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ABSTRACT
With the increasing number of cores in processors, shared resources

like caches are interfering task execution behaviours more heavily

and often render global scheduling approaches infeasible in practice.

While partitioned scheduling alleviates such interference, in most

existing partitioned approaches, constant WCET, which potentially

includes all possible interference, must be statically pre-determined

prior to the partitioning processes. In this paper, we show that

by taking inter-task interference into consideration when mak-

ing scheduling decisions, resource efficiency can be significantly

improved in both temporal and spatial domains for multi/many-

core real-time systems. In particular, we propose the inter-task

interference matrix (ITIM) to model the inter-task cache/memory

interference in a pair-wise manner. Focusing on the problem of

interference-aware partitioned scheduling with ITIM, we formalize

it as a mixed integer linear program (MILP), which can be solved to

achieve optimal solution at the cost of high computational complex-

ity. Meanwhile, we also provide several polynomial-time algorithms

to solve the problem approximately. We extensively profile a set of

WCET benchmark programs on x86-based multiprocessor server to

collect ITIM. The algorithms are evaluated comprehensively, and

the evaluation results demonstrate the superior performance of the

proposed approaches under various settings.

1 INTRODUCTION
With the growing gap between the speeds of memory and process-

ing cores, incorporating more cores within processor chips becomes

a dominant trend. In fact, single-core processors are predicted to

be obsolete in a few years. Multi-core systems allow hiding the

memory latency through parallel threads and many applications

running concurrently. Moreover, multi-core processors allow ef-

ficient data sharing through shared last-level caches (LLCs) and

memory modules. Multi-core processors have been designed with

area and power efficiency in mind, and thus many hardware re-

sources are shared between cores within the processor chip. While

such sharing allows more efficient use of caches for shared memory

multi-threaded applications, it also introduces new sources of con-

tentions that can impact the timing of real-time tasks. As real-time

systems typically require worst-case guarantees in their temporal
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behaviours, the growing interference with huge variations must

be modelled and taken care of in system verification. In fact, ac-

counting for such contentions and preventing them from causing

inter-task interference becomes a strict requirement when multi-

core processors are employed in avionic systems and safety-critical

applications, where strict certification and testing requirements are

mandated.

In real-time scheduler design, there are two fundamental ap-

proaches: global scheduling and partitioned scheduling. Global

scheduling algorithms have a simple single ready-queue implemen-

tation and solid, classic theoretical schedulability results [6] [8].

However, the run-time behaviours of tasks may be unpredictable

due to the flexibility of migrations. Both the observed run-time over-

heads [7] and the provisionedworst-case execution time (WCET) [28]

may be unacceptably large under global scheduling, and this effect

becomes more severe as the number of cores and the number of

tasks grow. In addition, the 1/m-based analyses [6] [8] for global

scheduling algorithms have recently been shown to be ineffective,

even theoretically compared to a very simple partitioned scheduling

heuristic [10]. On the other hand, under partitioned scheduling (e.g.,

Partitioned Earliest-Deadline-First (P-EDF) [14] and Partitioned

Rate Monotonic (P-RM) [25]), tasks are statically assigned to pro-

cessors and a particular uniprocessor scheduler (e.g., uniprocessor

EDF or RM) is applied on each individual processor. Therefore task

behaviours under partitioned scheduling become simpler than that

under global scheduling. A natural question arises: does partitioned

scheduling solve the aforementioned issues about interference on

multiprocessor platforms? Unfortunately, the answer is complicated

and in general “no”.

With partitioned scheduling, tasks can be delayed due to con-

tention on shared resources that are shared by cores. Such con-

tention makes it hard to predict task execution times [30]. In order

to eliminate inter-core interference, the state-of-art techniques for

partitioned scheduling typically implement a certain level of isola-

tion between processors and/or tasks for shared resources. Particu-

larly, shared (last level) caches are one of the most commonly shared

hardware resources by cores, and are partitioned via cache hard-

ware features (e.g., set partitioning [32] and way allocation [15]).

Many existing works partitions the last-level cache so that each
task has a dedicated portion of the shared cache [18] [4] [23]. While

these techniques reduce the inter-core cache interference into (al-

most) the minimum level, they limit the share of each task and cause

under-utilization of cache; cache partitioning typically assumes the

maximum cache occupancy of a specific application, which leads

to certain inefficiency and undertuilization of cache. Other alter-

native approaches allow certain tasks (e.g. with same criticality

level [24]) to share a larger portion of the last-level cache. This, on
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the contrary, allows two tasks to execute simultaneously on differ-

ent processors, where the interference on the last-level shared cache

can be substantial—leading to a much larger worst-case utilisation

of the system.

