
Sustainability in Mixed-Criticality Scheduling

Zhishan Guo Sai Sruti Bryan C. Ward∗ Sanjoy Baruah†

Department of Computer Science, Missouri University of Science and Technology
∗Lincoln Laboratory, Massachusetts Institute of Technology

†Department of Computer Science & Engineering, Washington University in St. Louis

{guozh,sxq6}@mst.edu, bryan.ward@ll.mit.edu, baruah@wustl.edu

Abstract—Sustainability is a formalization of the requirement
for scheduling algorithms and schedulability tests that a system
deemed to be correctly schedulable should remain so if its run-
time behavior is better than anticipated. The notion of sustain-
ability is extended to mixed-criticality systems, and sustainabil-
ity properties are determined for a variety of widely-studied
uniprocessor and multi-processor mixed-criticality scheduling
algorithms.

1. Introduction

Schedulability tests play an important role in the verification
of safety-critical real-time systems. Given the specification
of an instance comprising the abstraction of workload and
the computing platform upon which the workload is to
execute, a schedulability test determines whether all timing
constraints (often specified by deadlines) are guaranteed
to be met under specified scheduling policies. For safety-
critical systems, schedulability analysis must be performed
prior to run-time; in order to do so, parameters character-
izing the run-time workload (such as worst-case execution
time and, for recurrent sporadic tasks, minimum duration
separating successive invocations) must be estimated prior
to run-time. Different tools and techniques used for making
such estimations may be more or less conservative (pes-
simistic) than each other; hence, the use of conservative
estimates may result in systems exhibiting run-time behavior
“better” than estimated. The notion of sustainability was
introduced [4] to formalize the expectation that a system
that is schedulable under its worst-case specifications should
remain schedulable when its actual run-time behavior is
better than the worst-case.

Mixed-criticality systems. There has been an increasing
trend in safety critical systems towards mixed-criticality im-
plementations, where components that are assigned different
levels of criticality are integrated onto a common hardware
platform. For example, different ASILs (Automotive Safety
and Integrity Levels), DALs (Design Assurance Levels or
Development Assurance Levels) and SILs (Safety Integrity
Levels) are defined in industrial standards such as IEC
61508, DO-178B and DO-178C, DO-254, and ISO 26262)

[9], [10], [13]. An abstract model for representing mixed-
criticality workloads was proposed by Vestal [15] about
ten years ago; this model has been widely adopted in the
real-time scheduling theory community and a large body of
research studying various aspects of scheduling and anal-
ysis of systems specified according to this model (and its
extensions) has been generated — see, e.g., [8] for a review.
Taking into account the rise in interest in mixed-criticality
scheduling, we believe it is important to study the sustain-
ability of typical mixed-criticality scheduling algorithms and
schedulability tests.

Motivation and Challenges. One obvious aspect of sus-
tainability for mixed-criticality workloads that we will ex-
amine in this paper is this: if a system is deemed mixed-
criticality schedulable, does it remain so if the criticality
level of some task within it is reduced (i.e., made less
critical)? Sustainability with regards to criticality level is
an intellectually interesting question, and we believe that
obtaining answers to this question will enhance our insight
into the process of criticality-cognizant resource-allocation.
It is also potentially relevant to the design and analysis of
mixed-criticality systems as the basis for “what if ” design-
space exploration as part of an interactive design process —
suppose that a mixed-criticality system design is deemed
schedulable, is it safe to re-specify a part of the system
as being of lower criticality? Alternatively, if a system is
deemed non-schedulable, does it always help reduce the
criticality of some task? The answers to these questions
are important as the certification process can be expensive,
both monetarily and in terms of time and labor. For a non-
sustainable mixed-criticality scheduler, a developer may be
required to certify a task at a higher criticality than needed
(based upon functionality and actual criticality) solely in
order to make the system schedulable. For a sustainable
mixed-criticality scheduler, however, the decision to certify
a task at a given criticality level is predicated exclusively
on its actual criticality.

In addition to questions regarding sustainability with
respect to criticality-level, sustainability analysis of mixed-
criticality systems throws up some other interesting issues.
A key aspect of the Vestal model [15] of mixed-criticality

24

2017 IEEE Real-Time Systems Symposium

1052-8725/17/31.00 ©2017 IEEE
DOI 10.1109/RTSS.2017.00010

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:18 UTC from IEEE Xplore. Restrictions apply.

SCHEDULER CRIT. WCET PERIOD DEAD-

LEVEL -LINE

Crit. Mono. (Sec 3.1) N Y Y Y

EDF-VD (Sec 3.2) Y Y Y Y

AMC (Sec 3.3) Y Y Y Y

OCBP (Sec 3.4) Y Y Y∗ Y

MC2 (Sec 4.1) N Y Y Y

MC Fluid (Sec 4.2) Y Y Y Y

∗Please note that OCBP is for scheduling MC job sets and thus the ‘Y’ in
the period column represents sustainability over release time, while others
are for MC task set scheduling.

TABLE 1: Summary of sustainability results for some MC
scheduling algorithms with respect to various parameters. A
‘Y’ / ’N’, denotes that the scheduler is / is not sustainable
with respect to that parameter. The section numbers denote
the section in the text where the algorithms are briefly
described, and the sustainability properties derived. (The
first four listed algorithms are uniprocessor algorithms; the
remaining two, multiprocessor ones.)

workloads is that task parameters are dependent on the crit-
icality levels. For example, a piece of code is characterized
with a larger WCET estimate if it is defined to be safety-
critical (that requires a higher level of assurance) than it
would if it is of lower criticality. This feature of mixed-
criticality systems undermines many of the sustainability
results that have previously been obtained, since prior sus-
tainability analyses were conducted in a manner that is
agnostic of criticality levels. As a result, not only does
sustainability with regards to criticality levels need to be
studied, sustainability with regards to other parameters must
also be revisited. Accordingly in this paper, we perform
sustainability analysis upon several uniprocessor and mul-
tiprocessor mixed-criticality scheduling algorithms. For the
most part, we limit ourselves in this paper to two criticality
levels – although many results are easily extended to more
than two levels, we leave filling in the details as future
work. The algorithms that we study, and their sustainability
properties over various parameters, are summarized in Table
1.

