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Abstract—Schedulability is a fundamental problem in real-time
scheduling, but it has to be approximated due to the intrinsic
computational hardness. As the most popular algorithm for
deciding schedulability on multiprocess platforms, the speedup
factor of partitioned-EDF is challenging to analyze and is far
from been determined. Partitioned-EDF was first proposed in
2005 by Barush and Fisher [1], and was shown to have a speedup
factor at most 3−1/m, meaning that if the input of sporadic tasks
is feasible on m processors with speed one, partitioned-EDF will
always return succeeded on m processors with speed 3−1/m. In
2011, this upper bound was improved to 2.6322− 1/m by Chen
and Chakraborty [2], and no more improvements have appeared
ever since then. In this paper, we develop a novel method to
discretize and regularize sporadic tasks, which enables us to
improve, in the case of constrained deadlines, the speedup factor
of partitioned-EDF to 2.5556−1/m, very close to the asymptotic
lower bound 2.5 in [2].

Index Terms—Sporadic tasks, resource augmentation, parti-
tioned scheduling, demand bound function

I. INTRODUCTION

Scheduling is a hot topic in the real-time systems com-
munity. Basically, given a finite set of tasks, each sequen-
tially releasing infinitely many jobs, the mission of real-
time scheduling is to allocate computing resources so that
all the jobs are done in a timely manner. The fundamental
question of schedulability naturally arises: Is it possible at
all to successfully schedule these tasks, such that all of them
receives enough execution before their deadlines?

Unfortunately, answering this question is often not ‘easy’;
e.g., the schedulability of a set for constrained-deadline spo-
radic tasks, which is the focus of this paper, is co-NP-hard
even on a uniprocessor platform [3]. For multiprocessor case, it
remains NP-hard for partitioned paradigm, even if the relative
deadlines of the tasks are required to equal their periods
[4]. Here partitioned paradigm means that once a task is
assigned on a processor, all the legal jobs released by the task
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will be scheduled on the dedicated processor. These hardness
results imply that it is almost impossible to exactly decide
schedulability in polynomial time.

Due to the hardnesses, real-time schedulability problems are
usually solved approximately by pessimistic algorithms which
always answer ‘No’ unless some sufficient-only conditions for
schedulability are met. To evaluate the performance of such
an approximate algorithm (say, A), the concept of speedup
factor, also known as resource augmentation bound, has been
proposed. Specifically, whenever a set of tasks is schedulable
on a platform with speed one, algorithm A will return ‘Yes’ on
the same platform with speed r ≥ 1. The minimum such r is
referred to as the speedup factor of A. Despite of some recent
discussion on potential pitfalls [5] [6] [7], speedup factor has
been a major metric and standard theoretical tool for assessing
scheduling algorithms since the seminal work in 2000 [8].

Recent years has witnessed impressive progress on finding
schedulability decision algorithms with low speedup factors.
For the preemptive case (i.e. running jobs might be interrupted
by emergent ones ), Global-EDF has a speedup factor 2−1/m
[9] for scheduling set of tasks on m identical processors, and
there is a polynomial-time algorithm for uniprocessors whose
speedup factor is 1+ ε [10], where ε > 0 is sufficiently small
for uniform processors, refer to [11]. For the non-preemptive
case, there are also a variety of results, refer to [12], [13].
Except the speedup factor, there are many papers concerning
about the utilization upper bound, refer to [14]–[16].

Although the speedup factor on uniprocessors is tight,
the multiprocessor case remains open. Due to its simplicity,
partitioned scheduling is of particular interest and has been
attracting more and more attention from researchers and
practitioners. Partitioned-EDF is the most popular schedula-
bility decision algorithm of partitioned style, while the above-
mentioned Global-EDF is not of partitioned paradigm. Break-
through was made in the year of 2005, when Baruah and Fisher
[1] established a 4−2/m (3−1/m, respectively) upper bound
for the speedup factor of partitioned-EDF on arbitrary-deadline
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(constrained-deadline, respectively) task sets, where m is the
number of identical processors. A set of tasks is said to be
constrained-deadline, if the relative deadline of each task is at
most its period, otherwise is arbitrary-deadline. Then in 2011,
Chen and Chakraborty [2] further improved the speedup factor
to 2.6322− 1/m (3− 1/m, respectively) for the constrained-
deadline case (arbitrarily deadline case, respectively). Also in
the same paper, a lower bound 2.5 of the speedup factor was
established for the constrained-deadline case. Throughout the
last seven years, the bounds in [2] were never improved.