Besides inter-core cache interference, inter-task cache interfer-

ence (e.g., cache related preemption delays) can also have a non-

trivial impact on real-time tasks. Such cache interference (e.g., in

private caches) exist for tasks that are scheduled on the same pro-

cessor. In fact, several prior studies like [13] have shown that such

interference may constitute up to 33% of the task’s total execution

time. To mitigate the inter-task interference issues, one potential

approach is to again partition private caches (e.g., L1 cache) in each

core for tasks scheduled on the same core. For instance, Altmeyer

et al. [4] studies the tradeoff between task’s execution time and

size of cache allocations, and presents a cache partitioning algo-

rithm that is optimal with respect to task set schedulability. While

last-level cache partitioning is generally viable due to its excessive

capacity, private caches isolation can severely exacerbate tasks’

execution times when their accessible private caches drop below

certain threshold [22]. This is especially the case for processors in

real-time systems where private caches are often designed with

significantly smaller sizes to enable fast access.

In short, isolating every single task for each hardware resource

by itself is neither efficient nor necessary. In other words, as far
as a certain degree of isolation is maintained between the tasks that
can heavily interfere with each other, the overall system performance
could stay in a well-balanced manner.

Based on this observation, we take a somewhat intermediate

approach: instead of partitioning shared caches among all tasks, the

last level cache is partitioned to each processor such that tasks as-

signed to the same processor have access (in turns) to the well-sized

portion of the shared cache associated with the processor. Specifically,
we leverage the way allocation technique (i.e., Intel CAT [16]) to

partition last-level cache for individual cores to eliminate inter-core

cache interference. Under such a partitioned scheme, the goal is to

come up with a technique that ensures tasks with strongly interfer-

ing access to dedicated per-core resources (including private cache

and the share of last-level cache) are not grouped to the same core.

We propose an inter-task interference-aware scheduling framework

on multiprocessors, where tasks with high cache interference when

running on the same core are judiciously mapped onto distinct

cores. The algorithm finally performs inter-task interference aware

scheduling to maintain the performance of real-time tasks while

keeping the system better utilised under a partitioned manner.

Our main contributions are summarised as follows.

• To represent the inter-task cache interference and guide the

task-to-core partition, we propose the inter-task interfer-

ence matrix (ITIM), which characterises the inter-task cache

interference and system interrupt delay between each pair

of tasks. ITIM provides a safe upper bound to inter-task

interference.

• We formulate the inter-task interference-aware schedulabil-

ity problem into a mixed integer linear program (MILP). We

then transform the problem into a graph cut one and propose

a swapping based approach with a resource capacity bound

of 1 − 1

m (wherem is the number of processors). Based on

this idea, we further enlarge the search space in each round

and form a Genetic Algorithm based approach.

• Wemeasure the inter-task interference using the Malardalen

WCET benchmark [20] on a testbed equippedwith Intel Xeon

v4 processors, and conducted interference aware schedulabil-

ity tests under various parameter settings for the proposed

approaches.

Organisation. The rest of this paper is structured as follows: Sec-

tion 2 presents our system and interference model. Section 3 for-

malize the interference-aware partitioned scheduling problem as

a mixed integer linear program (MILP). Section 4 transforms this

problem to a k-CUT graph problem variant and proposes an algo-

rithm to solve it approximately. Section 5 improves the approximate

solution by introducing a genetic algorithm based approach. Sec-

tion 6 presents our experiment results to evaluate the proposed

approaches. Section 7 concludes this work.

2 SYSTEM MODEL AND ASSUMPTIONS
Workload model. We consider a predefined workload which can

be characterised by a set of n tasks τ = {τ1,τ2, · · · ,τn }. Each task τi
may release an infinite number of jobs, each of which has the same

worst-case execution time (WCET) requirement Ci (known as the

WCET of the task), and consecutive releases must be at leastTi time

units apart (known as the period of the task). In this work, we focus

on implicit-deadline tasks only. That is, each job of task τi has an
absolute deadline at Ti time units after its release, or equivalently,

each task τi has a relative deadline of Ti time units.

Note that in real-time systems analysis, it is typical that overhead

and interference are measured and included in the WCET—that is

not the case here. In this paper we useCi to denote τi ’s WCET when

running in isolation (in a cold cache); i.e., excluding cache-related

interference and system overhead, and we call it the plain WCET
of τi . Under a certain partition, the WCET of τi may be inflated to

be Ĉi ≥ Ci that safely takes cache-related interference and system

overhead into account, and we call Ĉi the effective WCET of τi .
Similarly, we define the plain utilisation of τi by ui = Ci/Ti and
define the effective utilisation of τi by ûi = Ĉi/Ti .

Without loss of generality, we index tasks by their periods (there-

fore, also their relative deadlines) in a non-decreasing order, i.e.,

∀i ≤ j,Ti ≤ Tj . The following lemma shows that a lower-indexed

task could possibly preempt a higher-indexed task under the above

task index scheme, no matter whether P-EDF or P-RM scheduling

is applied.

Lemma 2.1. Under either P-EDF or P-RM scheduling, if task τi
preempts task τj , then it must be true that i < j, provided that tasks
are indexed such that ∀i ≤ j,Ti ≤ Tj .

Proof. This lemma is trivially true for P-RM scheduling. As each

task is assigned a fixed priority, it is clear that only higher-priority

task could possibly preempt low-priority ones.