Organization. The rest of this paper is organized as follows.
Section 2 establishes the system model and formally defines
the terminologies and notations. The analysis of unipro-
cessor mixed-criticality scheduling algorithms is covered in
Section 3, and of multiprocessor algorithms in Section 4.
Section 5 briefly reflects on some related works and Section
6 concludes the paper.

2. System Model and Preliminaries

We will primarily model a mixed-criticality (MC) work-
load as comprising a finite specified collection of MC spo-

radic tasks, each of which may generate an unbounded num-
ber of MC jobs. (In Section 3.4 we consider the scheduling
of specified collections of jobs rather than tasks.)

MC instance. An MC system instance is characterized by (i)
a platform specification as either uniprocessor or identical
multiprocessors (in which case the number m of processors
is specified; and (ii) an MC workload with a collection of
either MC jobs or MC tasks.

A job models a single piece of code, to be executed
sequentially once upon a processor. An MC job Ji is charac-
terized by a 5-tuple of parameters (ai, c

L
i , c

H
i , di, χi), where

• ai ≥ 0 denotes its release time (after which the piece
of code may start to execute),

• cLi ≤ cHi ∈ RL
+ are per-mode WCET estimations,

• di ≥ ai indicates the deadline, and
• χi ∈ {LO, HI} represents the criticality level.

An MC task τi = {CL
i , C

H
i , Ti, Di, χi} characterizes a

single piece of code, to be executed repeatedly for an indef-
inite length of time in an MC system. That is, a sporadic
task gives rise to a potentially unbounded sequence of jobs
— a release is triggered when the corresponding piece of
code becomes ready for execution. The period parameter
Ti represents the minimum inter-arrival time between any
two consecutive job releases (by the same task). Another
parameter Di, denoting the relative deadline, is specified
for the task, denoting that the deadline for each job is its
release time plus the Di value. We sometimes consider a
special subclass of sporadic tasks: implicit deadlines task
systems have Di = Ti for all i.

The following parameters capture important attributes
of a collection of MC tasks and are widely used in schedu-
lablity analysis. The least common multiple of the period
parameters of all the tasks is referred to as the hyper-period
of the task system and is denoted by H . The per-mode
utilizations of each task τi and the whole set τ are defined
as follows respectively.

uy
i =

Cy
i

Ti
, y ∈ {LO, HI}, (1)

Uy
x (τ) =

∑
τi∈τ

∧
χi=x

uy
i =

∑
τi∈τ

∧
χi=x

Cy
i

Ti
, x, y ∈ {LO, HI}.

(2)

System behavior. An MC system is assumed to begin
execution in LO-mode. If a job has executed for more
than its LO-criticality WCET specification without signaling
completion, a system-wide mode switch to HI-mode is said
to occur. The system returns to LO-mode at the first idle
instant after the mode switch [14]. In all other scenarios,
the system is considered as an erroneous mode, where no
correctness guarantees are made and thus is not considered
in this work.

25

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:18 UTC from IEEE Xplore. Restrictions apply.

MC schedulability. MC schedulability incorporates correct-
ness guaranteed under both LO- and HI-modes. A scheduling
algorithm is correct if it is able to schedule every job
sequence of a workload such that (i) jobs of both LO- and
HI-criticality tasks execute for up to their LO-WCETs and
are completed before their deadlines in LO-mode, and (ii)
jobs of HI-criticality tasks execute for their HI-WCETs and
are completed before their deadline in HI-mode.

MC sustainability. An MC scheduling policy is said to be
sustainable if any MC instance that is MC-schedulable by
the policy remains so if one or more of the parameters
characterizing the instance is “improved”. Analogously, a
schedulability test for some MC scheduling policy is said
to be sustainable if any MC instance that is deemed MC-
schedulable by the schedulability test will continue to be
deemed MC-schedulable by the test if one or more of its
parameters is improved. We now list what we consider to
be “improvements” to the characterizing parameters:

1) Decreasing WCET parameters (CL
i and/or CH

i).
2) Increasing periods for sporadic task systems; mov-

ing job release times forward (i.e., decreasing ai)
for collections of jobs.

3) Postponing relative deadlines (Di).
4) Decreasing the criticality level assignment of a

task/job (from HI to LO for dual-criticality systems).

A scheduling policy and/or schedulability test may be sus-
tainable with respect to some but not all parameters. In each
of the following subsections, we will consider one well-
known MC scheduler, and examine the sustainability with
respect to all four parameters.

3. Uniprocessor MC Sustainability

In this section, we study sustainability properties of four
uniprocessor MC scheduling algorithms and their associated
schedulability tests. The first three – Criticality Monotonic,
EDF-VD, and AMC – are task-scheduling algorithms; the
fourth, OCBP, schedules collections of jobs.

3.1. Criticality Monotonic

Criticality Monotonic (CM) [15] is a scheduling policy
that schedules at each time instant an available job of highest
criticality. Hence a task of criticality level � cannot affect
the scheduling of tasks of criticality greater than �. In this
paper we restrict ourselves with only two criticality levels,
LO and HI. We study a sporadic task model where each task
is characterized by τi = {CL

i , C
H
i , Ti, Di, χi}.

