidating the conclusions drawn during
such analysis).

Contribution and Organization. This paper provides
a generalized MC framework (in Sec. 2) that covers the
uncertainties arising from both upper bounds of WCET esti-
mations and lower bounds on processor speeds, while prior
work only considers one dimension of such uncertainty. In
Sec. 3, an existing table-driven algorithm (for varying-speed
MC scheduling) is reinterpreted with simpler design that
follows EDF execution during run-time, named LE-EDF.
In Sec. 4, we show its optimality theoretically under the
single WCET case, while for the general case, we compare
LE-EDF with optimal clairvoyant algorithm with the met-
ric of speedup bound, as a function of the set’s parameters
(loads), with upper bound of 4/3. In Sec. 5, we further show
that under the constant speed case, LE-EDF strictly dom-
inates the OCBP algorithm [4] (which is a key result for
MC job scheduling). Experimental study is also provided
to support such result, and further suggests the domination
over the MCEDF algorithm [16] (which serves as the cur-
rent state of the art). We conclude in Sec. 6 by discussing
extensions that we are currently working upon, and by plac-
ing this work within a larger context of the mixed-criticality
scheduling theory.

2. MODEL AND DEFINITIONS
In this paper, we model a mixed-criticality real-time work-

load as being comprised of basic units of work known as
mixed-criticality jobs. Finite collections of independent jobs

may arise in frame-based approaches of real-time scheduling,
while some real-time system have only periodic tasks with
a small hyperperiod that could also be represented as a col-
lection of jobs.

Each MC job Ji is characterized by a 4-tuple of param-
eters: a release time ai, a vector ⟨ci(lo), ci(hi)⟩ of two
WCET values where ci(lo) ≤ ci(hi) for hi-criticality jobs
and ci(lo) = ci(hi) for lo-criticality ones, a deadline di,
and a criticality level1 χi ∈ {lo,hi}.

A mixed-criticality instance I is specified by

• a collection of MC jobs: J = {J1, J2, . . . , Jn}, and

• a processor that is characterized by two thresholds: a
normal speed sν and a degraded speed sδ(≤ sν).

The interpretation is that the jobs in J are to execute on
a single shared preemptive processor that has two modes: a
normal mode and a degraded (or faulty) mode. In normal
mode, the processor executes as a speed-sν (or faster) pro-
cessor and hence completes at least sν units of execution per
time unit, whereas in degraded mode it completes less than
sν , but at least sδ units of execution per time unit. The
processor starts out executing at or above its normal speed,
and it is not a priori known how the processor speed will
vary during run-time.

Definition 1. A scheduling strategy for MC instances
is correct if upon scheduling any MC instance I =
({J1, J2, . . . , Jn}, sδ, sν), it satisfies the following two prop-
erties P1 and P2.

P1. Each job Ji meets its deadline if all jobs complete ex-
ecution upon having executed for no more than their
lo-criticality WCETs, and the processor speed remains
≥ sν throughout Interval [ai, di); and

P2. Each hi-criticality job Ji meets its deadline if all hi-
criticality jobs complete execution upon having exe-
cuted for no more than their hi-criticality WCETs, and
the processor speed remains ≥ sδ throughout Interval
[ai, di);

A scheduling strategy for MC instances is partially correct
if it satisfies P2 above, but not necessarily P1.

That is, a partially correct scheduling strategy ensures the
correct execution of hi-criticality jobs provided the proces-
sor executes at or above its degraded speed and each hi-
criticality job completes upon executing for no more than
its hi-criticality WCET. A correct scheduling strategy addi-
tionally ensures the correct execution of lo-criticality jobs
if the processor executes at or above its normal speed and
each job completes upon executing for no more than its lo-
criticality WCET.

A clairvoyant scheduling algorithm is one that knows,
prior to scheduling an instance, (i) precisely how much exe-
cution time each job in the instance will require in order to
complete, and (ii) the precise manner in which the processor
speed will vary during run-time.

1In common with much prior work in MC-scheduling, we start
out considering systems with just two criticality levels specified.
Generalization to systems with more than two criticality levels is
discussed in Section 6.

248

Definition 2 (optimal scheduling strategy). An
optimal scheduling strategy for MC instances possesses the
property that if it fails to maintain correctness (partial
correctness, respectively) for a given MC instance I, then
no non-clairvoyant algorithm can ensure correctness (partial
correctness, resp.) for the instance I.

We now state some conventions adopted in this paper, as
well as some further notation. Without loss of generality,
we will assume that the hi-criticality jobs in given MC in-
stance I are indexed 1, 2, ..., nh and the lo-criticality jobs
are indexed nh+1, ..., n. Let t1, t2, ..., tk+1 denote the at most
2n distinct values for the release time and deadline parame-
ters of the n jobs, in strictly increasing order (redundancy is
eliminated, so ∀j, tj < tj+1). These release time and dead-
lines partition the time duration [mini{ai},maxi{di}) into
k intervals, which will be denoted as I1, I2, ..., Ik, with Ij
denoting the interval [tj , tj+1).

3. ALGORITHM LE-EDF
In this section we describe Algorithm LE-EDF2 for

scheduling MC instances that are represented using the
model discussed in Section 2 above. We will also illus-
trate, via a running example, the behavior of LE-EDF when
scheduling such an MC instance.
The high-level description of our algorithm is as follows.

Given an MC instance I = (J , sν , sδ), similar to the algo-
rithm described in Sec. 4 of [10], we first construct, prior to
run-time, a scheduling table that reserves a certain amount
of execution time for each hi-criticality job within each time
interval Ij = [tj , tj+1), for 1 ≤ j ≤ k, in order to ensure that
no hi-criticality deadline will be missed even under the most
conservative case. To this end, LE-EDF is in some sense sim-
ilar to the zero-slack technique developed by Niz et al. [15],
which mainly focused on fixed priority schemes such as rate-
monotonic instead of EDF based ones (which is our focus).
To comply with this scheduling table, hi-criticality jobs are
divided into sub-jobs with different deadlines. Dispatch de-
cisions at run-time are taken in a manner that hi-criticality
jobs being executed for at least the amounts mandated in the
scheduling table (by having sub-jobs meeting their assigned
deadlines), while using the remaining computing capacity to
execute lo-criticality jobs. The latest execution (LE) man-
ner in which the sub-job set is constructed is described in
Section 3.1; run-time dispatching (under EDF) is detailed
in Section 3.2.

