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ABSTRACT
The adaptive varying-rate (AVR) task model has been pro-
posed as a means of modeling certain physically-derived con-
straints in CPS’s in a manner that is more accurate (less
pessimistic) than is possible using prior task models from
real-time scheduling theory. Existing work on schedulabil-
ity analysis of systems of AVR tasks is primarily restricted
to fixed-priority scheduling; this paper establishes schedu-
lability analysis results for systems of AVR and sporadic
tasks under Earliest Deadline First (EDF) scheduling. The
proposed analysis techniques are evaluated both theoreti-
cally via the speedup factor metric, and experimentally via
schedulability experiments on randomly-generated task sys-
tems.

Categories and Subject Descriptors
D.4.1 [Operating systems]: process management—schedul-
ing ; D.4.7 [Operating systems]: organization and design—
real-time systems and embedded systems

1. INTRODUCTION AND MOTIVATION
The research described in this paper is part of the effort that
seeks to define and better understand the role that real-time
scheduling theory should play within the emergent discipline
of cyber-physical systems.

Rigorous model-based design (MBD) approaches are widely
used in the development of complex cyber-physical systems.
In such approaches, one typically specifies a model of the
system under development using some abstract modeling
formalism such as Timed Automata [1] (usually within the
context of a tool such as UPPAAL [7]) or Synchronous Re-
active models [8, 14, 9], then demonstrates the correctness of
the model by proving that the model possesses certain safety
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and progress properties that together imply correctness, and
finally implements the model upon an implementation plat-
form in a manner that is consistent with the assumptions
made in the modeling formalism. In this approach, real-
time scheduling theory plays a role in the implementation
step: it is used to help obtain resource-efficient implemen-
tations, upon actual implementation platforms, of formal
models that have been rigorously proved to be correct. To
accomplish this step, the elements of the abstract model
used during the MBD process are mapped on to the recur-
rent task models such as periodic and sporadic tasks [18,
19] that are used in real-time scheduling theory, and re-
sults from real-time scheduling theory then applied to ob-
tain resource-efficient implementations of the resulting re-
current task systems. Unfortunately, there is not always a
perfect fit between the models of MBD and the lower-level
ones of scheduling theory, and consequently the mapping
is achieved by introducing additional pessimism. (For ex-
ample, a recurrent physical phenomenon that does not oc-
cur periodically, represented by a Timed Automaton in the
MBD process, may need to be modeled by a periodic task
that is assigned a period parameter equal to the smallest
duration between successive occurrences of the physical phe-
nomenon.) Such pessimism in the mapping process results
in resource under-utilization during run-time: not all the re-
sources that are needed to guarantee execution of the more
pessimistic lower-level model are required by the higher-level
model, and the additional assigned resources remain unused
during run-time.

In an attempt to reduce such implementation inefficiency
and thereby be able to obtain more resource-efficient imple-
mentations of cyber-physical systems, real-time scheduling
theory has recently begun looking at developing, from first
principles, new low-level task models that are inspired by re-
quirements of actual physical systems. Systems represented
using these new models cannot always be analyzed using
prior results from real-time scheduling theory; rather, new
analysis methodologies (that may be based upon prior in-
sights and techniques from scheduling theory) need to be
developed. Ensuring that such new models are both (i) use-
ful to the developer of CPS’s, and (ii) amenable to efficient
analysis and implementation, seems to require much closer
interaction between the engineers developing a CPS and the
scheduling-theory experts seeking to devise the model and
formal techniques for its analysis — they would ideally work
hand-in-hand from the early stages of system development to
concurrently develop the appropriate models and the anal-
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task sample task {
rpm = read_speed();
f1();

if (rpm < 4000) {
f2();

}
if (rpm < 2000) {

f3();

}
}

✲
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Figure 1: An example AVR task with WCET de-
pendent to the engine rotation speed.

ysis methodologies.

The research that we describe in this paper can be viewed as
an instantiation of this approach to CPS design and analy-
sis. Specifically, it deals with the modeling of recurrent pro-
cesses in cyber-physical systems for which each activation of
the recurrent process is triggered by the values of variables
describing the state of the physical system. Such processes
abound in cyber-physical systems: for example, height de-
tection in avionic systems is activated more frequently at
lower altitudes; sensor acquisition in mobile robots often de-
pends on the robot location (e.g., whether it is approaching
edge areas); while fuel injection in the Engine Control Unit
(ECU) of an automobile is dependent upon the position of
each piston (which is a function of the crankshaft angular
position).

Consider the ECU, a typical hard real-time system as an
example, on which some tasks execute at a varying rate
depending upon engine speed. These tasks calculate the
quantity of fuel to be injected, and the precise instants at
which the injected fuel is to combusted, in order to achieve
optimal engine performance (maximize the thrust obtained,
avoid engine knocking, etc.). A key challenge in the schedu-
lability analysis of collections containing one or more such
tasks is that not only the periods and deadlines, but also
the execution requirements, are determined by specific an-
gular positions of the crankshaft, which relate to the engine
speed [12]. Since engine behavior is generally more stable
when running at higher speeds, some functions (that must
execute at lower speeds) do not need to execute at higher
speeds. Figure 1 adapted (from [12]) a typical piece of pseu-
docode for a task with worst-case execution time (WCET)
dependent on crankshaft rotation frequency, and further il-
lustrates such relationship under a WCET-speed function
(to be explained in detail later on).