We assume that the (non MC) mechanism to schedule
tasks within each criticality level is sustainable w.r.t. all
parameters, and examine the sustainability of CM as a
general MC scheduling framework.

Sustainability w.r.t. relative deadline, WCET, and period.
Changing relative deadline, WCET, and period parameters

will not affect the general CM framework since no criticality
level is modified. As it is assumed that the scheduler used
within each criticality level is sustainable to all parameters,
the schedulability conditions will still hold within each
criticality level, leading to sustainability of CM.

Sustainability w.r.t. criticality levels.

Theorem 1. Criticality Monotonic scheduling algorithm is
not sustainable with respect to criticality levels.

Proof. Consider the task-set shown in Table 2, which is CM-
schedulable (using deadline monotonic within each critical-
ity level). Figure 1(a) illustrates the schedule of the task-set
with its respective arrival times and deadlines.

Task CL
i CH

i Ti Di Criticality Priority

τ1 20 25 120 40 HI →LO 1 → 3

τ2 28 60 200 160 HI 2

τ3 12 12 120 100 LO 4

TABLE 2: An MC task-set that is not sustainable under
criticality monotonic scheduling policy.

We now decrease the criticality level of task τ1 from
HI to LO and observe the outcome schedule in Figure 1(b),
where τ1 misses its deadline. Thus we conclude that the CM
scheduling policy is not sustainable w.r.t. criticality levels.

3.2. Earliest Deadline First with Virtual Deadlines
(EDF-VD)

The Earliest Deadline First with Virtual Deadline
scheduling policy (EDF-VD) [3] is an adaptation of the
Earliest Deadline First (EDF) algorithm to dual-criticality
implicit-deadline sporadic task systems. It is proved in [3]
that EDF-VD correctly schedules any dual-criticality task
system τ = {τ1, τ2, . . . , τn} upon a unit-speed preemptive
processor if

xU LO
LO (τ) + U HI

HI (τ) ≤ 1 (3)

where x is defined as follows:

x← U LO
HI (τ)/(1− U LO

LO (τ)) (4)

Condition 3, in fact, constitutes a schedulablity test for EDF-
VD: EDF-VD computes x according to Equation 4 above
and determines whether Condition 3 is satisfied. In the re-
mainder of this section, we establish that this schedulability
test for EDF-VD is sustainable with respect to criticality
level, WCETs, and period. (Since this schedulability test
is for implicit-deadline task systems, its sustainability with
respect to relative deadlines trivially follows from the ob-
servation that EDF-VD does not make use of the relative
deadline parameter.)

26

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:18 UTC from IEEE Xplore. Restrictions apply.

�
�

�
�

�
�

0 200 300 400 500 600100

(a) Criticality-Monotonic schedule for tasks in Table 2 under
LO-criticality mode.

0 4020

�
���

misses deadline

(b) Criticality-Monotonic schedule for tasks in Table 2, when
criticality level of τ1 is changed from HI to LO, where τ1
misses its deadline.

Figure 1: Schedule demonstration of the sample task set
(shown in Table 2) under Criticality-Monotonic before and
after the change of criticality level of one of the tasks (τ1).

Recall the various utilization parameters defined in Ex-
pression 2. Let us introduce some simplifying notations:

ul ← U LO
LO (τ)

uh ← U LO
HI (τ)

u′h ← U HI
HI (τ)

While executing in LO-criticality mode, the deadlines of
the high criticality tasks are determined by scaling down
the original period of a HI-criticality task with a factor x (x
≤ 1) to obtain a virtual deadline. The scaling factor x is
calculated off-line as x = uh/(1− ul).

For the EDF-VD scheduling policy to correctly schedule
a dual-criticality implicit deadline task system on a single
unit-speed processor, the sufficient conditions for tasks to
be scheduled in both LO- and HI-mode respectively are [3]:

x ≥ uh

1− ul
, (5)

x · ul + u′h ≤ 1. (6)

We now determine the sustainability of the scheduling
policy by making favorable alterations in the parameters and
verify if the schedulability condition still persists.

Lemma 2. EDF-VD is sustainable w.r.t criticality levels;
i.e., when changing the criticality of a task from HI to LO,
Conditions (5) and (6) will continue to hold if they used to
be so.

Proof. The change to the criticality level of a task from HI
to LO will result in an increase of the utilization of LO tasks
(ul) and decreases in the utilization of HI tasks (uh, u′h),
all with the same amount (assumed to be δ) i.e.,

uh = uh − δ,

u′h = u′h − δ,

ul = ul + δ.

Now, on substituting these notations in Equations (5)
and (6), the scaling term x can then be denoted as:

x← uh

1− ul
.

The equation for the HI-criticality schedulability test can be
written as:

uh.ul

1− ul
+ u′h ≤ 1. (7)

On modifying the utilization values with δ in the Equation
(7) we get:

(uh − δ)(ul + δ)

1− (ul + δ)
+ (u′h − δ) ≤ 1. (8)

To determine if the schedulability condition in Equation
8 still holds, we show the following proof: By demonstrating
that the difference between Equations (7) and (8) is positive,
i.e.,

(uh − δ)(ul + δ)

1− (ul + δ)
+ (u′h − δ) ≤ uh.ul

1− ul
+ u′h ≤ 1. (9)

uh · ul

1− ul
+ u′h −

(uh − δ)(ul + δ)

1− (ul + δ)
+ (u′h − δ) ≥ 0

⇒ uh · ul

1− ul
− (uh − δ)(ul + δ)