3.1 Sub-job Construction (LE)

To construct the scheduling table, we first identify (Step
1 below) the latest time intervals during which the hi-
criticality jobs must execute if (i) they are to complete ex-
ecution on a degraded processor, and (ii) each were to ex-
ecute for its hi-criticality WCET; having identified these
intervals, we construct (in Step 2) an EDF schedule for the
hi-criticality jobs in these intervals.

Step 1. Considering only the hi-criticality jobs in the in-
stance, determine the intervals during which the jobs would
execute upon a speed-sδ processor, if

1. each job executes for its hi-criticality WCET,

2. each job completes by its deadline, and
2The two steps, shown in Sec 3.1, in the construction of the
scheduling table explain the name given to our algorithm: Latest
Execution times, with EDF scheduling

3. execution occurs as late as possible.

It is evident that these intervals may be determined by
filling in the schedule “backwards”; i.e., considering the jobs
in non-increasing order of their deadlines, and allocating the
cumulative execution requirements of these jobs. They can
therefore be determined in O(nhi log nhi) time (which is the
complexity of sorting), where nhi denotes the number of hi-
criticality jobs. We illustrate this in Example 1 below.

Example 1. Throughout this section we will consider the
instance consisting of the six jobs J1–J6 shown in tabular
form in Figure 1, that is to be implemented upon a preemp-
tive processor of normal speed sν = 1 and degraded speed
sδ = 0.5.

Ji ai ci(lo) ci(hi) di χi

J1 1 2 3 14 hi
J2 9 0.5 1 12 hi
J3 10 0.5 1 17 hi
J4 0 7 7 10 lo
J5 1 0.5 0.5 12 lo
J6 12 3 3 16 lo

Figure 1: An example MC collection of jobs.

Considering only the hi-criticality jobs J1–J3 executing for
their hi-criticality WCETs on a speed-sδ processor, the in-
tervals identified in Step 1 are as follows:

✲
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

✻ ✻✻
❄ ❄ ❄

J3J1

J2

a1 a2 a3 d2 d1 d3

The intervals determined in Step 1 are therefore [6, 14)
and [15, 17). (Observe that in this schedule we are only de-
termining execution intervals, not seeking to determine an
actual schedule. Hence the fact that job J2 seems to be “as-
signed” execution prior to its release time is irrelevant.)

Step 2. Construct an EDF schedule for the hi-criticality
jobs upon a preemptive processor that has speed sδ during
the intervals determined in Step 1 above, and speed zero else-
where.

It follows from the optimality property3 of EDF that if
this step fails to ensure that each hi-criticality job receives
an execution amount equal to its hi-criticality WCET prior
to its deadline, then no scheduling algorithm can guarantee
correctness or even partial correctness (see Definition 1), for
this instance. We would therefore report failure: this MC
instance is not feasible. The remainder of this section, and
Section 3.2, assumes that Step 2 above was successful in
completing each hi-criticality job prior to its deadline.

Example 2. Consider again the instance of Example 1
that is depicted in Figure 1. In Step 2, the EDF schedule

3Although the optimality proof of EDF in [8, 12], which is based
on a swapping argument, assumes that the processor speed re-
mains constant, it is trivial to extend the proof to apply to pro-
cessors that are only available during limited intervals, or indeed
to arbitrary varying-speed processors.

249

for the hi-criticality jobs upon a speed-0.5 processor is con-
structed only within the intervals identified in Step 1; i.e.,
[6, 14), [15, 17)4:

✲
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

✻ ✻✻
❄ ❄ ❄

J1
J2 J1

J3

a1 a2 a3 d2 d1 d3

• J1 executes during interval [6, 9) as the only active job.

• J2 upon release, becomes the earliest-deadline job and
is hence allocated execution over the interval [9, 11).

• Upon J2’s completion, J1 executes during interval
[11, 14) as the only active job.

• J3 executes in interval [15, 17) as the only active job.

Step 3. Partition the time-line over [mini{ai},maxi{di}],
and thus the scheduling table, into the k intervals
I1, I2, . . . , Ik. (Recall, from Section 2, that these are the
intervals defined by the release time and deadlines of all
the jobs – lo-criticality and hi-criticality.) For each hi-
criticality job Ji and each interval Iℓ in which it is scheduled
in the EDF schedule constructed in Step 2 above, define a
sub-job of Ji with the same release time ai, a WCET equal
to the amount of execution that Ji is allocated during Inter-
val Iℓ, and a deadline equal to tℓ+1, the right end-point of
Interval Iℓ.
By dividing hi-criticality jobs into sub-jobs, and setting

proper deadlines for them (so that they cannot be sup-
pressed by lo-criticality jobs in the sense of correctness), we
are actually mapping the table-driven scheduling derived by
[10] into an EDF based schedule, while preserving the opti-
mality (to be shown formally in Sec 4).

Counting the number of sub-jobs. Although an indi-
vidual job in an EDF schedule for an instance of n jobs may
be preempted as many as (n − 1) times, it is known (see,
e.g., [7]) that the total number of preemptions in any EDF
schedule for an n-job instance cannot exceed (n− 1). From
this, it follows that the schedule constructed in Step 2 above
will contain no more than 3nh − 1 contiguous chunks of ex-
ecution (here, a 2nh − 1 comes from the fact that nh jobs
are being scheduled using EDF, and an additional nh from
the fact that there may be as many as nh non-contiguous
intervals upon which this EDF schedule is executing). Since
Step 3 partitions the time-line into no more than 2n− 1 in-
tervals, it follows that the total number of jobs is bounded
from above by 3nh − 1 + 2n− 1, which is O(n).

Example 3. For our example instance of Figure 1, Step
3 partitions the time-line into seven intervals [0, 1), [1, 9),
[9, 10), [10, 12), [12, 14), [14, 16), and [16, 17).