It is worth noting that deriving the upper bound of the
speedup factor of partitioned-EDF relies heavily on a quantity
about scheduling on uniprocessors, denoted by ρ which is
formally defined in (1) of Section II. Roughly speaking, ρ
measures how far the approximate demand bound function
(defined in Section II) deviates from the actual deadline time-
points. Baruah and Fisher [1] bridged ρ and the speedup factor
of partitioned-EDF by showing that in case of constrained
deadlines, the speedup factor is at most 1 + ρ − 1/m. As
a result, upper-bounding the speedup factor is reduced to
upper-bounding ρ, and it is in this manner that both [1] and
[2] obtained their estimations of the speedup factor. Hence,
the quantity ρ itself deserves a deep investigation. Actually,
Baruah and Fisher [1] upper-bounded it by 2, Chen and
Chakraborty [2] narrowed its range into [1.5, 1.6322].

On this ground, this paper will explore a better upper bound
of ρ, and on this basis, provide a better estimation of the
speedup factor of partitioned-EDF for sets of constrained-
deadline sporadic tasks. The contributions are summarized into
the following three aspects.

1) We improve the best existing upper bound of ρ for
constrained-deadline tasks from 1.6322 to 1.5556 (Theo-
rem 1), which is much close to the lower bound 1.5. The
speedup factor of partitioned-EDF for the constrained-
deadline case accordingly decreases from 2.632− 1/m

to 2.5556 − 1/m (Theorem 2), which is almost tight
since there is an asymptotic lower bound 2.5.

2) We find a way to losslessly discretize and regularize
the constrained-deadline tasks so that essentially, the
execution times of the tasks are all 1 and the deadlines
are 1, 2, · · · , n respectively, where n is number of tasks
to be scheduled (Lemmas 2, 4, 5). The only parameter
that varies is the period. The transformation is lossless
in the sense that the quantity ρ does not change though
the parameters are extremely simplified.

3) We invent a method to further transform the tasks so that
the period of each task ranges over integers between
1 to 2n (Lemma 6). This transformation might be
lossful, but the loss is negligible since ρ changes at most
0.0556. These technics may be further applied to real-
time scheduling or other problems.

The rest of the paper is organized as follows: Section 2
presents the model and preliminaries; Section 3 focuses on
uniprocessor case and derives a new upper bound (14/9) of
ρ for feasible sporadic tasks; Section 4 provides a new upper
bound (23/9 − 1/m) of the speedup factor for partitioned-
EDF. Finally, Section 5 concludes the paper and mentions
some potential future directions.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a finite set τ of sporadic tasks. Each task τi
can be represented by a triple τi = (ei, di, pi), where ei is
the worst-case execution time, di is its relative deadline, and
pi is the minimum inter-arrival separation length (also known
as period), respectively. The task τi is said to be constrained-
deadline if di ≤ pi.

This paper focuses on constrained-deadline tasks. Here-
under, every task is constrained-deadline by default, unless
otherwise mentioned.

Given a task τi, we can calculate its demand bound function
dbf(τi, t) [17] and its approximate demand bound function
dbf∗(τi, t) [10] in the following manner:

dbf(τi, t) =

{
0 if t < di( ⌊

t−di
pi

⌋
+ 1
)
· ei, otherwise

and

dbf∗(τi, t) =

{
0 if t < di
( t−dipi

+ 1) · ei, otherwise.

Similarly for any set τ of tasks, we define

dbf(τ, t) =
∑
τi∈τ

dbf(τi, t), dbf∗(τ, t) =
∑
τi∈τ

dbf∗(τi, t).

To analyze the speedup factor of partitioned-EDF on mul-
tiprocessor platforms, the following quantity plays a critical
role:

ρ = sup
τ

dbf∗(τ, d)

d
, (1)

where τ ranges over sporadic task sets that are feasible on
uniprocessor platforms, and d is the largest relative deadline in
τ . Here feasible means that the set of tasks allows a successful
scheduling.

We will see that actually, ρ is the optimum value of the
following math programming MP0:

sup
dbf∗(τ, dn)

dn
, (MP0) (2)

subject to dbf(τ, t) ≤ t, ∀t > 0 (3)

di + pi > dn, 1 ≤ i ≤ n− 1, (4)

d1 ≤ d2 ≤ · · · ≤ dn, (5)

n ∈ Z+, ei, di, pi ∈ R+, 1 ≤ i ≤ n. (6)

where Z+ is the set of positive integers while R+ stands for
the set of positive real numbers.
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Fig. 1. An example for task transformation and dbf modifications, with task
parameters of ei = 2, di = 3, pi = 5, and dn = 9.

Lemma 1: ρ is the optimum value of MP0.
Proof: Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} be an

arbitrary set of sporadic tasks that is feasible on a uniprocessor
with speed 1. Assume that d1 ≤ d2 ≤ · · · ≤ dn. Apply the
transformation proposed in [2]:

e
′

i =

(⌊
dn − di
pi

⌋
+ 1

)
· ei, (7)

p
′

i =

(⌊
dn − di
pi

⌋
+ 1

)
· pi, (8)

d
′

i =

(⌊
dn − di
pi

⌋)
· pi + di. (9)

Let τ
′
= {τ ′1, τ

′

2, · · · , τ
′

n} with τ
′

i = (e
′

i, d
′

i, p
′

i) for any 1 ≤
i ≤ n.