For P-EDF, let us consider some job Ji of task τi that is released
at time ri and has an absolute deadline at di preempts some job Jj
of task τj that is released at time r j and has an absolute deadline at

dj . Because under P-EDF scheduling, jobs’ priorities are determined

by absolute deadlines, it must be true that di ≤ dj in order to allow

Ji to preempt Jj . Also, Ji must be released after Jj is released, i.e.,
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ri > r j ; otherwise, Ji would have prevent Jj from execution from

Jj is released until Ji is complete and therefore it is impossible for

Ji to preempt Jj . Combining di ≤ dj , ri > r j , and the fact that tasks
have implicit deadlines, we have Ti = di − ri < dj − r j = Tj , which
implies i < j under our task index scheme. □

System Model. We consider a system that consists ofm homoge-

neous processors, which are the typical setting from mainstream

chip vendors. Each processor has its own small but fast private

caches, and all processors share one large but slower last-level cache.

We note that simultaneous multi-threading (SMT) is disabled, and

tasks do not compete for on-core logic components (such as ALU).

Each processor runs a single task at one time. Furthermore, the total

number of tasks out-numbers the number of cores; i.e., n > m. The

system uses a fully preemptive partitioned scheduling algorithm

and the task set is assumed to have been loaded into the memory

at the beginning of run time.

Memory Systems. Caches are one of the most commonly shared

hardware in multiprocessors. Typically, cache architectures fall

into two categories: direct-mapped cache and set-associative cache.
As a first attempt, this paper focuses on direct-mapped cache,
where each cache contains multiple sets and each set has exactly

one cache line. Upon a cache miss, the data in the memory will

be loaded and stored into the corresponding cache set. When a

task is preempted more than once by other tasks, the accumulative

interference needs to be determined. Note that for direct-mapped

cache, the cache block evictions are deterministic as each cache set

only has a single line. Therefore, the overall interference could be ef-

fectively bounded by the summation of their pair-wise interference

values. While in a set-associative cache, where each cache set has

multiple cache lines called ways, this may no longer hold. This is

because modern processors typically come with complex cache-line

replacement policies. When there is a cache miss, the correspond-

ing data block can be placed in any of the ways (based on eviction

policy) in the corresponding set. Under such policies, the overall

interference may well exceed the mutual impact between any of

the two tasks involved in the pre-emptions. We leave this as future

work. We assume that off-chip memory is large enough to hold the

whole workload. To ensure the same mappings to cache occur on

each run, we assume huge pages (2MB) and the disable of Address

Space Layout Randomization (ASLR). Note that since using huge

pages is mandatory to minimize the overheads of virtual memory

translations, and given its wide support in almost all commercial

processors, such an assumption is practical. Disabling ASLR is a

common practice when reproducible behavior is anticipated, and

hence it needs to be disabled for real-time systems to minimize

non-determinism.

Remark 2.1. Most contemporary multiprocessors share the last
level cache across processors. Different levels of restrictions regarding
inter-core cache interference can be put on how applicable the assump-
tions are. In our work, the last-level cache is partitioned among cores,
and thus no inter-core cache interference exists. By default, each core
gets an equal share through way partitioning, while further optimisa-
tions can be performed for cache-to-core mapping, this is out of the
scope of this paper—please refer to e.g., [11] [29], for work focusing
on optimising the cache partition to reduce the inter-core interference.

Orthogonal to the existing work, our work mainly focuses on finding
the better task-to-cache/core mapping (task partitioning) in terms of
inter-task interference and partitioned schedulability.

Model and Problem: Inter-Task Interference Matrix. As men-

tioned in Section I, due to the resource sharing under a multi-core

setting, the inter-task interference cannot be simply ignored. The

competition between the tasks of the shared resource could hugely

affect the overall system performance. When conducting the parti-

tioning, if we can isolatemost pairs of taskswith strong interference,

the extra overhead caused by resource competition can be reduced

significantly, leading to much better overall system performance

and resource efficiency.

To quantify the inter-task interference, we propose Inter-Task

Interference Matrix (ITIM) M ∈ IR
n×n
+ , where n is the number of

tasks. Each element in the matrix Mi, j (i < j), also known as the

interference utilisation, can be defined as:

Mi, j =
Ĉj

(i)
−Cj

Tj
(1)

where Ĉj
(i)

is τj ’s inflated worst-case execution time (WCET) in-

cluding all overheads when τj and τi run together, while Cj is τj ’s
plain WCET when running alone (in a cold cache). Accroding to

Lemma 2.1,Mi, j = 0 when i ≥ j. Note that the inter-task interfer-

ence will vary under different system states regarding the memory

and cache. The memory address of storing the tasks’ data, which

directly maps to a specified cache block, can strongly affect the

inter-task interference. In the experiments section, we applied this

measurement based approach to derive the interference utilisa-

tion by running several WCET benchmark programs on a server

platform (See Section 6).

To better justify themodel, herewe provide an alternativemethod

to derive the interference utilisation via analysing evict cache blocks

(ECB) and useful cache blocks (UCB) statically for each task. Here

we briefly introduce the method while for more details, please refer

to [26] and [3].