✲
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

✻✻ ✻ ✻✻
❄ ❄ ❄❄

I1 I2 I3 I4 I5 I6 I7

a4 a1, a5 a2 a3 d2, a6 d1 d6 d3

Each of the hi-criticality jobs is decomposed into the sub-jobs
shown in Figure 2; these are obtained by super-imposing the
partitions shown above upon the EDF schedule constructed
in Example 2.

4Note that Step 1 may result in new break points to the time
line and intervals other than release time and deadlines; e.g.,
t = 6.

Ji ai ci(hi) di χi

J12 1 1.5 9 hi
J14 1 0.5 12 hi
J15 1 1 14 hi
J23 9 0.5 10 hi
J24 9 0.5 12 hi
J36 10 0.5 16 hi
J37 10 0.5 17 hi

Figure 2: hi-criticality sub-jobs generated by Step 3
in Example 1.

3.2 Run-time scheduling (EDF)

We maintain an EDF (priority) queue during run-time for
a combination of the lo-criticality jobs and the hi-criticality
sub-jobs (that were constructed during Step 3 above).

We now describe how run-time scheduling decisions are
made during the ℓ’th interval Iℓ, for ℓ = 1, 2, . . . , k:

1. We first insert all lo-criticality jobs and hi-criticality
sub-jobs that have their release time equal to the start
of this interval, into the EDF queue.

2. We execute jobs (including sub-jobs) in EDF order,
giving hi-criticality sub-jobs higher priority only when
tie-breaking jobs with same deadlines.

Note that from the manner in which the sub-jobs are
defined, it is guaranteed that all hi-criticality sub-jobs
with deadline at the end of this interval complete exe-
cution by the end of the interval, regardless of whether
or when the processor degrades into slower speeds.

3. At the end of the interval, all jobs in the lo-criticality
EDF queue with deadlines at the end of the interval
are dropped . Dropping a job in this manner implies
that LE-EDF was only able to schedule this instance
in a partially correct manner (see Definition 1). We
will later show (in the sense of online-optimal) that
such drop is unavoidable, unless we have clairvoyance
to speed changes.

Example 4. We continue scheduling the MC instance
considered in Example 1 (jobs detailed in Figure 1; the hi-
criticality sub-jobs constructed during Step 3 listed in Fig-
ure 2). The processor speed may fall below its nominal value
at any instant during execution. To better illustrate how our
algorithm works, we will separately simulate its operation
under three different run-time behaviors of the processor.
§1. We first consider the case where no degradation in pro-
cessor speed occurs, and all hi-criticality jobs execute at their
lo-criticality WCETs. The schedule is depicted in the fol-
lowing figure. (Since sub-job numbers align with interval
number, we only label the job numbers.)

✲
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

✻ ✻✻
❄ ❄ ❄

J4
J1 J4

J1J2
J5 J6J3 J6

a1 a2 a3 d2 d1 d3

• For Interval I1 = [0, 1), since no hi-criticality sub-
job is allocated here, J4 will be executed as the earliest
deadline lo-criticality job.

250

• Sub-job J12 executes for 1.5 time units at the beginning
of Interval I2 = [1, 9). The remaining capacity will
be used for jobs with deadline greater than 9. As the
earliest deadline lo-criticality job, J4 executes first and
completes at t = 8.5, after which J14 executes over the
interval [8.5, 9) (and also completes).

• Sub-job J23 is executed first in Interval I3 = [9, 10),
and completes at time t = 9.5. The earliest dead-
line active job (which is J5) executes over the interval
[9.5, 10).

• Since all hi-criticality jobs execute at their lo-
criticality WCETs, both J1 and J2 are already fin-
ished at t = 10, and sub-jobs J15 and J24 require no
execution. As a result, hi-criticality sub-job J36 (as
the only active sub-job) will be executed in Interval
I6 = [10, 10.5). We detect idleness throughout the rest
of the interval; i.e., [10.5, 12),

• Interval I5 = [12, 14) is empty and should be used for
the only active job J6.

• The only active lo-criticality job J6 executes until it
completes at t = 15. Now the processor becomes idle
since J37 is an inactive sub-job, J3 having already com-
pleted upon completing sub-job J36.

• The processor idles during Interval I7 = [16, 17).

§2. Next we consider another case where the processor
speed degrades to 0.5 over the time-interval [8, 12). We as-
sume that all hi-criticality jobs execute at their lo-criticality
WCETs (and thus sub-jobs J15, J24, and J37 can be ig-
nored5).

✲
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

✻ ✻✻
❄ ❄ ❄

J4
J1 J4

J2 J1
J5 J6

J3 J6

a1 a2 a3 d2 d1 d3

• Execution in Interval I1 = [0, 1) is the same as in pre-
vious case.

• Compared to the previous scenario, the amount of com-
puting capacity available in Interval I2 = [1, 9) is less
now due to the degradation of processor speed. After
completing sub-job J12, I2 is only able to execute J4,
which completes at time-instant 9.

• Interval I3 = [9, 10) also suffers from the degradation,
and is fully consumed by the sub-job J23.

• The processor remains in degraded mode for Interval
I4 = [10, 12), where hi-criticality sub-job J14 executes
and completes at time-instant 11. The remaining one
time unit is used for executing lo-criticality job(s): J5

executes from t = 11 to t = 12 and meets its deadline.

• The processor recovers to normal speed at time t = 12,
and the executions in the remaining three intervals are
the same as in the previous case.

5Of course these sub-jobs will not actually be ignored during
run-time; rather, they will be determined to be inactive (as it
is explained in the case above). Here we simply ignore them in
order to simplify the explanation.

Note that although the processor operated in degraded mode
for four time units, LE-EDF nevertheless completed all the
jobs by their deadlines.

§3. As a final example, we consider the case where the
processor suffers from a degradation between t = 8 and
t = 12, and hi-criticality jobs J1 and J2 execute at their
hi-criticality WCETs (for those reading this on a color mon-
itor, execution beyond the lo-criticality WCET is depicted
in purple).

✲
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

✻ ✻✻
❄ ❄ ❄

J4
J1 J4

J2 J1
J2 J1 J6

J3 J6
J3

a1 a2 a3 d2 d1 d3

• Execution in Intervals I1 = [0, 1), I2 = [1, 9), and
I3 = [9, 10) remains the same as in the previous case.

