
HAL Id: hal-02003409
https://hal.science/hal-02003409

Submitted on 15 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Mixed-Criticality Scheduling with Limited HI-Criticality
Behaviors

Zhishan Guo, Luca Santinelli, Kecheng Yang

To cite this version:
Zhishan Guo, Luca Santinelli, Kecheng Yang. Mixed-Criticality Scheduling with Limited HI-Criticality
Behaviors. SETTA - Symposium on Dependable Software Engineering, Sep 2018, Pékin, China.
�10.1007/978-3-319-99933-3_13�. �hal-02003409�

https://hal.science/hal-02003409
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Mixed-Criticality Scheduling with Limited

HI-Criticality Behaviors⋆

Zhishan Guo1,2, Luca Santinelli3, and Kecheng Yang4,5

1 University of Central Florida, USA
2 Missouri University of Science and Technology, USA

3 ONERA - Toulouse, France
4 Texas State University, USA

5 University of North Carolina at Chapel Hill, USA
guozh@mst.edu luca.santinelli@onera.fr yangk@cs.unc.edu

Abstract. Due to size, weight, and power considerations, there is an
emerging trend in real-time embedded systems design towards imple-
menting functionalities of different levels of importance upon a shared
platform, or implementing Mixed-Criticality (MC) systems. Much exist-
ing work on MC scheduling focuses on the classic Vestal model, where
upon a mode switch, it is pessimistically assumed that all tasks may
simultaneously exceed their less pessimistic execution time estimations,
or lo-WCETs. In this paper, a less pessimistic MC model is proposed
for system designers to specify the maximum number of tasks that may
simultaneously exceed their lo-WCETs. The applicability and schedula-
bility of the classic EDF-VD scheduler under this newly proposed model
are studied, and a new schedulability test is presented. Experiments
demonstrate that, by applying the proposed model and new schedulabil-
ity test, significantly better schedulability can be achieved.

1 Introduction and Motivation

The Worst-Case Execution Time (WCET) abstraction models the execution
behavior of real-time tasks. Given a piece of code to execute upon a specified
platform, the WCET is an upper bound to the time duration needed to finish
the execution of a single invocation of that piece of code. Unfortunately, even
when severe restrictions are placed upon the structure of the code e.g., known
loop bounds, it is still difficult to determine the exact WCET. Furthermore,
the occurrence of the WCET is usually extremely unlikely, unless under highly
pathological circumstances such as faults.

In order to utilize the significant gap between the actual running time and the
WCET, it has been proposed to implement functionalities of different degrees
of importance (or criticalities) upon a shared platform. Under such design, for
each of the more important tasks, a less pessimistic execution time estimation is

⋆ Supported by NSF grants CNS 1755965, CNS 1563845, and CNS 1717589, ARO
grant W911NF-17-1-0294, and fundings from General Motors and Center for Ad-
vancing Faculty Excellence of the University of Missouri System.



Z. Guo et al.

also provisioned in addition to the most pessimistic WCET. When the more
important tasks actually complete by these less pessimistic estimations, less
important tasks are allowed to execute as well, so that processor capacities are
not wasted. In contrast, in occasional situations where the more important tasks
execute beyond their less pessimistic estimations, the less important tasks may
be dropped. In order to validate systems under this design approach, Mixed-
Criticality (MC) scheduling techniques are needed.

Prior research on MC scheduling (see [7] for an up-to-date review) focused
on the Vestal model [15], which assigns multiple WCET estimations for each
individual task. Typically, in the two-criticality-level case, each task is designated
as being of either higher (hi) or lower (lo) criticality. Two WCETs are specified
for each hi-criticality task: a lo-WCET and a larger hi-WCET which could
be larger than the lo-WCET by several orders of magnitude. One WCET is
specified for each lo-criticality task: the lo-WCET.

The Vestal model defines two system modes, each associated with different
guarantees. In the normal mode, every hi-criticality task completes its execution
by its lo-WCET, and each lo-criticality task should be guaranteed to execute up
to its lo-WCET as well. On the other hand, whenever any hi-criticality task does
not signal its completion after exhausting its lo-WCET, a system mode switch
will be triggered; in the new mode, all of the lo-criticality tasks are dropped
in order to guarantee every hi-criticality task to execute up to its hi-WCET. In
this traditional MC Scheduling model, all hi-criticality tasks may simultaneously
exceed their lo-WCETs, requiring executions up to their hi-WCETs in the new
mode.

