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Abstract— Recently, a continuous-time k-winners-take-all
(kWTA) network with a single state variable and a hard-
limiting activation function and its discrete-time counterpart were
developed. These kWTA networks have proven properties of
finite-time global convergence and simple architectures. In this
paper, the kWTA networks are applied for information retrieval,
such as web search. The weights or scores of pages in two real-
world data sets are calculated with the PageRank algorithm,
based on which experimental results of kWTA networks are
provided. The results show that the kWTA networks converge
faster as the size of the problem grows, which renders them as a
promising approach to large-scale data set information retrieval
problems.

I. INTRODUCTION

The techniques for information retrieval from large data sets

play a very important role as the size of the world-wide web

exceeded 800 million pages in 1999 [1] to 11.5 billion in

2005 [2], and possibly more than 30 billion nowadays. A most

promising work in utilizing the link structure of the web for

improving the quality of search results may be PageRank, an

iterative algorithm that determines the importance of a web

page based on the importance of its parent pages [3] [4]. This

led to many impressive works in the past decade, such as

analyzing the efficiency [6], doing computational experiments

[7] [8], improving the efficiency and effectiveness [9] [10]

and further analysis on social networks [11] [12]. It has been

pointed out that because of the large eigengap of the modified

adjacency matrix, the values of the PageRank eigenvector are

fast to approximate, which indicates that only a few iterations

are needed [7]. As a result, a main bottleneck to large-

scale network search engine is not calculating the weighting

coefficients but the quick sorting of those coefficients. This

problem is the Top-k problem with L = 1 list of numbers,

which is defined as follows: Given a list of real numbers, find

the top k scoring ones. Many attempts on solving the Top-k
problem efficient has been done in the past; e.g. [13] [14] [15]

[16] [17] [18].

As a generalization of the winner-take-all (WTA) operation,

the k-winners-take-all (kWTA) is to select the k largest inputs

out of n inputs (1 ≤ k < n) [19]. kWTA has been shown to be

a computationally powerful operation compared with standard
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neural network models of threshold logic gates [20], and has

been widely used in various applications, such as decoding

[21], feature extraction [22], signal processing [23] [24], etc.

When the number of inputs is large or the selection process

has to be operated in real time, parallel algorithms and

hardware implementation are desirable. Many kWTA networks

have been proposed during the past two decades; e.g. [25][26]

[27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39].

In particular, a kWTA model with Heaviside step activation

function was developed [39], where its global stability and

finite-time convergence are proven with derived upper and

lower bounds. Its architectural complexity is almost (if not

yet) the simplest due to its single state variable and single

design parameter.

In this paper, the single-state kWTA network is adopted to

accelerate the response speed of large-scale network search

engines. Experimental results on two data sets will be shown,

which indicates the potential efficiency by involving the kWTA

network into large-scale network search engines.

The remainder of the paper is organized as follows. The

related preliminaries and model descriptions are presented in

Section II. Experimental results are presented in Section III.

Finally, Section IV concludes the paper.

II. PRELIMINARIES

As it has been pointed out, there are basically two main

parts in internet information retrieval, one is calculating the

weight of all the pages or data and the other is find out the

most ”wanted” k results with higher weighting coefficients and

show them in a very short time. In this work, the traditional

well known PageRank algorithm is used for the first part and

then the proposed kWTA network is implemented to solve the

second part.

We assume that after each crawl of the web, the ranking

vector is computed only once, and the values can then be used

to influence the ranking of search results [5], which indicate

that PageRank algorithm do not need to be run most of the time

when there happens to be a searching request. Moreover, many

impressive works has been done to accelerate the calculation

of PageRank. But for the second part, it is never easy to find

out the 10 or 20 pages with biggest weights among millions

or even billions of pages in a very short time. The growth

of the size of internet has been far more rapidly than that of
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computing speed in the past several decades and will remain

in the future. The proposed kWTA network [39] has a simplest

architecture which makes it easy to implement on hardware.

Digital circuits is also designable based on its discrete-time

counterpart [36]. It has been pointed out that as the problem

size n increases, either the average convergence time of the

state variable or the average number of iterations needed for

the of state variable to converge decreases [37]. As a result,

for large-scale dataset information retrieval, kWTA network

would perform better than current methods.

1) The PageRank Algorithm: The essential idea of the

PageRank algorithm is if page j has a link to page l, then

the author of j is implicitly conferring some importance to

page l [4]. PageRank of j represents its importance and thus

k confers a importance of 1/oj to l, where oj is the outdegree

of page j. This simple idea leads to the following fixpoint

computation that yields the rank vector r over all of the pages

on the web. Let n be the number of pages and assign all

pages with the initial rank value 1/n. Let Sl represent the set

of pages pointing to l. In each iteration i, the ranks ri are

propagate as follows:

∀l, ri+1(l) =
1 − p

n
+

∑

j∈S l

p · ri(j)/oj (1)

where parameter p < 1 is usually included as a dump

coefficient is to make the Markov chain regular.

In PageRank algorithm, for the pages that has no links

towards any other pages, we assume them linking to all other

ones. The iterations continue until Rank stabilizes to within

some threshold, and the final r is the PageRank vector over the

web. This r then plays the role of the input vector in kWTA

network, and thus it is easy to find out the most wanted k
pages from the output.