• Both J14 and J24 need to complete within interval
I4 = [10, 12). No capacity remains due to the processor
degradation, and the unfinished lo-criticality job J5 is
dropped at its deadline t = 12.

• At the beginning of Interval I5 = [12, 14), the proces-
sor recovers to normal speed. The interval [12, 13) is
consumed by J15. At time t = 13, there are two active
jobs J36 and J6 with the same deadline, and according
to the algorithm, we favour hi-criticality jobs in such
case, which results in execution of J3 within [13, 13.5),
and then J6 afterwards.

• There are two active jobs (J37 and J6) within Interval
I6 = [14, 16). J6 executes first since it has got a earlier
deadline (although with lower criticality level). Unfor-
tunately, J6 may be dropped at its deadline t = 16
since it has only received 2 1

2 units of execution (which
is fewer than the required three units).

• Sub-job J37 executes in Interval I7 = [16, 17), complet-
ing at time-instant 16.5. The processor is idled for the
remainder of the interval.

It is instructive to review the last scenario considered in
the example above, where two lo-criticality jobs J5 and J6

miss their deadlines.
The situation for J5 within Interval I4 = [10, 12) is

straightforward – the processor is suffering from a degra-
dation within this interval, and since J1 and J2 are both
hi-criticality jobs, the sub-jobs J14 and J24 certainly need
to be prioritized over the lo-criticality job J5.

The argument for J6 to miss its deadline is not quite as
unequivocal: a scheduling algorithm that postponed the exe-
cution of sub-job J36 to interval I7 (where, as we saw, there
is adequate excess capacity to accommodate this sub-job)
and instead executed J6 for an additional one-half unit dur-
ing interval I6 would have seen both J6 and J3 complete by
their deadlines. However, such a scheduling algorithm would
need to know beforehand (i.e., during interval I6) that the
processor speed would not degrade during interval I7. that
is, such an algorithm would need to be clairvoyant (see Sec-
tion 2).

The failure of LE-EDF to correctly schedule an instance
that would be scheduled correctly by a clairvoyant algorithm
does not rule out the possibility that LE-EDF is an optimal

251

algorithm: according to Definition 2, an optimal schedul-
ing strategy should be able to correctly schedule any in-
stance that can be correctly scheduled by a non-clairvoyant
scheduling strategy. Later in this paper we will prove (Theo-
rem 1) that LE-EDF is optimal in the single WCET subcase
(which is not NP-hard), and additionally seek to quantify
the gap between clairvoyant and non-clairvoyant algorithms
via the speedup factor metric.

Computational complexity. We have seen in Section 3.1
above that Algorithm LE-EDF generates no more than O(n)
hi-criticality sub-jobs during the preprocessing phase; dur-
ing run-time, these sub-jobs are scheduled for execution
along-with the lo-criticality jobs. We note that standard
techniques (see, e.g., [14]) for implementing EDF are known,
that allow an EDF schedule for n jobs to be constructed in
O(n log n) time. Consequently, we conclude that the EDF-
schedule of Step 2 can be constructed in O(nhi log nhi) time,
and the total scheduler overhead during run-time is also
bounded from above by O(n log n).
Remark 1. The algorithm described in this section is trig-
gered by, and quite similar to the one proposed in an earlier
work (Section 4 of [10]). However, in that paper the authors
only dealt with the uncertainty in platforms, but not with
multi-WCET estimations alongside. The scheduling scheme
in [10] was formed in a table driven manner; while in this
paper, we manage to form it into a more implementation-
friendly and efficient way (which is pure EDF during run-
time upon job splitting). Moreover, further discussions and
interesting comparisons (both theoretical and experimental)
will be provided in the following sections.
Remark 2. LE-EDF applies for tasks with real number
parameters – we restrict the examples with integer time only
for easier demonstration and understanding. One may see
that no such restriction is required in the correctness and
optimality proof (in the following section).

4. THE SINGLE WCET PER JOB CASE

In this section, we consider MC instances in which each
job has a single WCET specified for it, i.e., for each job Ji

it is the case that Ci(lo) = Ci(hi). The scheduling of such
MC instances was addressed in a recent paper [3], where an
optimal scheduling strategy based upon linear programming
(LP) was derived for scheduling such MC instances. We now
prove, in Section 4.1 below, that LE-EDF is also an opti-
mal scheduling strategy for scheduling such instances. Since
(as we saw above) LE-EDF can be implemented to have
a run-time that is O(n log n) for an instance comprised of
n jobs while LP-solvers have significantly poorer (although
still polynomial) run-times, we argue that LE-EDF is a pre-
ferred algorithm for scheduling such instances.
In addition to proving the optimality of Algo-

rithm LE-EDF for scheduling such MC instances, we use, in
Section 4.2, the speedup factor metric to quantify the cost
of clairvoyance by determining the smallest multiplicative
factor by which the processor available to LE-EDF would
need to be speeded up in order to be able to schedule any
instance that can be scheduled by any (hypothetical) clair-
voyant algorithm.

4.1 Proof of Optimality

Lemma 1. If a lo-criticality job Ji with release time ai

and deadline di is dropped by LE-EDF during run-time, the
processor remains busy in interval [ai, di). Furthermore, no

hi-criticality execution that had been allocated to later in-
tervals (than di) in the pre-computed scheduling table gets
executed within this interval.

Proof: It is easy to see that job Ji remains active (re-
leased and unfinished) throughout this whole interval. Thus,
there must be no idleness. Since our algorithm only “pro-
motes” pre-allocated hi-criticality amounts when the pro-
cessor idles, we know that no hi-criticality amount can be
transferred from later intervals into [ai, di).

Theorem 1. LE-EDF is an optimal scheduling strategy
for MC instances in which Ci(lo) = Ci(hi) for all jobs Ji.

Proof: From the definition of an optimal scheduling strategy
(Definition 2), it follows that we have two proof obligations
here.

First, we must show that LE-EDF is able to schedule in
a partially correct manner any instance that can be sched-
uled in a partially correct manner by any non-clairvoyant
algorithm. Partial correctness trivially follows from the op-
timality of EDF: if any non-clairvoyant algorithm is able to
satisfy property P2 of Definition 1, it follows from the man-
ner in which we construct the scheduling table in Steps 1
and 2 of Section 3.1 that LE-EDF will also satisfy property
P2.

