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Abstract- In recent years, constrained sparsity maximiza­
tion problems received tremendous attention in the context 
of compressive sensing. Because the formulated constrained 
Lo norm minimization problem is NP-hard, constrained L1 
norm minimization is usually used to compute approximate 
sparse solutions. In this paper, we introduce several alternative 
objective functions, such as weighted L1 norm, Laplacian, 
hyperbolic secant, and Gaussian functions, as approximations of 
the Lo norm. A one-layer recurrent neural network is applied to 
compute the optimal solutions to the reformulated constrained 
minimization problems subject to equality constraints. Simula­
tion results in terms of time responses, phase diagrams, and 
tabular data are provided to demonstrate the superior perfor­
mance of the proposed neurodynamic optimization approach 
to constrained sparsity maximization based on the problem 
reformulations. 

I. INTRODUCTION 

M
ANY SIGNALS are compressible which can be well­
approximated by signals that have only a few non­

zero variables on a suitable basis [1][2]. Effect sparsity [3] of 
a compressible signal is a measurement of the few non-zero 
coefficients that actually affect its responses. Compressive 
sensing [4][5] is a method which employs these few large 
coefficients that preserve the structure of the signal; the 
signal is then reconstructed from the constraints using an 
optimization method. This, in some sense, overComes the 
limit of Shannon's sampling theorem omnipresent in electri­
cal engineering: A signal has to be sampled at the Nyquist 
rate (i.e., proportional to its highest frequency) in order to 
be reconstructed perfectly. Various potential applications in 
engineering have been shown; e.g., [6][7][8]. 

Mathematically speaking, we would like to determine an 
object Xo E nn from data y = Axo, where A is an m x n 
matrix with fewer rows than columns; i.e., m < n. A system 
with fewer equations than unknowns usually has an infinite 
number of solutions. An important criterion is to find the 
most sparse one subject to constraints. Ideally, we want to 
solve the following combinatorial optimization problem: 

minimize 
subject to 

Ilxllo, 
Ax= b, 

(1) 

where x E nn, A E nmxn, and Ilxllo is defined as the 
number of non-zero elements of x. 
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The constrained sparsity maximization problem (1) is NP 
complete, since its solution usually requires an intractable 
combinatorial search [9]. As a result, a convex relaxation of 
the problem is usually solved instead [4]: 

minimize 
subject to 

Ilx111' 
Ax= b, 

(2) 

where Ilxlh = L�=l IXil· It was shown that if A has some 
restricted isometry property, the solutions to (1) and (2) 
are identical [11][12]. However, restricted isometry property 
may be too strong for practical basis design matrix A to 
hold [26], and thus (2) may not be a good formulation to 
the original problem (1). Many attempts on improving L1 
norm minimization have been done, such as adding weights 
[20][21 ][22], solving iteratively [23][24], using Lp norm 
(p < 1) instead [25][26]. 

Since Tank and Hopfield's pioneering work on a neural 
network approaches to linear programming [13], many results 
have been reported in neurodynymic optimization. For exam­
ple, Zhang and Constantinides [14] proposed the Lagrangian 
network for solving nonlinear programming problems with 
equality constraints. Forti et al. [15] proposed a generalized 
neural network for solving non-smooth nonlinear program­
ming problems based on the gradient method. Recently, 
several recurrent neural networks for solving linear and 
quadratic programming problems with discontinuous acti­
vation functions have been proposed [16][17][18][19]. In 
particular, in [18], a two-layer recurrent neural network 
is presented for solving non-smooth convex optimization 
subject to linear equality and bound constraints. A one-layer 
recurrent neural network for solving the same problem is 
presented in [19]. 

In this paper, we present a neurodynamic optimization 
approach to constrained sparsity maximization based on 
alternative objective functions, such as weighted L1 norm, 
Laplacian, hyperbolic secant, and Gaussian functions. The 
experimental results herein show that neurodynamic opti­
mization based on the alternative objective functions out­
performs L1 norm minimization. In particular, successive 
Gaussian maximization performs the best, which obtains 
solution of the highest sparsity with the highest parametric 
robustness. 

II. PROBLEM REFORMULATION 

In this section, four alternative objective functions are 
proposed as the approximations of the Lo norm. Let 
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(3) 

According to its definition, Lo norm is equivalent to 
L�l O(Xi). 