The challenge with this type of task is that the time be-
tween successive activations is neither constant nor arbi-
trary; rather, it depends on the engine rotation speed, which
varies within a specified range with specified maximum ac-
celeration and deceleration. If we were to use classical real-
time scheduling analysis (for example, the sporadic model [18,
19]), the relationship between activation period and WCET
can only be modeled by introducing unnecessary and exces-
sive pessimism.

Related Work. This problem, formalized as the Adaptive
Varying-Rate (AVR) tasks scheduling problem, was first in-

troduced to the real-time system community in a keynote
address at ECRTS [12] in 2012. Some early work on un-
derstanding the scheduling of AVR tasks was done by [17]
on a simplified model, where only a single task, that is as-
signed highest priority, is analyzed. Pollex et al. [22] later
considered systems with multiple tasks, but constant engine
speed. This work was later extended to the case with an-
gular acceleration in [21] — by considering the maximum
execution time and the minimum inter-arrival time start-
ing from different speeds, sufficient schedulability conditions
were derived.For the preemptive uniprocessor fixed-priority
scheduling of AVR tasks, Davis et al. [13] present an In-
teger Linear Programming (ILP) based sufficient dynamic
schedulability test; Biondi et al. [10] have recently proposed
a search tree based method based on a Brute-Force approach
with pruning rules.

To the best of our knowledge, [11] is the only prior work to
study the preemptive uniprocessor dynamic-priority schedul-
ing of systems of AVR tasks (which is the subject of this
paper). [11] derives a sufficient, but not necessary, schedu-
lability condition under the added simplifying (but not nec-
essarily valid) assumption that when an AVR task switches
to a new mode due to a positive acceleration, the next job
will run with the computation time associated with the new
mode.

Within the context of“traditional”real-time scheduling, schedu-
lability analysis has also been developed for a variety of dif-
ferent task and/or system models, from the traditional peri-
odic and sporadic task models to rate-based abstractions [15,
16], multi-frame models [20, 5], digraph models [23, 24],
and the varying-speed platform model [2, 3]. Unfortunately,
AVR tasks cannot be expressed under even the most gen-
eral existing models without introducing considerable addi-
tional pessimism, since these tasks may change their exe-
cution modes asynchronously (under different thresholds),
and multiple changes of execution mode may take place by
a single task during consecutive execution of its jobs.

Contribution and Organization. The remainder of this
paper is organized as follows. Sec. 2 formally describes the
system model and provides additional definitions for AVR
tasks. Sec. 3 proposes an efficient sufficient schedulability
test for a kind of AVR task system called implicit mixed
AVR task systems, and performs speedup factor analysis un-
der practical assumptions on system parameters. A further
improvement that yields necessary and sufficient schedula-
bility analysis is also discussed. We consider AVR task sys-
tems with constrained deadlines in Sec. 4, and derive ap-
proximate schedulability analysis via transformation to the
digraph-based task model [23, 24]. Sec. 5 reports schedu-
lability experiments that compare the proposed methods to
the current state of the art.

2. SYSTEM MODEL
We consider the EDF scheduling of a set of n tasks on a
preemptive uniprocessor. Each task τi generates an infinite
sequence of jobs Ji,1, Ji,2, ..., and can either be a regular spo-
radic task, characterized by a (fixed) WCET ci, period Ti,
and relative deadline Di, or an adaptive varying-rate (AVR)
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Figure 2: The four strokes (intake, compression,
power, and exhaust) of a typical car engine.

task, where all three parameters1 are variables. We use the
notation τ̃i to denote an AVR task. The activation pat-
tern and functionality of an AVR task τ̃i are determined
by the physical evolution of the engine. Specifically, each
subsequent job Ji,k is released when the crankshaft reaches
a predefined angular position within each revolution, and
the inter-arrival time between two consecutive jobs Ji,k and
Ji,k+1 is denoted as the activation period Ti,k, which is a
function of the crankshaft rotation speed ω of the engine.

We point out that there are various kinds of car engines —
they may be operated with different types of fuel (either
petrol or diesel), and more importantly the number of cy-
cles per crankshaft revolution may vary. Figure 2 sketches
the basic cycles (intake, compression, power, and exhaust)
of a four-stroke engine, where the crankshaft rotates for two
cycles (with a total angle of 4π radians) each revolution.
Two-stroke engines also exist and are sometimes used in
aircraft and marine engines, as well as some trucks and mo-
torcycles, due to a more compact size, a lighter weight, and
greater efficiency. However, due to exhaust pollution, two-
stroke engines are losing out to, and being replaced by, four-
stroke engines in many applications, especially in modern
cars (which is our focus). In this work we therefore asso-
ciate AVR tasks with crankshaft rotations for a cumulative
angle of 4π rather than 2π as in some previous works; how-
ever the essence of our results remain unchanged if 2π (or
an altogether different activation angle) is used instead.