Second, we must show that LE-EDF is able to correctly
schedule any instance that can be correctly scheduled by
any non-clairvoyant algorithm. Suppose that both LE-EDF
and some other (non-clairvoyant) algorithm are both able
to schedule a given MC instance I in a partially correct
manner, but LE-EDF is unable to correctly schedule I – it
drops a lo-criticality job J∗ during run-time. Let a∗ denote
the release time, and d∗ the deadline, of this job J∗. We
argue that any non-clairvoyant scheduler that completes all
hi-criticality jobs (and thereby satisfies partial correctness)
must also fail to meet the deadline of J∗ or some other lo-
criticality job with deadline at or prior to time-instant d∗.
This is because in order to ensure partial correctness in the
event of the processor speed degrading to sδ at some future
point in time, a non-clairvoyant scheduler must make the
most conservative assumptions regarding the future speed
of the processor and assume that the speed will, indeed, fall
to sδ. But LE-EDF also makes this assumption, and ensures
that under this assumption, the minimum possible amount
of execution of hi-criticality jobs with deadline greater than
d∗ has occurred within the interval of interest. According
to Lemma 1, no hi-criticality sub-job with deadline greater
than d∗ will be executed within [a∗, d∗), since J∗, with an
earlier deadline, is prioritized by LE-EDF. This implies that
the maximum possible amount of execution to lo-criticality
jobs has occurred in the LE-EDF schedule prior to d∗; the
fact that LE-EDF is forced to nevertheless drop a job at
d∗ implies that the processor is overloaded prior to d∗ (and
hence no other algorithm can complete all lo-criticality jobs
prior to d∗).

4.2 Speedup Factor
Theorem 1 above shows that LE-EDF is an optimal al-

gorithm for scheduling MC instances in which each job’s
lo-criticality WCET is equal to its hi-criticality WCET, in
the sense that no non-clairvoyant scheduler can guarantee
correctness (partial correctness, respectively) if LE-EDF is
unable to do so. Note that the proof of Theorem 1 fun-
damentally depends on the fact that the algorithm against

252

which LE-EDF is being compared is non-clairvoyant: a non-
clairvoyant algorithm must necessarily assume at each in-
stant during run-time that in the future the processor will
execute throughout at its minimum (degraded) speed of
sδ. In contrast, a clairvoyant algorithm may know how the
processor speed will vary in the future; such an algorithm
will generally outperform LE-EDF since LE-EDF sometimes
drops lo-criticality job to prevent future deadline missed
by hi-criticality jobs due to possible processor degradation
that may not happen. The third scenario considered in Ex-
ample 4 had illustrated that a clairvoyant algorithm may
ensure correctness while LE-EDF is only partially correct.
In this section, we will quantify the gap between LE-EDF
and any optimal clairvoyant algorithm using the metric of
speedup factor [11]. The use of this metric for the purposes
of quantifying the cost of non-clairvoyance seems particu-
larly appropriate: the seminal paper [11] on speed factors
was titled “Speed is as powerful as clairvoyance,” which is
what we, too, establish in this section (albeit for a com-
pletely different problem than the one considered in [11]).
In classical real-time scheduling theory (see, e.g.,[13, page

81]), the load of an instance of jobs denotes the maximum
over all time intervals, of the cumulative execution require-
ment by jobs of the instance over the interval, normalized by
the interval length. Informally, the load of an instance can
be thought of as representing a lower bound on the speed of
any processor upon which the instance can meet all dead-
lines. Analogous to this concept, we find it convenient to
define two loads, ℓlo(J) and ℓhi(J), for any MC collection
J of jobs.

Definition 3. The lo-criticality load ℓlo(J) and the hi-
criticality load ℓhi(J) of a mixed-criticality collection J of
jobs are defined according to the following two formulas:

ℓlo(J) = max
0≤t1<t2

∑

Ji: t1≤ai∧di≤t2

ci(lo)

t2 − t1
;

ℓhi(J) = max
0≤t1<t2

∑

Ji: χi=hi∧t1≤ai∧di≤t2

ci(hi)

t2 − t1
.

It is easily seen that a necessary and sufficient condition
for an optimal clairvoyant algorithm to successfully sched-
ule MC instance I = (J , sν , sδ) is that ℓlo(J) ≤ sν , and
ℓhi(J) ≤ sδ. A natural question arises: can we determine
a speedup factor s(> 1) for Algorithm LE-EDF such that
a sufficient condition for LE-EDF to schedule MC instance
I = (J , sν , sδ) in a correct manner (see Definition 1) is that
ℓlo(J) ≤ s×sν , and ℓhi(J) ≤ s×sδ? The following theorem
leads us to an answer:

Theorem 2. If an MC instance I =
(J , sℓlo(J), sℓhi(J)) that is schedulable by an optimal
clairvoyant algorithm is not correctly scheduled by LE-EDF,
then

s <
1

1− ℓhi(J) + ℓ2hi(J)/ℓlo(J)
. (1)

Proof: (of Theorem 2). It is evident from the man-
ner in which the scheduling table is constructed by Al-
gorithm LE-EDF (in Steps 1–3) that a degraded speed
of ℓhi(J) is already sufficient to have hi-criticality jobs

meet their deadlines. It is straightforward to observe that
LE-EDF is sustainable [2] with respect to processor speed
(i.e., a faster processor would only reduce the execution time
cost, and contribute positively its schedulability). Hence,
LE-EDF remains correct if provided a faster processor which
executes at degraded-speed of sℓhi(J). As a result, if
LE-EDF fails to maintain correctness for a given MC in-
stance I = (J , sℓlo(J), sℓhi(J)), for any s ≥ 1, the only
possibility is that a lo-criticality job Ji is dropped at its
deadline di – we study this only possible scenario in the
following to derive a bound on the speedup factor s.