1− (ul + δ)
− δ ≥ 0

⇒ uh.ul

1− ul
− (uh − δ)(ul + δ)− δ + δ(ul + δ)

1− (ul + δ)
≥ 0

⇒ uh · ul

1− ul
− (ul + δ)uh − δ

1− (ul + δ)
≥ 0

⇒ uh · ul

1− ul
− uh.ul + δuh − δ

1− (ul + δ)
≥ 0

⇒ uh · ul(1− ul + δ)− uh · ul(1− ul)− δ(uh − 1)(1− ul) ≥ 0

⇒ δ(1− uh)(1− ul)− uh · ulδ ≥ 0

⇒ (1− uh)(1− ul) ≥ uh · ul

⇒ 1− uh − ul ≥ 0

⇒ ul + uh ≤ 1.
(10)

The solution obtained in Equation (10) satisfies the
schedulability conditions stated in Equations (5) and (6),
thus establishing that the EDF-VD scheduling policy is
sustainable w.r.t. to criticality levels.

27

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:18 UTC from IEEE Xplore. Restrictions apply.

Lemma 3. EDF-VD is sustainable w.r.t WCETs.

Proof. According to the definition of sustainability, on de-
creasing the WCET of a task τi (either CL

i or CH
i), the

schedulability conditions of the whole task system should
still hold. To demonstrate the sustainability, we consider a
small arbitrary value δ by which we decrease CL

i or CH
i

values, and check the two sufficient conditions.

(1) Decrease of CH
i .

Upon decreasing the CH
i by a menial amount δ > 0,

the utilization of the set (uh) will decrease by a value (δ′ =
δ/Ti > 0). Thus, the corresponding HI-mode schedulability
condition for the new task set is:

x · ul + (u′h − δ′) ≤ 1, (11)

which obviously holds from Condition (6) and the fact
that δ′ > 0. This conveys that in HI mode, decreasing
the CH

i value does not have any adversary effect on the
schedulability of the whole system.

Now we will check the schedulability under LO mode;
i.e., if the condition in Equation (5) holds. Since CH

i values
have nothing to do with the condition for LO mode, it
remains true. Thus we conclude that the decrease of CH

i

will not have any adversary effects on the schedulability of
the whole system.

(2) Decrease of CL
i .

Similarly, if CL
i is diminished in such a way, the ul

value decreases by δ. The following schedulability test (in
HI mode) will also hold as x > 0 and δ > 0.

x · (ul − δ) + u′h ≤ 1. (12)

Now we inspect the schedulability under LO mode; i.e.,
if the condition in Equation (5) complies after substituting
the modified value of ul:

uh

1− (ul − δ)
≤ uh

1− ul
= x, (13)

and
uh − δ

1− ul
≤ uh

1− ul
x. (14)

This indicates that the condition for LO-mode correctness
continues to prevail.

Lemma 4. EDF-VD is sustainable w.r.t period.

Proof. This follows directly from the proof for sustainability
over WCETs as an increasing period will lead to a decrease
of per-mode utilization.

Theorem 5. EDF-VD is sustainable w.r.t all parameters.

Proof. This follows from Lemmas 2, 3, and 4.

3.3. AMC

The adaptive mixed criticality scheduling policy (AMC)
[5] is a fixed-priority algorithm for scheduling MC sporadic
task systems on preemptive uniprocessors. A priority order
is achieved by applying Audsley’s priority assignment algo-
rithm [1], and has been demonstrated to be optimal [5], [15];
i.e., whenever a feasible priority order exists, the system will
be AMC-schedulable.

Response Time Analysis (RTA) techniques are used to
determine the schedulability of AMC scheduling policy. The
analysis is done in three phases [5]:

1) Verifying schedulability of LO-criticality mode
with:

RL
i = Ci +

∑
j∈hp(i)

⌈
RL

i

Tj

⌉
CL

j , (15)

where hp(i) is the set of all tasks with priority
higher than that of task τi.

2) Verifying schedulability of HI-criticality mode with

RH
i = Ci +

∑
j∈hpH(i)

⌈
RH

i

Tj

⌉
CH

j , (16)

where hpH(i) is the set of HI-critical tasks with
priority higher than, or equal to, that of task τi.

3) Verifying schedulability during criticality (mode)
change in an iterative manner w.r.t. maximum re-
sponse time R∗i until it is stabilized with:

R∗i = CH
i +

∑
j∈hpH(i)

⌈
R∗i
Tj

⌉
CH

j +
∑

j∈hpL(i)

⌈
RL

i

Tk

⌉
CL

k .

(17)

Theorem 6. AMC is sustainable w.r.t. to all parameters

Proof. The proof will contain two parts – one for showing
sustainability w.r.t. criticality levels, and the other for the
remaining parameters:

Sustainability w.r.t WCETs, periods, and relative dead-
lines. It has been proved by Baruah and Burns in [7]
that the response time analysis of fixed priority preemptive
task system is sustainable w.r.t parameters such as execution
requirements (Ci), relative deadlines (Di) and periods (Ti).
Thus Conditions (15) and (16) will hold when we adjust the
parameters.

With respect to Condition (17), although the value of
RL

i is fixed, decreasing CL
k and increasing Tk will deplete

the overall value of response time R∗i . The modified value
of response time can be recursively determined until a value
less than the initial response time is obtained. The altered
value of R∗i is acquired from recursive calculations and can
be represented as:

new(R∗i) ≤ R∗i ≤ Di

28

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:18 UTC from IEEE Xplore. Restrictions apply.

