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Abstract— In this paper, we study a set of real-time
scheduling problems whose objectives can be expressed as
piecewise linear utility functions. This model has very wide
applications in scheduling-related problems, such as mixed
criticality, response time minimization, and tardiness analysis.
Approximation schemes and matrix vectorization techniques are
applied to transform scheduling problems into linear constraint
optimization with a piecewise linear and concave objective; thus,
a neural network-based optimization method can be adopted to
solve such scheduling problems efficiently. This neural network
model has a parallel structure, and can also be implemented
on circuits, on which the converging time can be significantly
limited to meet real-time requirements. Examples are provided
to illustrate how to solve the optimization problem and to form
a schedule. An approximation ratio bound of 0.5 is further
provided. Experimental studies on a large number of randomly
generated sets suggest that our algorithm is optimal when the
set is nonoverloaded, and outperforms existing typical scheduling
strategies when there is overload. Moreover, the number of steps
for finding an approximate solution remains at the same level
when the size of the problem (number of jobs within a set)
increases.

Index Terms— Neurodynamic optimization, NP-hard problem,
overloaded job set, real-time scheduling, recurrent neural
network (RNN), utility maximization.

I. INTRODUCTION

REAL-TIME systems are widely applied in vehicles,
mobile phones, satellites, traffic management, and so on,

whose correctness depends on the temporal aspects as well as
the functional aspects. Examples of real-time systems include
digital command and control, signal processing, and telecom-
munication systems [1]. A key characteristic of a real-time
system is the level of its consistency, concerning the amount
of time it takes to accept and complete an application’s task.

A. Real-Time Scheduling

Timing requirements in real-time systems are
often modeled as deadlines. If a schedulable activity

Manuscript received August 15, 2014; revised May 18, 2015 and
July 28, 2015; accepted July 30, 2015. Date of publication August 28,
2015; date of current version January 18, 2016. This work was sup-
ported in part by the National Science Foundation under Grant CNS
1016954, Grant CNS 1115284, Grant CNS 1218693, Grant CPS 1239135,
Grant 1409175, and Grant 1446631, in part by the Air Force Office of
Scientific Research under Grant FA9550-14-1-0161, in part by the Army
Research Office under Grant W911NF-14-1-0499, and in part by General
Motors Corporation.

The authors are with the Department of Computer Science, University
of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA (e-mail:
zsguo@cs.unc.edu; baruah@cs.unc.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2015.2466612

(e.g., a piece of code-job) executes and completes before
its assigned deadline, the deadline is met (and otherwise is
missed). In hard real-time systems [2], any deadline miss is
considered equivalent to a catastrophic failure. In contrast,
failure to meet a deadline in soft real-time systems only
impacts the quality of service (QoS).

Although highly predictable, hard real-time systems are
built under pessimistic assumptions to cope with worst case
scenarios, and thus are not sufficiently flexible to adapt to
dynamic situations. Soft real-time systems are built to reduce
resource consumption, to tolerate overloads, and to adapt to
system changes. Those are more suited to the novel appli-
cations of real-time technology, such as multimedia systems,
monitoring apparatuses, telecommunication networks, mobile
robotics, virtual reality, and interactive computer games [2].

Different kinds of targets have been set in soft real-time
scheduling, such as minimizing the number or frequency of
missed deadlines, minimizing the tardiness bound, and the
maintenance of fairness or stability. Soft real-time scheduling
is commonly used to support quality of service (QoS) by com-
bining predictable resource allocation (e.g., proportional shar-
ing and reservation) and real-time scheduling algorithms [3]
(e.g., earliest deadline first (EDF) [4]).

B. Utility Maximization

In addition to restrictions on the system induced by timing
requirements, other constraints may also influence the deploy-
ment and design of real-time systems. For example, the value
associated with a job reflects its importance with respect to the
other jobs. However, the actual value of a job also depends on
the time at which the job is completed in real-time systems.
Utility functions offer a general way to describe the complex
constraints of real-time and cyber-physical systems [5].
Several utility accrual algorithms have been proposed to solve
energy-efficient scheduling problems [6], [7].

Take mixed-criticality scheduling (see [8] for a review)
as another example, where the functionalities of different
degrees of importance are implemented upon a common
platform. Such a mixed-criticality property is becoming more
and more common in embedded systems, as is evidenced by
industry-wide initiatives, such as integrated modular avionics
for aerospace and automotive open system architecture for the
automotive industry. Criticality levels may also be differen-
tiated under certain utility functions (one possible choice of
such utility functions is described in Section II with more
details).
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C. Neurodynamic Optimization

Since Tank and Hopfield’s pioneering work [9], which
constructed a neural network to solve linear programming
problems, recurrent neural networks (RNNs) for optimization
and their engineering applications have been widely
investigated in the past decades. For example, the Lagrangian
network for solving nonlinear programming problems with
equality constraints [10], the deterministic annealing network
for convex programming [11], the primal–dual neural network
for convex quadratic programming [12], and a generalized
neural network for nonsmooth nonlinear programming
problems [13] were developed.

More recently, several RNNs with discontinuous activation
functions were proposed for solving nonlinear optimization
problems with various kinds of constraints, see [14]–[20]
(this list is by no means exhaustive). In particular,
Liu and Wang [21] proposed a RNN with hard-limiting
activation function for constrained optimization with piece-
wise linear objective functions, and proved its finite-time
convergence.