The angular speed at time t is denoted as ω(t), which is as-
sumed bounded within a specified interval [ωmin, ωmax). The
angular speed may vary during run time, and the angular
acceleration α(t) is also assumed to be bounded within a
specified interval: α ∈ [α−, α+].

Unless otherwise specified, the measurement units for
time, angular speed, and angular acceleration (deceleration)
in this work are seconds (sec), radian per second (rad/sec),
and radian per second per second (rad/sec2), respectively.
Note that revolutions per minute (rpm) and rpm per second
(rpm/sec) are widely used for engine rotation measurements
in industry; the relationship 1 rpm = 0.10472 rad/sec trans-
lates between this convention and our chosen units.

1In keeping with convention, we will refer to the minimum
duration that must elapse between the release time of Ji,k

and Ji,k+1 as the period of Ji,k (see Definition 1), even
though this quantity is not a true “period” since the jobs
are not necessarily invoked periodically.

As depicted in Figure 1, an AVR task τ̃i is composed of Mi

modes: Mi = {(Cm
i , ωm

i ),m = 1, 2, ...,Mi}, where ωMi+1
i =

ωmin, and ω1
i = ωmax. As engine speed falls in the range

[ωm
i , ωm+1

i ), mode Mm
i is triggered when job activation oc-

curs, and the AVR job’s WCET is Cm
i . Figure 3(a) depicts

how the varying angular speed may lead a task into differ-
ent modes, and result in jobs of different WCETs (Jk−1 and
Jk). It further shows how periods of jobs (released by an
AVR sporadic task) depend on the system states (e.g., the
varying angular speed). Given the same angular speed of ωk

at job Jk’s activation instant (i.e., the very beginning of its
cycle), three possible periods are shown, where two thresh-
old ones are dashed (and represented by different colors).
A constant angular speed of ω may lead to a fixed period
of 4π/ω, while acceleration (or deceleration) may cause the
shrinking (or extension) to the period of the released job.

When a job is activated, its WCET is determined by the
angular speed of the system at its release, while its period
may vary due to dynamic system behaviors. For the conve-
nience of later discussions, we formally define the period of
an AVR task as the following.

Definition 1 (Activation Period). Given an activa-
tion angular speed ω, the activation period Ti(ω) of (a job
of) an AVR task τ̃i is defined as the minimum possible dura-
tion that must elapse between this release and the release of
the succeeding job of the task. Using standard results from
physics concerning the relationships between distance, speed,
and acceleration, it is easily shown that

Ti(ω) =







√
ω(t)2+8πα+−ω(t)

α+ , if ω(t) ≤ Ω(4π),
8π+(ωmax−ω(t))2/α+

2ωmax
, if ω(t) > Ω(4π);

(1)

where α+ is the maximum engine acceleration, ωmax is the
upper bound of engine rotation speed, and threshold Ω(·) is
given by the following equation to determine whether the ini-
tial speed ω(t0) is fast enough for the system to possibly reach
the upper bound of its angular speed (ωmax) when rotated for
a certain angle θ:

Ω(θ) =
√

max{ω2
max − 2θα+, ω2

min}. (2)

Note that although the job is released at time t0 with an an-
gular speed of ω(t0), its period may be shorter than 4π/ω(t0)
due to possible engine acceleration2. With an initial speed
ω(t0) = Ω (at the threshold), the crankshaft should be able
to reach ωmax right at the end of one cycle of rotation; i.e.,
(ωmax + Ω)(ωmax−Ω

α+ )/2 = θ, which leads to Equation (2)
above.

Since activation period is defined as the minimum possible
separation, we need to consider the “worst case” angular
speed changes during runtime when estimating the period
of a task. Figure 3 illustrates two possible scenarios under
accelerated engine behaviors to determine current job acti-
vation period T . Subfigure (b) shows the case when ω(t)

2Recall that it is assumed that all engine-triggered tasks are
generated at each cycle; i.e., when the crankshaft rotates for
a cumulative angle of 4π.
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(a) Periods vs. Engine Speeds (b) Act. Period I (c) Act. Period II (d) A Release Pattern

Figure 3: Activation period analysis for AVR tasks.

cannot possibly reach ωmax within one cycle, while Subfig-
ure (c) shows the other case, and θ(t) denotes the rotated
angle since current job activation (at time t0).

Given any angular speed ω(t0) ∈ [ωmin, ωmax), the two pos-
sible cases can be treated separately with the help of the
threshold Ω. The corresponding activation periods T for
the task can be derived by assigning 4π to the rotated an-
gles θ(T ) of the crankshaft during such period (also reflected
by the shaded areas of Figures 3(b) and 3(c)), which is equiv-
alent to (1).

For implicit tasks with job deadlines at the end of their cy-
cles, their relative deadlines are the same as the activation
periods; i.e., ∀i,Di(ω) = Ti(ω). For constrained tasks with
(relative) deadlines specified as a certain angle ∆θi < 4π af-
ter activation, Di(ω) may be calculated by (1) by replacing
π with ∆θi/4.