The above equation satisfies the schedulability condition for
AMC scheduling algorithm. For all tasks τi ∈ τLO,HI the
response time RL

i and RH
i are no larger than the relative

deadline Di. It is observed that the amount of execution
available to a task τi over a period [0,t) can only increase if
job execution requirements decrease. The similar rationale
is applied when job periods increase, i.e., modifying the
parameters accordingly only guarantees the execution of the
task in [0, Ri]. Consequently, the AMC scheduling model is
sustainable with respect to execution-requirements, periods
and relative deadlines.

Sustainability w.r.t criticality levels. As mentioned earlier,
the AMC scheduling policy employs an optimal priority
assignment technique before scheduling the jobs. [5] states
that Audsley’s priority assignment algorithm delivers an
optimal priority ordering in polynomial time, i.e., Audsley’s
algorithm is guaranteed to find a priority assignment, if
there exists one, which is AMC-schedulable. If we change
the criticality level of a task from HI to LO, the priority
of the task may remain the same or decrease; if another
feasible priority assignment exists, it will be determined by
the Audsley’s algorithm. In case no other feasible priority
order exists, the available order of the task-set before the
criticality level modification can be used as the valid priority
ordering. Since the order is already AMC-schedulable, we
claim that it is sustainable w.r.t. criticality levels.

3.4. OCBP for MC Job Scheduling

The OCBP (Own Criticality Based Priority) scheduling
policy [6] is a priority based MC-job scheduling algorithm.
It derives a valid priority ordering of the jobs prior to run-
time in order to guarantee a correct schedule. These priori-
ties are assigned in a recursive manner following Audsley’s
approach [1]. That is, a job Ji is assigned lowest priority if
it meets its deadline, while Ji and all other jobs (of higher
priority) execute for a duration not exceeding their WCETs
estimated at Ji’s own criticality level χi. If such a job Ji
is found, then it is assigned lowest priority and the process
repeated on the remaining (higher-priority) jobs. Specifically
if the candidate job Ji of LO-criticality is assigned lowest
priority, the following set of conditions will be checked for
any l such that l ∈ hp(i)1 and al ≤ di:

CL
i +

∑
j∈hp(i)∩aj≥al

CL
j ≤ di − al. (18)

1. hp(i) indicates the set of jobs with higher priority assignment than
Ji.

While if Ji is of HI-criticality, for any l such that: l ∈ hp(i)
and al ≤ di, we check2:

CH
i +

∑
j∈hp(i)∩χj=HI∩aj≥al

CH
j ≤ di − al. (19)

It is relatively straightforward to implement this priority-
assignment process in such a manner that the following
assumption is satisfied:
Assumption 1: Upon changing some parameter of a single
job, the priority assigned to this particular job may be
different from the original but the relative priority order
of other jobs remains the same.
This assumption can be achieved by restricting the order of
the jobs in each iteration while determining a lowest priority
job; e.g., in decreasing deadline order or simply following
job indices.

Theorem 7. OCBP is sustainable for all parameters under
Assumption 1.

Proof. Assume that an instance J of dual-criticality jobs is
OCBP schedulable, and modify the parameter of a particular
job Ji ∈ J by one of the four actions: decrease its release
time by δ, increase its deadline by δ, decrease its LO- or
HI-WCET by δ, or change its criticality level from HI to
LO (CL

i ≤ CH
i) to obtain a new job set J ′ (while parameters

of other jobs remains unchanged). According to Audsley’s
priority assignment algorithm and Assumption 1, there are
three possible scenarios upon assigning priorities to J ′: (1)
the job Ji is assigned a higher priority than before, (2) the
priority order of all jobs does not change, and (3) the job
Ji is assigned a lower priority than before.

We first show that Case (1) is not possible. Since OCBP
is a fixed priority scheme, the schedulability of Ji is only
affected by the higher priority jobs. If Ji is assigned priority
pi at a certain iteration before changing the parameter,
we would make the same attempt to assign it the lowest
priority at that round, with the same higher priority jobs left
(according to Assumption 1). Since it is schedulable before
the parameter change, the claim is that Ji will continue be
assigned the lowest priority at that round (if not sooner).
The reason is that changing Ji’s parameters in the given
manner will just relax Conditions (18) and (19) such that the
schedulaiblity test on current priority assignment remains a
success.

For Case (2), sustainability also holds as Conditions (18)
and (19) will continue to subsist for other jobs. For Ji, again
the condition are more relaxed and will continue to hold.
As a result, OCBP will return success after change in the
parameters.

For Case (3), since parameter changing is leading to
relaxation of original conditions, it is possible that Ji can be

2. Note that none of the existing work stated the math conditions for
OCBP to be schedulable – this is part of our contribution in this paper as
sustainability proof requires clearly expressed equations.

29

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:18 UTC from IEEE Xplore. Restrictions apply.

assigned a priority earlier than before; i.e., a lower priority
than the one before such change. Figure 2 depicts the
priority assignment of the jobs before and after incorporating
the criticality level change.

J(i)
 hp

J(i)
 lp

J(i)
int

High priority jobs,
not affected

Low priority jobs,
not affected

Ji

Ji

��

��

��

��

��

��

Figure 2: Priority assignment before and after the change of
job Ji’s criticality level from HI to LO.

The first shaded section J
(i)
hp comprises jobs that initially

have a higher priority than job Ji. Similarly, after Ji is
assigned a lower priority, the jobs with still lower priority

than Ji forms a set denoted by J
(i)
lp . The densely shaded

region in the middle, denoted by J
(i)
int; is the rest of jobs

that are originally assigned lower priority than Ji and then
higher than Ji after its parameter gets changed.

The entire job set can be represented as:

J
(i)
hp ∩ Ji ∩ J

(i)
int ∩ J

(i)
lp .