D. Related Work

Scheduling problems are often highly intractable (NP-hard),
and traditional algorithms are approximate yet often with
high time complexity [22]. The Hopfield neural network is
commonly applied to obtain an optimal or suboptimal solution
in various different scheduling applications, such as the trav-
eling salesman problem (which is a typical NP-hard discrete
combinatorial optimization problem) [9]. RNNs can be easily
implemented by hardware circuits or by parallel algorithms
due to its structural feature, and thus may significantly shorten
the online scheduling computation cost in real-time systems.
Meanwhile, offline scheduling strategy (typically with high
time complexity) could be solved by RNNs in microseconds
(or even shorter), and thus becomes online applicable. This is
to say, with the help of RNNs, schedulers may now handle
unexpected changes well enough (or even optimally) during
run time efficiently. Another key feature for many RNN
systems is the convergence time barely relies on the size or
dimension of the problem. Thus, RNNs may be very promising
approaches in solving the scheduling problems of larger scale
platform, e.g., CPU-sharing grid and cloud computing center.

There have been some attempts in solving real-
time scheduling problems through neural networks.
Cardeira and Mammeri [23], [24] made some initial
attempts in using Hopfield neural networks to solve real-time
scheduling problems. Their algorithm is approximate, but
has a remarkable convergence speed due to the highly
parallel nature of the searching process. Silva et al. [25]
presented a systematic procedure to map the scheduling
problem onto a neural network, which overcomes the
possibility of RNN solutions, leading to unfeasible scheduling
trouble due to suboptimality. Based on inhibitor neurons,
Huang and Chen [26], [27] applied the normalized mean
field annealing technique to solve a known NP-hard
multiprocessor scheduling problem, and further dealt with
the cases with time constraints (execution time and deadline),

no process migration, and limited resources. More recently,
Baruah et al. [28] extended the existing approaches to
consider platform heterogeneity, where the number of
neurons is reduced by a factor of more than two, and the
number of task migrations is reduced and can be limited
compared with the PFair algorithm (known as an optimal
solution in the context of homogeneous architecture).

Unfortunately, existing work on using RNNs for real-time
scheduling deals with very specific problems under certain
assumptions. Most of them are based on aged neural network
models, and are hard to extend for more general scheduling
purposes. Thanks to the continuous efforts in the compu-
tational intelligence community for the past two decades,
RNN-based optimization approaches are much more powerful
and efficient nowadays. Such tremendous improvements in the
capability of RNN models somewhat trigger us to revisit the
intersection area of neurodynamic optimization and real-time
scheduling. This paper initiates a more general way (with the
piecewise linear utility function) of expressing scheduling-
related problems, and provides further promising direc-
tions combining neurodynamic optimization with real-time
scheduling.

E. Contribution and Paper Organization

In this paper, we target the real-time utility maximization
scheduling problem on a uniprocessor platform. We show
its NP-hardness, and provide a neurodynamic optimization
approach to approximately solve it. Unlike any of the previous
works, the RNN model we apply has a much simpler structure
(with only one layer and O(n2) neurons, where n is the
number of jobs), and is finite-time global converging. Several
typical choices of utility functions are discussed, each of which
corresponds to a focusing criterion in real-time scheduling.

The remainder of this paper is organized as follows.
In Section II, we formally describe the system and workload
models assumed in this paper, and prove the NP-hardness
of the optimization problem, with two demonstration exam-
ples. In Section III, a neurodynamic optimization approach
is described to approximately solve the problem. The exper-
imental study of the proposed approach and a comparison
over classic scheduling strategies are provided in Section IV.
Section V further analyzes the approximation ratio of the
proposed method, and discusses possible model extensions.
Finally, Section VI concludes this paper and points out some
further research directions.

II. MODEL AND PROBLEM DESCRIPTION

In this paper, we consider a workload model consisting of
independent jobs. Finite collections of independent jobs may
arise in the frame-based approaches of real-time scheduling:
the frame represents a collection of periodic jobs sharing a
common period (or the frame is extended to the least common
multiple of different tasks’ periods and every job of each task
is represented individually within the frame), and the entire
frame is repeatedly executed.

In our model, a real-time workload consists of the basic
units of work known as jobs, where each job Ji is characterized

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:30:39 UTC from IEEE Xplore.  Restrictions apply. 



240 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2016

by a 3-tuple of parameters or functions: a release time ai ,
a worst case execution time (WCET) estimation ci [29],
and a utility function μi (t) : [0,+∞) → R (also known
as the cumulative value in some early studies).1 Given any
time instant t that a certain job Ji finishes its execution,
the utility function μi (t) returns the benefit (reward) a given
schedule achieves. Note that by making certain choices of
utility functions, many widely used scheduling concerns may
be represented, such as the deadline di (details are discussed
in Section II-A).

A schedule ζ specifies the allocation of all jobs to the whole
time interval, indicating which job should be executed at any
given instant. A job Ji can only be executed on or after it
is released (when t ≥ ai ), and may require as much as a
cumulative execution of length ci to be finished. Here, we
assume that the job preemption is permitted with zero cost,
i.e., any job can be temporarily hanged up during execution
and retrieved afterward immediately. Given a schedule ζ , the
instant yζ,i that each job finishes its execution can be derived,
and the goal is to maximize the overall utility accordingly

maxζ

n∑

i=1

μi (yζ,i ). (1)

This is a very generalized form of objective, and different
detailed deductions will be provided later. Here, we first
introduce several important concepts that are often related to
scheduling concerns and objectives.

Definition 1 (Response Time): Given a schedule ζ , the
response time of a job Ji (with release time ai and deadline di )
is given by yi−ai , where yi is the completion time under such
schedule.

Definition 2 (Tardiness): Given a schedule ζ , the tardiness
of a job Ji (with release time ai and deadline di ) is given by
max{0, yi − di }, where yi is the completion time under such
schedule.

If a deadline di is assigned, then we may calculate the load
of a given set.