Based on Lemma 1, consider any interval [a, d) which con-
tains [ai, di); i.e., a ≤ ai and di ≤ d. Since we dropped
a lo-criticality job at time t = di, the most pessimistic
assumption is that our processor runs at degraded speed
sℓhi(Jhi) thereafter, and moreover we fully utilize inter-
val [di, d) with hi-criticality jobs. When compared to the
clairvoyant execution of such a job set, the only difference
for interval [a, di) is that the additional capacity from the
speedup s(di−ai) may be used to execute hi-criticality jobs
with further deadlines. However, those hi-criticality jobs at
the same time suffer from the degradation after time t = di,
such that the provided capacity is not enough to guaran-
tee them meeting deadlines. This is exactly the reason why
our algorithm will pre-allocate more hi-criticality amounts
into interval [a, di), and thus cause the job Ji miss its dead-
line. Intuitively speaking, the additional capacity provided
within interval [a, di) is not enough to cover the “needs”
from hi-criticality jobs that are executed later in interval
[di, d) by the clairvoyant algorithm. Thus the following in-
equality must hold for any a ≤ ai, in order for LE-EDF to
drop lo-criticality job Ji at its deadline.
(
sℓlo(J)−ℓlo(J)

)
(di−a) <

(
ℓlo(J)−sℓhi(J)

)
(d−di) (2)

The worst case is obtained by setting a = ai, and this yields
an upper bound on s. Without loss of generality, we assume
d−ai = 1, and denote x := d−di ∈ [0, ℓhi(J)]. Since we only
consider active hi-criticality jobs within the interval, x can-
not exceed ℓhi(J) or else not even a clairvoyant algorithm
would finish them on time. Inequality (2) can be re-written
in the following manner with respect to the speedup factor
s:

∀x ∈ [0, ℓhi(J)], s <
1

1− x+ x ℓhi(J)
ℓlo(J)

(3)

When ℓhi(J) ≥ ℓlo(J), we simply have s < 1 which is
not the case of interest. When ℓhi(J) < ℓlo(J), the right
hand side of 3 is monotonically increasing with respect to x,
the upper bound of the speedup factor becomes tight when
x takes its largest possible value ℓhi(J), which will lead us
to:

s <
1

1− ℓhi(J) + ℓ2hi(J)/ℓlo(J)
.

and the theorem follows.

Analysis of Inequality (1) yields the following corollary.

Corollary 1. The upper bound of the speedup factor is
smax = 4/3, which occurs when ℓlo(J) = 1 and ℓhi(J) =
0.5.

253

5. THE CONSTANT-SPEED CASE

As stated in Section 1 above, most prior work in MC
scheduling has focused upon a workload model in which
multiple WCET estimates are provided for each job while
the processor speed is assumed to be bounded from be-
low throughout runtime by an a priori known constant.
An algorithm named OCBP (for Own Criticality Based
Priorities) was proposed in [4] for scheduling such instances,
and shown to have a speedup bound of (

√
5 + 1)/2 (i.e.,

≈ 1.62); to date, this is the best speedup bound known for
any algorithm for scheduling such MC instances. We will
now show that in scheduling MC instances implemented
upon processors whose speed bound does not vary during
run-time, LE-EDF strictly dominates OCBP in the sense of
correctly scheduling all instances that are correctly sched-
uled by OCBP as well as some additional ones that are not
scheduled correctly by OCBP. (It follows from this domina-
tion relation that the speedup bound for LE-EDF is also at
least (

√
5 + 1)/2, upon such processors with constant speed

bound.)

We start out briefly describing OCBP. Given an MC in-
stance J , OCBP derives off-line a priority ordering for all
jobs in the instance, using a variant of the Audsley Opti-
mal Priority Assignment (OPA) scheme [1], in the following
manner (here, “scheduling according to priority” means that
at each moment in time the highest-priority available job is
executed). It determines, as described below, the job that
may be assigned lowest priority, and assigns it the lowest
priority. This procedure is repeated upon the set of jobs
excluding the lowest priority job, until all jobs are ordered,
or at certain iteration a lowest priority job cannot be found.

1. We assign lowest priority to the latest-deadline lo-
criticality job if it would complete by its deadline when
every other job were assigned higher priority and exe-
cute in their lo-criticality level WCETs.

2. Else, we assign lowest priority to the latest-deadline
hi-criticality job if it would complete by its deadline
when every other job were assigned higher priority and
execute in their hi-criticality level WCETs. Here lo-
criticality jobs’ hi-criticality level WCETs remains the
same as their lo-criticality level WCETs.

3. Else, we declare failure.

The following theorem asserts that any instance that can
be scheduled by OCBP is also scheduled by LE-EDF.

Theorem 3. Given any set of MC jobs J , if Algorithm
LE-EDF fails to complete job(s) at some criticality level on
time (either by missing a deadline, or dropping a job), then
so will OCBP.

Proof: There are only two steps during execution at which
Algorithm LE-EDF may report a failure to correctly sched-
ule an instance.
If Algorithm LE-EDF fails at Step 1 when constructing

schedule table for hi-criticality jobs, it directly follows that
there is no correct schedule scheme for hi-criticality jobs
when they all execute at their hi WCETs. Thus OCBP
algorithm will also fail to correctly schedule this instance.
Now we consider the case that Algorithm LE-EDF fails

during run-time, which indicates that some lo-criticality job
Ji missed its deadline and will be dropped at time t = di.

We will show that OCBP algorithm must also drop a lo-
criticality job at or before this time in order to guarantee
correctness of hi-criticality job execution.

One subcase is that a hi-criticality job has executed longer
than its lo-criticality WCET before time t = di. OCBP al-
gorithm will immediately drop remaining lo-criticality jobs
when it occurs, which is at or before time t = di.
The other subcase is that all hi-criticality jobs have ex-

ecuted no longer than their lo-criticality WCETs (so far).
We will prove by contradiction that OCBP algorithm will
also drop some job at or before time t = di.
Assume OCBP algorithm has not dropped any job at or

before time t = di, which means that it makes so far all jobs
meet their deadlines at time t = di. Consider only the lo-
criticality jobs, from the description we can easily tell that
both algorithms execute them at an EDF order: OCBP gen-
erates the priority list by considering jobs in each criticality
level in non-increasing order of deadlines, while LE-EDF
uses the remaining capacity for all lo-criticality jobs in
the EDF order (after pre-allocating and slicing hi-criticality
jobs). Since LE-EDF fails to meet some lo-criticality job’s
deadline at di while OCBP does not, it must be the case that
OCBP executes lo-criticality jobs (totally) between time
t = 0 and t = di for a longer time than LE-EDF. Thus
OCBP has executed less amounts of hi-criticality jobs until
time t = di than LE-EDF 6. However LE-EDF guarantees
that at this deadline di, all hi-criticality sub-jobs with dead-
line on or before di are “must to be finished”, which means
that a shorter accumulated execution time to hi-criticality
jobs will cause a deadline miss in the future. This con-
tradicts the correctness guarantee to hi-criticality jobs of
OCBP, and indicates that our assumption that OCBP algo-
rithm have not dropped any job at or before time t = di is
incorrect. The theorem results from this contradiction.