It is assumed that the priority order within each subset
does not change (as we restrict OCBP to try the same
order each round). We first know that Ji’s schedualbility
conditions are satisfied.

For the rest of the jobs in three sets:

• The schedulability conditions of jobs in J
(i)
hp is never

affected as lower priority jobs have nothing to do
with their priority assignment check.

• The schedulability conditions of jobs in J
(i)
int will

hold as for any job in this set, there is one less higher
priority job (Ji) after the change.

• The schedulability conditions of jobs in J
(i)
lp will

hold as well, since for them the higher priority job
set remains the same, while one of them, Ji, has
less interference than before due to the parameter
change.

We can thus claim that the job-set is OCBP-schedulable
after the parameter change of job Ji.

4. Sustainability Analysis of Multi-core
Scheduling Algorithms

We now study the sustainability properties of two mul-
tiprocessor MC scheduling algorithms.

4.1. MC2

The MC2 algorithm [12] employs a hierarchical
scheduling approach: special tasks called container tasks
are scheduled alongside the higher-criticality tasks. LO-
criticality tasks will be assigned to containers (i.e., servers)
and will use the container’s budget to execute only when the
container task is scheduled for execution in the platform.
Tasks at each criticality level are scheduled by different
intra-container schedulers, and thus according to different
scheduling policies. Four criticality levels are considered
in [12] – A, B, C, and D. Level-A tasks adopt a table-driven
approach modeled on a cyclic executive scheduler, with
tasks statically assigned to processors and scheduling tables
precomputed prior to runtime. Each processor also hosts
a level-B container, to which level-B tasks are assigned.
Partitioned EDF is used at level B, so each level B container
is served by an EDF scheduler. The periods of all level-
B tasks are required to be integer multiples of the level-A
hyperperiod, and the sum of the utilizations of all level-
A and level-B tasks must not exceed 1.0. Both level-A and
level-B tasks are guaranteed to meet their deadlines. Level-C
tasks are grouped into the Level-C container which is served
by all processors and is scheduled using global EDF. Level-
C tasks are guaranteed only for soft real-time correctness
(i.e., with bounded tardiness). G-EDF is executed on any
processor whenever some level-C task is eligible but no
higher-criticality tasks (level-A or -B) are eligible. At level
D, “best effort” jobs are scheduled by a server that is
invoked whenever a processor would otherwise be idle –
no guarantee is made to those.

Sustainability w.r.t WCET. As stated earlier, the cyclic
executive execution of level A tasks is table driven and
the execution order is determined off-line. Therefore on
decreasing WCET of a level-A task, a modified schedule is
established off-line according to which tasks are dispatched.
For an existing MC2-schedulable task set, on decreasing
the WCET of a level B task by a small value δ > 0, the
utilization of the task decreases, which results in an easier
partitioning problem to obtain a partitioned-EDF schedule.
Thus, the schedulability of the set will be maintained. For
level-C tasks, MC2 only guarantees the tardiness bound
instead of hard real-time constraints. We therefore conclude
that MC2 algorithm is schedulable w.r.t to execution time.

30

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:18 UTC from IEEE Xplore. Restrictions apply.

Sustainability w.r.t relative deadlines and periods. On
increasing the period/deadline of the task by δ, the schedu-
lability conditions should hold in order to establish sus-
tainability. Since tasks of level A are statically scheduled
while level B and C adopt partitioned-EDF and global-EDF
respectively, on increasing the deadline by a small value δ,
the schedulability conditions are not affected adversely and
continue to persist.

Sustainability w.r.t criticality level. We separately consider
the cases where a task’s criticality level is lowered from A
to B, B to C, and C to D.

Level A to B: Levels A and B are criticality-
monotonically partitioned; since we have shown (theorem 1)
that criticality monotonic is not sustainable, it follows that
MC2 is not sustainable w.r.t criticality level for level-A tasks.

Level B to C: At level C, tasks are allocated at instants
when the processor is available and not consumed by tasks
of levels A and B. The following theorem is proved in the
Appendix.

Theorem 8. The MC2 scheduling algorithm is not sustain-
able with respect to the criticality-level change B → C.

Level C to D: Since no guarantee is made for level-D
task, such change is trivially sustainable (although rather
meaningless).

Overall, we conclude that MC2 is not sustainable w.r.t
criticality level in general.

4.2. MC-Fluid

In the MC Fluid scheduling algorithm [11], scheduling
occurs under a fluid scheduling model which allows for
schedules in which an individual task may be assigned a
fraction of a processor at each time instant. Each job of
each task τi is executed at a rate of θLi under LO-criticality
mode, and another at a rate of θHi after a mode switch (with
θHi = 0 for all LO tasks).

The MC-Fluid schedulability conditions [11] for a task
set τ and associated LO- and HI-mode execution rates (θLi
and θHi) is MC-schedulable under MC-Fluid if and only if
the following set of conditions:

∀τi ∈ τ, θLi ≥ uL
i (20)

∀τi ∈ τH ,
uL
i

θLi
+

uH
i − uL

i

θHi
≤ 1, (21)

∑
τi∈τ

θLi ≤ m, (22)

∑
τi∈τH

θHi ≤ m (23)

We now establish the sustainability of the MC-Fluid
scheduling algorithm with respect to different parameters.

Lemma 9. MC-Fluid is sustainable w.r.t WCET and period.

Proof. According to the definition of sustainability, on de-
creasing the WCET of a task τi (either CL

i or CH
i) and/or

increasing the time period, the schedulability conditions of
the whole task system will still hold.