Weighted L1 norm minimization adds weights to each 
element of decision variable x. Instead of minimizing Ilxlh 
in (2), the following function is minimized: 

n 
fw(x) = L ailxil, (4) 

i=l 

where ai = maxj laji I . Note that mUltiplying any positive 
constant will never change the convexity of a function. By 
mUltiplying the maximum element of each column of the 
matrix A, the sensitivity of solution may increase, while the 
convexity of the optimal function is maintained. Previous 
experiments [4][5][9][10][11][12] have shown that under 
many levels of sparsity and undeterminedness, the solution 
to (2) may be far away from the ones to (1). A problem 
for the solution :i; to (2) is that some elements in x with 
value of zero tum out to be non-zero elements to (1). Thus, 
mUltiplying bigger weights to these elements may increase 
the penalty to force them to be smaller. 

To approximate 0(·), we propose a group of inverted 
Laplacian functions, inverted hyperbolic secant functions, 
and inverted Gaussian functions: 

fl(X, (Jd = - f= exp (_I:") , 
i=l k 

where k = 0, 1, 2, ... ; and (Jo > (J1 > ... > ° for (5)-(7). 

(5) 

(6) 

(7) 

The three functions are shown in Figure 1. The approx­
imation accuracy to Lo norm by the given functions fl (.), 
fhO, and f9 ° varies with different values of (Jk; the smaller 
(Jk is, the closer these functions approach 0(·), as shown in 
Figure 2 for the inverted Gaussian functions. 

In this paper, the objective functions (4)-(7) are minimized 
successively. Hence the solutions will converge as inverted 
functions !to, hO, and f90 narrow down and sequen­
tially approach to the solutions to the Lo norm. 

Step 0: Set k = 0, (Jo sufficiently large; 
Step 1: Minimize (5), (6), or (7), subject to constraints; 
Step2: (Jk = �((Jk-1); 
Step 3: If (Jk < (Jrnin, end; else k = k + 1, go to step 1. 
Here �(.) is a decreasing function, such as �((J) = (J-oa, 

or �((J) = (JIM, where M is a positive number. 

Fig. I. Alternative objective functions t5C), flC), fhC), and /gC) with 
(Tk = 1. 
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Fig. 2. A group of inverted Gaussian functions /g (x, (Tk) with several 
values of (Tk. 

Ill. MODEL DESCRIPTION 

In this section, a one-layer recurrent neural network [19] 
is introduced for constrained sparsity maximization based on 
the alternative objective functions (4)-(7). The neural network 
is described by the following differential equation: 

dx 
E 

dt 
= -Px - (1 - P)of(x) + q, (8) 

where x is the state vector, E is a positive scaling con­
stant, 1 is the identity matrix, P = AT (AAT) -1 A, q = 

AT(AAT)-lb, and of (x) is the differential of f(x) (i.e., 
(4), (5), (6), or (7)). 

Specifically, to minimize objective functions (4)-(7), the 
one-layer recurrent neural network is describe by the follow­
ing equations. 

dx 
E 

dt 
= -Px - (1 - P)gw(x) + q, (9) 

dx 
E 

dt 
= -Px - (1 - P)gl(X, (Jd + q, (10) 

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:44:33 UTC from IEEE Xplore.  Restrictions apply. 



dx 
E dt = -Px - (I - P)gh(X, ak) + q, (11) 

dx 
E dt = -Px - (J - P)gg(x, ak) + q; (12) 

where gwO, gl('), gh('), and gg(') are vectors of activation 
functions with the ith element given by the following for­
mulas, respectively, for i = 1, ... , n; as shown in Figure 3 .  

2 exp (:J - exp ( - :� ) gh(X, ak)i = - 2' ak [exp (:� ) + exp (- :� )] 
gg(x,ak)i = 2

x
; exp (_ x� ) ; ak ak 

(13) 

(14) 

(15) 

(16) 

where sgn(x) is the sign function which return 1 if x > 0, 
-1 if x < 0, and 0 if x = o. 
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Fig. 3. Activation functions in (9)-(12) where aj = 1 and Uk = 1. 