Please refer to Figure 1 for an illustration of the above
mentioned transformation.

For any 1 ≤ i ≤ n, p
′

i − d
′

i = pi − di. Hence τ
′

is
constrained-deadline since so is τ .

In [2], it was proven that the following results hold simul-
taneously:

i) dbf∗(τ, dn) = dbf∗(τ
′
, dn);

ii) dbf(τ, t) ≥ dbf(τ ′ , t) for t > 0 ;
iii) d

′

n < d
′

i + p
′

i for 1 ≤ i ≤ n;
iv) d

′

n = dn.
This immediately leads to our lemma.

III. IMPROVED BOUND FOR UNIPROCESSOR CASE

In order to estimate the speedup factor for multiprocessor
partitioned scheduling, we first focus on the uniprocessor case.
The main result of this section is Theorem 1, which establishes
14/9 as an upper bound of ρ for sporadic tasks.

The basic idea of our proof is to discretize the tasks into
regular form, thus reducing the problem into an optimization
one on bounded integers. Roughly speaking, Lemma 2 makes
sure that ρ does not change if the parameters of the tasks are
restricted to be rational numbers, Lemma 4 claims that further
requiring ei = di − di−1 for all i keeps ρ unchanged, the
trend continues by Lemma 5 even if all the tasks are required
to have the same worst-case execution time, and finally,
Lemma 6 enables us to only consider tasks with bounded
discrete periods. These transformations reduce estimating ρ to
a simpler optimization problem which is solved approximately
in Lemma 8. These results immediately lead to Theorem 1.

Specifically, we first observe that the optimum value of
MP0 remains unchanged even if the domain R+ is replaced
by Q+, the set of positive rational numbers.

sup
dbf∗(τ, dn)

dn
, (MP1) (10)

subject to dbf(τ, t) ≤ t, ∀t > 0 (11)

di + pi > dn, 1 ≤ i ≤ n− 1, (12)

d1 ≤ d2 ≤ · · · ≤ dn, (13)

n ∈ Z+, ei, di, pi ∈ Q+, 1 ≤ i ≤ n. (14)

Lemma 2: MP0 and MP1 has the same optimum value.
Proof: The lemma immediately holds if all of the follow-

ing claims are true:
1) The objective functions of MP0 and MP1 are the same

and continuous.
2) The domain of MP1 is included in that of MP0.
3) For any ε > 0 and any feasible solution τ = {τi =

(ei, di, pi) : 1 ≤ i ≤ n} to MP0, there is a feasible
solution τ ′ = {τ ′i = (e′i, d

′
i, p
′
i) : 1 ≤ i ≤ n} to MP1

such that for any 1 ≤ i ≤ n,

|e′i − ei| < ε, |d′i − di| < ε, |p′i − pi| < ε. (15)

It suffices to prove Claim 3 since the others are obvious.
Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} be an arbitrary set of

tasks that is a feasible solution to MP0, and ε be an arbitrary
positive real number. Without loss of generality, assume that
ε < min1≤i≤n ei. For any 1 ≤ i ≤ n, arbitrarily choose

p′i ∈ (pi +
ε

2
, pi + ε) ∩Q+,

d′i ∈ (di +
(i− 1)ε

2n
, di +

iε

2n
) ∩Q+,

e′i ∈ (ei − ε, ei) ∩Q+.

Let τ ′ denote the set of tasks {τ ′i = (e′i, d
′
i, p
′
i) : 1 ≤ i ≤ n}.

Obviously, τ ′ meets Conditions (14) and (15).
To proceed, arbitrarily fix an integer 1 ≤ i ≤ n.
Note that p′i − d′i > pi +

ε
2 − (di +

iε
2n ) ≥ pi − di. This,

together with the fact that τi is constrained-deadline, means
τ ′i is also constrained-deadline.
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Observe that

d′i > di +
(i− 1)ε

2n
≥ di−1 +

(i− 1)ε

2n
> d′i−1.

Hence, τ ′ satisfies Condition (13) of MP1.
Because

d′i + p′i > di +
(i− 1)ε

2n
+ pi +

ε

2

≥ di + pi +
ε

2

> dn +
ε

2
(since τ satisfies (4))

> d′n,

the task set τ ′ satisfies Condition (12).
As to Condition (11), arbitrarily fix t > 0.
When t < d′i, dbf(τ

′
i , t) = 0 ≤ dbf(τi, t).

When t ≥ d′i, because p′i > pi, d
′
i > di, e

′
i < ei, we have

dbf(τ ′i , t) =

(⌊
t− d′i
p′i

⌋
+ 1

)
· e′i

≤
(⌊

t− di
pi

⌋
+ 1

)
· ei = dbf(τi, t).

