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Abstract—Real-time scheduling and analysis of parallel tasks modeled as directed acyclic graphs (DAG) have been intensively studied

in recent years. However, no existing work has explored the execution order of eligible vertices within a DAG task. In this paper, we

show that this intra-task vertex execution order has a large impact on system schedulability and propose to control the execution order

by vertex-level priority assignment. We develop analysis techniques to bound the worst-case response time for the proposed

scheduling strategy and design heuristics for proper priority assignment to improve system schedulability as much as possible. We

further extend the proposed approach to the general setting of multiple recurrent DAG tasks. Experiments with both realistic parallel

benchmark applications and randomly generated workload show that our method consistently outperforms state-of-the-art methods

with different task graph structures and parameter configurations.

Index Terms—Intra-task priority assignment, response time analysis, parallel real-time tasks, multi-cores
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1 INTRODUCTION

MULTI-CORE platforms are more and more widely used
in real-time systems, to meet their rapidly increasing

requirements in performance and energy efficiency. To fully
utilize the power of multi-cores, software must be properly
parallelized. The migration from sequential software on sin-
gle-core platforms to parallel software on multi-core plat-
form poses many challenges to the real-time system design,
which make it necessary for new scheduling algorithms and
analysis techniques.

Scheduling algorithms on multi-core platforms can be
divided into two categories: static and dynamic scheduling.
In static scheduling, subtasks are statically assigned to cores
during the design phase [1], which may fundamentally
underutilize computing resources because the execution time
of some subtasks may be less than its worst-case execution
time (WCET). Dynamic scheduling can improve resource uti-
lization. However, it may suffer from timing anomalies [2],
[3], [4], in the sense that the response timemay become longer
if the execution time of some subtasks is shorter than its
WCET. Due to timing anomalies, safe (yet usually pessimis-
tic) response time bound must be provided for dynamic
scheduling algorithms for real-time systems.

The classic response time bound developed by Graham
[2] was widely used in literatures [5], [6], [7]. However, this

bound assumes that the vertices which are not in the longest
path cannot execute in parallel with the vertices in the lon-
gest path, making this bound overly pessimistic.

This paper aims at developing real-time scheduling algo-
rithms and analysis techniques for parallel tasks character-
ized as directed acyclic graphs (DAG) running on a multi-
core platform by utilizing intra-task vertex execution order.
While scheduling a parallel DAG task, it is possible that at
some time point many vertices of this task are eligible for exe-
cution, and the number of eligible vertices is more than the
number of available cores. Existing scheduling algorithms,
such as [5], [6], [7], [8], do not specify the execution order of
these vertices in this situation (or assume a non-deterministic
execution order). Scheduling algorithms, such as list schedul-
ing [2], specify the scheduling order of these vertices, but do
not utilize this order information in the analysis of its timing
behavior. Some existing works [9], [10] considered priority
assignment for static scheduling algorithms for DAGs. These
priority assignment strategies are also applicable to dynamic
scheduling algorithms which are the focus of this paper.
However, their performance is not competitive with our pro-
posed approach (as they are not designed for the purpose of
optimizing the worst-case response time bound), as shown
by the experiment results in Section 8.

In this paper, we show that this intra-task vertex execution
order, if properly utilized, can greatly benefit the schedulabil-
ity of the task.We propose to use intra-task vertex-level prior-
ity assignment to control their execution order. The technical
contribution of this paper can be summarized as follows:

� By utilizing the priorities of vertices, we derive a
new response time bound for a single DAG task,
which dominates the state-of-the-art bound in [2].

� We propose an efficient algorithm with polynomial
time complexity to compute the above-mentioned
response time bound.

� Q. He, X. Jiang, and N. Guan are with the Department of Computing,
Hong Kong Polytechnic University, Hung Hom, Hong Kong.
E-mail: {qianghe, nan.guan}@polyu.edu.hk, jiangxu617@163.com.

� Z. Guo is with the Department of Electrical and Computer Engineering,
University of Central Florida, Orlando, FL 32816. E-mail: zsguo@ucf.edu.

Manuscript received 21 July 2018; revised 24 Feb. 2019; accepted 31 Mar.
2019. Date of publication 11 Apr. 2019; date of current version 11 Sept. 2019.
(Corresponding author: Xu Jiang.)
Recommended for acceptance by M. Guo.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2019.2910525

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019 2283

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:50:56 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5067-8571
https://orcid.org/0000-0001-5067-8571
https://orcid.org/0000-0001-5067-8571
https://orcid.org/0000-0001-5067-8571
https://orcid.org/0000-0001-5067-8571
https://orcid.org/0000-0003-2675-2895
https://orcid.org/0000-0003-2675-2895
https://orcid.org/0000-0003-2675-2895
https://orcid.org/0000-0003-2675-2895
https://orcid.org/0000-0003-2675-2895
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0002-5967-1058
mailto:
mailto:
mailto:


� We propose a priority assignment algorithm to
assign priorities to vertices, such that the response
time bound is reduced as much as possible.

� We extend our result to the real-time scheduling of
multiple recurrent DAG tasks, and give a new sched-
ulability test, which dominates the state-of-the-art
test [6] both theoretically and empirically.

We conduct simulation experiments with both realistic
parallel benchmark applications and randomly generated
workload. Experiment results show that our method consis-
tently outperforms the state-of-the-art methods with differ-
ent task graph structures and parameter configurations.

The rest of this paper is organized as follows. Section 2
defines the DAG model for parallel tasks and gives some
definitions and prior results. Section 3 presents our motiva-
tion and the scheduling algorithm used in this paper.
Section 4 presents our response time analysis framework
for one parallel task. Section 5 introduces the dynamic pro-
gramming algorithm to compute response time bound and
proves its correctness. Section 6 presents the priority assign-
ment algorithm. In Section 7, we extend our method to the
scheduling of multiple tasks. Evaluation and experiments
results are presented in Section 8. Section 9 discusses related
work and Section 10 concludes this paper.

2 PRELIMINARY

2.1 System Model

We consider a multi-core platform with M identical cores.
The parallel real-time task is modeled as a directed acyclic
graph (DAG) G ¼ ðV;EÞ, where V is the set of vertices and
E � V � V is the set of directed edges of the graph. Each
vertex vi 2 V represents a piece of sequential workload with
worst-case execution time (WCET) CðviÞ (for brevity, also
denoted as Ci). An edge ðvi; vjÞ 2 E represents the prece-
dence relation between vi and vj, i.e., vj can only start execu-
tion after vertex vi completes.

A vertex with no incoming (outgoing) edges is called a
source (sink). Without loss of generality, we assume thatG has
exactly one source (denoted as vsrc) and one sink (denoted as
vsink). A DAGwith multiple source (sink) vertices can be eas-
ily transferred to the required form by adding dummy verti-
ceswith zeroWCET.