To analyze sustainability w.r.t to execution amounts Ci

and time period Ti, for a task τi ∈ τL, we decrease CL
i

by a small arbitrary value and/or increase period (Ti). As a
result, all modifications can be modeled as a decrease of LO-
utilization (uL

i) by an amount of δ > 0. We then examine
the conditions one by one.

Equation (20) can be written as:

∀τi ∈ τ, θLi ≥ (uL
i − δ)

and is true for any value of τi ∈ τL.

Consider Equation (21) where τ ∈ τH , we determine
the effect of decreasing CL

i and CH
i on Equation (21). On

decreasing the value of CL
i by δ, the uL

i also decreases.
Substituting in Equation (21) we get:

∀τi ∈ τH ,
uL
i − δ

θLi
+

uH
i − (uL

i − δ)

θHi
≤ 1. (24)

In order to prove that the condition still holds, we subtract
the left hand side of Equation (24) from that of Equation
(21) and establish that it is greater than zero.

uL
i

θLi
+

uH
i − uL

i

θHi
− uL

i − δ

θLi
− uH

i − (uL
i − δ)

θHi
≥ 0

⇔ δ

θLi
− δ

θHi
≥0

⇔ δ(
1

θLi
− 1

θHi
) ≥ 0

The above equation can be easily validated since Equa-
tion (21) only considers HI-criticality tasks, where θLi ≤ θHi
holds.

It is obvious that Conditions (22) and (23) will not get
affected by utilization changes.

We can thus conclude that MC-Fluid scheduling is
sustainable w.r.t the execution time (Ci) and time period
(Ti).

Lemma 10. MC-Fluid is sustainable w.r.t criticality levels.

Proof. To check the sustainability of the scheduling model
w.r.t. the criticality levels. i.e., if we change the criticality of
a task from HI to LO, then Condition (21) no longer needs
to be validated for this task. Thus if the original conditions
can be satisfied, the new condition is a strict relaxation of
it, and so will be the execution rate. Since MC-Fluid is
optimal in rate searching; i.e., whether there exist a feasible
rate assignment, MC-Fluid will find it, we claim that it is
sustainable with respect to criticality levels.

Theorem 11. MC-Fluid is sustainable w.r.t all input param-
eters.

31

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:18 UTC from IEEE Xplore. Restrictions apply.

Proof. This follows from Lemmas 9 and 10.

5. Related work

There is a significant body of research on mixed-
criticality scheduling — we have briefly discussed several
uniprocessor and multiprocessor scheduling algorithms in
earlier sections of this (paper [8] has a comprehensive
survey). However, to our knowledge this is the first work to
address sustainability issues in mixed-criticality scheduling.

The formal concept of sustainability was introduced by
Baruah and Burns [4], [7]. Prior work on this topic has
focused upon sustainability analysis of periodic and sporadic
(non-MC) task systems in uniprocessors, and demonstrated
that numerous known schedulability tests in preemptive
uniprocessor scheduling are not sustainable. The sustain-
ability properties of global scheduling algorithms that em-
ploy sporadic task model such as EDF, Earliest-Deadline
with Zero-Laxity and fixed priority scheduling are inspected
against several parameters such as decreased execution time,
later arrivals, and deadline relaxations in [2].

6. Conclusion

Sustainable schedulability tests ensure that a system that
has been successfully verified will meet all its deadlines
at run-time even if its operating parameters change for the
better during system run-time. It has been argued [2], [7] that
from an engineering perspective, sufficient and sustainable
tests are more useful than exact but non-sustainable tests.
Here we have analyzed, for the first time, the sustainability
properties of a variety of widely studied mixed-criticality
scheduling algorithms. While all are sustainable with respect
to the parameters WCET, period, and deadline, which MC
models “inherit” from traditional (i.e., non-MC) models, it
turns out that Criticality-Monotonic and MC2 schedulability
analysis are not sustainable with respect to criticality level.

We have restricted attention here to sustainability of
scheduling algorithms and schedulability tests where pa-
rameter changes occur prior to run-time. There is another
aspect to sustainability, dealing with dynamic changes to
parameters during run-time. It would be interesting to study
sustainability properties of mixed-criticality scheduling al-
gorithms under such a dynamic interpretation.

ACKNOWLEDGMENTS

The authors would like to thank Alan Burns and Hao-
han Li for the fruitful discussions. This research has been
supported in parts by NSF grants CNS 1409175 and CPS
1446631, AFOSR grant FA9550-14-1-0161, ARO grant
W911NF-14-1-0499, a startup grant from Missouri S&T,

and a grant from the Intelligent System Center of Missouri
S&T.

References

[1] N. C. Audsley. On priority assignment in fixed priority scheduling.
Information Processing Letters, 79(1):39–44, 2001.

[2] T. P. Baker and S. K. Baruah. Sustainable multiprocessor scheduling
of sporadic task systems. In Proceedings of the 21st Euromicro
Conference on Real-Time Systems (ECRTS), pages 141–150, 2009.

[3] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-
Spaccamela, S. van der Ster, and L. Stougie. The preemptive unipro-
cessor scheduling of mixed-criticality implicit-deadline sporadic task
systems. In Proceedings of the 24th Euromicro Conference on Real-
Time Systems (ECRTS), 2012.

[4] S. Baruah and A. Burns. Sustainable scheduling analysis. In
Proceedings of the 27th IEEE Real-Time Systems Symposium (RTSS),
pages 159–168, 2006.

[5] S. Baruah, A. Burns, and R. Davis. Response-time analysis for
mixed criticality systems. In Proceedings of the 32nd IEEE Real-
Time Systems Symposium (RTSS), 2011.

[6] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable
mixed-criticality systems. In Proceedings of the 16th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2010.