As a result, we always have dbf(τ ′, t) ≤ dbf(τ, t). Then
τ ′ satisfies Condition (11) since τ satisfies (3).

Altogether, τ ′ is a feasible solution to MP1.
Now we present a technical lemma that will be frequently

used.
Lemma 3: Suppose d, p, d′, p′ ∈ R+ are such that d+ p =

d′ + p′ and d > d′. For any real number t,

t− d′

p′
>
t− d
p

if and only if t < d+ p.
Proof: Let δ = d− d′ = p′ − p. Then

t− d′

p′
>
t− d
p

⇔ p · (t− d′) > p′ · (t− d)
⇔ p · (t− d+ δ) > (p+ δ) · (t− d)
⇔ p · δ > δ · (t− d)
⇔ p > t− d.

Hereunder, let d0 = 0. Then it is time to show that the
optimum value of MP1 remains unchanged even if we further
require ei = di − di−1 for all i ≥ 1. We define a new math
programming

sup
dbf∗(τ, dn)

dn
, (MP2) (16)

subject to dbf(τ, t) ≤ t, ∀t > 0 (17)

di + pi > dn, 1 ≤ i ≤ n− 1, (18)

di = ei + di−1, 1 ≤ i ≤ n, (19)

n ∈ Z+, ei, di, pi ∈ Q+, 1 ≤ i ≤ n. (20)

Lemma 4: MP1 and MP2 have the same optimum value.
Proof: For any feasible solution τ = {τi = (ei, di, pi) :

1 ≤ i ≤ n} to MP1, define M(τ) , |{i : 1 ≤ i ≤ n, di 6=
ei + di−1}|. Obviously, τ to MP1 is a feasible solution to
MP2 if and only if M(τ) = 0.

Consider the following proposition: for any feasible solution
τ to MP1 with M(τ) > 0, there is a feasible solution τ ′ to
MP1 such that M(τ ′) < M(τ) and the objective value of
τ ′ is at least that of τ . If it is true, one can easily prove the
lemma by iteratively applying the proposition. Hence, the rest
of the proof is devoted to showing this proposition.

Arbitrarily fix a feasible solution τ = {τi = (ei, di, pi) :

1 ≤ i ≤ n} to MP1. Suppose M(τ) > 0. Assume k is
the smallest index such that ek 6= dk − dk−1, meaning that
ei = di − di−1 for all i < k. Then we have

k−1∑
i=1

ei = dk−1. (21)

Since di + pi > dn ≥ dk ≥ di for any i < k, one has

k∑
i=1

ei ≤
k∑
i=1

dbf(τi, dk) ≤ dbf(τ, dk) ≤ dk,

where the last inequality holds because τ satisfies Condition
(11). This, together with (21), leads to ek ≤ dk − dk−1. By
the assumption that ek 6= dk − dk−1, we get

ek < dk − dk−1. (22)

Construct τ ′ = {τ ′i = (e′i, d
′
i, p
′
i) : 1 ≤ i ≤ n} where

d′i = di, p
′
i = pi, e

′
i = ei

for any i 6= k, and

e′k = ek, d
′
k = dk−1 + ek, p

′
k = dk + pk − d′k.

By (21) and (22),
∑k
i=1 ei = dk−1 + ek = d′k < dk.

Obviously, M(τ ′) = M(τ) − 1 < M(τ), and τ ′ is
constrained-deadline since so is τ .

Now we prove that τ ′ is a feasible solution to MP1. Since
τ satisfies Conditions (12)-(14), so does τ ′. To show that
Condition (11) is satisfied by τ ′, we arbitrarily choose t > 0

and proceed case by case.
Case 1: if t < d′k. Then

dbf(τ ′, t) =
∑

1≤i≤n

dbf(τ ′i , t)

=
∑

1≤i<k

dbf(τ ′i , t) (because t < d′j for j ≥ k)

=
∑

1≤i<k

dbf(τi, t) (because τ ′i = τi for i < k)

≤ dbf(τ, t)
≤ t (because τ satisfies Condition (11)).
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Case 2: if d′k ≤ t < dk.

dbf(τ ′, t) =
∑

1≤i≤n

dbf(τ ′i , t)

=
∑

1≤i≤k

(⌊
t− d′i
p′i

⌋
+ 1

)
· e′i

=
∑

1≤i≤k

e′i (because d′i + p′i > t for any i)

=
∑

1≤i≤k

ei = d′k ≤ t.

Case 3: if dk ≤ t < d′k + p′k. Then

dbf(τ ′k, t) =

(⌊
t− d′k
p′k

⌋
+ 1

)
· ek

= ek (because d′k < dk ≤ t < d′k + p′k)

=

(⌊
t− dk
pk

⌋
+ 1

)
· ek,

where the last equality is due to dk ≤ t < d′k+ p
′
k = dk+ pk.