Motivation. However, in some cases, this assumption about the execution of
hi-criticality tasks in the classic Vestal model could be too pessimistic. Indeed,
having all hi-criticality tasks simultaneously exceeding their lo-WCETs could
be non-representative of many real-world real-time embedded systems.

The following two pieces of codes shown in Figure 1 is a toy example to
illustrate this motivation in more details.

task Anti Frozen {

f1();

t = temperature();

if (t < 0) {

f2();

}

if (t < -20) {

f3();

}

}

task Over Heat {

g1();

t = temperature();

if (t > 50) {

g2();

}

if (t > 80) {

g3();

}

}

Fig. 1. Two example tasks in a safety critical system.



Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors

Let us assume both tasks are hi-criticality tasks as they perform some impor-
tant safety features of the system, dealing with either frozen (task Anti Frozen)
or over-heating (task Over Heat) situation. Under normal circumstances, ac-
tions in f2() and g2() are more than enough to bring the ambient temperature
(around the platform) back to normal range (0 to 50), such that f3() and g3()

will not need to be executed. As a result, we may assign lo-WCET of task
Anti Frozen as the maximum time to execute f1() and f2(); hi-WCET of
task Anti Frozen as the maximum time to execute f1(), f2(), and f3(); lo-
WCET of task Over Heat as the maximum time to execute g1() and g2(); and
hi-WCET of task Over Heat as the maximum time to execute g1(), g2(), and
g3().

A straightforward observation is that, even under extreme situations, only
one of the above two tasks will need to execute their final if branches; i.e.,
there will not be any time instant that both tasks require executions of their
hi-WCETs simultaneously. As a result, any analysis following the Vestal model
is over pessimistic in this example, as it will need to take the impossible case
into consideration, where both tasks exceed their lo-WCETs at the same time.

Note that, when all hi-criticality tasks simultaneously exceed their lo-WCET
due to certain system degradation or failure, it is computationally more efficient
to characterize such behaviors with the MC varying speed model [5, 6, 9–11],
which better represents the uncertainties arising from the executing speed of
the platform, rather than with Vestal model by using multiple estimations of
WCETs (due to the NP-hardness[1]).

Contribution. In this work, we propose a new MC system model to cope with
more realistic assumptions for real-time embedded systems. The proposed model
is more general than the existing well-studied Vestal model in the sense that it
allows a system designer to specify the number of hi-criticality tasks that can
exceed their lo-WCET simultaneously. We then analyze how this additional
specification could impact the schedulability and develop an MC scheduler for
this new model. We finally conduct schedulability experiments and compare the
results from our scheduler and a classic MC scheduler, namely EDF-VD. The
advantages from having only subsets of hi-criticality tasks exceeding their lo-
WCET thresholds simultaneously are validated by these experimental results.

Organization. Section 2 describes the proposed MC system model. Section 3
adapts an existing scheduler for the problem, and proves its correctness. Section 4
evaluates the performance of the proposed scheduler under various parameter
settings, and compares it with an existing MC task scheduler. Section 5 concludes
the work and points out some future directions.

2 Model and Definitions

Mixed-Criticality Tasks. A MC periodic task set τ is specified as a finite
collection of MC periodic tasks, each of which generates an unbounded number
of MC jobs. Each task τi has a period, Ti, modeling the time separation between



Z. Guo et al.

two consecutive jobs of this task, and each job of τi has to complete its execution
by Di time units. In this paper, the tasks are assumed to have implicit deadlines,
i.e., Di = Ti. The integer time model is also assumed—all task periods are non-
negative integers and all job arrivals occur at integer time instants.

We consider a uniprocessor system where all tasks execute on and share the
single processor, while the scheduler determines how it is shared.

A task exhibits lo-criticality behavior if all of its jobs complete execution by
its lo-WCET. In contrast, a task is in hi-criticality behavior if any of its jobs
requires an execution longer than its lo-WCET, but no more than its hi-WCET.
Any other behavior is considered erroneous.