We distinguish a path and a complete path of a DAG. A
path � starting from vertex p0 and ending at vertex pk is a
sequence of vertices ðp0; . . . ;pkÞ such that 8i 2 ½0; kÞ,
ðpi;piþ1Þ 2 E. We also use � to denote the set of vertices
which are in the path �. The length of a path � is defined as
lenð�Þ, i.e.,Pvi2� Ci, which is the sum of theWCET of all ver-

tices in this path. A complete path is a path ðp0; . . . ;pkÞ such

that p0 ¼ vsrc and pk ¼ vsink, i.e., a complete path is a path
starting from the single source vertex and ending at the single
sink vertex. We define a longest path to be a path with the lon-
gest length among all paths of the DAG. The length of the lon-
gest path of DAGG is denoted as lenðGÞ.

For any vertex set V 0 � V , we define volðV 0Þ ¼P
vi2V 0 Ci.

The volume of a DAG G denoted as volðGÞ is defined as
volðV Þ, i.e., Pvi2V Ci, which is the total WCET of all vertices

of the DAG task.
If there is an edge ðu; vÞ 2 E, u is a predecessor of v, and v is a

successor of u. If there is a path inG from u to v, u is an ancestor
of v and v is a descendant of u. We use predðvÞ, succðvÞ, anceðvÞ
and descðvÞ to denote the set of predecessors, successors,
ancestors and descendants of v, respectively. These sets can
be computed in linear time in the size of DAG.

As long as the graph is a DAG, our model does not
impose other restrictions on the dependencies (edges)
between vertices. If there is no dependency between vertices
in a task graph, this task has high parallelism. If there are
dependencies between vertices, this task can still have high
parallelism. Dependencies between vertices reduce parallel-
ism, do not invalidate our results.

Fig. 1 shows a DAG task with 7 vertices. The number
inside the circles (representing vertices) is the WCET of ver-
tices. We can compute volðGÞ ¼ 10 and lenðGÞ ¼ 7. The lon-
gest path is ðv0; v1; v4; v5; v6Þ. v0; v6 are the single source
vertex and the single sink vertex respectively.

2.2 Runtime Behavior

At runtime, vertices of G execute at certain time points on
certain cores under the decision of a scheduling algorithm.
An execution sequence of G describes at every time point t
which vertex executes on which core.

With respect to an execution sequence, we say a vertex v
is eligible at a certain time point if all its predecessors in the
execution sequence have finished its execution and thus v
can immediately execute if there are available cores.

In an execution sequence, the start time sðvÞ and the finish
time fðvÞ of a vertex v are defined to be the time point when
vertex v starts its execution on a certain core and the time
point when vertex v finishes its execution respectively.
Without loss of generality, we assume the source vertex of
G starts execution at time 0.

We define the response time of G to be fðvsinkÞ. For a path
� ¼ ðp0; . . . ;pkÞ, the response time of � is defined to be
fðpkÞ. This paper focuses on deriving a safe upper bound of
response time of G.

We use an example to illustrate concepts introduced
here. Fig. 2 shows an execution sequence of the DAG in
Fig. 1 (v1’s WCET is 3 but only executes for 2 in this execu-
tion sequence). At time point t ¼ 1, vertices v1, v2, v3 are all
eligible. In this execution sequence, sðv1Þ ¼ 1, fðv1Þ ¼ 3,
sðv2Þ ¼ 3, fðv2Þ ¼ 4, fðvsinkÞ ¼ fðv6Þ ¼ 7, and the response
time of the DAG is 7.

Fig. 1. A DAG task example.

Fig. 2. An example illustrating execution sequence.
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2.3 Work-Conserving Scheduling

Much previous work (such as [5], [6], [7], [8]) use work-con-
serving scheduling algorithms. In work-conserving schedul-
ing, an eligible vertex must be executed if there are
available cores. For example, list scheduling [2] is an instance
of work-conserving scheduling. Our work is based on the
classic result in [2], stated in the following theorem.

Theorem 1 (Classic Bound [2]). The response time R of a
DAG taskGwith a constrained deadline scheduled by awork-con-
serving algorithm on a platformwithM cores can be bounded by

R � lenðGÞ þ volðGÞ � lenðGÞ
M

: (1)

3 METHOD OVERVIEW

3.1 Motivational Example

At runtime, it is possible that at some time point the number
of eligible vertices is larger than M (the number of cores).
The work-conserving scheduling constraint introduced in
Section 2.3 does not specifywhich vertices should be executed
in this circumstance. Different instances of work-conserving
scheduling may have different strategies to choose eligible
vertices for execution. The response time bound in Theorem 1
is valid for all possible instances of work-conserving sche-
duling. Therefore, conceptually we can view the response
time bound as derived for a work-conserving scheduling
algorithm that arbitrarily chooses eligible vertices to execute
on available cores at runtime.

In the following, we will use an example to show that by
using a proper strategy to choose among eligible vertices
for execution, the response time of the DAG task can be
reduced compared with the arbitrary choice.

Suppose the DAG task G shown in Fig. 3a executes on
M ¼ 2 cores. Therefore, by Equation (1), we can compute its
response time bound of an arbitrary work-conserving exe-
cution sequence

lenðGÞ þ volðGÞ � lenðGÞ
M

¼ 6þ 10� 6

2
¼ 8:

There is indeed a possible scheduling sequence that
reaches this response time bound, as shown in Fig. 3b. In
this scheduling sequence, each vertex executes to its WCET.
At time 1, when v0 is finished, v1, v2 and v3 are all eligible
for execution, but only two of them can start execution as
M ¼ 2. Suppose the scheduler selects to first execute v2 and
v3, then v1 can start execution at time 3 and the whole DAG
finishes execution at time 8.

However, if the scheduler chooses to execute v1 at time 1
(and the other core is used to execute one of v2 and v3), the
response time of the DAG is 6, as shown in Fig. 3c. From this
example, we can see that the choice of eligible vertices for exe-
cution affects the actual response time. Among the three
paths from v0 to v4, the one via v1 is the longest. Intuitively,
one should prioritize vertices along the longest path for exe-
cution in order to get a smaller response time.

3.2 Priority-Based Scheduling

Inspired by the above example, we propose to assign priori-
ties to the vertices and at runtime schedule the eligible verti-
ces strictly according to their priorities. Given a total
priority order of all vertices, at any time instant at runtime,
the scheduler always chooses at mostM highest-priority eli-
gible vertices for execution.

Formally, we assign a priority pðviÞ to each vertex vi of
the DAG. We say vertex vi has higher priority than vertex
vj, if pðviÞ < pðvjÞ.

We propose prioritized list scheduling, which satisfies the
following properties:

� Work-conserving. Stated in Section 2.3.
� Preemptive. A higher-priority eligible vertex can pre-

empt the execution of a lower-priority one. The pre-
empted lower-priority vertex will resume execution
later when there are available cores.