Given a predefined task set, we can calculate the interference

score using the following formula:

Mi, j =
⌈Tj
Ti

⌉
×max

k
|UCBj ∩ ECB

(k )
i | ×

γ

Tj
+ ϵ (2)

where maxk |UCBj ∩ ECB
(k )
i | is the maximum cardinality of the

UCB and ECB’s intersection for all (k) programming points in

higher priority task τi , γ (in time unites) is the worst additional

interference delay per cache block, and ϵ is the additional time cost

(system interrupt) per preemption. Equation (2) means that Mi, j
depends on the number of preemptions and the cache blocks that

task j needs to reload after task i finishes in the worst-case.

Example 2.1. Given a predefined task set which is shown in Table
1, assuming γ = 0.15, we apply Equation (2) for all pair of tasks:

M1,2 =
⌈
3

2

⌉
× |{2, 3} ∩ {2, 3, 4}| ×

0.15

3

= 0.2

M1,3 =
⌈
6

2

⌉
× |{2, 3} ∩ {1, 2, 3, 4}| ×

0.15

6

= 0.2

M2,3 =
⌈
6

3

⌉
× |{2} ∩ {1, 2, 3, 4}| ×

0.15

6

= 0.05
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Table 1: Parameters of a task set.

Task Ci Ti ECB UCB
τ1 1 2 {2,3}, {2} {1,2,3}
τ2 1 3 {2}, ∅ {2,3,4}
τ3 1 6 ∅ {1,2,3,4}

M =


0 0.2 0.2

0 0 0.05

0 0 0

 .
Problem. For a multi-core real-time system, given the task set τ
and the interference matrixM , our goal is to find a system partition

that involves task partitioning, such that real-time correctness, can

be guaranteed on each core under the consideration of interference

overheads.

Mathematically, given the total number of processorsm and a

task set τ of n tasks with the inter-task cache interference matrix

Mn×n , our goal is to obtain a feasible partition P (an n tom map-

ping) of the task set where P(i) ∈ {1, 2, ...,m} means task τi is
assigned to processor P(i), i.e.,

∀p = 1, 2, ...,m :

∑
i |P(i)=p

Ci
Ti
+

∑
i, j |P(i)=P(j)=p

Mi, j ≤ β ; (3)

where β is the utilisation threshold for the corresponding unipro-

cessor scheduling algorithm: β = 1 if the system is scheduled under

earliest deadline-first (EDF), while β = nmax (2
1

nmax − 1) when

the system is scheduled rate monotonically (RM), where nmax is

the maximum number of tasks assigned to one processor under a

certain partition.

In the following sections, we provide three potential solutions

for this problem.

3 A MIXED INTEGER LINEAR
PROGRAMMING FORMULATION

Given the ITIM for a certain system, we are able to form up the

cache-aware partitioned scheduling problem as a mixed integer

linear programming (MILP) problem as follows.

We first introduce n ×m integer variables {xi,p } for 1 ≤ i ≤ n
and 1 ≤ p ≤ m that are subject to the following two sets of linear

constraints.

Constraints Set (i):

For i = 1, 2, . . . ,n and p = 1, 2, . . . ,m,

xi,p ≥ 0.

Constraints Set (ii):

For i = 1, 2, . . . ,n,

m∑
p=1

xi,p = 1.

By Constraint Sets (i) and (ii), {xi,p } becomes a set of binary

variables (i.e., each of them is either 0 or 1), and each xi,p intuitively

indicates whether task τi is assigned to processor p. Constraint Set
(ii) also indicates that each task must be assigned to and only to a

single processor.

We then introduce n × n ×m auxiliary real-number variables

yi, j,p , which are subject to the following constraint sets.

Constraints Set (iii):

∀1 ≤ i < j ≤ n, 1 ≤ p ≤ m,yi, j,p ≥ 0.

Constraints Set (iv):

∀1 ≤ i < j ≤ n, 1 ≤ p ≤ m,yi, j,p ≥ xi,p + x j,p − 1.

Constraints Set (v):

∀1 ≤ j ≤ i ≤ n, 1 ≤ p ≤ m,yi, j,p = 0.

Given the binary variable {xi,p } indicating the task-to-processor
assignment under partitioned scheduling, Constraint Sets (iii), (iv),

and (v), in fact, make yi, j,p ×Mi, j an upper bound on the interfer-

ence on processor p caused by task τi preempting task τj .
When i < j, Constraint Sets (iii) and (iv) indicates that if task

τi and τj are both assigned to processor p, then yi, j,p is at least 1;

otherwise, yi, j,p is at least 0. When i ≥ j , Constraint Set (v) simply

assigns constant 0 to yi, j,p , because as shown in Lemma 2.1, only a

lower-indexed task could possibly preempt a higher-indexed task

under the task indexing scheme presented in Section 2.

We finally introduce one last auxiliary real-number variable z
that captures themaximum effective utilisation on a single processor
and serves as the objective function to be minimised.

Constraints Set (vi):

For p = 1, 2, . . . ,m,
n∑
i=1

(
xi,p · ui

)
+

n∑
i=1

n∑
j=1

(
yi, j,p ·Mi, j

)
≤ z.