IV. CONVERGENT BEHAV IORS 

In this section, the convergence behaviors of the one-layer 
recurrent neural networks (9)-(12) are shown in terms of their 
state variables and two performance indices by using the 
simulation results of randomly generated examples. 

A performance index is given in [9] as: 

(17) 

where x is a solution to (2) and x* is a known solution to 
(1). 

Since sometimes (1) may have different sparsest solutions, 
I may not represent sparsity well, especially for tasks 
other than signal reconstruction. In this paper, we also use 
another performance index, sparsity level �, to evaluate the 
performance of solutions: 

to - 1 Ilxllo 
<, - og Ilx*llo' (18) 

In order to compare fairly, we specified the problem to 
be b = Ax, where x has k non-zero elements (e.g., k = 5) 
drawn randomly from the uniform distribution over (0,100); 
n = 100, m = 20 fixed and each aij drawn from the normal 
distribution N(O, 1), The parameter E is fixed as 10-6, and 
10-7 in the one-layer recurrent neural network (9)-(11), and 
(12) respectively. Figure 4 shows a convergence process of 
the weighted L1 norm minimization based on the neural 
network, and Figure 5 illustrates the performance indices. 
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Fig. 4. Transient states of the one-layer recurrent neural network (9) for 
solving a randomly generated weighted L1 norm minimization problem. 
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Fig. 5. Transients of the performance indices in weighted L1 norm 
minimization using the one-layer recurrent neural network (9). 

Simulation results with two fixed values ak for fg(x, ak) 
of system (12) are shown in Figures 6 and 7. It is obvious 
that both processes converge to an unsatisfactory state with 
low sparsity level. When ak is small; i.e., ak = 0.5 in Figure 
6, though inverted Gaussian function approaches 80 well, 
the system converges too slowly and many elements stay far 
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away from zero (i.e., > 3Uk) where the value of activation 
function is almost zero in a short period of time. If a larger 
value of Uk is selected and fixed; i.e., Uk = 20 in Figure 
7, gg(x, Uk ) does not approximate J(x) well, and many non­
zero elements stay inside the region (-10,10). As a result, x 
is far from x*. On the other hand, each of them has benefits: 
When Uk is large, the system will obtain a most sparsity 
solution by gathering all most likely elements near zero, 
while when Uk is small, the neurodynamics pull the pseudo 
sparse elements away from zero. As shown in Section 2, 
smaller Uk leads to better approximation to Lo norm, and at 
the same time, it takes much more time for the neurodynamic 
system to converge to a stable state. A simple idea is to 
iteratively reduce the value of Uk as system converges, which 
is the procedure stated in the end of Section 2. Thus, the 
system converges fast all the time and approximates Lo norm 
well in the end. 
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15 
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Fig. 6. Transient states of the one-layer recurrent neural network (12) with 
ak = 0.5 for solving a randomly generated problem. 
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Fig. 7. Transient states of the one-layer recurrent neural network (12) with 
ak = 20 for solving a randomly generated problem. 

Figure 8 shows the transient states with Uo = 20, �(u) = 

U /2, and Urnin = 0.5, and Figure 9 shows the performance 
indices. In Figure 9, the curves are not smooth because Uk 
changes at t = 4, 8, ... X 10-4• These two figures show that 
some elements are pulled away from zero as Uk deceases, and 
finally all the states are stable, which means the sensitivity of 
the neurodynamics to the pseudo sparse elements increases 
as Uk deceases. 
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Fig. 8. Transient states of the one-layer recurrent neural network (12) with 
ao = 20, ll.(a) = a/2, and amin = 0.5 for solving a randomly generated 
problem. 
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Fig. 9. Transients of the performance indices using the one-layer recurrent 
neural network (12) with ao = 20, ll.(a) = a/2, and amin = 0.5. 

Figures 10-13 show the transient states x and performance 
indices 'Y and � of the neural networks (10) and (11) for 
solving randomly generated problems based on (5) and (6), 
respectively. 