Definition 3 (Load): The load of a given job set
{Ji } = {ai , ci , di } can be represented as

L({Ji }) = max
ts ,t f |ts<t f

∑
i|ai≥ts,di<t f

ci

t f − ts
(2)

where ts and t f are the two time instants along the scheduling
time line.

Intuitively, load is given by the maximum execution require-
ment density over any continuous scheduling interval [ts, t f ).
Any job set with load less than 1 can be optimally scheduled
(e.g., by EDF) when deadline meeting is the only goal. For
other objectives, such as response time minimization, more
complicated utility functions need to be developed.

The average response time often serves as one of the key
benchmarks in real-time systems. While in soft real-time
scheduling or overloaded (set with load greater than 1)
case, tardiness often serves as a measurement of QoS or

1Actually, jobs can never be finished before they are released, and thus it
is fine to give μi (t) any definition within the range [0, ai ) upon constraints
that will be provided later on.

Fig. 1. Utility function choices for a given job Ji = {ai , ci , di }, where
wi are weighting parameters of the utility μi (·). (a) Step function.
(b) Weighted step function.

scheduling performance, and the searching for bounded (and
even minimized) tardiness scheduling strategies under various
platforms and conditions has been another hot topic in real-
time scheduling community for the past decade [3], [30], [31].

A. About the Utility Function

Unlike previous work on utility-based scheduling, here we
introduce separate utility functions for each job (instead of
a generalized one for the whole set). Compared with the
traditional job model in real-time scheduling, the additional
concept utility has very broad applications. Although we
restrict the utility function to be piecewise linear in this paper,
a large amount of typical scheduling requirements with respect
to deadline meeting, response time minimization, mixed-
criticality scheduling, energy saving, and QoS maximization
can be translated into this model. Another reason to replace
the deadline with a utility function is due to the ongoing
discussion on hard versus soft real-time scheduling-the release
time and the WCETs may serve as constraints that cannot
be violated, while deadlines may not. Many systems may be
tolerant to missing some deadlines, and certain benchmarks
may be achieved by maximizing particular utility functions.

In this section, we discuss some reasonable choices
(as shown in Fig. 1) of utility functions, and describe their
relationships to different real-time scheduling concerns.

First of all, we may set the utility function as a step function
with di as the threshold, i.e., ∀i, μi (t) = u(di − t), where
the step function u(·) is defined as u(x) = 1 if x ≥ 0,
and u(x) = 0 otherwise. Thus, the scheduling problem is
reduced into traditional-independent job set scheduling, where
scheduling strategies, such as EDF, have been proved to be
optimal [4]. Note that, under the assumption that wi = 1 for
all i , finishing each job on time will gain the same amount of
profit onto the total utility, which is maximized if and only
if all deadlines are met for a given schedule. In the case
where jobs are assigned different values, wi ’s are no longer the
same, and the problem becomes more complicated (Theorem 1
in Section II-B).

Moreover, if we slightly increase the (absolute values of)
slopes of utility functions before the deadlines, as shown
in Fig. 1(b), the response time of each job is also considered.
As far as the additional reward of finishing jobs early does not
dominate the whole utility, we are minimizing not only the
tardiness, but also the total response time, which is a more
general problem than the previous one. Similar to previous
cases, jobs that are more important (e.g., more critical to safety
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consumption) can be assigned a larger weight in order to be
recognized during the optimization process.

B. Problem Description

Given a finite collection of jobs J = {J1, J2, . . . , Jn}
with specified release time, WCETs, and utility functions, we
seek to determine an optimal schedule ζ ∗ that maximizes the
total utility. In this section, we introduce the necessary math
notations and describe this problem formally.

Similar to [32] and [33], let t1, t2, . . . , tk+1 denote the at
most 2n distinct values for the release date and deadline para-
meters of the n jobs, in increasing order (t j < t j+1 for all j ).
These release dates and deadlines partition the whole schedul-
ing window [mini {ai}, maxi {di }) into k intervals, which
will be denoted by I1, I2, . . . , Ik , with I j representing the
interval [t j , t j+1).

A scheduling table offers a very straightforward way of
representing a schedule ζ . We define n × k nonnegative
variables xi, j , 1 ≤ i ≤ n; 1 ≤ j ≤ k, with xi, j denoting
the amount of execution assigned to job Ji in the interval I j ,
in the scheduling table that we are seeking to build.

In addition to the nonnegative constraints for all variables

xi, j ≥ 0 ∀i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ k (3)

the following k constraints specify the capacity constraints of
the intervals:

(
n∑

i=1

xi, j

)
≤ t j+1 − t j ∀ j, 1 ≤ j ≤ k. (4)

1) Hard Deadlines and Overload Conditions: An ideal
scheduler would not only complete all jobs in a nonoverloaded
environment, but also minimize the overall damage to the sys-
tem performance in the presence of overload. When overload
occurs, a scheduling algorithm must discard some tasks in a
way that maximizes the overall value of the system.

In hard real-time scheduling, the profit of executing any job
beyond its deadline always remains zero. Thus, once a deadline
is missed, no further execution to that job is necessary.
Mathematically speaking, the expression

∑
j |ai≤t j<di

xi, j gives

us the cumulative execution of a given job Ji within its
scheduling window [ai , di ). This is the amount that needs to
be compared with the WCET to see whether such scheduling
table X guarantees to finish the job Ji on time.

With the help of the utility function, the benefit can be
expressed by μi (yζ,i ) = u(

∑
j |ai≤t j<di

xi, j − ci ), where u(·)
is the (increasing) step function with 0 as the threshold. As a
result, given the scheduling table X , the objective (1) can be
specifically expressed by

max
X

n∑

i=1

u

⎛

⎝
∑

j |ai≤t j <di

xi, j − ci

⎞

⎠. (5)

2) Mixed Criticality: In mixed-criticality systems, jobs
are given different importance levels. Each job is assigned
a criticality level χi in a widely recognized mixed-
criticality model. In the two-level subcase, some jobs Ji

(with χi = HI) are defined to be more important than the
others (with χi = LO).