For any i 6= k, dbf(τ ′i , t) = dbf(τi, t) since τ ′i = τi.
As a result, dbf(τ ′, t) = dbf(τ, t) ≤ t because τ satisfies

Condition (11).
Case 4: if t ≥ d′k + p′k. Because

d′k < dk and p′k + d′k = dk + pk,

by Lemma 3, we have

t− d′k
p′k

≤ t− dk
pk

.

Then

dbf(τ ′, t) =
∑

1≤i≤n

dbf(τ ′i , t)

=
∑
i 6=k

dbf(τ ′i , t) +

(⌊
t− d′k
p′k

⌋
+ 1

)
· ek

≤
∑
i 6=k

dbf(τ ′i , t) +

(⌊
t− dk
pk

⌋
+ 1

)
· ek

=
∑
i 6=k

dbf(τi, t) + dbf(τk, t) (since τ ′i = τi for i 6= k)

= dbf(τ, t) ≤ t (since τ satisfies Condition (11)).

Altogether, τ ′ satisfies Condition (11), so it is a feasible
solution to MP1.

Finally, we show that

dbf∗(τ, dn)

dn
≤ dbf∗(τ ′, d′n)

d′n
.

When k < n, we have d′n = dn, so it suffices to show
dbf∗(τ, dn) ≤ dbf∗(τ ′, d′n).

By definition of τ ′, for any i 6= k, dbf∗(τi, dn) =

dbf∗(τ ′i , d
′
n). Furthermore, note three facts:

1) p′k + d′k = dk + pk;
2) d′k < dk;

3) dn < dk + pk due to Conditions (12).
By Lemma 3, these facts mean

dn − dk
pk

≤ d′n − d′k
p′k

,

which implies dbf∗(τk, dn) ≤ dbf∗(τ ′k, d′n).
As a result, dbf∗(τ, dn) ≤ dbf∗(τ ′, d′n).
When k = n, we have d′n < dn. For any i < n,

dbf∗(τi, dn)

dn
=
ei
dn

(
1 +

dn − di
pi

)
=
ei
pi

(
1 +

pi − di
dn

)
<
ei
pi

(
1 +

pi − di
d′n

)
=
ei
d′n

(
1 +

d′n − di
pi

)
=
e′i
d′n

(
1 +

d′n − d′i
p′i

)
(because τ ′i = τi)

=
dbf∗(τ ′i , d

′
n)

d′n
where the inequality is due to d′n < dn and pi−di ≥ 0 (since
τ is constrained-deadline). In addition,

dbf∗(τn, dn)

dn
=
en
dn

<
e′n
d′n

=
dbf∗(τ ′n, d

′
n)

d′n
.

Therefore, we also get dbf
∗(τ,dn)
dn

≤ dbf∗(τ ′,d′n)
d′n

, as desired.
We will impose further constraint on MP2, without chang-

ing the optimum value. As presented in the math programming
MP3, the constraint is that all the ei’s are equal.

sup
dbf∗(τ, dn)

dn
, (MP3) (23)

subject to dbf(τ, t) ≤ t, ∀t > 0 (24)

di + pi > dn, 1 ≤ i ≤ n− 1, (25)

di = ei + di−1, 1 ≤ i ≤ n, (26)

ei = dn/n, 1 ≤ i ≤ n, (27)

n ∈ Z+, ei, di, pi ∈ Q+, 1 ≤ i ≤ n. (28)

Lemma 5: MP2 and MP3 have the same optimum value.
Proof: Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} be an

arbitrary feasible solution to MP2. Due to Condition (20), we
can choose δ ∈ Q+ such that

k(i) ,
ei
δ

is an integer for any 1 ≤ i ≤ n. Let n′ =
∑n
i=1 k(i).

For any 1 ≤ l ≤ n′, define task τ ′l = (e′l, d
′
l, p
′
l) as below,

where 1 ≤ i ≤ n and 1 ≤ j ≤ k(i) are such that l = m(i, j) ,
j +

∑
1≤h<i k(h):

e′l = δ,

d′l = di−1 +
j

k(i)
(di − di−1) = di−1 + jδ,

p′l = pi + di − d′l.

5



Let τ ′(i) = {τ ′m(i,j) : 1 ≤ j ≤ k(i)} for any 1 ≤ i ≤ n, and
τ ′ = ∪ni=1τ

′(i). Let d′0 = 0. Next we will prove that τ ′ is a
feasible solution to MP3.

First of all, for any 1 ≤ i ≤ n and 1 ≤ j ≤ k(i), let
l = m(i, j). We have d′l ≤ di and p′l = pi + di − d′l ≥ pi.
Thus, τ ′ is constrained-deadline because so is τ .