The result derived in the paper is valid for any specific
scheduling algorithm satisfying these two properties.

4 RESPONSE TIME ANALYSIS

In this section, we introduce how to derive the response time
bound of a DAG G scheduled by prioritized list scheduling,
given an arbitrary order of vertex priorities. The only assump-
tion we make here is that the priority order of vertices does
not conflictwith the topology order of the graph, i.e., a vertex’s
priority is not higher than any of its predecessors. There are
exponentially many possible priority assignments complying
with our assumption. If a priority assignment satisfies this
assumption, we say priorities are assigned in descending order
or a priority assignment with descending order. Later in
Section 6 wewill discuss how to assign priorities such that the
response time bound ofG can be reduced asmuch as possible.

Without loss of generality, we assume the whole DAG is
released at time 0. Similar to [6], we define the concept of
critical path.

Definition 1 (Critical Path). A critical path � ¼ ðp0; . . . ;pkÞ
of an execution sequence of a DAG task is a complete path satis-
fying the following property

8pi 2 � n fp0g : fðpi�1Þ ¼ max
u2predðpiÞ

ffðuÞg: (2)

Fig. 3. A motivational example.
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Notice that the critical path is not necessarily the longest
path of the DAG. The critical path depends on how the
DAG is actually scheduled, i.e., the critical path of a DAG
may be different in different execution sequences of the
DAG. For example, in Fig. 2, the critical path of this execu-
tion sequence by our definition is ðv0; v2; v4; v5; v6Þ, while the
longest path of the DAG is ðv0; v1; v4; v5; v6Þ.
Definition 2 (Interference). For a critical path � ¼ ðp0;

. . . ;pkÞ, we say that a vertex v 2 V interferes with vertex
pi 2 � if and only if vertex v executes in a time interval satisfy-
ing both of the following conditions:

� the time interval is in ½fðpi�1Þ; fðpiÞÞ, and
� pi does not execute in this time interval.

We say a vertex v interfereswith critical path � if and only
if v interferes with a vertex pi 2 �.

For example, in Fig. 4, suppose pi�1 and pi are two verti-
ces in the critical path. If vertex v has execution during the
grey intervals as shown in Fig. 4, we say vertex v interferes
with pi (and thus interferes with this critical path).

The following lemma gives the necessary condition for a
vertex v to interfere with a vertex pi in a critical path.

Lemma 1. Given a critical path � ¼ ðp0; . . . ;pi; . . . ;pkÞ, v 2
V n fpig. If v interferes with pi, then the following three condi-
tions must all be true

� v =2 anceðpiÞ
� v =2 descðpiÞ
� pðvÞ � pðpiÞ

Proof. If v interferes with pi, then v has execution in the
interval ½fðpi�1Þ; fðpiÞÞ, which means fðvÞ > fðpi�1Þ. If
v 2 anceðpiÞ, then pi�1 cannot satisfy Equation (2), which
contradicts that pi�1 is in �. We have v =2 anceðpiÞ.

Again, if v interferes with pi, then v has execution in
the interval ½fðpi�1Þ; fðpiÞÞ, which means sðvÞ < fðpiÞ. If
v 2 descðpiÞ, this fact contradicts the definition of DAG
where a descendant cannot start execution before its
ancestors. We have v =2 descðpiÞ.

Also, if v interferes with pi, then v has execution in the
interval duringwhich vertex pi does not execute. Note that
according to the definition of critical path, during the inter-
val ½fðpi�1Þ; fðpiÞÞ, all predecessors of pi have completed
their execution. The only reason why vertex pi cannot exe-
cute is that all the cores are busywith vertices having prior-
ities higher than or equal to pðpiÞ.We have pðvÞ � pðpiÞ. tu

Definition 3 (Interference Set). The interference set of a ver-
tex pi 2 V is defined as

IðpiÞ ¼ fv 2 V n fpigjv =2 anceðpiÞ ^ v =2 descðpiÞ
^pðvÞ � pðpiÞg:

The interference set of a path � is defined as

Ið�Þ ¼
[
pi2�

IðpiÞ:

Lemma 2. For a critical path �, 8v 2 V n Ið�Þ, v cannot inter-
fere with �.

Proof. If v interferes with critical path �, there exists a ver-
tex pi 2 � such that vertex v interferes with vertex pi.
According to Lemma 1, we have v 2 IðpiÞ. Subsequently,
v 2 Ið�Þ. The contrapositive of the lemma follows and the
lemma is true. tu

Definition 4. For a path �, we define

Rð�Þ ¼ lenð�Þ þ volðIð�ÞÞ
M

: (3)

We can think of Rð�Þ as the response time bound of path �.

Theorem 2. The response time R of a DAG task with a con-
strained deadline scheduled by prioritized list scheduling on a
platform withM cores can be bounded by

R � max
�2PðGÞ

fRð�Þg; (4)

where PðGÞ is the set of all complete paths of the DAG G.

Proof. We define LðGÞ as the set of all critical paths of the
DAG G. For a critical path �, according to Lemma 2, the
workload which can interfere with � is bounded by
volðIð�ÞÞ. And according to Definitions 1 and 2, when ver-
tices in a critical path cannot execute, all cores must be
busy with vertices in Ið�Þ. So the response time of critical
path � is bounded by

Rð�Þ ¼ lenð�Þ þ volðIð�ÞÞ
M

:

And the response time of the DAG task is bounded by

max
�2LðGÞ

fRð�Þg:

It is hard to know which complete path is a critical path
prior to the completion of execution of the DAG task,
and since LðGÞ � PðGÞ, the theorem follows. tu
Our bound in Equation (4) dominates the classic bound

in Equation (1), i.e., for any DAG task G

max
�2PðGÞ

fRð�Þg � lenðGÞ þ volðGÞ � lenðGÞ
M

:

In fact, let the complete path which gives our bound be ��. By
Definition 3, 8� 2 PðGÞ, 8v 2 V , v 2 �) v =2 Ið�Þ. We have
v 2 Ið�Þ ) v 2 V n �, which means volðIð�ÞÞ � volðGÞ �
lenð�Þ. We have max�2PðGÞfRð�Þg ¼ Rð��Þ � lenð��Þ þ
volðGÞ�lenð��Þ

M � lenðGÞ þ volðGÞ�lenðGÞ
M

5 COMPUTING RESPONSE TIME BOUND

In this section, we present how to calculate the response
time bound given by Equation (4).

Fig. 4. An example illustrating interference.
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It is easy to see that in a DAG, the number of paths can be
exponential in the size of the DAG. So it is impractical to enu-
merate all the paths to compute the response time bound. In
this paper, we use dynamic programming to solve this
problem.

First, we define some useful notations. For a path
� ¼ ðp0; . . . ;pkÞ, we use a tuple hpk; �;Rð�Þi that corresponds
to path �.