The following example illustrates that there are instances
correctly scheduled by Algorithm LE-EDF, that OCBP fails
to schedule correctly. This example, in conjunction with
Theorem 3 above, allows us to conclude that Algorithm
LE-EDF dominates OCBP.

Example 5. Consider the instance consisting of the fol-
lowing six jobs shown in tabular form in Figure 3 below, to
be scheduled on a unit-speed processor. This instance is not

Ji ai ci(lo) ci(hi) di χi

J1 1 2 4 14 hi
J2 9 1 2 12 hi
J3 10 1 2 16 hi
J4 0 8 8 10 lo
J5 1 1 1 12 lo
J6 12 3 3 16 lo

Figure 3: The MC instance considered in Example 5.

OCBP-schedulable: it may be validated that after assigning
J6 the lowest priority, no job can be further assigned the
second lowest priority.

We now show that LE-EDF schedules this instance cor-
rectly. Prior to run-time Algorithm LE-EDF identifies the
intervals during which reservations are made in the schedul-
ing table, and applies EDF to hi-criticality jobs assuming
6Both algorithms have exactly the same idleness periods since
(by definition) both will idle the processor only when there is no
active job.

254

(Please view this figure upon a color monitor/ printout.)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

loadHI

lo
ad

LO

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

loadHI

lo
ad

LO

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

loadHI

lo
ad

LO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Schedulability comparison of OCBP (left), MCEDF (middle), and LE-EDF (right), where the color
of each block represents the fraction of schedulable instances with ℓlo and ℓhi parameters falling within certain
small ranges. (Informally, red is better – observe that there is quite a bit of blue in the upper right segment
of the plot for OCBP, less for MCEDF, and almost none for LE-EDF.)

they all execute for hi-criticality WCETs. The constructed
scheduling table looks as follows:

✲
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

✻ ✻✻
❄ ❄ ❄

J1
J2 J1

J3

a1 a2 a3 d2 d1 d3

If all hi-criticality jobs execute for no more than their lo-
criticality WCETs during run-time, then the remaining ca-
pacity is enough for LE-EDF to accommodate all the lo-
criticality jobs to meet their deadlines; this is illustrated in
the schedule below:

✲
0 1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16

✻✻ ✻ ✻✻
❄ ❄ ❄ ❄

J4
J1 J4

J2 J1
J5 J6

J3 J6

ao a1 a2 a3, d4 a6, d2 d1 d3, d6

Comparison with MCEDF [16]
An algorithm named MCEDF was recently [16] presented
for scheduling MC instances upon processors that are speed
bounded by a constant during run-time –i.e., the same kind
of workload scheduled by OCBP– and shown to strictly dom-
inate OCBP (to the best of our knowledge, MCEDF is the
only algorithm proven to dominate OCBP). We do not yet
know whether LE-EDF dominates MCEDF or not; we do,
however, show below that the converse cannot be the case.

Theorem 4. There are MC instances correctly scheduled
by Algorithm LE-EDF that MCEDF does not schedule in a
correct manner.

Proof: We present one such instance:

Ji ai ci(lo) ci(hi) di χi
J1 0 2 3 5 hi
J2 1 1 2 3 hi
J3 0 1 1 3 lo

It was shown in [16] that this instance is not MCEDF
schedulable. The following schedule show how LE-EDF
schedules this instance, and correctness is thus verified from
this schedule.

✲
0 1 2 3 4 5

✻ ✻ ❄ ❄
J1

J2 J3
J1

a1, a3 a2 d2, d3 d1

Simulations
We performed some simulation experiments to complement
the theoretical conclusions of Theorems 3 and 4. The exper-
imental setup is as described in [16, Sec. IV] (we are grateful
to the authors of [16], Dario Socci in particular, for sharing
the source-code of MCEDF and their workload-generator,
and for assistance in conducting our experiments). As
in [16], we generate a large number of MC instances of 20
jobs each. The parameters ℓlo(·) and ℓhi(·) of the generated
instances range from 0 to 1, with step 0.01. Only “over-
loaded” instances –those satisfying ℓ2lo(J) + ℓhi(J) > 1–
are considered since all three algorithms are successful in
scheduling the non-overloaded ones. Among the 33511 suc-
cessfully generated instances, OCBP fails to schedule 5076
(≈ 15.1%). From amongst these7, MCEDF reports failure
as well for 1986 (≈ 5.9%), only 109 (≈ 0.3%) of which are
also unschedulable by LE-EDF. Further, all the instances
scheduled by MCEDF (and OCBP) were also scheduled by
LE-EDF. Figure 4 depicts the schedulability results for the
three algorithms. Instances with similar ℓlo and ℓhi values
are put into a same small block (with typical size of 10 to
15 instances). The color of each small block represents the
percentage of schedulable sets.

In all these and several other experiments not discussed
here, we have not been able to identify any instance that
can be scheduled by MCEDF but not by LE-EDF. Al-
though this certainly does not constitute formal proof that
LE-EDF dominates MCEDF, it seems clear that generally
speaking, LE-EDF is superior to the other two existing al-
gorithms, both in terms of schedulability (as shown in the
experiments), and run-time complexity (theoretically shown
to be O(n log n), where n = |J |, which is asymptotically
much better than OCBP and MCEDF’s O(n2 log n)).