[7] A. Burns and S. Baruah. Sustainability in real-time scheduling.
Journal of Computing Science and Engineering, 2(1):74–97, 2008.

[8] A. Burns and R. Davis. Mixed criticality on controller area network.
In Proceedings of the 25th Euromicro Conference on Real-Time
Systems (ECRTS), pages 125–134, 2013.

[9] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. How realistic is
the mixed-criticality real-time system model? In Proceedings of the
23rd International Conference on Real Time and Networks Systems
(RTNS), pages 139–148, 2015.

[10] P. Graydon and I. Bate. Safety assurance driven problem formulation
for mixed-criticality scheduling. Proceedings of the Workshop on
Mixed Criticality (WMC), pages 19–24, 2013.

[11] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and
I. Lee. Mc-fluid: Fluid model-based mixed-criticality scheduling on
multiprocessors. In Proceedings of the 35th IEEE Real-Time Systems
Symposium (RTSS), pages 41–52. IEEE, 2014.

[12] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and
J. A. Scoredos. Mixed-criticality real-time scheduling for multicore
systems. In Proceedings of the 10th IEEE International Conference
on Computer and Information Technology (CIT), pages 1864–1871,
2010.

[13] M. Paulitsch, O. M. Duarte, H. Karray, K. Mueller, D. Muench, and
J. Nowotsch. Mixed-criticality embedded systems–a balance ensuring
partitioning and performance. In Proceedings of the 2015 Euromicro
Conference on Digital System Design (DSD), pages 453–461, 2015.

[14] S. Baruah and A. Burns. Towards a more practical model for
mixed criticality systems. In Proceedings of the Workshop on Mixed-
Criticality Systems (WMC), 2014.

[15] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proceedings of the
28th IEEE Real-Time Systems Symposium (RTSS), 2007.

32

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:18 UTC from IEEE Xplore. Restrictions apply.

Appendix

Proof of Theorem 8: The MC2 scheduling algorithm is
not sustainable with respect to criticality levels.

Proof. Consider the multi-criticality task-set shown in Ta-
ble 3. We first show that the given example is MC2-
schedulable.

Calculating UC
i for each task:

UC
1 = 1−

(1
5
+

1

10
+

6

10
+

1

20

)
=

1

20

UC
2 = 1−

(3

20
+

2

10
+

2

10
+

1

5

)
=

5

20

UC
3 = 1−

(3

10
+

3

20
+

2

10
+

1

10

)
=

5

20

Substituting in Equation (25),

1

20
+

2

20
+

1

20
=

4

20
<

11

20

Substituting in Equation (26),

11

20
− 2 ·

(1

20

)
−
(1

20
+

2

20

)
> 0

The tardiness is thus bounded at level C.
The next step is to decrease the criticality level of task

τ7 from B to C, and check if the schedulability condition
(tardiness bounds) still holds. The schedulability conditions
are given in Equations (25) and (26). On substituting the
values from the table,

UC
1 = 1−

(1
5
+

1

10
+

1

20

)
=

13

20

UC
2 = 1−

(3

20
+

2

10
+

2

10
+

1

5

)
=

5

20

UC
3 = 1−

(3

10
+

3

20
+

2

10
+

1

10

)
=

5

20

Substituting in Equation (25),

1

20
+

2

20
+

1

20
+

6

10
=

16

20
<

23

20

Substituting in Equation (26),

23

20
− 2 ·

(6

10

)
−
(6

10
+

2

20

)
≯ 0

The second tardiness bound Condition (26) does not hold.
Thus we conclude that the MC2 scheduling policy is not
sustainable w.r.t. criticality levels.

The example above illustrates the non-sustainability of
MC2 upon changes in criticality level – a task’s criticality
decreasing from level B to level C rendered a schedulable
system unschedulable. We now provide some insight into
why sustainability failed to hold in our example.

There are two conditions to demonstrate that the tardi-
ness is bounded [12]. The first condition is:

∑
i:χi=C

uC
i ≤

m∑
k=1

(1− uAB
(k)), (25)

where τAB
(k) denotes the set of tasks on processor k above

level C, and 1−uAB
(k) is the available utilization on processor

k after assigning level-A and level-B tasks. Thus, when
changing the criticality level from B to C, the task is added
to the level-C container (serving by all the processors).
The increase in utilization available for level C tasks
is proportional to the drop in uAB

(k) (utilization of tasks

in level A and B). Thus the Equation (25) is always satisfied.

However, the second condition for the tardiness bound
for level-C may not hold as we make such changes, which
is originally given by:

m∑
k=1

(1− uAB
(k)) > (m− 1) · max

i:χi=C
uC
i + UC

max(m−1). (26)

Here UC
max(m−1) denotes the sum of the m-1 largest uC

i

values of tasks Ti which belong to task system τ . It is
possible that the task of interest, whose criticality level is
changed from B to C, has a maximum very high utilization
value, such that the increase in right hand side of Equation
(26) is much more significant than the gain on the left hand
side (difference by m-2 times its utilization), leading to a
violation of the condition.

Task τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14 τ15
Crit. A A A A A A B B B B B B Global(C) Global(C) Global(C)

CPU 1 1 2 2 3 3 1 1 2 2 3 3 1 2 3

Ti 5 10 10 5 10 10 10 20 20 10 10 20 20 20 20

CA
i 3 4 4 3 6 4 - - - - - - - - -

CB
i 1 1 2 2 2 1 6 2 4 3 4 6 - - -

CC
i 1 1 2 1 2 1 6 1 3 2 3 3 1 2 1

TABLE 3: A mixed-criticality task-set which is not sustainable under MC2 scheduling policy.

33

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:18 UTC from IEEE Xplore. Restrictions apply.