For a tuple hu; �; Rð�Þi, and an edge ðu; vÞ 2 E, a new
tuple hv; �0; Rð�0Þi can be computed, where �0 ¼ � [ fvg. We
say that hu; �; Rð�Þi generates hv; �0; Rð�0Þi, denoted by

hu; �; Rð�Þiˆ hv; �0; Rð�0Þi:
The relation generationmeans if an edge between vertex u

and vertex v exists, and u is the predecessor of v, a new
tuple of v can be computed from the tuple of u.

Given two tuples hv; �1; Rð�1Þi, hv; �2; Rð�2Þi, we say
hv; �1; Rð�1Þi dominates hv; �2; Rð�2Þi, denoted by

hv; �1; Rð�1Þi < hv; �2; Rð�2Þi;
if and only if Rð�1Þ � Rð�2Þ.

The relation domination means if two paths �1 and �2 end
at the same vertex v, if the tuple of �1 dominates the tuple of
�2, then the response time bound Rð�1Þ of �1 is larger than
the response time bound Rð�2Þ of �2. Note that the domina-
tion between tuples of �1 and �2 requires that these two
paths end at the same vertex.

It is obvious that for domination, transitivity holds, i.e., if

hv; �1; Rð�1Þi < hv; �2; Rð�2Þi;
and

hv; �2; Rð�2Þi < hv; �3; Rð�3Þi;
then

hv; �1; Rð�1Þi < hv; �3; Rð�3Þi:

The following lemma gives an important property con-
cerning generation and domination between tuples.

Lemma 3. Given hu; �1; Rð�1Þiˆ hv; �01; Rð�01Þi, hu; �2;
Rð�2Þiˆ hv; �02; Rð�02Þi, and hu; �1; Rð�1Þi < hu; �2; Rð�2Þi, if

Ið�1Þ \ IðvÞ ¼ Ið�2Þ \ IðvÞ;
then

hv; �01; Rð�01Þi < hv; �02; Rð�02Þi:

Proof.We define A1 ¼ Ið�1Þ \ IðvÞ, and A2 ¼ Ið�2Þ \ IðvÞ

Ið�1Þ \ IðvÞ ¼ Ið�2Þ \ IðvÞ

) IðvÞ nA2 � IðvÞ nA1:

We have

volðIðvÞ nA2Þ
M

� volðIðvÞ nA1Þ
M

:

Since Rð�2Þ � Rð�1Þ, we have

) lenð�2Þþ volðIð�2ÞÞ þ volðIðvÞ nA2Þ
M

�

lenð�1Þ þ volðIð�1ÞÞ þ volðIðvÞ nA1Þ
M

:

It is obvious that

volðIð�2ÞÞ þ volðIðvÞ nA2Þ ¼ volðIð�2Þ [ IðvÞÞ

volðIð�1ÞÞ þ volðIðvÞ nA1Þ ¼ volðIð�1Þ [ IðvÞÞ:
We have

lenð�2Þ þ volðIð�2Þ [ IðvÞÞ
M

� lenð�1Þ þ volðIð�1Þ [ IðvÞÞ
M

) Rð�02Þ � Rð�01Þ:
That is

hv; �01; Rð�01Þi < hv; �02; Rð�02Þi:
We reach the conclusion. tu
Lemma 3 means if (1) vertex v is a successor of u, and (2)

path �1 and �2 end at the same vertex u, and (3) the response
time bound of �1 is larger than the response time bound of
�2, and (4) the interference set Ið�1Þ and Ið�2Þ have the
same vertices with the interference set of vertex v, then the
response time bound of �01 is larger than the response time
bound of �02.

Lemma 4. For a priority assignment with descending order,
given hu; �1; Rð�1Þi ˆ hv; �01; Rð�01Þi and hu; �2; Rð�2Þi ˆ
hv; �02; Rð�02Þi, if

hu; �1; Rð�1Þi < hu; �2; Rð�2Þi;
then

hv; �01; Rð�01Þi < hv; �02; Rð�02Þi:

Proof. We use Lemma 3 to prove this lemma. For 8w 2
Ið�1Þ \ IðvÞ.

First, u 2 anceðvÞ ) u 62 IðvÞ, and since w 2 IðvÞ, we
have

w 6¼ u) w 2 V n fug:
Second, w 2 Ið�1Þ ) w 62 descðuÞ, because if w 2 descðuÞ,
for 8vi 2 �1, w 2 descðviÞ ) w 62 IðviÞ ) w 62 Ið�1Þ. This
contradicts w 2 Ið�1Þ. So we have

w 62 descðuÞ:
Third, w 2 IðvÞ ) w 62 anceðuÞ, because if w 2 anceðuÞ,
since u 2 predðvÞ, we have w 2 anceðvÞ ) w 62 IðvÞ. This
contradicts w 2 IðvÞ. So we have

w 62 anceðuÞ:
Finally, w 2 Ið�1Þ ) 9pi 2 �1 such that w 2 IðpiÞ )
pðwÞ � pðpiÞ. By descending order, in path �1,
pðpiÞ � pðuÞ. We have
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pðwÞ � pðuÞ:
In summary, we reach the conclusion that w 2 IðuÞ.

Since u 2 �2, we have

IðuÞ � Ið�2Þ ) v 2 Ið�2Þ:

In conclusion, for 8w 2 Ið�1Þ \ IðvÞ
w 2 Ið�2Þ ) Ið�1Þ \ IðvÞ � Ið�2Þ:

By similar reasons, we have

Ið�2Þ \ IðvÞ � Ið�1Þ;
which means

Ið�1Þ \ IðvÞ ¼ Ið�2Þ \ IðvÞ:

By Lemma 3, the lemma follows. tu
Intuitively, Lemmas 3 and 4 state that with descending

order, if two paths �1, �2 end at the same vertex u,
Rð�1Þ � Rð�2Þ, and ðu; vÞ is an edge, then Rð�1 [ fvgÞ �
Rð�2 [ fvgÞ.
Definition 5. 8v 2 V

�v ¼ fvsrcg v ¼ vsrc
�u� [ fvg v 6¼ vsrc

�
; (5)

where

u� ¼ arg max
u2predðvÞ

lenð�uÞ þ CðvÞ þ volðIð�uÞ [ IðvÞÞ
M

� �
:

(6)

8v 2 V , we define GðvÞ ¼ ðV 0; E0Þ, where

V 0 ¼ anceðvÞ [ fvg

E0 ¼ fðu1; u2Þjðu1; u2Þ 2 E ^ u1 2 V 0 ^ u2 2 V 0g:

By definition, GðvÞ is a subgraph of G consisting of vertex v
and its ancestors.

For brevity, let PðvÞ ¼ PðGðvÞÞ. It is evident that
GðvsinkÞ ¼ G, PðvsinkÞ ¼ PðGÞ.