The above Constraint Set (vi) is built upon the fact that given

the upper bound of yi, j,p ×Mi, j on the interference on processor p
caused by task τi preempting task τj , the total effective utilisation
processor p can be upper bounded by

n∑
i=1

(
xi,p · ui

)
+

n∑
i=1

n∑
j=1

(
yi, j,p ·Mi, j

)
.

Thus, the MILP can be formed up as:

Minimise z

Subject to Constraint Sets (i) - (vi)

As a uniprocessor scheduling algorithm with utilisation bound

β is used on each processor, the system is partitioned schedulable

if and only if z ≤ β . In addition, if the MILP finds the optimal

value of z is at most β , the corresponding values of {xi,p } directly
indicate such a task-to-processor partition under which the system

is schedulable.

In this MILP, {ui } and {Mi, j } are constants. There arenm integer

variables — {xi,p } and n2m + 1 real-number variables — {yi, j,p }
and z. Also, Constraints Set (i) has n inequality linear constraints,

Constraints Set (ii) has n equality linear constraints, each of Con-

straints Sets (iii) and (iv) has
(n−1)n

2
× m inequality linear con-

straints, Constraints Set (v) is just constant-value assignments

for variables, and Constraints Sets (vi) has m inequality linear

constraints. In total, there are n equality linear constraints and

n + (n − 1)nm +m = O(n2m) inequality linear constraints.
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4 GRAPH K-CUT BASED PARTITIONING
Due to the NP-hardness of the problem [13] (as well as its MILP

representation), our next goal becomes to find algorithms that

can identify near-optimal task partitions in polynomial or pseudo-

polynomial time. This subsection transforms the task partition

problem into a graph cutting problem and describes an insightful

swapping-based search heuristic. We first introduce the original

graph max-k-cut problem, then describe an existing approximation

algorithm, then describe how the problem transformation is done

and give an example to demonstrate it, and finally describes our

solution.

Max k-CUT and an approximation solution. Let G(V ,E) de-
note a graph which has |V | = n vertices, and k be a positive inte-

ger less than n. Each vertex vi contains a value vi .val and edge

e = (u,v) ∈ E connect two vertices u,v ∈ V with weightw(u,v). A
k-CUT is a partition to the vertices into k subsets and can be repre-

sented as a n-to-k mapping P, where P(i) indicates the processor
ID that task τi is allocated to. The objective is to minimise the total

weight of the edges in each subset; i.e.,

min

P

( ∑
u,v |P(u)=P(v)

w(u,v)
)
; (4)

For this problem, Random Swap [17] has the best known approx-

imation bound in terms of total weight. The idea is quite simple, we

start with an arbitrary k-CUT (i.e., partition into k sets), randomly

choose a pair of vertices that belongs to two different partitions,

and attempt to make a swap—if the swap could lead to a better

partition in terms of overall remaining weights, then the swap is

confirmed. We go into the next round and choose another pair of

vertices randomly, until no swap could lead to any improvement of

the overall objective function.

The following lemma proved by Gaur et al. in [17] indicates

that this algorithm has a nice approximation ratio in terms of total

cut-off weights.

Lemma 4.1 (Capacity Bound). The graph partition algorithm
could obtain a remaining total weight no smaller than 1 − 1/k (k is
the number of cuts) of the optimal solution when no other constraints
exist, i.e.,

WP′

WP∗
≥ 1 −

1

k
, (5)

whereWP′ is the total weight obtained by the graph partition algo-
rithm,WP∗ is the optimal total weight.

Problem transformation. The transformation works in the fol-

lowing manner: each task τi is treated as a vertex vi in a directed

graph, with its utilisation ui = Ci/Ti as the weight of the vertex,
while the interference utilisation from τi to τj (Mi, j ) represents the

weight of the directed edge between i and j
The interference minimisation problem (described in Subsection

III-A) becomes to partition (‘cut’) the vertices in G into subsets, so

that the sum of weights of remaining edges (that are not part of

any ‘cut’) is minimised (while the cut off weights are maximised).

Meanwhile, note that our problem put additional constraints that

the partition has to be feasible, i.e., the total value (utilisation) of

the vertices (tasks) in a subset must not exceed a certain scheduler-

specific threshold (1 for EDF and ln2 for RM).

Example 4.1. Consider the task set shown in the following table,
with a given TIM:

M =


0 0.07 0.09 0.041

0 0 0.04 0.02

0 0 0 0.08

0 0 0 0


Table 2: Parameters of a task set.

Task WCET (Ci ) Period (Ti ) utilisation (ui )
τ1 1 2 0.50
τ2 1 3 0.33
τ3 2 4 0.50
τ4 5 10 0.50

Figure 1 illustrates the directed graph after transformation, as well
as one possible partition.