3. IMPLICIT SYSTEMS
In this section, we start out considering system only com-
posed of implicit tasks, i.e., the ones with relative deadlines
equal to the periods for both regular and AVR tasks. For
implicit AVR tasks, no timing constraint is violated so long
as each job finishes its execution before its successor is re-
leased. Given current angular speed ω(t0), the activation
period Ti(ω(t0)) given by Eqn (1) may serve as a safe rela-
tive deadline for each AVR task in an implicit task system,
since no successor job may be triggered prior to then accord-
ing to Definition 1.

3.1 A Utilization Based Test
Definition 2 (Utilization). Similar to a regular task,

for AVR task τ̃i, we define utilization in mode m as the ratio
of WCET and the possible minimum activation period of the
mode:

Um
i = Cm

i /Tm
i , (3)

where Tm
i = Ti(ω

m
i ); and further refer to the maximum uti-

lization over all modes as the utilization of the task:

Ui = max
m

{Um
i }. (4)

With this definition, we are able to provide the first schedu-
lability test to the system composed of regular tasks and
AVR ones:

n
∑

i=1

Ui ≤ 1. (5)

Theorem 1. Schedulability Test (5) is a sufficient EDF-
schedulability test for an implicit system.

Proof: Since we only focus on implicit systems, where Ui

also serves as the density for regular tasks, all we need to
show is that the execution requirement by any AVR task τ̃i
within a time demand of length t does not exceed Uit. Here
execution requirement is defined as the total WCETs for
jobs with both release time and deadlines lying inside the
interval.

During engine spinning, any AVR task may switch modes
within the given Mi modes, where it releases a job with
WCET of Cm

i in Mode m for a period of at least Tm
i .

Since Ui serves as an upper bound of the ratios Ci/T
m
i ,m =

1, 2, ...,Mi, the execution requirement per time unit for the
task will not exceed Ui in any mode. Thus total time de-
mand for any interval with length t will not exceed Uit.

3.2 Speedup Factor
We now seek to quantify, via the speedup factor metric, the
“distance” of this schedulability test from optimality; to our
knowledge, this is the first such analysis of schedulabilty
tests for AVR task systems.

Definition 3 (Speedup Factor). A schedulability test
has speedup factor s, s ≥ 1, if any mixed task set that is
schedulable by any algorithm on a unit-speed processer, will
be deemed schedulable by this test upon a processor that is s
times as fast.

Consider the release pattern of an AVR task and its corre-
sponding engine behavior shown in Figure 3(d).
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We restrict that all AVR tasks share the same mode and an-
gular speed ωm when their utilizations Ui = maxm{Cm

i /Tm
i }

are maximized. Under such case, we further define an ad-
justed period T̃m

i as the minimum length for the system to
finish at an angular speed same to the initial one after a
cycle. To reach such adjusted period, the system needs to
speed up at the highest acceleration, and then decelerate
as much as possible after a certain while (shown in Figure
3(d)).

Given α+, α−, ωmin, and ωmax, we know that if initial an-
gular speed ωm reaches a certain value Ω̃, the system may
reach ωmax within one cycle and drop back to ωm. Similar
to the derivation of Ω in Sec. 2, when setting the high-
est angular speed within this cycle (the value of the upper
points of inflection in Figure 3(d)) as ωmax, and denoting
the corresponding activation period as Γ, we know that:

{

Ω̃Γ + (ωmax − Ω̃)Γ/2 = 4π;

(ωmax − Ω̃)/α+ + (Ω̃− ωmax)/α
− = Γ.

(6)

Getting rid of Γ from (6) results in the following Equation

(7), where the threshold Ω̃ can be used to determine whether
the initial speed ωm is fast enough for the system to possibly
reach its upper bound angular speed limit ωmax:

Ω̃ =
√

max{ω2
max − 8π/∆α, ω2

min}, (7)

where

∆α = 1/α+ − 1/α−. (8)

Furthermore, the length of the adjusted period T̃m
i can be

derived:

T̃m
i =

{

∆α(
√

(ωm)2 + 8π/∆α − ωm), if ωm ≤ Ω̃,
(

8π + (ωmax − ωm)2∆α

)

/(2ωmax), if ωm > Ω̃.

(9)

When considering the time interval [0, T̃m
i ), the total time

demand of the system within this interval may reach
∑

i|τi
UiT̃

m
i +

∑

i|τ̃i
Cm

i
3. Thus the following condition is necessary for

this system to be schedulable:

∑

i

Ũi ≤ 1, (10)

where Ũi = Ui if τi is regular, and Ũi = Cm
i /T̃m

i for m that
maximizes the ratio Cm

i /Tm
i if τ̃i is AVR. Denote β as the

AVR task utilization ratio; i.e.,

β = (
∑

i|τ̃i

Ui)/(
∑

j|τj

Uj +
∑

i|τ̃i

Ui) ∈ [0, 1]; (11)

3We use i|τ̃i to denote AVR tasks, and i|τi as other tasks
(with fixed period).

and

η(ωm) = max
i

{T̃m
i /Tm

i } ≥ 1. (12)

Theorem 2. Schedulability Test (5) has a speedup factor
of no larger than 1/

(

1− β + β/η(ω)
)

.