The following lemma shows that �v can be used to com-
pute the response time bound of G.

Lemma 5. For a priority assignment with descending order,
8v 2 V

Rð�vÞ ¼ max
�2PðvÞ

fRð�Þg:

Proof. We prove it by induction. Let s ¼ ðp0; . . . ;pi; . . . ;pnÞ
be a topological order of G. It is obvious that p0 ¼ vsrc,
pn ¼ vsink.

For i ¼ 0, we have pi ¼ vsrc, by Definition 5,
�v ¼ ðvsrcÞ, PðvÞ ¼ fðvsrcÞg. The lemma holds trivially.

For i 6¼ 0, suppose 8j < i, the claim holds. Since s is a
topological order, 8u 2 predðpiÞ, the claim holds. Since
�pi 2 PðpiÞ, Rð�piÞ � max�2PðpiÞfRð�Þg.
8� 2 PðpiÞ. Since � is a complete path in GðpiÞ,

9u 2 predðpiÞ such that � ¼ ðvsrc; . . . ; u;piÞ. Let

�0 ¼ ðvsrc; . . . ; uÞ. Since �0 2 PðuÞ, by inductive assump-
tion, we have

Rð�0Þ � Rð�uÞ:

So hu; �u; Rð�uÞi < hu; �0; Rð�0Þi. Let �1 ¼ �u [ fpig. We
have

hu; �u; Rð�uÞi ˆ hv; �1; Rð�1Þi

hu; �0; Rð�0Þi ˆ hv; �; Rð�Þi:
By Lemma 4

hpi; �1; Rð�1Þi < hpi; �; Rð�Þi:

By Equation (6), we have

Rð�piÞ � Rð�1Þ;

so hpi; �pi ; Rð�piÞi < hpi; �1; Rð�1Þi.
We have

hpi; �pi ; Rð�piÞi < hpi; �; Rð�Þi;
which means

Rð�piÞ � Rð�Þ:
We have 8� 2 PðpiÞ

Rð�piÞ � Rð�Þ;
which means

Rð�piÞ � max
�2PðpiÞ

fRð�Þg:

Finally, we have Rð�piÞ ¼ max�2PðpiÞfRð�Þg. The
lemma follows. tu

Theorem 3. For a priority assignment with descending order

Rð�vsinkÞ ¼ max
�2PðGÞ

fRð�Þg:

Proof. By Lemma 5, the theorem follows. tu
With Theorems 2 and 3, according to Definition 5, we

give the following algorithm.

Algorithm 1. Computing Response Time Bound

1: Input: DAG G ¼ ðV;EÞ; every vertex vi 2 V is with its
WCET Ci and its priority pðviÞ; the number of coresM

2: Output: the response time bound
3: s  TOPOLOGICAL ORDERðGÞ
4: �vsrc  fvsrcg
5: for vi 2 s from vsrc to vsink do
6: if vi 6¼ vsrc then
7: u�  argmaxu2predðviÞflenð�uÞ þ Ci þ volðIð�uÞ[IðviÞÞ

M g
8: �vi  �u� [ fvig
9: end if
10: end for
11: return Rð�vsinkÞ

In Algorithm 1, we first compute a topological order of
the DAG (line 3). Then, we start to compute the response
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time bound of every vertex in the DAG. Due to topological
order, at every vertex vi, the response time bounds of its
predecessors must have been computed. In line 7-8, we use
Equation (5) to compute �vi . The response time bound of
the DAG is given by the response time bound of the sink
vertex. The complexity of the algorithm is OðjV j þ jEjÞ.

6 PRIORITY ASSIGNMENT

The policy of assigning priorities is of critical importance. Dif-
ferent policies can lead to very different response timebounds.
In this section, we present our priority assignment algorithm.

Algorithm 2. Assigning Priorities

1: Input: DAG G ¼ ðV;EÞ; every vertex vi 2 V is with its
WCET Ci

2: Output: the priority pðviÞ of every vertex vi 2 V
3: COMPUTE LENGTHðGÞ
4: p 0
5: ASSIGN PRIORITY ðG; pÞ

Algorithm 3. Procedure COMPUTE LENGTHð½in	 GÞ
1: Input: DAG G ¼ ðV;EÞ; every vertex vi 2 V is with its

WCET Ci

2: Output: the lfðviÞ; lbðviÞ; lðviÞ of every vertex vi 2 V
3: s  TOPOLOGICAL ORDERðGÞ
4: lfðvsrcÞ  Csrc

5: for vi 2 s from vsrc to vsink do
6: if vi 6¼ vsrc then
7: lfðviÞ  Ci þmaxu2predðviÞflfðuÞg
8: end if
9: end for
10: lbðvsinkÞ  Csink

11: for vi 2 s from vsink to vsrc do
12: if vi 6¼ vsink then
13: lbðviÞ  Ci þmaxu2succðviÞflbðuÞg
14: end if
15: end for
16: for vi 2 V do
17: lðviÞ  lfðviÞ þ lbðviÞ � Ci

18: end for

Algorithm 2 first computes some heuristic information in
line 3 and, does priority assignment in line 5. Algorithm 3
runs a straight dynamic programming to compute the length
of the longest path through each vertex. In line 4–9, we

traverse the DAG forward in the topological order, comput-
ing the length of the path 1) starting from vsrc; 2) ending at any
vertex vi 2 V ; 3) andwith themaximum length. This length is
stored in lfðviÞ. Similarly, in line 10–15, we traverse the DAG
backward in the reverse topological order, computing the
length of the path 1) starting from at any vertex vi 2 V ; 2) end-
ing at vsink; 3) and with the maximum length. This length is
stored in lbðviÞ. In line 16–18, for each vertex vi 2 V , we com-
pute the length of the path 1) with vi in this path; 2) with the
maximum length. This length is stored in lðviÞ.

Algorithm 4. Procedure
ASSIGN PRIORITY ð½in	 G; ½inout	 pÞ
1: Input: DAG G ¼ ðV;EÞ; every vertex vi 2 V is with its

WCET Ci and lfðviÞ; lbðviÞ; lðviÞ defined in Algorithm 3; p:
the next available priority

2: Output: the priority pðviÞ of every vertex vi 2 V
3: while V 6¼ ? do
4: v vertex vi 2 V which has no predecessor and is with

maximum lðviÞ (ties broken arbitrarily)
5: pðvÞ  p; p pþ 1; A succðvÞ
6: G the graph obtained by removing v and its related

edges
7: while A 6¼ ? do
8: v vertex vi 2 A which is with maximum lðviÞ (in

case of ties, with maximum lbðviÞ, ties broken
arbitrarily)

9: if predðvÞ 6¼ ? then
10: G0  the graph composed of vertices in anceðvÞ and

their related edges
11: ASSIGN PRIORITY ðG0; pÞ
12: G the graph obtained by removing vertices in

anceðvÞ and their related edges
13: end if
14: pðvÞ  p; p pþ 1; A succðvÞ
15: G the graph obtained by removing v and its related

edges
16: end while
17: end while

Algorithm 4 assigns priorities to vertices recursively. The
parameter p has the direction type of inout, which means
the procedure both receives p from the caller procedure and
returns p to the caller procedure. In Algorithm 4, first, prior-
ities are assigned to vertices in the topological order, which
means a vertex cannot be assigned a priority until all of its
ancestors have been assigned priorities. Second, priorities
are assigned to vertices according to lðviÞ as computed in
Algorithm 3, which means vertices with larger lðviÞ can be
assigned with higher priorities.