Under our utility model, the profit for finishing each job
should no longer be the same. Mixed-criticality scheduling
problems can be equivalently transformed into our model
by multiplying coefficients wi ∈ (0, 1) to the objective to
differentiate the values (importance levels) of the jobs

max
X

n∑

i=1

wi · u
⎛

⎝
∑

j |ai≤t j<di

xi, j − ci

⎞

⎠ (6)

while adding the following constraint:

wi >
∑

j |χ j=LO

w j ∀i, χi = HI. (7)

Intuitively, inequality (7) guarantees that the profit for
meeting any (single) HI-criticality deadline is greater than
meeting all LO-criticality deadlines, which is the sole of
mixed-criticality scheduling. Note that the key to the mixed-
criticality scheduling problem is meeting more important
deadlines while discarding some of the rest when necessary.

3) NP-Hardness: We now show that, even when con-
straint (7) is ignored, this problem (under the overloaded case)
is NP-hard.

Theorem 1: Optimizing (6) under constraints (3) and (4) is
NP-hard.

Proof: This hardness is demonstrated by reducing the
(0-1) knapsack problem [34], which is known to be
NP-complete, to our problem. The knapsack problem is
defined as follows. Given n items with the values {vi } and the
weights {ωi } (both positive), and the maximum weight U > 0
that we can carry, determine whether each item is included
or not (denoted by the variable yi ∈ {0, 1}), so that the total
weight is no greater than the given limit (

∑n
i=1 ωi yi ≤ U ),

and the total value (
∑n

i=1 vi yi ) is maximized.
From a given instance of the knapsack problem
{{vi }, {ωi }, U}, we build an instance of our problem
{{ai}, {ci }, {di }, {wi }} (in polynomial time) as follows.

1) For each i , ai ← 0 and di ← U .
2) For each i , ci ← ωi and wi ← vi .

We now show that, by setting yi ← u(xi − ci ), an optimal
schedule x to our problem can be transformed into a solution
of the knapsack problem. Since all jobs share the same release
time and deadline, there is only one interval [0, U) in our prob-
lem. Moreover, inequality (4) is equivalent to

∑n
i=1 ωi yi ≤ U ,

and both the problems share the same objective. Under such
transformation, yi ∈ {0, 1} denotes whether item Ji should be
carried.

For the other way around, given an optimal solution y of
the knapsack problem, setting xi ← ci when yi = 1, and
0 otherwise, leads to a feasible and optimal schedule.

It is now evident that {yi } is an optimal solution to the
knapsack problem if and only if the corresponding x is an
optimal solution to the constructed uni-interval scheduling
problem.
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III. NEURODYNAMIC APPROACH

The real-time scheduling problem is NP-hard, and existing
algorithms either provide weak approximate solutions or are
too complicated to meet real-time requirements. To overcome
such a difficulty, in this section, we introduce a neurodynamic
approach to solve the above mentioned real-time scheduling
problem. Since the scheduling problem is NP-hard, we first
need to modify the objective function into a concave one,
so that the dynamic system converges to the global optima.
Given a vectorizing stationary point of the RNN system,
transformation needs to be done to get a scheduling table
(matrix), and the accurate executions (to all jobs on each
interval) can be derived accordingly.

A. RNN Model

A typical neurodynamic approach uses gradient information
as a guide to the stationary point(s), while projecting the
search process onto the feasible region to deal with linear
constraints. In [21], an RNN model was proposed for the
following linear inequality-constrained minimization with
piecewise linear objective functions:

min
x

∑

i

ϕi

⎛

⎝
∑

j

Ci, j xi − fi

⎞

⎠ (8)

s.t.
∑

j

ak, j x j ≤ bk ∀k (9)

where Ci, j , fi , ak, j , bk ∈ R, and ϕi (x) : R
‖x‖ → R is

assumed to be piecewise linear and defined as: for li , hi ∈ R

such that ϕi (x) = li x when x ≥ 0 and ϕi (x) = hi x otherwise.
Given the description of our targeting scheduling problems

in Section II, it can be approximately transformed into this
RNN-friendly model, where

A =

⎡

⎢⎢⎢⎢⎢⎣

Ik Ik · · · Ik

Ik Ok · · · Ok

Ok Ik · · · Ok
...

...
. . .

...
Ok Ok · · · Ik

⎤

⎥⎥⎥⎥⎥⎦
= [ak, j ](k+nk)×(nk) (10)

b = [t2 − t1, t3 − t2, . . . , tk+1 − tk, 0nk ]T
= [bk](k+nk)×1 (11)

Ci, j =
{

1, if ai ≤ t j < di

0, otherwise
(12)

∀i, fi = ci (13)

where Ik is the k by k identical matrix, Ok is the k by k
zero matrix, and 0nk is a 1 by nk zero vector. Discussions
on determining the two gradient information sets {li } and {hi }
are discussed in Section III-B before the proposed method is
described in detailed steps.

The relationship of the variable x in the optimization
problem and the scheduling table (matrix) X2 is

∀i, j, Xi, j = x(i−1)k+ j . (14)

2The scheduling table X assigns each job Ji an execution length of Xi, j to
each interval I j , based on which execution can be directly performed.

Fig. 2. Approximate utility functions for a given job Ji = {ai , ci , di }, where
wi are weighting parameters of the utility μi (·). (a) Piecewise linear function.
(b) Weighted piecewise linear function.