According to Theorem 3 in [18], the one-layer neural 
network is globally convergent if f(x) is convex. Figures 
4-13 show that the one-layer recurrent neural network (9) 
converges to global minimum for the weighted L1 norm 
minimization, since the weighted L1 norm is convex. For 
the other three quasi-convex objective functions, the given 
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Fig. 10. Transient states of the one-layer recurrent neural network (10) with 
eTo = 20, �(eT) = eT /2, and eTmin = 3 for solving a randomly generated 
problem. 
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Fig. I I. Transients of the performance indices using the one-layer recurrent 
neural network (10) with eTO = 20, �(eT) = eT/2, and eTmin = 3. 
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Fig. 12. Transient states of the one-layer recurrent neural network (11) 
with eTo = 10, �(eT) = eT/2, and eTmin = 0.5 for solving a randomly 
generated problem. 
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Fig. 13. Transients of the performance indices using the one-layer recurrent 
neural network (11) with eTo = 10, �(eT) = eT/2, and eTmin = 0.5. 

network is not guaranteed to converge to global minimum. 
However, convexity of the objective function is only a 
sufficient condition, with the neural network (10)-(12) still 
converges for suitable parameters. 

V. EXPERIMENTAL RESULTS 

In this section, experimental results are reported and 
compared in terms of the predefined performance indices 
by using phase diagrams and tabular data. We show how 
undeterminedness min and sparsity level kim affect the 
performance indices of our algorithms. In the experiments, 
the performance indices are shown with various combinations 
of undeterminedness and sparsity level with the following 
procedure: 

Step 0: Set n (e.g., n = 100), upper bound of loop round 
N (e.g., N = 20), iteration counter s = 0; 

Step 1: Generate a problem randomly: b = Ax, where 
A is drawn from the normal distribution N(O, I), and x is 
sparse; i.e., has k non-zero elements drawn from the uniform 
distribution over (0,100) ; 

Step 2: Use the the one-layer recurrent neural network (9)­
(12) with parameter E (e.g., 10-6, or 10-7) to solve (4)-(6), 
or (7), obtaining x; 

Step 3: Evaluate performance indices "( in (17) and � in 
(18); 

Step 4: If s ::; N, s = s + 1, go to Step 1. Else, calculate 
the mean value of "( and � which is the final performance 
indices of a sample (klm,mln). 

Samples with undeterminedness and sparsity level of 1 % 
and 5l% (where l is a positive integer, and l ::; 20) 
are computed, while the performance indices of the rest 
combinations of min and kim are fitting results by cubic 
spline interpolation. By averaging the results over numerous 
Monte-Carlo tests, phase diagram shows the performance 
indices of all different levels of sparsity and indeterminacy, 
thus illustrates how the success of Ll optimization (2) is 
affected by sparsity and indeterminacy [10]. 
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Phase diagrams of performance index resulted from the 
neural network with different activation functions are shown 
in Figures 14-18. From the figures, we can see that basically 
all five cases have the same performance shape, which are 
all consistent with the boundary of the L1 approximation (2) 
to Lo optimization (1). 
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Fig. 14. Phase diagram of the solutions to Ll norm minimization (2) in 
terms of performance index "f. 
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Fig. IS. Phase diagram of the solutions to weighted Ll norm minimization 
(4) in terms of performance index "f. 

The area in phase diagrams with performance index 'Y :::; 
0.3 (blue color blocks) can be compared. The weighted 
L1 norm minimization method results in an increase of 
approximation area by about 5%, while successive Gaussian 
maximization method increases the area by more than 15%. 
By using the proposed models, we can obtain a nearer 
solution to the constrained maximization problem (1) than 
L1 minimization. 

Figures 19-23 show phase diagrams of performance index 
�. For easy comparisons, we use the same color-bar for these 
three phase diagrams. For this purpose, performance indices 
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Fig. 16. Phase diagram of the solutions to successive inverted Laplacian 
minimization (5) in terms of performance index "f. 
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Fig. 17. Phase diagram of the solutions to successive inverted hyperbolic 
secant minimization (6) in terms of performance index ,. 
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Fig. 18. Phase diagram of the solutions to successive inverted Gaussian 
minimization (7) in terms of performance index "f. 
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of the blocks with � 2: 1 are set to be 1. Fortunately, except 
for weighted L1 norm minimization, � rarely reach 1. 