0.50 0.33

0.50 0.50

0.020
0.041 0.040

0.090

0.080

0.070

�1 �2

�3 �4

Figure 1: Directed graph as a result of transformation for
the task set shown in Table 2. The direction of edge (τi ,τj )
indicates the priority level order τi ▷ τj , and the weight of
the edge denotes the interference utilisation. The dash line
in themiddle of the figure shows one possible task partition:
{1,2,2,1}

Max k-CUT for interferenceminimisation.Other than schedu-
lability constraints, it makes sense to try to minimise the total inter-

ference. Inspired by the existing approach for max k-CUT problem,

we propose a similar swapping-based algorithm with pseudo-code

shown in Algorithm 1.

Note that the ‘if’ and ‘elseif’ conditions inside the while loop of

this algorithm guarantees that once a feasible partition is reached

via swapping, further swapping will only be accepted if the result

partition remains feasible.

5 GENETIC ALGORITHM BASED
PARTITIONING

The approximation solution of the graph K-Cut problem, as de-

scribed in the previous subsection, is essentially a random walk in a

feasible solution space. Unfortunately, due to the nature of the prob-

lem that there exists massive amount of local minima, we expect
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Algorithm 1 Max k-CUT for Interference Minimisation

1: function Graph_Partition(M, τ , n)
2: Arbitrarily form a k-CUT (partition) P to τ
3: flag = True

4: If_succeed = False

5: while flag do
6: flag = False

7: for any pair of tasks τi ,τj ,P(i) , P(j) do
8: if max percore utilisation can be reduced then
9: swap i and j in P

10: flag = True

11: elseif overall interference can be reduced

12: under same max percore utilisation then
13: swap i and j in P

14: flag = True

15: end if
16: end for
17: end while
18: if If_succeed == True then
19: return P

20: else
21: return -1

22: end if
23: end function

it to perform poorly in many scenarios (verified in experiments).

Enlarging the candidate partitions considered in each round during

a random walk would help avoid local minima from a statistical

point of view. Inspired by this fact, this subsection presents how

Genetic Algorithm can be adapted to handle the problem of interest.

Genetic Algorithm is a heuristic search mechanism to solve

optimisation and search problems with multiple local optima. It is

inspired by the process of natural selection (in biology). The typical

stages include selection, crossover, and mutation and are introduces

below for our problem.

Chromosome (partition).A chromosome is a string {a1,a2, ...,an }
that defines a potential partition, where ai ∈ [1,m] indicates the

processor ID that task τi is assigned to. For instance, there are three
tasks and two cores, where τ0 is in Core 1, τ1 and τ2 are in Core 2,

the chromosome will be {1,2,2}.

Fitness Function. The fitness function provides a measure to the

quality of all chromosomes. For real-time correctness guarantees,

typically the objective is binary: 1 for schedulable and 0 other-

wise. Here we overcome such limit by evaluating a partition by the

maximum per-core utilisation, including interference overhead; i.e.,

f (P) = max

1≤p≤m

©­«
∑

i<j,P(i)=P(j)=p

Mi, j
ª®¬ . (6)

Similar to the MILP described in Subsection III-B, if the fitness

function of the finalised chromosome (partition) is no greater than

1 (or ln2, respectively), the system becomes feasible under P-EDF

(P-RM, respectively).

Initialisation. At the beginning, POP_SIZE (large integer, default

n(n + 1)/2) number of candidate partitions are generated randomly,

by arbitrarily assigning a core to each task of each candidate.

Selection. In each round, among all candidates, according to a

predetermined retention rate parameter (∈ (0, 1), default 0.5), we

keep a portion of the chromosomes with higher fitness scores and

discard the rest. Among the ones that are kept, we will choose

enough
1
pairs of chromosomes (called parents) according to pro-

portionate roulette wheel selection [5]: the ones with higher fitness

scores are more likely to be selected. Specifically, the probability of

selecting partition Pi is set as:

Prob(i) =
S − f (Pi )∑NR

j=1 (S − f (Pj ))

=
S − f (Pi )

(NR − 1)S
, (7)

where NR is the size of the population that is kept in each round

(typically half the total population size) and S =
∑NR
k=1 f (Pk ) is the

total population fitness score.

Crossover. For each selected pair of parent chromosomes, we

generate a new pair of child chromosomes according to the follow-

ing two steps: (i) Choose a random task ID from 1 to n; then (ii)

exchange the assignment for all tasks with a larger ID. For exam-

ple, the crossover of {1,3,1,2,3,1} and {1,1,2,3,1,2} at ID 4 results in

{1,3,1,2,1,2} and {1,1,2,3,3,1}.

Mutation. We give each child a (small) chance to mutate itself

according to MUTATION_RATE (∈ (0, 1), default 0.05). For each

task assignment of each child chromosome, if (with a small proba-

bility) it is chosen to receive a mutation, we randomly assign it a

processor (overwrite the original assignment). This step gives the

whole system extra chance to escape local minima. For example, a

chromosome {1,3,1,2,3,1} may mutate to {1,3,1,2,2,1} or {1,3,1,2,1,1}

(or remain the same) when task τ5 is chosen for a mutation.

Iteration. For the new population (kept parent chromosomes as

well as newly generated child chromosomes), we iterate the whole

process from the Selection step, until the number of generations

reached to a predefined upper bound N_GENERATION (default

nlgn).
The pseudo code for genetic algorithm is shown at Algorithm 2.