2) The kWTA Network: Generally speaking, the kWTA

operation can be defined by the following binary function

xi = f(ui) =

{

1, if ui ∈ {k largest elements of u},
0, otherwise,

(2)

where u = (u1, u2, . . . , un)T is the input vector and x =
(x1, x2, . . . , xn)T is the output vector.

In internet searching, instead of sorting all of the pages,

usually only the ten or twenty most ”interested” or ”related”

pages with higher weights need to be figured out as soon as

possible and shown to the costumers, which turns out to be a

k-Winners-take-all problem.

A kWTA network with a single state variable was developed

[39] with the following equations:

• State equation

ǫ
dy

dt
=

n
∑

i=1

xi − k, (3)

• Output equation

xi = g(ri − y), i = 1, · · · , n, (4)

where y ∈ ℜ is the state variable, ri are the weights from

PageRank algorithm, x is the output vector of kWTA network

with its elements being 0 or 1, and g(·) is the Heaviside step

activation function defined as:

g(zi) =

{

0, zi ≤ 0,
1, zi > 0.

(5)

A discrete-time counterpart of the kWTA model is as

follows:

• State equation

y(t + 1) = y(t) + β

(

n
∑

i=1

xi(t) − k

)

, (6)

• Output equation

x(t) = g(r − ey(t)), (7)

where β > 0 is the step size, e is the unit vector, and integer

t represents the step number.

To guarantee the globally convergent, β should also

be no bigger than the minimum difference of inputs

min1≤i,j≤n (ri − rj). For web searching, usually the mini-

mum resolution of ri is zero. It has also been pointed out

that for such case, a gradual value reduction of β will always

work well out any persistent oscillation and reach convergence

eventually.

The global stability and finite-time convergence of the

kWTA networks (3)(4)(6)(7) are proved with derived upper

and lower bounds in [39].

III. EXPERIMENTAL RESULTS

In order to show the performance of the kWTA network in

solving network searching problems, experimental results on

several real world data sets are stated in this section.

The first data set is a tiny but very typical one with only

7 pages and 17 links between them as Figure 1 shows. The

PageRank weight of each page and link is also provided after

running the algorithm with p = 1, which indicates no dump

coefficient is added in this toy example.

The transient behaviors of ri − y of the discrete-time

kWTA network in (6) and (7) is depicted in Fig. 2 with

k = 3 and β = 10−3. The output vector x = g(r − ey) =
[1, 1, 0, 0, 1, 0, 0]T indicates that Page 1, 2, and 5 are the ones

with higher PageRank weight, which is obviously correct for

this example in Figure 1.

The second example is a heterogeneous film-director-actor-

writer network, which is crawled from Wikipedia under the

category of English-language films in [12], where there are

34, 279 pages in total with 142, 426 relationships between

the heterogeneous nodes. Figure 3 shows part of the square

adjacency matrix of example 2, where a dot on the ith column

and the jth row represents that there is a directed link pointed

to the jth page from the ith one. The visible part in the

following figure is a rectangle one because there is no input

links for some pages, and as a result elements in part of this

adjacency matrix is 0.
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Fig. 1. Global view of the links and pages of data set 1 (adapted from
PageRank - Wikipedia, http://en.wikipedia.org/wiki/File:Linkstruct3.svg).
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Fig. 2. Transient behaviors of r−ey(t) in the discrete-time kWTA network
for example 1, where k = 3, β = 10−3, and y(1) = 0.

PageRank algorithm has been run under the parameter

of p = 0.85, and Fig. 4 shows the transient behaviors of

ri − y of the discrete-time kWTA network in (6) and (7)
for example 2. As there are too many unimportant pages

of which stable values of the transient curves are below 0,

only 100 randomly selected ones are drawn in blue lines in

Fig. 4. It is obvious that only the 10 red lines converges to

a positive value, which indicates that the kWTA network has

automatically ”choose” 10 pages. The answer to this query

[3111, 3869, 4058, 4621, 6938, 8974, 10341, 11502, 13320, 15326]T

can be easily achieved from the sparse representation of the

output vector x = g(r − ey(t)), where 10 of the elements are

nonzero, and its correctness has been verified manually.

Although only software simulation has been done in this

work, which take longer simulation time than current network
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Fig. 3. Global view of the adjacency matrix for pages in example 2.
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Fig. 4. Transient behaviors of r−ey(t) in the discrete-time kWTA network
for example 2, where k = 10, β = 10−6, and y(1) = 10−3.
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searching algorithms, it can be predicted that with hardware

implementation, kWTA network would perform much better

when facing larger-scale data set than current algorithms.

IV. CONCLUSIONS

In this paper, the kWTA networks are applied for large-scale

data set information retrieval. Experimental results based on

two real world data sets are shown after running the PageRank

algorithm. The proved superior performance of the kWTA

network is also demonstrated by the simulation results. A most

important characteristic of the model shown by experiment

to the second example is that kWTA network converge fast

enough when facing a large-scale problem, which indicates

them as promising keys to web site information retrieval

problems.
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