Proof: According to the discussion above, the speedup factor
of the sufficient condition (5) satisfies:

s ≤
∑

j Uj
∑

i Ũi

=

∑

j|τj
Uj +

∑

i|τ̃i
Ui

∑

j|τj
Uj +

∑

i|τ̃i
Ci/T̃i

= 1/
(

∑

j|τj
Uj +

∑

i|τ̃i

Ci

Ti
/ T̃i

Ti
∑

j|τj
Uj +

∑

i|τ̃i
Ui

)

≤ 1/
(

∑

j|τj
Uj + (

∑

i|τ̃i

Ci

Ti
)/maxi

T̃i

Ti
∑

j|τj
Uj +

∑

i|τ̃i
Ui

)

= 1/
(

1− β + β/η(ω)
)

. (13)

Note that this approximation ratio may not be tight since
our comparison is based upon a specific given scenario which
may not occur. However, (13) does provide an upper bound
upon the speedup factor. We now show that this upper
bound is already quite promising for the analysis to petrol
car engines nowadays.

From [25] we know that current vehicles have an accelera-
tion α+ no greater than 13000 rpm/sec (this occurs when
the transmission is out-of-gear and the engine is only ac-
celerating based upon its own internal masses). Since the
acceleration is too fast for an analogue tachometer to track
accurately, precise α+ value is provided neither in industrial
reports nor in research papers. Moreover, engine normally
decelerates at a much larger absolute rate, which means
1/α+ < ∆α ≤ 2/α+ holds for vehicle engines (please re-
fer to (8) for ∆α’s definition).

Figure 4 depicts the derived upper bound of the approxima-
tion ratio s of the given schedulability test over a range of
different angular speeds ω (since η is a function of ω). Some
typical values of acceleration parameters α+ and ∆α are
shown using different lines. Here we choose ωmin = 800 rpm,
ωmax = 8000 rpm, and the utilization ratio of AVR tasks is
(pessimistically) assumed to be half; i.e., β = 0.5.

We observe that a larger angular speed upper bound ωmax

may cause a slight increase of the speedup factor, while
faster deceleration results in a significant decrease of the
speedup. Nevertheless, for the given range of angular speed
ω ∈ [800, 8000], the speedup remains at a relatively low value
(< 1.14), which indicates that the proposed schedulability
test (5) is “wasting”no more than about (1−1/1.14) or ≈ 13
percent of the processor capacity.
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Figure 4: Speedup factor of Schedulability Test (5)
under various typical parameter choices.

Remark 1. Theoretically speaking, in an extreme case
when α− → −∞, we have ∆α → 1/α+, η → 1, and thus
a speedup factor of s → 1. This indicates that the schedu-
lability test based on Equation (5) is asymptotically optimal
upon engines where deceleration can occur at a very great
rate (equivalently, the crankshaft rotation may stop almost
instantaneously).

3.3 A Pragmatic Improvement
Remark 1 in Sec. 3.2 indicates that the proposed schedu-
lability test (5) is tight when deceleration of the system is
sufficiently large. A natural question arises: what if one
could provide a bound α∗ > 0 for the absolute value of ac-
celeration and deceleration (which is, of course more likely
in practice)?

In this subsection, we will derive a tighter schedulability test
when some restrictions hold for α∗, where α∗ = maxω{α+(ω), |α−(ω)|}.
The intuition behind the (to-be-shown) improvement is that
in order to generate a job within an interval of duration
T (ωm) (for a given maximum utilization mode m), the en-
gine has to accelerate throughout the interval, which causes
it to end up in some different mode instead of the current
one. Thus when considering demand based analysis starting
at time t0 when the engine initially start to rotate (right
after the ignition), it is impossible for the system to reach
or approach a demand density of

∑

i ci/Ti in any possible
cases of the future.

The number of modes is normally quite small in engine
control designs, and each mode corresponds to a relatively
wide range of angular speed. Denote ∆j

ω,i = ωj
i − ωj+1

i as
the angular speed difference of two neighboring modes of a
given AVR task τ̃i; for example, ∆ω = [3000, 2000, 1200]T

for the sample task shown in Figures 1 and 1 (assuming
ωmin = 800).

Given any initial angular speed ωj+1
i and a maximum ac-

celeration of α∗, we know that the least time Ttwo for the
crankshaft to rotate two revolutions (4 cycles with a total an-
gle of 8π) satisfies (ωj+1

i +ωj+1
i +α∗Ttwo)Ttwo/2 = 8π. Thus

we simply have Ttwo = (
√

(ωj+1
i )2 + 16πα∗ − ωj+1

i )/α∗.

We would like to restrict the the highest absolute value (de-
noted as α∗) for acceleration and deceleration4 such that the
system will always stay in the current mode or its neighbor-
ing modes within two revolutions; i.e., ωj+1

i + α∗Ttwo ≤ ωj
i

holds for all i = 1, ..., n, and j = 1, ...,m− 1, which implies:

∀i, j, α∗ ≤ ∆j
ω,i(2ω

j
i +∆j

ω,i)/(16π), (14)

Inequality (14) will serve as the additional constraint for the
systems (considered in this subsection).

Table I shows the relationship of ∆ω, ω and α∗ in (14), by de-
picting some typical values. Although it is not safe to claim
that Inequality (14) always holds for car engines, there are
nevertheless many cases where the modes of engine-triggered
tasks are widely separated from each other, or the maximum
acceleration is small enough for the analysis in this subsec-
tion to be applicable.