The complexity of Algorithm 2 is OðjV j þ jEjÞ. We still
use the example in Fig. 1 to illustrate the priority assign-
ment algorithm, as shown in Fig. 5. In Fig. 5, the lðviÞ as
computed in Algorithm 2 is denoted beside the vertex, and
priorities are also labeled beside the vertex.

The priority assignment policy shown in Algorithm 2 has
the following properties:

� Property 1. Priorities are assigned in descending
order.

� Property 2. lðviÞ is the length of the longest path
through each vertex vi.

Fig. 5. An example illustrating priority assignment.
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� Property 3.One of the longest paths has the highest pri-
orities. Formally, there exists a path � 2 PðGÞ such
that ðlenð�Þ ¼ max�i2PðGÞflenð�iÞgÞ ^ ðIð�Þ ¼ ?Þ.

Property 1 holds, because priorities are assigned in the
topological order and a vertex getting a priority at an earlier
time always gets a higher priority (i.e., the numeric value of
the priority is small).

Property 2 corresponds to our motivation shown in
Section 3.1 and acts as a heuristic for our priority assignment.
We alwayswant to assign higher priorities to vertices in a lon-
ger complete path. The quantity lðviÞ, whichmeans the length
of the longest path through vertex vi, is a suitable heuristic.

Property 3 holds, because when a vertex v is assigned a
priority, the next vertex vi to be selected to assign a priority
is always chosen from its successors and with the maximum
lðviÞ (in Algorithm 4, line 8) unless there are predecessors of
vi which have not been assigned priorities. So there exists a
longest path � 2 PðGÞ such that 8vi 2 �, IðviÞ ¼ ? . We have
Ið�Þ ¼ ? . We mention that the heuristic of assigning higher
priorities to vertices in a longer complete path is not for-
mally defined, and it can be hard to achieve this heuristic
perfectly. Our algorithm only guarantees that one of the lon-
gest paths has the highest priorities as stated in Property 3.

7 EXTENSION TO MULTIPLE DAG TASKS

In this section, we apply our scheduling algorithm and
analysis techniques to the global scheduling of multiple
DAG tasks.

We first define some notations. We consider a task set t
of n tasks ft1; t2; . . . ; tng, scheduled on a multi-core plat-
form of M identical cores. Each DAG task ti 2 t is modeled
as a tuple ðGi;Di; TiÞ, where Di is the deadline and Ti is the
period. In the following, we only consider task set with con-
straint deadlines, i.e.,Di � Ti.

For any global work-conserving scheduler, a schedulabil-
ity test is presented in [6]. We restate it in our notations as
follows:

Theorem 4 ([6]). For a DAG task set t globally scheduled by
any work-conserving scheduler on a platform with M cores, a
bound Rk on the response time of a task tk can be derived by the
fixed-point iteration of the following expression, starting with
Rk ¼ lenðGkÞ

Rk ¼ lenðGkÞ þ volðGkÞ � lenðGkÞ
M

þ
P
8i 6¼k I

i
kðRkÞ

M
;

(7)

where IikðRkÞ is the upper bound of the interference of task ti to
tk during an interval of length Rk.

The result in [6] was developed for a more general DAG
model with conditional branches, but can be directly
applied to the DAG model of this paper, which is a special
case of [6]. For details of Theorem 4, please refer to [6].

In the following, we extend our method to multiple DAG
tasks. We first present the scheduling algorithm called global
prioritized list scheduling. The scheduling algorithm is with
two levels: task level and vertex level. In the task level, the
scheduling algorithm is the same as [6], which can be any
global work-conserving scheduler, such as EDF, RM. In the
vertex level, the vertices inside a task are scheduled by pri-
oritized list scheduling presented in this paper.

Theorem 5. For a DAG task set t scheduled by global prioritized
list scheduling on a platform with M cores, a bound Rk on the
response time of a task tk can be derived by the fixed-point itera-
tion of the following expression, starting with Rk ¼ Lk

Rk ¼ max
�2PðGkÞ

lenð�Þ þ volðIð�ÞÞ
M

� �
þ
P
8i6¼k I

i
kðRkÞ

M
:

(8)

Theorem 5 is a straightforward extension of Theorems 2
and 4.

8 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-
posed prioritized list scheduling algorithm and response
time analysis technique. We both evaluate the performance
of scheduling one task and scheduling multiple tasks. In
our evaluation, we use both task graph models derived
from realistic OpenMP benchmark applications and ran-
domly generated task graphs.

8.1 Evaluation of Scheduling One Task

We first present the evaluation results with benchmark
applications. The detailed information of benchmark appli-
cations used in our evaluation is provided in Table 1.

We transform these benchmark applications into task
graphs by inserting instructions (stubs) into their source
codes. These stubs serve for two purposes: generating task
graphs and measuring the execution time of each vertex in
graphs. The methodology to generate task graphs from the
source codes is introduced in [16]. We run benchmark appli-
cations with stubs to measure the execution time of vertices
on a machine with Intel i7-4770 CPU with 3.5 GHZ and
8,192 KB cache size, 4 GB RAM size. Although safe WCET
of benchmark applications cannot be obtained by this
method, these execution time values give a rough approxi-
mation of the workload of vertices. Note that our analysis is
not directly conducted on benchmark applications, but on
task graphs obtained by transforming these benchmarks.
This is because this paper focuses on the timing behavior of
parallel tasks, not their functionalities. Our schedulability

TABLE 1
Summary of OpenMP Benchmark Applications

Applications Source Vertices Edges Volume

alignment bots[11] 400 399 469879
fft bots 227 304 268
fib bots 353 528 353
sort bots 130 193 4369
lu_for bots 280 279 95806
lu_single bots 301 435 95238
strassen bots 122 177 7890
botsspar spec2012 [12] 290 424 381683
nbody dash [13] 320 469 38113
overlap openmpmpi [14] 408 604 431
pingpong openmpmpi 408 604 424
taskbench openmpbench [15] 216 311 1272

2290 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:50:56 UTC from IEEE Xplore.  Restrictions apply. 



analysis is applied to the workload models of the applica-
tions (i.e., the task graphs) derived from their source codes,
rather than to their source codes directly.