Under such transformation, the following RNN model [21]
can be applied to solve the scheduling problem:

ε
dx
dt
= CT g[l,h](Cx− f)− σ AT g[0,1](Ax− b) (15)

where C = {Ci, j }, f = { fi }, ε and σ are the positive scaling
parameters, and g[u,v](x) is given by: g[u,v](x) = u when
x ≥ 0, and g[u,v](x) = v otherwise.

With the hard-limiting activation function g[u,v](·), such
RNN system is proved [21] to be stable in the sense of
Lyapunov and globally convergent to an optimal solution in
finite time with σ satisfying

σ ≥
maxξ |ξ∈	p

i=1[li ,hi ] ‖CT ξ‖2
minγ |∀i,γi∈[0,1];∃ j,γ j=1 ‖AT γ ‖2 . (16)

The corresponding circuit architecture of the neural network
can be found in [21, Fig. 1], where the neural network has a
one-layer structure with ‖x‖ = n × k neurons.

B. Scheduling Algorithm

Due to the nonconvexity of the step function described
in Fig. 1(a), it is often very difficult or time-consuming to
find the global optimum. In overloaded conditions where there
exists no schedule that meets all deadlines, the problem of
choosing the right jobs at the right time for optimal total utility
has been proved to be NP-hard (Theorem 1 in Section II-B).

The optimization problem described in Section II is not
only NP-hard, but also lack of informational gradient over
the search space (time line). In this paper, we substitute
the step functions [Fig. 1(a) and (b)] into piecewise linear,
Lipschitz continuous, and most importantly concave ones
[e.g., Fig. 2(a) and (b)]. By choosing such piecewise linear
concave objective function, we are transforming the origi-
nal NP-hard problem into a constrained convex optimization
problem that can be solved with the gradient-based dynamic
systems like (15).

Under such kinds of utility functions, the benefit of finishing
a job drops linearly after its deadline, and may become
negative. In the case where all jobs share the same slope
after deadlines, the cumulative tardiness is minimized when
maximizing the utility.

Since we are maximizing the utility in the scheduling
problem while the RNN model is minimizing its piecewise
linear objective, a negative sign need to be applied for slope
transformation, i.e., li = −wi . Selection of hi is based on
the scheduler’s concern: in the case when response time is
considered, a negative hi with the same absolute value of
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TABLE I

PARAMETERS OF JOBS CONSIDERED IN EXAMPLE 1

the slope in Fig. 2(a) can be assigned; while in other cases,
hi may be simply set as 0.

Note that such change to the objective function does not
affect the maximum possible value, and thus the two problems
with different objectives are equivalent when the system is
not overloaded-there exists a schedule to have all deadlines
met. For the overloaded case, the new objective naturally
penalizes the scheduler according to the unfinished amount
of each job, and thus may lead to an appropriate approxi-
mate solution. Some further discussions on this are provided
in Sections IV and V.

Given a job set {Ji } and the weights {wi }, our scheduling
algorithm performs in the following steps.

1) Calculate the number of intervals k according to the
release time {ai } and the deadlines {di}.

2) Calculate A, b, C , f , l, and h according to the described
transformation rules.

3) Apply the RNN model (15), with a large enough σ
satisfying (16) and an initial point of x0 ← 0.

4) Record the state variable x∗ after the system converges.
5) Transform x∗ back into a scheduling table X∗ (which

is an n × k matrix) according to (14), and perform the
executions accordingly.

During execution, any order can be assigned within each
interval, and will result in the same utility-we specifically
assume it to be EDF in the experiments.

The following randomly generated example shows how our
RNN-based approach works out intuitively.

Example 1: We will consider a nonoverloaded job set con-
sisting of three jobs with parameters as depicted in Table I,
where different jobs are randomly assigned a penalty coef-
ficient wi -with larger value denoting its higher importance.
EDF may serve as an optimal schedule, since the job set is
not overloaded.

Fig. 3 shows the convergence process of the RNN model.
Since the RNN is proved to be globally convergent, initial
states do not matter, and are set to be 0 for convenience in
all experiments. Here, in order to better measure how fast the
system may converge for a digital circuit system, we apply a
discrete version of the model, so that the time line is shown
as number of steps. Normally, each step would take <1 μs to
finish, and thus the whole optimization process takes a period
within the millisecond level.

The solution x∗ = [1.25, 0.75, 0, 0.75, 0.25, 0, 0, 0, 5]T
(as a vector) needs to be transformed into a scheduling table
matrix

X∗ =
⎡

⎣
1.25 0.75 0
0.75 0.25 0

0 0 5

⎤

⎦ (17)

which indicates the following.

Fig. 3. Transient behaviors of the state variables of RNN (15) in Example 1.

1) Within the first interval I1 = [0, 2), J1 needs to executed
for 1.25 time units, and J2 needs to be executed for
0.75 time units.

2) J1 and J2 should be executed for 0.75 and
0.25 time units, respectively, during the second interval
I2 = [2, 3).

3) The remaining job J3 takes over the last interval
I3 = [3, 9), and executes for 5 time units.

This corresponding schedule and execution may be
expressed in the following way, where the release time instants
are denoted by up arrows, while the deadlines are represented
by down arrows, and all allocated amounts are executed in
the order of their deadlines within each interval (J1 � J2 � J3)
(please use a colored monitor or printer for better view-in the
B&W environment, you may refer to the added job indices
above the most execution fragments).

Obviously, this is one of the optimal solutions to the original
problem, since all deadlines are met. The less important job J3
is assigned a lower priority, and does not start to execute until
the other two jobs are finished (t = 3), while J1 and J2 require
a total execution of 3 time units within interval [0, 3). For this
example, any execution order or swapping within the first two
intervals may lead to a feasible schedule (and thus an optimal
utility).