A hi-criticality task τi can be specified by τi = ([ci(lo), ci(hi)], Ti). Ti is
the period and the relative deadline of task τi; [ci(lo), ci(hi)] is the tuple of
WCET estimations, ci(lo) for the lo-WCET and ci(hi) for the hi-WCET, where
ci(lo) ≤ ci(hi).

A lo-criticality task τj is represented with two parameters τj = (cj(lo), Tj).
Tj is the period and the deadline of the task and cj(lo) characterizes the lo-
criticality mode worst-case execution time. For lo-criticality tasks only the lo-
criticality behavior is possible.

The twoWCETs specified for each hi-criticality task τi may come from timing
analysis tools with different levels of pessimism:

– ci(lo), which is determined by a less pessimistic timing analysis tool (or with
less guarantees of being the worst-case for any possible execution condition)
— a hi-criticality task may require an execution length of more than c(lo);
and

– ci(hi), which is sometimes larger than the lo-WCET by several orders of
magnitude — it may be determined by a more conservative timing analysis,
and it presents the worst-case execution time for any possible execution
condition the task may experience.

The utilizations of tasks are defined for hi- and lo-criticality tasks respec-
tively. Each hi-criticality task has two associated utilizations—one in each mode,
whereas each lo-criticality task has only one associated utilization as follows:

– Uhi
hi

(τi) = ci(hi)/Ti - hi-criticality task utilization in hi-criticality mode;
– Ulo

hi
(τi) = ci(lo)/Ti - hi-criticality task utilization in lo-criticality mode;

– Ulo
lo

(τi) = ci(lo)/Ti - lo-criticality utilization.

Mixed-Criticality Systems. An MC system is defined to run under two pos-
sible modes: a normal mode (lo-criticality mode) where every job completes
upon executing for no more than its lo-WCET and a hi-criticality mode where
some hi-criticality job executes for more than its lo-WCET but imperatively
completes upon execution for no more than its hi-WCET.

The system mode will be switched from lo-criticality mode to hi-criticality
mode if any hi-criticality task has exhausted its lo-WCET but has not com-
pleted. Only hi-criticality tasks are guaranteed to be met their deadlines under
hi-criticality mode.



Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors

Definition 1 (MC Task Instance) A MC task instance I is composed of an
MC task set τ = {τ1, τ2, . . . , τn}, where both hi-criticality tasks and lo-criticality
tasks may be in τ . nhi denotes the number of hi-criticality tasks in τ , and nhi ≤ n.
Each hi-criticality task τi is represented as τi = ([ci(lo), ci(hi)], Ti), while each
lo-criticality tasks τj is represented as τj = (cj(lo), Tj).

The notion of utilization difference for hi-criticality tasks is defined as follows.

Definition 2 (Utilization Difference) The utilization difference of a hi-criticality
task τi is defined by

δi =
ci(hi)− ci(lo)

Ti

. (1)

We assume that the tasks are indexed by criticality—from hi-criticality ones
to lo-criticality ones; and hi-criticality tasks are indexed by utilization difference—
the larger the utilization difference the lower the index, and utilization differ-
ence ties are broken arbitrarily. That is, the hi-criticality tasks are indexed
1, 2, . . . , nhi, and δi ≥ δj for any 1 ≤ i ≤ j ≤ nhi.

Then, the per mode utilizations of either criticality task set are defined:

Uhi
hi =

nhi∑

i=1

ci(hi)/Ti; (2)

Ulo
hi =

nhi∑

i=1

ci(lo)/Ti; (3)

Ulo
lo =

n∑

i=nhi+1

ci(lo)/Ti. (4)

Mixed-Critical Scheduling. The MC scheduling objective is to determine a
run-time scheduling strategy which ensures that: i) all jobs of all tasks complete
by their deadlines if no job exceeds its lo-WCET; ii) all jobs of tasks designated
as being of hi-criticality continue to complete by their deadlines (although the
lo-criticality jobs may not) if any hi-criticality job requires execution for more
than its lo-WCET (but no larger than its hi-WCET) to complete.