Table 1: Relationship between acceleration upper
bounds and mode angular speed ranges.

α∗(rpm/sec) ∆ω(rpm) ω(rpm)
2604.1 500 1000
6250 1000 1000
10000 1408.3 1000
12500 1000 2500
10000 294.6 8000

Theorem 3. Schedulability Test (10) is sufficient when
Condition (14) holds.

Proof: The only difference between schedulability tests (10)
and (5) is the utilization calculation for AVR tasks. It is thus
sufficient to show that the demand for an engine-triggered
task within period [t0, t) cannot exceed maxm{cmi /T̃m

i }·(t−
t0).

The intuition is that whenever there is a revolution with
density greater than Ũi = maxm{cmi /T̃m

i }, an accelerating
mode change is unavoidable, which results in a second revo-
lution with a relatively small enough demand density, such
that average density always remains below Ui.

More formally, given any possible release pattern (accord-
ing to engine rotation speed changes) during the period of
interest [t0, t), Inequality (14) guarantees that accelerating
mode-changes do not occur successively. As a result, the
corresponding job generation series (except perhaps the last
one) can be partitioned into sub-periods that each

1. contains only one job release without accelerating mode
change, or

2. contains two successive job releases with an accelerat-
ing mode change before the second release;

4Deceleration is symmetric to acceleration in this analysis,
with the same restrictions to its absolute value.
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where each sub-period begins when some job releases, and
ends right before another job releases.

Given a sub-period of Case 1) where a job is released with
WCET of cm at the beginning, we know that the sub-period
length is at least T̃m

i (or else there must be a mode change
during the period), and thus the demand density within such

sub-period does not exceed Ũi = maxm{cmi /Tm
i }.

The total demand in sub-periods of Case 2) is cj + cj+1,
where the system switches from Mode j to j + 1 during
the first revolution of the sub-period. The minimum length
of such a sub-period is Tm + (ωj+1 −

√
ω2 − 4α∗)/α∗ ≤

T̃ j + T̃ j+1 (when the engine is rotating at an angular speed
of ω(t) = ωj , and accelerates at the highest possible rate
thereafter). As a result, the demand density of such sub-

period is no greater than (cj + cj+1)/(T̃ j + T̃ j+1) = Ũi.

Here the last revolution may be an exception during which
an accelerating mode change may occur (without a“density-
neutralizing” successor revolution). To deal with this pos-
sibly special revolution, the initial revolution (with angular
speed starting at ωmin, and no mode change) may be com-
bined with it to form a special revolution, and the length
of the first period dominates the combined sub-period than
any other Case 2) one (due to slower angular speed).

Summing up all sub-periods with demand densities of at
most Ũi results in a total demand ≤ Ũi(t−t0) for any period
of interest [t0, t).

Remark 2. Theorem 3 yields a tight schedulability test
for current engine scheduler design and verification under
the case that Inequality (14) holds. By tight, we mean that
Test (10) is necessary and sufficient (i.e., speedup-1). Theo-
rem 3 shows its sufficiency, while its necessity can be shown
by reconsidering the possible release pattern in Figure 3(d)
— for a long enough period, the engine may generate a dom-
inating number of tasks in such a pattern with a total uti-
lization of maxm{cmi /T̃m

i }, such that any violation to Con-
dition (10) results in an unschedulable set.

Remark 3. Although it was previously mentioned that
the acceleration may reach as high as 13000 rpm/sec, it is
only when the engine is out-of-gear. Hence in cases of inter-
est, acceleration during run time may be significantly smaller
and Condition (14) may hold. Note that this condition plays
an important role in the proof of Theorem 3 for Case 2).

4. CONSTRAINED DEADLINES
Recall that a task system is assumed to include both “nor-
mal” sporadic tasks [18, 19] and engine triggered (AVR)
ones. Traditional sporadic task systems with constrained
deadlines have been well-studied, and a pseudo-polynomial
time feasibility test has been derived [4] for systems with
utilization capped (strictly) below 1.

Constrained deadlines frequently arise in engine triggered
tasks as well. (For example, a task that reads system vari-
ables and calculates the amount of gas to be injected dur-
ing each revolution may be released at the beginning of the

intake cycle, and must finish before the compression cycle
begins – i.e., with a period of 2 revolutions, and a dead-
line of 0.5 revolutions.) As a result, although we have de-
rived (in Sec. 3) a necessary and sufficient schedulability
test for implicit deadline systems, there is an emerging need
to study the schedulability conditions of AVR task set with
constrained deadlines. Some of our initial thoughts and ob-
servations concerning the scheduling of systems including
such tasks will be reported in this section.

A naive pessimistic approach would simply check the total
density (rather than utilization in Condition (10)) of the
system; i.e.

∑

i|τi

ci
Di

+
∑

i|τ̃i

max
m

{ cmi
Di(ωm

i )
} ≤ 1 (15)

However if Schedulability Test (15) fails for a given task set,
in order to provide a more precise test instead of declar-
ing failure, demand based analysis may be done via trans-
formation to the digraph-based model [23]. Under such a
model, release structures of jobs in terms of order and tim-
ing can be expressed via a directed graph. It is recognized as
the most expressive task model for which pseudo-polynomial
time EDF-schedulability testing algorithms are known.