Since τ ′ satisfies Conditions (25)-(28) by definition, now
investigate Condition (24). Arbitrarily fix t > 0 and proceed
case by case.

Case 1: t < d′n′ . Let integer l ≥ 0 be such that d′l ≤ t <

d′l+1. Then

dbf(τ ′, t) =
∑

1≤r≤n′
dbf(τ ′r, t)

=
∑

1≤r≤l

dbf(τ ′r, t) (because t < d′l+1)

=
∑

1≤r≤l

(⌊
t− d′r
p′r

⌋
+ 1

)
· e′r

=
∑

1≤r≤l

e′r = d′l ≤ t

where the fourth equality holds due to the inequality p′r >

t− d′r which in turn follows from three facts:

1) For any 1 ≤ i ≤ n and 1 ≤ j ≤ k(i), we have

p′m(i,j) = pi + di − d′m(i,j) by definition;

2) For any 1 ≤ i ≤ n, pi + di > dn since τ satisfies
Condition (18);

3) dn = d′n′ > t.

Case 2: t ≥ d′n′ . It suffices to prove that

dbf(τ ′(i), t) ≤ dbf(τi, t)

for any 1 ≤ i ≤ n. Arbitrarily fix 1 ≤ i ≤ n.
Suppose t < di + pi. We observe that

dbf(τ ′(i), t) =

k(i)∑
j=1

dbf(τ ′m(i,j), t)

=

k(i)∑
j=1

(⌊
t− d′m(i,j)

p′m(i,j)

⌋
+ 1

)
δ

=k(i)δ (because t < di + pi = d′m(i,j) + p′m(i,j))

=ei (By definition of k(i))

=dbf(τi, t) (because di ≤ t < di + pi)

Then consider t ≥ di + pi. For any 1 ≤ j ≤ k(i), since
di > d′m(i,j) and di+pi = d′m(i,j)+p

′
m(i,j), Lemma 3 implies

t− d′m(i,j)

p′m(i,j)

≤ t− di
pi

,

Which further leads to

dbf(τ ′(i), t) =

k(i)∑
j=1

(⌊
t− d′m(i,j)

p′m(i,j)

⌋
+ 1

)
δ

≤
k(i)∑
j=1

(⌊
t− di
pi

⌋
+ 1

)
δ

=

(⌊
t− di
pi

⌋
+ 1

)
ei

=dbf(τi, t)

Altogether, Condition (24) is satisfied in both cases, so τ ′

is a feasible solution to MP3.
The rest of the proof is to show that

dbf∗(τ ′, d′n′) ≥ dbf∗(τ, dn).

Note that

d′n′ = dn < pi + di = d′m(i,j) + p′m(i,j) and d′m(i,j) ≤ di

for any 1 ≤ i ≤ n, 1 ≤ j ≤ k(i). Lemma 3 implies that

d′n′ − d′m(i,j)

p′m(i,j)

≥ dn − di
pi

.

Then for any 1 ≤ i ≤ n, we have

dbf∗(τ ′(i), d′n′) =

k(i)∑
j=1

(
d′n′ − d′m(i,j)

p′m(i,j)

+ 1

)
δ

≥
(
dn − di
pi

+ 1

)
ei

= dbf∗(τi, dn).

Therefore, dbf∗(τ ′, d′n′) ≥ dbf∗(τ, dn).
It is still hard to find a good upper bound of the optimum

value of MP3, partly because Condition (24) is too strong and
Condition (25) is too weak. It has to be modified accordingly.

On the one hand, we relax (24) by replacing the function
dbf(·, ·) with f(·, ·): for any task τi = (ei, di, pi) and time
t > 0,

f(τi, t) =

{
dbf(τi, t) if t < di + pi
2ei otherwise

Note that f(τi, t) ≤ dbf(τi, t) always holds. The first argu-
ment of f can be naturally extended to any set τ of tasks:

f(τ, t) =
∑
τi∈τ

f(τi, t).

On the other hand, instead of (25), we require that the set
of tasks τ should be aligned, as defined below:

Definition 1: Given a task set τ = {τi = (ei, di, pi) :

1 ≤ i ≤ n}, a permutation π over {1, 2, · · · , n} is called
an aligning permutation of τ if

dπ(i) + pπ(i) = dn + di

6



for any 1 ≤ i ≤ n. τ is said to be aligned if it has an aligning
permutation.

We will show that the optimum value of MP3 does not
decrease after the modification. Specifically, define a new
math programming, where the tasks are not required to be
constrained-deadline:

sup
dbf∗(τ, dn)

dn
, (MP4) (29)

subject to f(τ, t) ≤ t, ∀t > 0 (30)

τ is aligned, (31)

di = ei + di−1, 1 ≤ i ≤ n, (32)

ei = dn/n, 1 ≤ i ≤ n, (33)

n ∈ Z+, ei, di, pi ∈ Q+, 1 ≤ i ≤ n. (34)

Lemma 6: The optimum value of MP3 is not more than
that of MP4.