Limited hi-Criticality Behaviors. As motivated in Sec. 1, in some systems,
it could be reasonable to assume that only a limited number N of hi-criticality
tasks that may exceed their lo-WCET and reach their hi-WCET simultane-
ously, where N ≤ nhi. In contrast, existing MC analysis usually makes the most
pessimistic assumption that all of the nhi hi-criticality tasks may execute be-
yond their lo-WCET and reach its hi-WCET simultaneously. Even if this could
actually happen, it can also be viewed as a special case (N = nhi) under the
new MC model we propose in this paper By saying simultaneously (or ”at the
same time”), we mean within any time window of length T = maxi{Ti}

6. That

6 When considering a certain time window of length T , any task τi with a partially
overlapping scheduling window that experience hi-criticality behavior counts (al-



Z. Guo et al.

is, at most N hi-criticality tasks can require an execution time larger than their
ci(lo) within any time window of length T . Again, please note that the Vestal
model is a special case of our model, by assigning N = nhi.

Determine N . In this paper, we generally assume that the parameter N is
a parameter given offline, instead of to be determined online by the scheduler.
That is, how to determine N is not the focus of this paper, and we mainly focus
on the problem of how to schedule the tasks with a valid schedulability test
when N is given as an input parameter. Nonetheless, for the sake of inspiring
future work, we also briefly discuss a couple of potential sources for where the
N parameter could come from.

First, it could come from physical constraints in the systems. Different set
of hi-criticality tasks may be triggered to perform their hi-criticality behaviors
by different physical measurements. Such difference may be significant enough
so that they cannot have simultaneous impacts on the system.

Second, it could come from contradicting logic control flows in the code.
When the code of tasks has branches, which branch is chosen to execute may
depend on some global variables. Different task might have the same global
variables in their code, and the same global variables control the branch choices in
multiple tasks. As a result, it could be logically impossible for some hi-criticality
tasks to take their worst branch choices simultaneously. That is, they cannot
have their hi-criticality behaviors to have simultaneous impacts on the system.

Third, it could also come from probabilistic analysis if the WCETs of hi-
criticality tasks are independent [8]. In this approach, the probability of multiple
hi-criticality tasks performing hi-criticality behaviors could be calculated as a
product of multiple (hopefully small) probabilities for each individual task to
perform its hi-criticality behavior. When this product is sufficiently small, the
simultaneous hi-criticality behaviors of these tasks could be probabilistically
deemed impossible.7 This setting was also considered in [12, 14], which more
focuses on the various detailed combinations of tasks that may not perform their
hi-criticality behaviors. Therefore, a somewhat complicated scheduling approach
was studied there. In this paper, we mainly focused on the maximum number
of such tasks only, and therefore enable the applicability of the relatively simple
scheduler, EDF-VD.

3 EDF-VD Schedulability Analysis

In this section, we review a commonly used and adapted MC scheduler, namely
EDF-VD [2], which was proposed for the classic Vestal model. We will refine the
original analysis of EDF-VD to cope with our less pessimistic assumptions, and
derive a new schedulability test for EDF-VD under the new model proposed in
this paper.

though it may be already finished by the beginning of the period of interest, or it
did not start executing by the end of the period of interest).

7 Or equivalently, even if it does happen, it is viewed as erroneous, and the system
design does not take care of it.



Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors

EDF-VD. Similar to the classic EDF scheduler, EDF-VD is a deadline-based,
dynamic-priority scheduler. In contrast to EDF, EDF-VD assigns virtual dead-
lines, which are earlier than the actual deadlines, to hi-criticality jobs. In the
runtime, their priorities are determined by their virtual deadlines in the lo-
criticality mode; upon a mode switch, their priorities are changed back to their
actual deadlines in the hi-criticality mode. Intuitively, the virtual deadlines in
the lo-criticality mode provide the room for the hi-criticality tasks to still meet
their actual deadlines in the hi-criticality mode, when they occasionally overrun
their lo-WCETs.

Let τ denote the MC implicit-deadline sporadic task system that is to be
scheduled on a preemptive uniprocessor. Prior to run-time, EDF-VD performs
a schedulability test to determine whether τ can be correctly scheduled by it or
not. If τ is deemed schedulable, then an additional parameter x is computed for
setting virtual deadlines to hi-criticality tasks. Each virtual relative deadline T ′

i

can be calculated by “shrinking” the actual relative deadline Ti by the scaling
factor x.