6 EVALUATION
In this section, we demonstrate the experiment setup and evaluation.

Specifically, Subsection 6.1 shows the experimental setup, including

system configuration, workload, and how the inter-task interfer-

ence matrix is measured. It also discusses the baseline approaches

that we aim to compare against in this work. While Subsection 6.2

reports performances of the proposed approaches under various

conditions.

6.1 Experimental Setup
System configuration. To profile inter-task interference, we setup
a x86-based server that is equipped with Intel Xeon E5-2686 v4 pro-

cessors. The processor has 18 per-core 256KB 8-way set-associative
L1/L2 caches and one 45MB 20-way set-associative last level cache2.
To avoid contention on logic components in each physical core,

1
Here enough means that an exact number of child chromosomes can be generated,

so that the total population maintains at POP_SIZE after the round.

2
We employ this many-core system to mimic future embedded processors that may

potentially have computation power comparable to server class processors.
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Algorithm 2 Genetic Algorithm for Task Partition

1: function Genetic-Alg(M , τ , POP_SIZE, N_GENERATION,
N_R, MUTATION_RATE)

2: Generate POP_SIZE partitions (POP) randomly

3: for gen from 1 to N_GENERATION do
4: pop = N_R better partitions in POP

5: while pop size < POP_SIZE do
6: Select p1, p2 from pop according to (7)

7: pos = generate a random integer from 1 to n

8: c1 = p1[0: pos] + p2[pos+1:n]

9: c2 = p2[0: pos] + p1[pos+1:n]

10: for each pos in c1 and c2 do
11: if rand() < MUTATION_RATE then
12: c1 (or c2)[pos] = random int (1 to n)

13: end if
14: end for
15: pop = pop ∪ c1 ∪ c2

16: end while
17: POP = pop

18: end for
19: end function

Simultaneous Multi-threading has been disabled to ensure that

only one task can run on each physical core at a time. We lever-

age Intel CAT userspace interfaces (i.e., pqos) [21] to partition the

last level cache by allocating 2 ways to each of the 8 cores, which

are the subset of the available cores configured to dedicatedly run

real-time tasks. Note that CAT has been recently adopted in real-

time multi-core scheduling components such as Xen VMM [2]. To

enable real-time scheduling policy, we set up a linux v4.15 based

OS employed with the deadline task scheduling that implements

the EDF algorithm [1]. Real-time tasks are configured with the

SCHED_DEADLINE policy. To eliminate performance variations due

to hardware runtime power management mechanisms (e.g., P states

and C states), we have disabled core sleep states, turned off Turbo

Boost and configured the frequency governor to use the highest

frequency all the time [12].

Task set configuration and ITIM generation.We utilised part

of the well known Malardalen WCET benchmark [20] as our tasks.

We discarded 26 of the 38 programs as they are too ‘mini’, i.e.,

the execution cost is smaller than the scheduling granularity sup-

ported in the current system (i.e., 1024 nanoseconds resolution)

of the implementation, and thus the periodicity of the task can-

not be precisely controlled. We directly used 6 programs from

the benchmark–adpcm, bsort100, edn, lms, matmult, ndes,
while the following ones are modified by adding a outside loop to

scale their execution times by a factor of 4-10: compress, expint,
fft1, ns. Other parameters of the task set are measured/generated

as follows:

• The number of cores m = 4. The number of tasks n = 10

unless otherwise specified. Note that the time complexity

of the MILP solver is quite high (∼ O(mn )), such that for

massive amount of Monte Carlo tests, one cannot afford to

have a large n orm. Moreover, the current setting, which is

by no means comprehensive, already shows clear trends for

approach comparison purposes.

• The plain WCET of each task is measured by executing each

selected program 100 times and take the observed maximum

duration of execution length.). Note that we have intention-

ally omitted the first measurement of the execution time,

which is considerably larger than the subsequent measure-

ments due to additional OS-level activities (e.g., page faults

and buffer cache misses).

• The inflated WCET of a task under each other task is mea-

sured by executing the combined pair of programs 100 times

and taking the observed maximum duration of overall exe-

cution length (including overhead).

• The utilisations (and thus periods) of the tasks are generated

by the UUnifast algorithm [9]. Note that for multiprocessor,

the utilisation generated by the UUnifast algorithm cannot

guarantee each task’s utilisation is less than β . We always

discard a naturally infeasible task set and regenerate.

Each element of the interference matrix is calculated according to

(1). To profile the pair-wise interference, we select two real-time

tasks each time, and control one task to preempt the other task at

a random time instant for 100 times. Note that tasks are indexed

by their (randomly generated) periods. Also, we did not restrict

the priority order of the benchmark tasks—they are determined

by the randomly generated periods according to Lemma II.1. We

used utilisation based RM or EDF schedulability test [27] for each

uniprocessor.

Approaches implemented.
Mixed-ILP: The mixed-integer linear programming described in

Sec. III-B.

Greedy: By worst-fit heuristic, in each round we try to allocate

the unassigned task with largest utilisation onto the processor with

smallest possible ID, while making sure that the targeted processor

remains schedulable.