6. CONTEXT & CONCLUSIONS
Scheduling theory is applied to the analysis of models of

systems, rather than to the physical systems themselves.
In order to have confidence that the conclusions drawn on
the basis of the analysis of such models will hold for the
actual systems being modeled, the modeling process typi-

7There are no instances scheduled by OCBP but not MCEDF –
this is as expected, since MCEDF was shown [16] to dominate
OCBP.

255

cally incorporates considerable pessimism into the model;
such pessimism gets reflected during run-time in the form of
under-utilization of platform resources that were provisioned
on the basis of the pessimistic models.
Mixed-criticality (MC) scheduling theory seeks to deal

with such pessimism by constructing multiple different mod-
els of a single system, and using more pessimistic models
for validating the correctness of more critical functionali-
ties whose correctness must be validated to a higher level
of assurance. Prior work in MC scheduling has separately
dealt with modeling pessimism along different dimensions,
including estimating upper bounds on the WCET of pieces
of code, and estimating lower bounds on processor speed dur-
ing run-time. In this paper, we have considered both these
dimensions within a single integrated framework.
We have proposed a formal model for representing such

mixed-criticality systems that are comprised of a finite col-
lection of independent jobs executing upon a single preemp-
tive processor, and have derived an algorithm, LE-EDF, for
scheduling such instances. We have shown that LE-EDF
can be implemented in an efficient manner to have run-time
complexity that is a low-order polynomial in the representa-
tion of the MC instance being scheduled. We have quantified
the schedulability gap between LE-EDF and any hypothet-
ical clairvoyant algorithm by determining a speedup bound
for LE-EDF. We have also shown that LE-EDF is a strict
improvement over some previously-proposed algorithms that
deal with only one of these two dimensions of pessimism:

• With regards to pessimism only with respect to pro-
cessor speed, LE-EDF retains the optimality property
of a previously-proposed algorithm [3], while having
a more efficient implementation: while the algorithm
in [3] requires the solution of an LP, LE-EDF is based
on EDF scheduling.

• With regards to pessimism only with respect to
estimating the WCET, LE-EDF strictly dominates
the OCBP scheduling algorithm [4]. It is also
able to schedule some instances that are known to
not be schedulable by MCEDF, another recently-
proposed [16] algorithm.

The research reported in this document can be extended in
several directions. An obvious and important extension is to
MC systems characterized by more than just two criticality
levels. Although the multiple-WCET model has been suc-
cessfully extended in this manner, one encounters some in-
teresting challenges in attempting to generalize results con-
cerning varying-speed processors to incorporate more than
two criticality levels. We are currently working on address-
ing these challenges; once we have succeeded, we will seek
to integrate these results with the pre-existing ones for han-
dling multiple WCETs, thereby once again enabling the con-
current modeling of uncertainty in estimating both WCET
and processor speed.
In this paper, we have considered real-time workloads that

are specified as finite collections of jobs, whereas collections
of recurrent tasks is typically of more interest for developers
of real-time systems. Results concerning the MC scheduling
of recurrent tasks have previously been obtained that deal
solely with pessimism regarding estimating the WCET. We
have recently obtained some results for dealing with pes-
simism in estimating processor speed when scheduling recur-
rent task systems, and are working on unifying the results
along both dimensions into an integrated framework – such
unification appears to be non-trivial.

7. REFERENCES
[1] N. Audsley. On priority assignment in fixed priority

scheduling. Information Processing Letters,
79(1):39–44, 2001.

[2] S. Baruah and A. Burns. Sustainable scheduling
analysis. In Proceedings of the IEEE Real-time
Systems Symposium, pages 159–168, 2006.

[3] S. Baruah and Z. Guo. Mixed-criticality scheduling
upon varying-speed processors. In Proceedings of the
34th IEEE Real-Time Systems Symposium, RTSS
2013.

[4] S. Baruah, H. Li, and L. Stougie. Towards the design
of certifiable mixed-criticality systems. In Proceedings
of the IEEE Real-Time Technology and Applications
Symposium (RTAS), 2010.

[5] D. Bull, et al. A power-efficient 32b ARM ISA
processor using timing-error detection and correction
for transient- error tolerance and adaptation to PVT
variation. In Proceedings of the IEEE International
Solid-State Circuits Conference, pages 284–285, 2010.

[6] A. Burns and R. Davis. Mixed-criticality systems: A
review. 2013. Available at
http://www-users.cs.york.ac.uk/~burns/review.pdf.

[7] G. Buttazzo. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications.
Second edition, 2005.

[8] M. Dertouzos. Control robotics : the procedural
control of physical processors. In Proceedings of the
IFIP Congress, pages 807–813, 1974.

[9] Z. Guo and S. Baruah. Mixed-criticality scheduling
upon unmonitored unreliable processors. In
Proceedings of the IEEE Symposium on Industrial
Embedded Systems (SIES), 2013.

[10] Z. Guo and S. Baruah. Implementing mixed-criticality
systems upon a preemptive varying-speed processor.
Leibniz Transactions on Embedded Systems (LITES),
1(2):3:1–3:19, 2014.

[11] B. Kalyanasundaram and K. Pruhs. Speed is as
powerful as clairvoyance. Journal of the ACM,
37(4):617–643, 2000.

[12] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment.
Journal of the ACM, 20(1):46–61, 1973.

[13] J. Liu. Real-Time Systems. Prentice-Hall, Inc., Upper
Saddle River, New Jersey 07458, 2000.

[14] A. Mok. Task management techniques for enforcing
ED scheduling on a periodic task set. In Proceedings
of the 5th IEEE Workshop on Real-Time Software and
Operating Systems, pages 42–46, 1988.

[15] D. Niz, K. Lakshmanan, and R. Rajkumar. On the
scheduling of mixed-criticality real-time task sets. In
Proceedings of the 30th IEEE Real-Time Systems
Symposium, RTSS 2009, 2009.

[16] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga.
Mixed critical earliest deadline first. In Proceedings of
the 2013 25th Euromicro Conference on Real-Time
Systems, ECRTS ’13, 2013.

[17] R. Wilhelm, et al. The worst-case execution-time
problem – overview of methods and survey of tools.
ACM Transactions on Embedded Computing Systems,
7(3):36:1–36:53, 2008.

256