We first use a simple (but typical) example to show how the
digraph model may be used to represent and analyze the
schedulability intuitively, and then describe the transforma-
tion formally.

Example 1. Consider the sample AVR task shown in Fig-
ures 1 and 1. Figure 5 shows one of its possible digraph-
based representations. (Note that we choose a simple trans-
formation here to have each vertex representing an entire
single mode, which is certainly not necessary — there are
infinitely many different digraph representations of the same
AVR task.) An execution of the task corresponds to a path

v3 v1v2

T( 3) T( 2) T( 1)

T( 3)

~

T( 2)

~

T’( 3) T’( 2)

{C  3, D( 3)} {C 2, D( 2)} {C 1, D( 1)}

~

Figure 5: Expression of the sample AVR task under
the digraph-based model.

in this digraph. In this example, each vertex represents a
different engine mode. Each time a vertex is visited, a job
with corresponding mode (with specified WCET and deadline
parameters) will be released. The values labeling each edge
represent the minimum time between releases of the corre-
sponding jobs. Take the edge v2 → v1 as an example, when
a job with mode 2 is released at an angular speed of ω2, and
the engine accelerates aggressively, the next job (under mode

1) may be released after a period of T̃ (ω2). We will formally
show that such a task model transformation is safe — when-
ever the digraph-based model passes schedulability test, the
original AVR task set is schedulable.
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In the cases where maximum acceleration and deceleration
share the same absolute value, T ′ and T are the same. Oth-
erwise T ′(ωm) can be calculated similar to (1), by consider-
ing the worst case that the processor decelerates at the highest
value and reaches ωm just within a revolution (i.e., replacing
α+ with |α−|).

For this example, when acceleration (or deceleration) is large
enough, it is possible for the system to “jump” from Mode 1
into Mode 3 (or vice versa) within a revolution, which re-
sults in additional edges connecting non-neighborhood ver-
tices (yet not shown in Figure 5). �

Formally speaking, the representation of an AVR task in the
digraph model can be done by the following steps:

(i) Determine Nv, the number of adjacent ranges ω(j) for
vertices one by one, j = Nv, Nv − 1, ..., 2.

(ii) Each vertex Vj represents all jobs releasing within an an-
gular range of [ω(j+1), ω(j)), with execution of Cm, where
m = mini ω

i ≥ ω(j), and a deadline of Di(ω(j)).

(iii) Add a self loop edge to each vertex with period of

T̃ (ω(j)).

(iv) For each pair of vertices {Vi, Vj}, i > j, add an edge
from Vi to Vj (or from Vj to Vi) with period of T (ωi) (or
T ′(ωi)) if the acceleration (or deceleration) is large enough
for such mode change to occur within a revolution.

Remark 4. Traditional tasks can easily be modeled as di-
graph ones, with a single node of WCET ci, deadline Di, and
a self-pointing edge of period Ti.

Discussion on choosing the number of vertices. Ac-
tually, each vertex is pessimistically representing a range of
angular speeds. To make such a transformation precise, the
range needs to be small enough which may lead to infinite
number of vertices (each representing a different exact ro-
tation speed). Adding more vertices helps in increasing the
precision of the transformation (and further analysis) by re-
ducing the pessimism, but makes the digraph more com-
plicated, since both the number of vertices and the num-
ber of edges connecting non-neighboring vertices, become
larger. One would prefer dealing with the case that the sys-
tem always stay in the current vertex or its neighborhood
vertex within a revolution. Under such a restriction, the
constructed digraph will be a chain without edges connect-
ing non-neighborhood vertices. Similar to Restriction (14),
when the following inequality (which is much weaker and
very likely to hold in practice) holds, we can always form
such chain-shaped digraphs according to the steps described
above:

∀i, j, α∗ ≤ ∆j
ω,i(2ω

j
i +∆j

ω,i)/(8π). (16)

Moreover, when the angular speed range of some mode is
too large, we could certainly partition it and use more than
one vertices to represent this mode.

5. EXPERIMENTAL ANALYSIS
In this section, we evaluate the effectiveness of our proposed
method with existing schedulability tests for task systems
comprised of a mix of traditional sporadic and AVR tasks.
Comparisons are made with the following existing schedula-
bility tests:

• RTA-SP: Use the maximum WCET, minimum period,
and minimum deadline to represent all modes to model
each AVR task as a traditional sporadic task.

• Exact-CON: Compute the maximum interference with
additional constraints from the physical system via the
exact analysis in [10] instead of Integer Linear Pro-
gramming [13], which is the current state of the art
analysis technique forAVR task systems under fixed
priority scheduling.

Task Set Generation. To ensure a fair comparison with
existing work, we adopt exactly the workload generation
methodology described in [13]. Here, a task system is gen-
erated according to the following steps:

(i) Generate utilizations (Ui) and periods Ti with the UUni-
Fast algorithm and log-uniform distribution, which together
determine the WCET (Ci).