Remark: In the case that each job is either fully finished, or
not executed at all in the calculated scheduling, i.e., the sum of
the i th column of X∗ is either ci or 0, there is a much simpler
run-time strategy that would avoid unnecessary preemptions,
which is eliminating the jobs with 0 assigned execution, and
execute the rest under EDF.

IV. EXPERIMENTS

In this section, based on a large number of randomly
generated job sets, we compare the gained utility with typical
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TABLE II

PARAMETERS OF JOBS CONSIDERED IN EXAMPLE 2

Fig. 4. Transient behaviors of the state variables of RNN (15) in Example 2.

scheduling strategies, and analyze the converging time of the
proposed method.

A. Overloaded Example

First, an overloaded set is chosen to further demonstrate
our algorithm and to show the necessity of a large-scale
experimental comparison.

Example 2: We now consider another job set with
load greater than 1, and its parameters are described
in Table II.

Fig. 4 shows the convergence process of the RNN model.
Compared with Fig. 3, we notice that, although the number
of jobs is increasing, the performance (convergence time) of
our RNN-based method does not suffer any dropping at all.
A more thorough and general study is shown in Section IV-C
regarding the relationship between the number of steps and
the problem size.

The solution given by the RNN-based approach is
transformed into the following scheduling table:

X∗ =

⎡

⎢⎢⎢⎢⎣

0 0.75 0.75 0.5 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0.5 0.75 0.75 0 0
0 0 0 0 0 0 0 0
1 0.25 0.25 0 0.25 0.25 1 3

⎤

⎥⎥⎥⎥⎦
. (18)

The corresponding execution is shown below (we omit the
transformation details for this example), where each job is
assigned a different color. Less important jobs (J2 and J4) are
totally dropped (with no execution). Such execution results in
a total utility of w1+w3+w5 = 1.249, which can be verified
(in exponential time) and maximized.

In comparison with our RNN-based method, if we do
fixed-priority scheduling (according to the job values wi ),
jobs will be executed in the order: J5 � J3 � J1 � J2 � J4,
which results in an execution shown in the following chart.
Only two deadlines (d4 and d5) are met, which means that the
total utility (w1 +w2 = 0.623) is far from being maximized.

If we apply EDF to the job set, the corresponding
executions are shown as below, where J5 as the most
important job will miss its deadline, and the total utility
(w1 +w2 +w3 +w4 = 1.157) is not maximized as well.

Unlike Example 1, which is polynomial time solvable,
Example 2 provides an overloaded case with much more jobs,
which is NP-hard to solve. However, our RNN-based method
is still able to find an optimal solution (with maximum utility)
in about the same amount of steps as Example 1. We further
discuss such optimal behavior in Section V-A based on a
theoretical analysis.

B. Comparison Study

In Section IV-A, it has been shown by a specific example
that our algorithm outperforms EDF and fixed priority (under
the order of weights). Since it is still too early to draw any
firm conclusion based upon the given two specific examples,
we randomly form 10 000 job sets based on the generator
described in [32], where the penalty coefficient wi is enumer-
ated within the range [0, 1] instead of rounded up as criticality
levels.

The benchmark for a direct comparison is a utility ratio-
where the gained utility is normalized by the total weight
(
∑

i wi ). For example, the utility ratios in Example 2 are
0.751, 0.375, 0.751, and 0.696 for the RNN-based method,
EDF, the robust-EDF (RED) algorithm [35], and fixed
priority, respectively. For fixed priority, we prioritize jobs
with larger weights, where jobs with lower values (weights)
are dropped under overload conditions. Note that a utility
ratio of 1 indicates that all jobs are finished on time, and is
impossible under overloaded sets (with load greater than 1).
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Fig. 5. Utility comparison of the proposed RNN-based method over EDF
and fixed priority.

The reason for using the total weight as the denominator is
the NP-hardness of finding the exact possible utility. As a
result, as certain drop of the utility ratio when load is >1
may not indicate a nonoptimal solution-like in Example 2,
no schedule can achieve a utility ratio higher than 0.751, and
thus the RNN-based method is already optimal.

All 10 000 generated job sets are categorized by their loads
(Definition 3) in a range of 0.05. The average utility ratio in
each load group of the discussed three methods are compared
in Fig. 5. We can see that the proposed RNN-based method is
achieving a much higher utility than EDF and fixed priority on
average (here, we do not consider too heavily loaded sets with
load greater than 1.6). Under nonoverloaded conditions, both
EDF and our algorithm are optimal. However, EDF suffers
from a significant drop when the load exceeds 1, and keeps
dropping in a faster rate than the other two algorithms while
the load increases. On the other hand, fixed priority (in the
order of jobs’ weights) starts to be nonoptimal very early when
the load of the set reaches only ∼0.4.

The performance behavior against RED is quite interesting-
average speaking, the proposed method outperforms RED
when the set is lightly overloaded (load less than 1.4), while
the RED results in a higher average utility when the loads of
sets become larger. We claim that there is no direct application
of RED to our RNN-based framework due to its complicated
heuristic, and thus the further possible improvement is left as
further work.3

C. About Converging Time

In Sections IV-A and IV-B, two examples are generated,
where Example 1 contains three jobs and two intervals, and
Example 2 contains five jobs and eight intervals. From the
experiments, we observe that, although the size of scheduling

3We would also like to point out that in our experiment we focus more
on the average performance, since it has been shown [36] that no method
(including ours) can have a competitive factor greater than p in the worst
case, where p satisfies 4[1 − (load − 1)p]3 = 27p2. Some more existing
results for the worst case analysis to overload conditions can be found
in [2, Ch. 9].