Proof: Arbitrarily choose a feasible solution τ = {τi =
(ei, di, pi) : 1 ≤ i ≤ n} to MP3. Let π be a permutation over
{1, 2, · · · , n} such that

dπ(1) + pπ(1) ≤ dπ(2) + pπ(2) ≤ ... ≤ dπ(n) + pπ(n). (35)

For any 1 ≤ i ≤ n, construct a task τ ′i = (e′i, d
′
i, p
′
i) where

e′i = ei, d
′
i = di, p

′
i = dn + dπ−1(i) − d′i.

Let τ ′ = {τ ′i : 1 ≤ i ≤ n}.
We will show that τ ′ is a feasible solution to MP4. Since

Conditions (31)-(34) are satisfied by definition, it suffices to
investigate Condition (30). Let’s first derive an inequality as
tool.

For any 1 ≤ i ≤ n, let j = π−1(i), and we have

di + pi

≥dbf(τ, di + pi) (since τ satisfies Condition (24))

=
∑

1≤l≤j

dbf(τπ(l), di + pi)

+
∑
j<l≤n

dbf(τπ(l), di + pi)

≥
∑

1≤l≤j

2eπ(l) +
∑
j<l≤n

eπ(l)

=
2jdn
n

+
(n− j)dn

n
=dn + dj (due to Conditions (26) and (27)),

where the second inequality is because

di + pi = dπ(j) + pπ(j) ≥ dπ(l) + pπ(l) for any l ≤ j

and di + pi > dn ≥ dπ(l) for any l.
Hence, we have

di + pi ≥ dn + dπ−1(i) = d′i + p′i (36)

by definition of τ ′.

Now we continue to prove τ ′ satisfies Condition (30). For
an arbitrary t > 0, this can be done case by case.

Case 1: t < dn + d1. Then for any 1 ≤ i ≤ n,

di + pi

≥d′i + p′i = dn + dπ−1(i) by (36)

≥dn + d1 > t

This, together with the definition of τ ′, implies that

f(τ ′, t) = dbf(τ ′, t) = dbf(τ, t).

Because τ satisfies Condition (24), we have f(τ ′, t) ≤ t.
Case 2: t ≥ dn + d1. Choose the biggest 1 ≤ i ≤ n such

that dn + di ≤ t. Then for any j > i,

p′π(j) + d′π(j) = dn + dj > t > dn ≥ d′π(j) .

Thus

f(τ ′, t)

=
∑

1≤j≤i

f(τ ′π(j), t) +
∑
i<j≤n

f(τ ′π(j), t)

=
∑

1≤j≤i

2e′π(j) +
∑
i<j≤n

e′π(j)

=dn + di ≤ t

Altogether, Condition (30) is also satisfied.
Furthermore, for any 1 ≤ i ≤ n, by (36) and di = d′i, we

have p′i ≤ pi. This, together with e′i = ei, d
′
i = di for any

1 ≤ i ≤ n, implies dbf∗(τ ′, d′n) ≥ dbf∗(τ, dn). As a result,

dbf∗(τ, dn)

dn
≤ dbf∗(τ ′, d′n)

d′n
.

The lemma thus holds.
We present a technical lemma before going on.
Lemma 7: For any x1, x2, · · · , xn ∈ R+ such that

n∑
i=1

xi = n2,

we have
n∑
i=1

i

xi
≥ 4n

9
.

Proof: By Cauchy’s Inequality,

(

n∑
i=1

i

xi
)(

n∑
i=1

xi) ≥ (

n∑
i=1

√
i)2.

Note that
n∑
i=1

√
i = n

3
2 (

n∑
i=1

√
i√
n
· 1
n
)

≥ n 3
2

n∑
i=1

∫ i
n

i−1
n

√
xdx

= n
3
2

∫ 1

0

√
xdx =

2

3
n

3
2 .
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Therefore,

(

n∑
i=1

i

xi
) ≥

4
9n

3

n2
=

4n

9
.

Lemma 8: The optimum value of MP4 is at most 14
9 .

Proof: Arbitrarily choose a feasible solution τ = {τi =
(ei, di, pi) : 1 ≤ i ≤ n} to MP4. Let δ = dn

n . By Conditions
(32) and (33),

ei = δ and di = iδ

for any 1 ≤ i ≤ n.
Let π be an aligning permutation of τ . Then we have

n∑
i=1

pπ(i) =

n∑
i=1

(dn + di − dπ(i)) = ndn = n2δ,

which implies
∑n
i=1

pπ(i)

δ = n2. By Lemma 7,

n∑
i=1

iδ

pπ(i)
≥ 4n

9
.