(ii) Constrained deadlines (Di) are set equal to periods (Ti)
for implicit systems, and are uniformly distributed in the
range [Ci + x(Ti − Ci), Ti] for constrained ones.

(iii) A fraction p of these tasks are then converted to AVR
tasks, with pre-determined mode ranges (under scaling fac-
tor f). WCETs of modes are then adjusted under parameter
e.

(iv) Apply some quick feasibility check and maintenance of
acceleration bounds.

Detailed description and default parameter settings can be
found in Sec. V-A of [13].

Comparison for Implicit Systems. Figure 6 shows the
success ratios under different utilizations, which represents
the proportion of sets that are deemed schedulable. 1000
randomly generated task sets are used for each utilization
value.

As expected, we observe that our method outperforms ex-
isting ones, especially when the systems are heavily loaded
(i.e., have large utilization). This is quite similar to the
schedulability comparison between EDF and fixed priority
scheduling for traditional sporadic task systems.

Comparison for Constrained Systems. Given a mixed
task set τ , feasibility only needs to checked (based upon de-
mand bound functions dbfT (·)) until an upper bound D(τ),
which (according to Theorem V.4 in [23]) can be decided by:

D(τ) =

∑

i|τi
ci +

∑

i|τ̃i

∑

v∈G(T ) ci(v)

1− U(τ)
; (17)
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Figure 7: Weighted schedulability comparison for constrained deadline systems.

where G(T ) is the corresponding digraph of task T , and
U(τ) is given by:

U(τ) =
∑

i|τi

Ui +
∑

i|τ̃i

max
π

{U(π)|π is a cycle in Gi}

=
∑

i|τi

Ui +
∑

i|τ̃i

Ũi. (18)

In the case that each mode is assigned a single edge in the
digraph,

∑

v∈G(T ) ci(v) can be replaced by
∑m

j=1 c
m
i .

Demand bound functions dbfT (·) can be calculated in pseu-
dopolynomial time when all time periods are integers, which
is unlikely to be true given the complicated definition of pe-
riods in fraction forms, e.g., (1) (9). One way to deal with
this is to pessimistically round all values into an acceptable
precise level (say 0.01ms). Here by saying pessimistically,
we should use ceiling values for WCETs, and floor values
for periods, deadlines, and so on. The problem here is that
we are losing preciseness of the analysis again while round-
ing the numbers. The other way is to explore most possible
paths of each graph with a total period less than the given
upper bound, while pruning some branches with the rules
described in Sec. 5 of [10], and use them to derive all dbf(·)
values (see Figure 3 of [23]). Although this approach has ex-
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Figure 6: Schedulability ratio comparison for im-
plicit systems.

ponential time complexity, it is adopted for the simulations
in this paper since task sets are small and the number of
modes is fixed to a small constant.

Parameter Studies. We now compare the performance
of the listed schedulability tests with respect to changes to
one of the specified parameters via weighted schedulability [6]
measurements. In these experiments, 100 (instead of 1000)
random sets are used per utilization level that varies from
0.05 to 0.95 in steps of 0.05.

Figure 7(a) shows the weighted schedulability measure when
size of the task set increases. In general we may conclude
that schedulability ratio is unaffected by the cardinality of
the set.

Figure 7(b) shows the weighted schedulability measure when
the adjusting factor e is increased. This factor e ∈ (0, 1)
is used to shrink WCETs of modes with utilization not
equal to the maximum utilization. A smaller e indicates
that other modes are having more similar utilizations to the
max-utilized mode. As a result, as e increases, the system
becomes less affected by other modes, and since the proposed
analysis to a single mode is precise, schedulability ratio is
increasing.

Finally, Figure 7(c) shows how the proportion of tasks that
are AVR ones affects the weighted schedulability. There is a
slight decrease of (weighted) schedulability ratio when more
tasks within a set are AVR ones. This is as expected since
we have not yet obtained schedulability analysis methods for
AVR tasks that are as accurate as the ones for traditional
sporadic tasks.

6. CONCLUSIONS
This paper seeks to develop efficient schedulability analysis
for a novel model of recurrent real-time processes called the
AVR task model [12], that was defined through the consider-
ation of physical constraints in a cyber-physical system – an
automobile engine. Most previous work on the AVR model
had focused attention to fixed-priority scheduling; few re-
sults have been shown in earliest deadline first scheduling.
However, as the deadline of an AVR task changes, then so
should its priority, otherwise the system will necessarily suf-
fer from priority inversion and a resulting under-utilization
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of platform computing resources. This issue could be ad-
dressed via the use of EDF scheduling, which is the focus in
this paper.

A sufficient and fast schedulability test is shown for im-
plicit systems, and its speedup factor (as a function of en-
gine rotation speed) is derived. Under some practical as-
sumptions, this result is further improved to be necessary
and sufficient. For constrained systems (with relative dead-
lines smaller than periods), an attempt for demand based
function analysis has been made by transforming into the
digraph based task model. Schedulability experiments re-
ported in Sec. 5 confirm that the proposed methods out-
perform the current state of the art from the perspective
of schedulability ratio. Overall performance is further com-
pared in these schedulability experiments with respect to
changes in specific parameters, one at a time.
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