Fig. 6. Average converging time (in number of steps) comparison for different
sizes of job sets.

table (i.e., the number of scheduling decision variables) of
Example 2 is about seven times larger, the convergence
time does not grow significantly, and even experiences some
dropping.

Based on the 10 000 randomly generated sets, we apply the
proposed algorithm and record the numbers of steps it takes
for the RNN to reach a steady state (where no variable xi

is changing accumulatively larger than 10−3 of the absolute
value within the last 50 steps). Fig. 6 shows the relationship
between the convergence time and the job set size, where the
average numbers of steps are shown by the blue solid line, and
the maximum needed steps are shown by the red dashed line.

Note that the number of variables (i.e., the size of the
scheduling table) is O(n2), where n is the number of jobs.
If the number of converging steps of the introduced RNN
model is linearly increasing, we should definitely see a squared
line in Fig. 6. We are thus very pleased to observe that the
convergence time (number of steps) remains at about the same
level when the size of the problem varies. The simulation
time for each step to operate is indeed linearly correlated with
the number of neurons, and thus is increasing at O(n2) rate
(on our PC). However, due to the natural structure of the
adopted RNN system, operations within each step can be
easily done paralleled. Moreover, the time for each step to
operate remains constant (at a level of 10−6 s) when hardware
implemented.

Based on our further detailed observation, although the
possibility of requiring a relatively large number (>1000) of
steps slightly increases (slower than logarithmic speed) when
the job set becomes larger, the necessary step ranges for the
system to stabilize remain about at the same level for sets
with different number of jobs. Since the computer simulation
of such RNN system is quite time-consuming (unlike when
implemented on real circuits), experiments are not sufficient
to draw any firm conclusion on this. Precise studies on the
convergence time increasing over the size of job sets are left as
further work. Nevertheless, it is safe to claim that the average
converging time remains almost at a constant rate when the
size of job sets increases.
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TABLE III

PARAMETERS OF THE JOBS IN THEOREM 2

V. ANALYSIS AND EXTENSION

A. Optimality Analysis

In Example 2, an overloaded job set is considered, and we
apply an RNN based on a piecewise linear (approximated)
utility function to solve the original problem with a step objec-
tive function. Fortunately, the solution it achieves (by dropping
two less important jobs) is also the optimal solution to the
NP-hard problem. Here, we try to discuss about such fortunate
behaviors, and also give the lower bound performance when
we are experiencing the most misfortune.

Although optimizing (6) under constraints (3) and (4) is
NP-hard, we are not surprised that, for many job sets, the
proposed approximate RNN approach performs quite well, and
is very likely to converge to the actual optimal solution of the
scheduling problem.

The reason for this is that, even overloaded, only a slight
number of them may need to be skipped. Thus, in many
cases, it is correct to greedily select the less important jobs for
dropping. Our RNN-based design is only changing part of the
objective function, and gives linear penalty according to the
unfinished length after deadline. This change does not affect
the objective for finishing a job on time.

Actually, in many real-time scheduling applications, such as
safety-critical systems, people do not really care about whether
this NP-hard problem is perfectly solved-as far as the critical
(more important) jobs are finished on time, any reasonable
choice upon the rest (less important) jobs in overloaded cases
is acceptable. Regarding our method, by setting the importance
value (the slope of the utility function) large enough, the
penalty for not finishing the critical job on time significantly
increases, and thus its on-time finishing will be guaranteed.

To provide a worst case boundary to the algorithm, an
approximation ratio of 0.5 will be derived. Note that, for
the overloaded case in online scheduling, where the release
time of the jobs remains unknown until they are active, the
approximation ratio has been well studied [36]–[38]. Here,
we are facing a different problem, where the release time is
known a priori.

Theorem 2: Our algorithm has a worst approximation ratio4

of at most 0.5 under the overloaded case.
Proof: To prove the theorem, all we need to show is that

there exists an overloaded job set, on which if our algorithm
gains a total utility of x , other schedule may achieve a utility
any close (but smaller than) 2x .

Consider the following set shown in Table III, where ε > 0
is a small positive constant.

4The approximation ratio is a common evaluation metric for polynomial-
time algorithms for NP-hard problems, which has nothing to do with the
previously mentioned utility ratio in the experiments.

Our RNN-based approach will try to finish J1 first, and
results in a total utility of 1/2 + ε/2, while a best effort
would finish both J2 and J3, which leads to a utility of 1.

Theoretically speaking, each job may reach its WCET.
However, practically speaking, most of the time jobs will
finish their executions quite beforehand. If we take another
look at the job set in Table III, executing them in the order of
what the RNN method suggests has a close to 1 probability
of finishing both J1 and J2, which leads to a larger total
utility of 1 + ε/2. Although scheduling problems can be
equivalently transformed into the NP-hard knapsack problem,
unlike knapsack where jobs are always considered as a whole,
and it is either selected or not (0/1), in many practical
cases, executing a job for a portion of its WCET is much
better than dropping it at the beginning-it already gave the
job a certain (and maybe large enough) chance to finish.
A more complicated schedulability analysis regarding prob-
ability WCET models can be done (see [39], [40]), but is
beyond the scope of this paper.

B. Extension

1) About Response Time Minimization: In some nonover-
loaded cases, although it is a priori known that there exist
some feasible schedules (e.g., EDF) upon which all deadlines
will be met, we still wish to have some specific jobs to be
finished as early as possible. That is to say, upon finishing all
jobs on time, reward can be further gained by swapping some
pieces of executions to make certain jobs finish as early as
possible.

We introduce slack variables yi , denoting the finishing time
instants for each job Ji under a given schedule table X . The
following two sets of linear inequality constraints well define
and restrict the introduced slack variable yi .