Figures 19 and 20 show similar patterns like a branch of 
hyperbola. The shape indicates that the solutions to both L1 
minimization and weighted L1 norm minimization may not 
be very sparse when undeterminedness or sparsity level is 
low. Even for undeterminedness and sparsity level are both 
0.5, � in these two phase diagrams is only around 0.5. From 
the definition of �, � = 0.5 means that the sparsity level of 
i; is about 3 times larger than that of x. 
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Fig. 19. Phase diagram of the solutions to L1 norm minimization (2) in 
terms of performance index �. 
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Fig. 20. Phase diagram of the solutions to weighted L1 norm minimization 
(4) in terms of performance index �. 

Figures 21-23 show that the models (10)-(12) can obtain 
a quite sparse solution mostly, with the successive Gaussian 
maximization performing the best. From Figure 23, whatever 
values of undeterminedness and sparsity level are at, the 
solutions for (12) have high sparsity levels. Sometimes these 
three methods may even obtain sparser solutions than x, 

where � :::; 0 in the phase diagrams. 
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Fig. 21. Phase diagram of the solutions to successive inverted Laplacian 
minimization (5) in terms of performance index �. 
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Fig. 22. Phase diagram of the solutions to successive inverted hyperbolic 
secant minimization (6) in terms of performance index �. 
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Fig. 23. Phase diagram of the solutions to successive inverted Gaussian 
minimization (7) in terms of performance index �. 
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Moreover, from Figures 14-23 we can see that 'Y and � are 
not well correlated. Sometimes an x very near to x under 
performance index of 'Y can be obtained, but their levels of 
sparsity vary significantly from each other. Tables I and II 
show the exact performance indices 'Y and � of typical points 
(with different undeterminedness and sparsity levels). 

TABLE I 

COMPARISON OF PERFORMANCE INDEX 'Y AT TYPICAL SAMPLES 

kIm I mIn II L1 fw 
10% 10% 0.9432 0.5506 0.4022 0.2431 0.1678 
10% 50% 0.7758 0.8271 0.8367 0.8430 0.8172 
30% 10% 0.0819 0.0713 0.2358 0.0138 0.0000 
30% 20% 0.1073 0.2563 0.4633 0.1193 0.0415 
50% 20% 0.0095 0.0568 0.2865 0.0283 0.0000 
50% 40% 0.1622 0.2892 0.4095 0.3490 0.0424 
50% 60% 0.3745 0.3920 0.4560 0.4378 0.3373 
80% 20% 0.1302 0.0148 0.0788 0.0000 0.0000 
80% 40% 0.0183 0.0208 0.1554 0.0504 0.0000 
80% 60% 0.0338 0.0941 0.1599 0.1263 0.0000 

TABLE II 

COMPARISON OF PERFORMANCE INDEX E AT TYPICAL SAMPLES 

I kim I min II L1 fw 
10% 10% 1.653 1.375 0.965 0.263 0.190 
10% 50% 1.125 0.920 0.614 0.289 0.204 
30% 10% 1.274 1.033 0.979 0.106 -0.013 
30% 20% 0.943 0.967 0.817 0.394 0.053 
50% 20% 0.708 0.792 0.768 0.221 0.000 
50% 40% 0.512 0.574 0.534 0.371 0.068 
50% 60% 0.342 0.415 0.393 0.247 0.137 
80% 20% 0.464 0.649 0.659 0.000 -0.004 
80% 40% 0.212 0.348 0.430 0.192 -0.003 
80% 60% 0.210 0.286 0.274 0.203 -0.001 

V I. CONCLUSIONS 

In this paper, a neurodynamic optimization approach 
is presented for solving the NP-hard constrained sparsity 
maximization problem. Four approximations to Lo norm, 
weighted L1 norm, and other three quasi-convex functions, 
are proposed. A one-layer recurrent neural network is applied 
to compute the sparse solutions to the approximate norm 
minimization problems. Experimental results show that the 
recurrent neural network with appropriate selections of its 
parameters generates better sparse solutions than L1 norm 
minimization. Phase diagrams based on two performance 
indices show that the successive Gaussian maximization 
performs the best among the four functions, which yields 
solutions of the highest sparsity with the highest robustness 
to parameters. Our further investigations include theoretical 
analysis to the convergence of the one-layer recurrent neural 
network with non-convex objective functions (e.g., inverted 
Gaussian functions). 
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