We first compare the response time bound (denoted as
Rpriority) computed by Equation (4) and the response time
bound (denoted as Rclassic) computed in Equation (1). We
use a metric called bound ratio defined as Rpriority=Rclassic to
evaluate their performance. The result is presented in Fig. 6,
where the horizontal axis is benchmarks listed in Table 1
and the vertical axis is the bound ratio. We conduct experi-
ments with different core numbers and for each core num-
ber, we compute Rpriority, Rclassic and bound ratio of each
benchmark application. Experiments show that the
response time bound of our scheduling algorithm is always
smaller than the classic bound computed in Equation (1).

Second, we compare the required core number when
changing the period of the benchmark applications. The
result is presented in Fig. 7. The horizontal axis is the ratio
T=L, where T is the period of benchmark applications and
L is the length of the longest path of the DAG generated by
benchmark applications. Here, we assume implicit deadline
and use T as the deadline of the application. The vertical
axis is core number ratio, which is defined asMpriority=Mclassic.
For our scheduling algorithm, we conduct a binary search
to find the minimum core number (denoted as Mpriority)
such that the response time bound is less than the deadline.
We compare it with the core number (denoted as Mclassic)
computed by the following equation, which is a reformula-
tion of Equation (1).

Mclassic � volðGÞ � lenðGÞ
T � lenðGÞ

� �
: (9)

Fig. 7 shows that our method always outperforms the
result in Equation (9) in terms of the required core number,
especially in the case of tight deadlines. However, we also
remark that when the deadline is much larger than the
length of the longest path, the required core numbers of the
two scheduling algorithms are almost the same.

Since the benchmark applications only represent limited
types of DAG, we also evaluate our scheduling algorithm
by using randomly generated tasks. The task sets are gener-
ated using the Erdos-Renyi method Gðn; pÞ [17]. We still use
the bound ratio to evaluate the performance.

We conduct experiments with different p in Gðn; pÞ. The
range of p is [0.02, 0.98]. For each p, we randomly choose n
(the number of vertices in the DAG task) in [50, 250], and
randomly choose Ci (the WCET of vertices in the DAG task)
in [50, 100]. We compute Rpriority and Rclassic with core num-
ber 2, 4, 8. Under each configuration, we conduct 500 experi-
ments to compute the average bound ratio. The results are
presented in Fig. 8. In Fig. 8, since the bound ratio is always
smaller than one, our method always outperforms the classic
bound in Equation (1). The bound ratio increases as p
increases and finally reaches 1 when p approaches 1. This is
because the larger p, the more sequential are the generated
task graphs (the more precedence constraints in the task
graph). In the extreme case, there is a precedence constraint
between any pair of vertices when p ¼ 1, so there is no room
to adjust the intra-task vertex priority order to improve the
response time bound.

In summary, for the scheduling of one parallel task on a
multi-core platform, our proposed scheduling algorithm
consistently outperforms the classic result in Equation (1).

As we mentioned in Section 1, there are existing works
on priority assignment for static scheduling of DAGs (while
this paper focuses on dynamic scheduling of DAGs). These
existing priority assignment strategies, although not desi-
gned for our target problem, are also applicable to our prob-
lem model. In the following, we compare the performance
of priority assignment algorithm presented in Section 6
(denoted as OUR) with these existing priority assignment
algorithms, including

� Highest Level First with Estimated Times (LFET) [9],
� Highest Levels First with No Estimated Times

(HLFNET) [9],
� Smallest Co-levels First with Estimated Times

(SCFET) [9],

Fig. 6. Bound ratio with benchmark applications.

Fig. 7. Required core number with benchmark applications.

Fig. 8. Bound ratio with random tasks.

HE ETAL.: INTRA-TASK PRIORITYASSIGNMENT IN REAL-TIME SCHEDULING OF DAG TASKS ON MULTI-CORES 2291

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:50:56 UTC from IEEE Xplore.  Restrictions apply. 



� Smallest Co-levels First with No Estimated Times
(SCFNET) [9],

� Critical Path/Most Immediate Successors First
(CPMISF) [10].

These priority assignment strategies all satisfy the prop-
erty that the generated priority order among vertices does
not conflict with their topology order, so Theorem 3 can be
applied to compute the response time bounds. The settings
in Fig. 9 are the same as settings in Fig. 8.

Fig. 9 shows the bound ratio (with respect to Graham’s
bound without exploring the intra-task priority order)
between our priority assignment strategy and the compared
existing priority assignment strategies. From the experiment
results, we can see that our priority assignment strategy sig-
nificantly outperforms all the others. In particular, some
bound ratio of the existing priority assignment strategy is
almost always 1 (i.e., they do not bring any benefit for reduc-
ing the response time bound). The bound ratio of all the prior-
ity assignment strategies (including ours) increases as p
increases and finally converges to 1 when p is close to 1. As
we mentioned above, this is because the larger p, the more
sequential are the generated task graphs (the more prece-
dence constraints in the task graph), and thus the less room to
adjust the intra-task vertex priority order to improve the
response time bound.

8.2 Evaluation of Scheduling Multiple Tasks

In this section, we evaluate the performance of scheduling
multiple DAG tasks by using benchmark task set and ran-
domly generated task set. We use the metric acceptance ratio
to compare the results presented in Theorems 4 and 5 when
applied to two global scheduling algorithms: EDF and RM.

In detail, Theorem 4 with global EDF (denoted as EDF-
RTA) and Theorem 5 (denoted as EDF-PRIORITY) with
global EDF are compared; Theorem 4 with global RM
(denoted as RM-RTA) and Theorem 5 with global RM
(denoted as RM-PRIORITY) are compared.

The DAG of benchmark and the randomly generated DAG
task are generated using the same method as Section 8.1. The
period T (which is also the deadline) is randomly chosen from
the interval ½L; 6L	, where L is the length of the longest path.
And for random task sets, the range of n and p inGðn; pÞ is [50,
250] and [0.02, 0.2], respectively. The range ofCi (theWCET of
vertices in DAG tasks) is [50, 100]. Benchmark applications
that we use are listed in Table 1. To generate a benchmark task
set with a specific utilization, we randomly choose benchmark
applications in Table 1 until the total utilization reaches the
required value. Similarly, to generate a random task set with a
specific utilization, we randomly generate a DAG task and
add it to the task set until the total utilization reaches the
required value. For every parameter configuration, we gener-
ate 500 task sets to compute the average acceptance ratio. The
results are presented in Figs. 10 and 11. Experiments show
that with respect to acceptance ratio, ourmethod is better than
the method presented in [6], especially for benchmark task
sets with high utilization. Note that there are differences
between the results of benchmark and random task sets. This
is because the benchmark applications usually have higher
volðGÞ=lenðGÞ than randomly generated tasks, which leads to
a smaller number of tasks in benchmark task sets.