First, constraints need to be added specifying that each job
receives adequate execution upon this finishing interval

∀i,
∑

k|ai≤tk<yi

xi,k ≥ ci . (19)

Although the finishing interval Ik can be derived, the actual
finishing time may lie anywhere between tk and tk+1. There-
fore, second, we assume that jobs are executed in the EDF
order within each interval according to the scheduling table.5

Thus, the exact finishing time yi of a given job Ji can be
derived from the allocated amounts within the corresponding
interval Ik

∀i,
∑

j | j≤i

x j,k ≤ yi − tk, for k s.t. tk < yi ≤ tk+1. (20)

Given the finishing time for each job, the average response
time can be minimized through

max
X,y

n∑

i=1

ϕ(yi). (21)

5Other execution priority orders within each interval, such as most important
job first, may also serve as reasonable choices, with a different set of
constraints to be derived.
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The piecewise linear function ϕ may be chosen as the ones
shown in Fig. 2(a) and (b), depending on whether the scheduler
cares about deadline meeting itself, or the response time to a
given job as well. Since all deadlines can be met, feasible
solutions will lie on the left half of each utility function
[to the left of di in Fig. 2(a) and (b)]. Thus, only one of
the slope parameters (li ) is affecting the searching process of
our dynamic system. Different values of li may be chosen
to differentiate the importance of finishing a particular job as
early as possible, and a zero slope suggests that, as far as the
deadline is met, it is meaningless to finish the job any earlier.

2) About Soft Deadlines and Tardiness Minimization: In
soft real-time scheduling, deadlines are no longer hard con-
straints, and not only the executions before deadline matter but
also the ones afterward need to be considered. Since there may
be execution after the last deadline tk = maxi {di }, we need to
introduce one more interval Ik+1 = [tk,+∞) to the system,
which also results in an additional column to the scheduling
table X .

In order to form the objective in a similar way (by applying
the inverse step function), the slack variables yi need to be
applied as well with constraints (19), (20), and the objective
for the tardiness minimization in soft real-time scheduling can
be expressed in the same way as (21).

In tardiness minimization problems, for each job Ji ,
a certain value wi is added to the total utility as far as the
deadline di is met, while even when di is missed, earlier
finishing the job will gain a (linear correspondingly) larger
portion of its value. Mathematically speaking, the piecewise
linear function ϕ may be similar to the one shown in Fig. 2(a).
Unlike the previous (response time minimization) case, here,
jobs may finish before, at, or after their deadlines, and thus yi

may lie anywhere after ai in Fig. 2(a). The slope parameter li

will be set to zero, since it has nothing to do with tardiness
(corresponding to cases when jobs are finished before their
deadlines). As a result, only the slope parameter hi will affect
the searching process of our dynamic system, and various
values of hi may be chosen to differentiate the importance of
having a particular job’s tardiness as small as possible. While
a negative infinity slope suggests that it is a hard deadline-as
far as the deadline is missed, the utility of the whole system
goes to negative infinity immediately.

For the above mentioned two scheduling concerns, various
choices of parameters of the utility function may lead to dif-
ferent schedules-comparisons can be made only when specific
QoS definitions are given. Since the purpose of this paper is
to bring RNNs into the game (of real-time scheduling), we
will not jump into any messy details by explaining scheduling
application examples. The discussions in this section are
only trying to convince the reader that the piecewise linear
utility function model we introduced is very powerful, into
which many interesting real-time scheduling problems may
be transformed.

VI. CONCLUSION

Many novel RNN models have recently been proposed
for solving optimization problems with linear inequality
constraints. These RNN models are often with very

simple structures, and converge to the global optima rapidly.
Due to the parallel nature structure of the RNNs, these
models may be applied on parallel computing devices.
Moreover, the RNN-based approaches have the potential of
being implemented on hardware. As a result, the converging
periods (into a stable state) of such systems can be extremely
short compared with the execution length of real-time jobs.

To investigate the potential of applying RNNs in real-time
scheduling, in this paper, we apply one of the RNN models on
a series of real-time scheduling problems. We have presented
rules for transformation and approximation from some typical
NP-hard real-time scheduling problems into RNN solvable
problems, and shown how they work out by examples.
Experimental studies suggest that the convergence time of the
introduced neurodynamic system is likely to stay in a constant
range when the size of job set grows, which indicates that our
method may serve as a scheduler for large-scale platforms,
e.g., super computers, computing grids, and cloud centers.

Based on the randomly generated 10 000 job sets, compari-
son studies have been reported. It is evident that the proposed
RNN-based method outperforms EDF and fixed priority under
overloaded conditions, while remains optimal (same as EDF)
in nonoverloaded conditions. Compared with any possible
optimal scheduler (NP-hard problem solver), an approximation
ratio bound of 0.5 is demonstrated by a designed example.
Here, 0.5 is only an upper bound of the ratio-a tight one has
not been derived yet.

Various functions can be chosen to approximate the step
objective function (where NP-hard arises from) in scheduling-
related optimization problems. All the discussion and analysis
in this paper are based on one of the choices, which is
using the concave piecewise linear function (polynomial time
solvable). Some other functions, e.g., sigmoid, may be applied
for better approximation (in the shape), while only converging
to suboptimal. To guarantee a larger probability of converging
to optima, parameter tuning may be critical, and requires a
careful experimental study.

We only target the scheduling problem on independent one
shot job set on a uniprocessor platform. A larger portion of
research in real-time scheduling focuses on multicore systems
and the periodic/sporadic task set model, and may serve
as a promising further work direction. Besides, preemptions
are assumed at no cost in this paper, and thus our RNN
model may introduce unnecessary preemptions during its
search (e.g., Example 2). An additional term in the utility
function regarding preemption numbers is worth investigating
as well.
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