Next, we describe a schedulability test for EDF-VD under the proposed new
model and prove its correctness. Note that, when N = nhi, this schedulability
test reduces to the one for the classic Vestal model in [2].
Schedulability test. First, given an MC task instance, the parameter x is
calculated as follows:

x←
Ulo
hi

1− Ulo
lo

. (5)

By Theorem 1 (to be presented later), this assignment of x will be able to
guarantee the schedulability under lo-criticality mode.

Then, the schedulability under hi-criticality mode can also be guaranteed if
the following inequality holds:

xUlo
lo + Ulo

hi +

N∑

i=1

δi ≤ 1. (6)

That is, given an MC task instance, the schedulability test needs to check
whether Inequality (6) is satisfied.

The schedulability test returns success if Inequality (6) is satisfied, and failure
otherwise.

Upon success, EDF-VD assigns virtual deadline parameters for all hi-criticality
tasks as follows:

T ′
i ← x · Ti. (7)

Correctness proof. The correctness proof of the above schedulability test con-
tains two parts: (i) all deadlines being met under lo-mode (Theorem 1) and (ii)
hi-criticality deadlines under hi-mode (Theorem 2).



Z. Guo et al.

Theorem 1 Under EDF-VD, all tasks meet their deadlines in lo-mode (where
all jobs complete upon receiving execution time up to their lo-WCETs) if

x ≥
Ulo
hi

1− Ulo
lo

. (8)

Proof: By the density test in [13], Ulo
lo

+Ulo
hi

/x ≤ 1 is sufficient to ensure that
EDF-VD successfully schedules all lo-criticality behaviors of τ . Theorem follows
by rearranging this inequality. �

Lemma 1 For any period of length t, total demand by hi-criticality tasks can
not exceed (Ulo

hi
+
∑N

i=1 δi)t.

Proof: It is assumed that hi-criticality tasks are ordered (decreasingly) accord-
ing to their δi values. Consider the scenario that tasks τ1, ..., τN requires for
executions more than its ci(lo), than it is obvious that the total demand by

hi-criticality tasks can not exceed (Ulo
hi

+
∑N

i=1 δi)t.
We prove by contradiction. Assume there is another scenario with total de-

mand larger than the above mentioned case. We can always identify the difference
between this new release pattern with the one we have – by “replacing” one job
that is released by one of the tasks from τ1, ..., τN by a job released by some
task other than τ1, ..., τN , one at a time. We can not directly add any task since
we have reached the maximum number (N) of tasks that can require demands
higher than their lo-WCETs. However, since tasks are ordered by their δi values
decreasingly, the demand of new tasks in the period of interest (between the re-
lease and the deadline of the job being replaced) cannot exceed the one created
by the original job. Therefore, such “swaps” will always result into a decreasing
of the total demand, which contradicts our assumption. �

Theorem 2 Under EDF-VD, all hi-criticality tasks meet their deadlines in hi-
mode if Inequality (6) holds. In the hi-mode, some but no more than N hi-
criticality job(s) have not completed upon receiving execution time up to their lo-
WCETs but will complete upon receiving execution time up to their hi-WCETs.

Proof: It is assumed that the reader is familiar with the correctness proof for
EDF-VD in [2], so we will skip many parts of the proof that will look identical.
We also adopt all notations there: tf as the first hi-criticality deadline that is
missed, 0 as the last idle instant before tf , t

∗ < tf as the mode switch point, ηi
denote the amount of execution over the interval [0, tf ) that is needed by jobs
generated by task τi. a1 as the release time of the job with the earliest release
time amongst all those that execute in [t∗, tf ), and ηi.

The proofs of Facts 1 and 2 remain unchanged due to the minimal set as-
sumption and the same strategy used under lo mode. Regarding Fact 3, here
we calculate the maximum total hi-criticality demand over [0, tf ) instead, and
then sum the cumulative demand of all the tasks over [0, tf ).



Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors

From Lemma 1 we know that during interval [a1, tf ), the total hi-criticality

demand will not exceed (tf − a1)(U
lo
hi

+
∑N

i=1 δi). As a result, we have the
following upper bound for cumulative demand of all hi-criticality tasks over
[0, tf ):

∑

χi=hi

ηi ≤
a1
x
Ulo
hi + (tf − a1)(U

lo
hi +

N∑

i=1

δi). (9)

From the infeasibility of the instance (due to deadline miss at tf ), we have

a1 + (tf − a1)(xU
lo
lo + Ulo

hi +

N∑

i=1

δi) > tf (10)

⇔ (tf − a1)(xU
lo
lo + Ulo

hi +

N∑

i=1

δi) > tf − a1 (11)

⇔ xUlo
lo + Ulo

hi +

N∑

i=1

δi > 1 (12)

The contrapositive is exactly Inequality (6), which is sufficient to ensure hi-
criticality schedulability by EDF-VD. �

Runtime behavior. During runtime, if a lo-criticality job of task τi arrives at
time-instant ta, then the priority of this job is determined by its deadline ta+Ti,
whereas its priority will be determined by its virtual deadline ta + T ′

i if it is a
hi-criticality job. If any hi-criticality job executes for a duration exceeding its
lo-WCET without signaling completion, the scheduler immediately discards all
lo-criticality jobs8 and executes hi-criticality hi-criticality tasks according to
EDF order with their actual (instead of virtual) deadlines. Moreover, idleness
always serves as the trigger to lo-criticality mode of the system.

Additional discussions. Under the MC scheduling approach, lo-criticality
jobs will be dropped in the hi-criticality mode, and any hi-criticality job over-
running its lo-WCET will trigger the mode switch. With the proposed model,
this dropping may not be necessary. The following inequality should be examined
before the system starts any execution:

Ulo
lo + Ulo

hi +

N∑

i=1

δi ≤ 1. (13)

If Inequality (13) is true, then actually no mode switch nor virtual deadline is
needed. The system can be scheduled by ordinary preemptive EDF scheduler
and all deadlines will be met. This result directly follows from Lemma 1. If
Inequality (13) is false, we then apply the MC scheduling techniques described
earlier in this section, and examine Inequality (6) to verify the schedulability.

8 An efficient implementation of such a run-time dispatcher may be obtained using
the technique described in [2, Sec. V-A], to have runtime that is logarithmic in the
number of tasks.



Z. Guo et al.

4 Experimental Evaluation

In Section 2, we have proposed a new MC system model that specifies the max-
imum number of tasks N that can simultaneously experience hi-criticality be-
haviors within any time window of length maxi{Ti}. With this additional infor-
mation in the model comparing to the classic Vestal model, we are expecting a
“better” schedulability result for EDF-VD under the new model.

In this section, we conduct schedulability experiments to evaluate the ef-
fectiveness of the proposed model against the classic Vestal model. Various per-
mode utilizations as well as N ’s are considered in our experiments. The MC task
instances in our experiments are generated by the MC task generator described
in [3], which has passed artifact evaluation.

In each set of our experiments, the average normalized utilization [4] of the
generated task set range from 0.5 to 1 with increasing at step size 0.05. For
every average utilization, 1000 task sets are generated and the acceptance ratio
indicates how many of them passed the corresponding schedulability test (and
thus can be scheduled correctly).

Figures 2, 3, and 4 demonstrate the effectiveness of the new model along
with the corresponding EDF-VD schedulability test under various settings of
numbers of hi-criticality tasks (16, 32, and 64) and sizes of N (i.e., number of
hi-criticality tasks that can simultaneously exceed lo-WCETs. It is natral that
the acceptance ratios will drop when system is more heavily loaded (with higher
utilization). However, we notice that our methods maintains relatively higher
acceptance ratio even when normalized utilization gets close to 1.

These results also show that, if less pessimistic assumptions (about the N)
can be made, the schedulability can be significantly increased. We do not notice
much different in the trends when total number of hi-criticality tasks varies.

5 Conclusion

This paper extends the classic Vestal model for MC scheduling by allowing sys-
tem designers to specify an additional parameter, representing the maximum
number of hi-criticality tasks that may simultaneously exceed their lo-WCETs
during runtime. By simultaneously, we mean within any sliding time window
of length less than or equal to the maximum period among all tasks. The well-
known scheduler, namely EDF-VD, has been studied under the proposed model,
and a new schedulability test has been proposed and analyzed. Schedulability
experiments have demonstrated that by applying the proposed model in place of
the classic Vestal model, significant schedulability improvements can be achieved.