K-Cut: The graph K-cut approach described in Sec. III-C.

Genetic-Alg: The genetic algorithm based approach described in

Sec. III-D, under default parameter settings.

6.2 Experimental Comparison Study
Benchmark workload. We randomly assign periods (and thus

utlisations) to the benchmark workload, such that for each system

overall plain utilisation level, we generated 1000 different task sets.

Given a task set and interference utilisation, different approaches

may return different (task-to-core) partitions, some are valid while

some are not. For such evaluation, the higher this ratio gets, the

better the approach performs.

Figure 2 reports the percentage of each of the 1000 sets (under

certain system plain utilisation) that are P-EDF schedulable (with

inter-task interference) under each of the proposed approaches.

Among four approaches, the mixed-integer linear programming

method outperforms the rest (as we have shown its optimality in

Theorem III.1) and greedy approach performs the last (due to simple

heuristic applied).

We are glad to notice that the graph k-cut based approach out-

performs genetic algorithm. This is likely due to the fact that graph
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Figure 2: Schedulability ratio comparison of under P-EDF
with varying system utilisations.
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Figure 3: Schedulability ratio comparison under P-RM with
varying system utilisations.

k-cut does not stop its search whenever a swap can lead to improve-

ment in terms of maximum per-core utilisation. Note that genetic

algorithm is a randomised search and its performance varies from

time to time and depend upon parameter settings. Since we are

conducting extensive evaluation over massive amount of task sets,

we cannot afford to have a large population and a larger number of

generations for the approach—these hugely limits the performance

of Genetic Algorithm. We also would like to point out that there are

task sets that are schedulable by Genetic Algorithm but not K-Cut

(and the other way around).

Figure 3 reports the performance of the same sets under P-RM,

where the approaches remain at the same order comparing to that of

P-EDF. Amajor difference is that sincewe are using utilisation based

schedulability test for uniprocessor RM, the schedulability ratio

drops much sooner at around 60% overall utilisation (interference

cause approximately 10% extra utilisation).

Benchmarkworkloadwith inflated interference.Different sys-
tem settings may result in various interference levels between tasks.

In order to test how the proposed approaches work for more gen-

eral scenarios other than the benchmark workload, we artificially
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Figure 4: Schedulability ratio comparison under P-RM with
varying interference utilisations.

adjusted the interference level by multiplying the matrix by a fac-

tor ranging from 0 to 2.25, with system overall plain utilisation at

around the threshold values in terms of schedulability ratio.

Figure 5 reports the performance of the approaches under P-

RM, where the x axis represents the factor for modifying ITIM.

It is expected that when interference utilisation becomes larger,

schedulability ratio drops for all approaches. We also notice that

the relative performance relationship remains stable under this

setting. This figure also demonstrated that when system is closer to

be fully utilised (e.g., here plain overall utilisation is set to 2.2), then

more than approximately 5% to 10% extra interference utilisation

may cause significant performance drop. Similar behaviours are

identified in P-EDF, while the performance drawings are omitted

due to space limit.

Large-scale synthetic task sets.We understand that the bench-

mark provides very limited size of task set. In order to validate

the performance of the approaches under a broader setting, we

include synthetic workload and interference, enlarge the number

of processors to 8, and set plain system utilisation to 2.2. Note that

MILP method runs exponentially slow and thus are omitted for this

setting when n > 16.

Figure 5 reports the performance of the approaches under P-

RM, where the x axis represents the number of tasks per set. We

notice that when task number is closer tomloдm, the performance

tends to be better. This is because (i) when task number is small,

to have a plain system utilisation of 2.2, we easily ends up with

m + 1 or more large tasks that cannot pack inm cores, while (ii)

when task number is too large, the number of pairs of tasks per core

increases quadratically, such that interference utilisation dominates

the processor, making it unfeasible.

7 CONCLUSION
In this paper, we focused on partitioned scheduling that takes inter-

task interference into consideration while making partition and

scheduling decisions. We proposed the concept of ITIM to represent

inter-task interference in a pair-wisemanner.We presented anMILP

formulation to exactly solve this problem of interference-aware

partitioned scheduling. Due to the potentially high time complexity
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Figure 5: Schedulability ratio comparison under P-RM with
varying task set size settings.

of MILP, we also presented several polynomial-time algorithms

to solve this problem approximately. By conducting experiments,

we evaluated the effectiveness of our model and algorithms and

demonstrated our results.

Future Work. In this paper, we counted the interference and over-

heads of each preemption into the effective utilisation of the pre-
empted task. Similar results are expected if they are counted into

the preempting task instead, and we would like to verify this in

the future. Furthermore, techniques to split such interference and

overheads to be partially counted into the preempted task while

allow the remaining to be counted into the preempting task were

proposed in the literature [31], and we also would like to integrate

those techniques in our future work. Moreover, in this paper we

focus on interference-aware task-to-core mappings and assume the

cache-to-core mapping has been determined before task partition-

ing process. We would like to investigate how to incorporate the

cache-to-core mapping together during task partitioning process.
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