Hence,
n∑
j=1

dj + pj − dn
pj

=

n∑
i=1

dπ(i) + pπ(i) − dn
pπ(i)

=

n∑
i=1

di
pπ(i)

(since τ is aligned)

=

n∑
i=1

iδ

pπ(i)
≥ 4n

9
.

As a result,

dbf∗(τ, dn) =

n∑
i=1

dbf∗(τi, dn)

=

n∑
i=1

(
2− pi + di − dn

pi

)
ei

=

n∑
i=1

(
2− pi + di − dn

pi

)
δ

≤ 2nδ − δ
n∑
i=1

pi + di − dn
pi

≤ 2nδ − 4n

9
δ =

14

9
dn

The lemma holds.
We are ready to present one of the main results of this

paper, which claims that the resource augmentation bound on
a single processor is at most 1.5556.

Theorem 1: dbf∗(τ,d)
d ≤ 14

9 for any set τ of constrainted-
deadline tasks such that dbf(τ, t) ≤ t for all t > 0, where d
is the maximum relative deadline of the tasks in τ .

Proof: It follows from Lemmas 2, 4, 5, 6, and 8.

IV. PARTITIONED SCHEDULING ON MULTIPROCESSORS

This section is devoted to partitioning sporadic tasks on mul-
tiprocessors, where the tasks are assumed to have Constrained
Deadlines. We adopted the algorithm of Deadline-Monotonic
Partitioning in [1]. It is presented in Algorithm 1 to make this
paper self-contained, where ei and di stand for worst-case
execution time and relative deadline of task τi, respectively.

Basically, Algorithm 1 assigns tasks sequentially in the
order of non-decreasing relative deadlines. Suppose τ(k) is
the set of tasks at processor k after the first i − 1 tasks has
been assigned. Then task τi is assigned to the first processor
(say, processor No. k) that can safely serve the task, namely
ei + dbf∗(τ(k), di) ≤ di.

Remember that we have upper-bounded

ρ = sup
τ

dbf∗(τ, d)

d
, (37)

where τ ranges over constrained-deadline sporadic task sets
that are feasible on uniprocessors, and d is the largest relative
deadline in τ .

The following lemma is from references [1] and [2], so the
proof is omitted.

Lemma 9: The speedup factor of Algorithm 1 is 1+ρ−1/m,
where m is the number of processors.

It is time to present the other main result of this paper.
Theorem 2: The speedup factor for Algorithm 1 is at most

2.5556− 1/m.
Proof: The theorem immediately follows from Theorem

1 and Lemma 9.

Algorithm 1 Deadline-Monotonic Partitioning
Input: sporadic tasks τ = {τ1, . . . , τn} to be partitioned on
m identical unit-capacity processors;

. The tasks are indexed non-decreasingly according to
their relative deadlines. For any 1 ≤ k ≤ m, let τ(k) denote
the set of tasks assigned to the kth processor.

1: τ(k)← ∅, for any 1 ≤ k ≤ m;
2: for i = 1 to n do
3: if there exists k such that ei + dbf∗(τ(k), di) ≤ di

then
4: Choose the smallest such k;
5: τ(k)← τ(k) ∪ {τi};
6: else
7: return FAIL
8: end if
9: end for

10: return feasible assignment τ(1), τ(2), . . . , τ(m)

V. CONCLUSION AND FUTURE WORK

In this paper, we improve the upper bound of the speedup
factor of partitioned-EDF from 2.6322 − 1/m to 2.5556 −

8



1/m for constrained-deadline sporadic tasks on m identical
processors, narrowing the gap between the upper and the
lower bounds from 0.1322 to 0.0556. This is an immediate
corollary of our improvement of the upper bound of ρ =

supτ dbf
∗(τ, d)/d from 1.6322 to 1.5556. The new upper

bounds are very close to the corresponding lower bounds.
Technically, our improvements root at a novel discretization

that transform the tasks into regular forms without decreasing
ρ. The discretization essentially makes all the tasks have fixed
execution times and deadlines. The only parameter that varies
is the period, which is highly restricted so as to range over
the set {1, 2, · · · , 2n}, where n is the number of tasks to be
scheduled. By this transformation, estimating ρ is reduced to
a much simpler optimization problem. We believe that this
knack may work in other problems or scenarios.

However, we have not yet proved that our transformation
is equivalent. This means that the discretization might strictly
enlarge ρ. The good news is that the incurred loss, if not zero
at all, is guaranteed to be no more than 0.0556.

As to future directions, we conjecture that Theorems 1 and 2
remain true if the constrained-deadline condition is removed.
We also conjecture that our method can derive a 1.5 upper
bound for ρ, thus closing the gap between the upper and
the lower bounds. If this is the case, the speedup factor of
partitioned-EDF is also fully determined, at least in the case
of constrained deadlines.
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