For future work, we would like to consider fixed-priority schedulers under
the proposed model, in addition to the deadline-based scheduler, EDF-VD, we
considered in this paper. The results may also be extended (at a measurable
cost) into multi-processor and/or multi-criticality-level cases.



Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Normalized Utilization Bound

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

Our Model N=n
HI

/8 

Our Model N=n
HI

/4 

Our Model N=n
HI

/2 

Vestal Model

Fig. 2. Schedulability ratio comparison of our proposed model and the classic Vestal
model under various N ’s, with nhi = 16.



Z. Guo et al.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Normalized Utilization Bound

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

Our Model N=n
HI

/8 

Our Model N=n
HI

/4 

Our Model N=n
HI

/2

Vestal Model

Fig. 3. Schedulability ratio comparison of our proposed model and the classic Vestal
model under various N ’s, with nhi = 32.



Mixed-Criticality Scheduling with Limited HI-Criticality Behaviors

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Normalized Utilization Bound

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

Our Model N=n
HI

/8 

Our Model N=n
HI

/4 

Our Model N=n
HI

/2

Vestal Model

Fig. 4. Schedulability ratio comparison of our proposed model and the classic Vestal
model under various N ’s, with nhi = 64.



Z. Guo et al.

References

1. S. Baruah. Mixed criticality schedulability analysis is highly intractable.
http://www.cs.unc.edu/~baruah/Submitted/02cxty.pdf, 2008.

2. S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der
Ster, and L. Stougie. The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems. In the 24th Euromicro Conference on
Real-Time Systems (ECRTS’12), 2012.

3. S. Baruah, A. Burns, and Z. Guo. Scheduling mixed-criticality systems to guarantee
some service under all non-erroneous behaviors. In the 28th Euromicro Conference
on Real-Time Systems (ECRTS’16), 2016.

4. S. Baruah, A. Easwaran, and Z. Guo. MC-Fluid: simplified and optimally quanti-
fied. In Proceedings of the 36th IEEE Real-Time Systems Symposium (RTSS’15),
2015.

5. S. Baruah and Z. Guo. Mixed-criticality scheduling upon varying-speed processors.
In the 34th IEEE Real-Time Systems Symposium (RTSS’13), 2013.

6. S. Baruah and Z. Guo. Scheduling mixed-criticality implicit-deadline sporadic
task systems upon a varying-speed processor. In Proceedings of the 35th IEEE
Real-Time Systems Symposium (RTSS’14), 2014.

7. A. Burns and R. Davis. Mixed-criticality systems: A review.
http://www-users.cs.york.ac.uk/~burns/review.pdf, 2016.

8. L. Cucu-Grosjean. Independence - a misunderstood property of and for (proba-
bilistic) real-time systems. Invited paper to the 60th birthday of A. Burns, 2013.

9. Z. Guo and S. Baruah. Mixed-criticality scheduling upon varying-speed multipro-
cessors. Leibniz Transactions on Embedded Systems, 1(2):3:1–3:19, 2014.

10. Z. Guo and S. Baruah. Mixed-criticality scheduling upon varying-speed multipro-
cessors. In Proceedings of the 12th IEEE International Conference on Dependable,
Autonomic and Secure Computing (DASC’14), 2014.

11. Z. Guo and S. Baruah. The concurrent consideration of uncertainty in WCETs and
processor speeds in mixed-criticality systems. In the 23rd International Conference
on Real-Time and Network Systems (RTNS’15), 2015.

12. Z. Guo, L. Santinalli, and K. Yang. EDF schedulability analysis on mixed-criticality
systems with permitted failure probability. In Proceedings of the 21st IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA’15), 2015.

13. J. Liu. Real-Time Systems. Prentice-Hall, 2000.
14. L. Santinalli and Z. Guo. A sensitivity analysis for mixed criticality: Trading

criticality with computational resource. In Proceedings of IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA’18), 2018.

15. S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In the 28th IEEE Real-Time Systems Symposium
(RTSS’07), 2007.