We also conduct experiments with different p in Gðn; pÞ.
The range of p is (0, 1). For each p, we set the core number to
be 16, randomly choose n (the number of vertices in the
DAG task) in [50, 250], randomly choose Ci (the WCET of

Fig. 9. Bound ratio with random tasks.

Fig. 10. Acceptance ratio with benchmark task sets.
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vertices in the DAG task) in [50, 100], and randomly choose
normalized utilization in [0.1, 1] to generate task sets. Under
each configuration, we generate 1,000 task sets to compute
the average acceptance ratio. The results are presented in
Fig. 12, which shows that with respect to acceptance ratio,
our method outperforms the method presented in [6], espe-
cially for tasks with small p, which means these tasks have a
higher degree of parallelism.

In the following, we conduct experiments to evaluate the
effects of overhead concerning sorting vertices with different
priorities. Theoretically, our method performs better than [6].
However, our method requires a priority queue to store the
eligible vertices (while one can use FIFO queues if the intra-
task priority order is not exploited). The operations with pri-
ority queues typically incur higher overhead than FIFO
queues. Therefore, it is possible that the benefit of ourmethod
will fade in the presence of large extra runtime overhead
incurred by the priority queues. In general, the larger extra
overhead incurred by the priority queues (relative to the orig-
inal execution time of the task graph), the less effective is our
proposedmethod. In the following,we discuss the extra over-
head incurred by the priority queues and conduct experi-
ments with different degrees of extra overheads.

The worst-case overhead for operating the priority
queues depends on the maximal number of eligible vertices
at any time point (instead of the total number of vertices of
the task graph). The maximal number of eligible vertices is
bounded by the parallelism of the task graph, which is typi-
cally much smaller than the total number of task graphs.
Therefore, we could argue that the extra overhead incurred
by using the priority queues typically should be very small.

Nevertheless, the extra overhead incurred by the priority
queues still negatively affect the performance of our pro-
posed approach. In the following, we conduct experiments
to quantitatively evaluate the gain and loss of our approach
when the extra overhead is counted. The performance loss
of our approach depends on the ratio between the runtime
overhead and the original execution time of the task graph,
instead of the absolute value of the runtime overhead.
Therefore, we conduct experiments with changing values of
this ratio, as shown in Fig. 13 (the x-axis is the ratio between
the runtime overhead and maximal execution time among
all vertices in the task graph). The experiment results show
that our proposed approach is still rather effective when
this ratio is below 10 percent.

9 RELATED WORK

In this section, we review closely related work on real-time
scheduling, concentrating primarily on parallel tasks.

For the response time bound of a parallel task, the classic
bound in [2] is widely used in many literatures, including
response time analysis of parallel task set, such as [6], [18] and
federated scheduling, such as [5], [7], [19]. Besides the classic
result, Ozaktas et al. [1] proposed techniques to compute
an upper bound on the stall time due to synchronization.
Voudouris et al. [20] proposed a timing-anomaly free schedul-
ing algorithm, and by simulating this algorithm, a response
time bound can be obtained. However, this algorithm
requires toomuchmodification to the existing systems, which
is generally unacceptable. Besides, the response time bound is
obtained by simulating the scheduling algorithm, which is
not flexible and cannot bewidely integrated into other analyt-
ical techniques, such as those in [6].

For response time analysis of parallel task set, Chwa et al.
[21] proposed an RTA-based schedulability test for global
EDF scheduling of synchronous tasks with constrained
deadlines. Axer et al. [22] proposed an RTA-based schedul-
ability analysis for fork-join tasks with arbitrary deadlines.
Qamhieh et al. [23] proposed a schedulability test for global
EDF scheduling of DAG task set with constrained dead-
lines. Maia et al. [24] proposed an RTA-based schedulability
analysis for global fixed-priority scheduling of synchronous
tasks with constrained deadlines. Melani et al. [6] proposed
an RTA-based schedulability test for the general sporadic
conditional DAG task set, and Fonseca et al. [18] improved
the schedulability test in [6] by reducing the carry-in and
carry-out interfering workload.Fig. 12. Acceptance ratio with different p.

Fig. 11. Acceptance ratio with random task sets.
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Besides research work from real time community, there
are plenty of techniques concerning scheduling task graphs
on multiprocessor platform. Some existing work [9], [10]
considered priority assignment for static scheduling algo-
rithms for DAGs. These priority assignment algorithms can
also be applied to dynamic scheduling algorithms which is
the focus of this paper. However, as they are not designed
for the purpose of optimizing the worst-case response time
bound, their performance is not competitive with our pro-
posed approach as shown by the experiment results in
Section 8. Kwok and Ahmad proposed a static scheduling
algorithm for allocating task graphs to fully connected mul-
tiprocessor based on the critical path of task graphs [25].
This model considers communication cost and supposes
processor number is not given before scheduling, which is
different from the model discussed in this paper. Sheikh
and Ahmad proposed a task scheduling method for simul-
taneous optimization of performance, energy, and tempera-
ture [26], which did not involve techniques of statically
assigning priorities to vertices of task graph.

Plenty of parallel benchmarks are published over years.
Typical parallel applications, such as Laplace equation solver
[27], fast Fourier transform (FFT) [28], LU-decomposition
[29], are commonly used in evaluating parallel platforms.
NAS Parallel Benchmarks [30] was developed for the perfor-
mance evaluation of highly parallel supercomputers. Its For-
tran-MPI version [31] and OpenMP version [32] are also
widely used. SPEComp [33] targets mid-size parallel servers
and includes a number of science, engineering and data proc-
essing applications. Barcelona OpenMP Task Suite (BOTS)
[11] is a task-parallel benchmark suite with the purpose of
testing different implementations of OpenMP tasks on multi-
core architectures. SPEC2012 [12] includes a set of scientific
and engineering applications. The openmpmpi [14] bench-
mark is a set of microbenchmarks for mixed-mode program-
ming. The openmpbench [15] contains a set of tests which
measure the overhead of various OpenMP constructs. Dash
[13] is a benchmark suite for hybrid dataflow and shared
memory programming models. In this paper, we collect
some of these benchmarks and transform them into task
graphs to evaluate our schedulabilitymethod.

10 CONCLUSION

In this paper, by assigning priorities to vertices of the DAG,
we derive a tighter response time bound of a parallel task.
We propose a dynamic programming algorithm to compute

this bound, and a priority assignment algorithm to assign
priorities to vertices of the DAG. Besides, we extend our
result to the scheduling of multiple DAG tasks. Experiments
with realistic benchmark applications and randomly gener-
ated tasks show that our method consistently outperforms
the state-of-the-art methods under different parameter con-
figurations. In the future, we would like to investigate the
relation between efficiently computing the response time
bound derived in this paper and priority assignment policy
to provide a tighter response time bound.
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