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DeepBBWAE-Net: A CNN-RNN Based Deep SuperLearner For
Estimating Lower Extremity Sagittal Plane Joint Kinematics Using

Shoe-Mounted IMU Sensors In Daily Living
Md Sanzid Bin Hossain, Student Member, IEEE , Joseph Dranetz, Student Member, IEEE , Hwan Choi,

Member, IEEE , Zhishan Guo, and Senior Member, IEEE

Abstract— Measurement of human body movement is an essen-
tial step in biomechanical analysis. The current standard for human
motion capture systems uses infrared cameras to track reflective
markers placed on a subject. While these systems can accurately
track joint kinematics, the analyses are spatially limited to the
lab environment. Though Inertial Measurement Units (IMUs) can
eliminate these spatial limitations, those systems are impractical
for use in daily living due to the need for many sensors, typically
one per body segment.

Due to the need for practical and accurate estimation of joint
kinematics, this study implements a reduced number of IMU sen-
sors and employs a machine learning algorithm to map sensor
data to joint angles. Our developed algorithm estimates hip, knee,
and ankle angles in the sagittal plane using two shoe-mounted
IMU sensors in different practical walking conditions: treadmill,
overground, stair, and slope conditions. Specifically, we proposed
five deep learning networks that use combinations of Convolu-
tional Neural Networks (CNN) and Gated Recurrent Unit (GRU)
based Recurrent Neural Networks (RNN) as base learners for
our framework. Using those five baseline models, we proposed
a novel framework, DeepBBWAE-Net, that implements ensemble
techniques such as bagging, boosting, and weighted averaging
to improve kinematic predictions. DeepBBWAE-Net predicts joint
kinematics for the three joint angles for each of the walking con-
ditions with a Root Mean Square Error (RMSE) 6.93-29.0% lower
than the base models individually. This is the first study that uses a
reduced number of IMU sensors to estimate kinematics in multiple
walking environments.

Index Terms— Kinematics Estimation; Wearable IMU Sen-
sors; Ensemble Learning; Deep Learning; Machine Learn-
ing

I. INTRODUCTION

Human gait is the complex and coordinated movement of the limbs
which allows for locomotion. Gait motion analysis is a qualitative
and quantitative tool used to assess people’s kinesiological health.
For example, as people age, they experience transformations in their
gait pattern [1], [2]. Early detection of this transformation is useful
in assessing fall risk among the elderly [2]. Gait abnormalities can
also occur due to neurological damage related to traumatic injury
or disease [3]. As gait alterations can significantly impact quality of
life, gait analysis has become a more popular and relevant research
topic. Gait motion assessment can aid in the evaluation of the severity,
progression, and diagnosis of a disease or injury. Joint kinematics are
necessary spatiotemporal measures to assess abnormal gait function
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in the clinical setting. For example, knee joint kinematics have been
used to evaluate hypermobility syndrome (HMS) in children [4].
In addition to disease assessment, gait motion analysis is also a
valuable tool in the field of sports medicine [5]. The ability to evaluate
gait without a traditional lab setup facilitates patient monitoring,
accelerating the rehabilitation process. In [6], the authors used a set
of wearable sensors to track human lower limb motion, presenting
a method for measuring trajectories of the lower limb without an
optical motion capture system. In [7], a SmartShoe was developed
to monitor the physical activity and gait patterns of children with
CP in community living. In [8], a wearable biofeedback suit was
developed to estimate joint kinematics during aquatic exercises to
provide biofeedback to therapists while patients are underwater.

Traditional movement measurement techniques for gait assessment
use 3D infrared light motion capture cameras to measure the trajec-
tories of reflective markers placed on the human body. The acquired
data is then processed with dynamic analysis software to compute
joint angles [OpenSim [9], Visual3D (C-Motion, USA), Vicon Nexus
(Oxford, UK)]. Although this method is regarded as the ground truth
measure for dynamic function of human motion [10], it requires
manual data processing, expert device operation and only works in
a spatially and temporally restricted area due to the need for a large
number of cameras to define a limited capture volume. It has been
suggested that the use of Inertial Measurement Unit (IMU) sensors
may overcome some of the disadvantages with current methods for
assessing the dynamic function of human motion. Recent studies
have shown that IMU’s can be used to calculate joint angles [11].
Researchers can estimate human movements outside of the laboratory
environment by replacing traditional motion capture cameras with
wearable IMU sensors. These techniques also enable potential appli-
cations in long-term use and integrative daily monitoring. However,
the use of IMU’s requires setup before collecting motion data. For
example, each IMU sensor needs to be calibrated for each specific
body segment as the position and orientation of every sensor assigned
to each segment must be defined. While several calibration processes
have been proposed [12], [13], they are prone to error as they are
challenging to implement onto subjects consistently. Traditional IMU-
based estimation also requires the placement of sensors onto each
segment of the body, making them too cumbersome for application
in daily/continuous monitoring. Mundt et al. found that significant
redundancy can occur in a multi-sensor human motion capture system
such that it is possible to reduce the number of sensors without a
significant loss in kinematic accuracy [14].
Challenges. The key challenge to estimating joint angles using a
reduced number of sensors is the lack of input signal. Human
movement is complex in nature [15], and it is challenging to infer
several joint angles using only sensors at the feet. However, it is
possible to infer the missing IMU signals virtually by utilizing
statistic methods and signal processing techniques [16]–[18] while
using a reduced number of sensors. These statistical methods and
signal processing techniques are resource-intensive and impractical
for application in real-time gait monitoring. A machine learning
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model may replace these statistical methods and signal processing
techniques to allow for real-time estimations of kinematics.

As of late, there has been a massive wave of innovations in machine
learning. A properly-trained model can estimate kinematics with
decent accuracy [19]–[22]. Machine learning models implementing
Gated Recurrent Unit (GRU) based Recurrent Neural Networks
(RNN), or Convolutional Neural Networks (CNN) can extract rel-
evant features from the raw data of a reduced set of IMU sensors to
estimate kinematics. As a result, these machine learning models can
help overcome the limitations introduced by static pose calibration,
biomechanical modeling complexity, magnetometer data error, and
multi-sensor constraints.

Ensemble learning is a classical machine learning approach that
has created significant attention among researchers in recent decades.
The attention is well deserved as it yields significant performance
improvements in many real-world applications. It is the technique of
combining multiple weak learners in an intelligent way to create a
stronger learner, which has better predictive performance than those
of single weak learners individually. There are many well-established
ensemble learning methods: bagging, boosting, stack generalization,
weighted average ensemble, etc. In some of these methods, training
data is manipulated, passed to a homogeneous learner, and then
combined using averaging or majority voting for regression and
classification problems, respectively. In other methods, parameters or
the structures of the models are varied to create multiple learners and
then combined using either a secondary learner called a meta-learner
or a weighted averaging system to get the final ensemble model’s
prediction. To get accurate kinematic estimations in daily living, a
combination of different ensemble approaches may be helpful.

Contribution. This work aims to estimate kinematics (sagittal plane
hip, knee, and ankle joint angles) under various walking conditions
(stair, slope, overground, and treadmill) using just two IMU sensors
(one per shoe). We propose five deep learning models consisting of
Convolutional Neural Networks (CNN) and Gated Recurrent Unit
(GRU) based Recurrent Neural Networks (RNN) for time-series data
predictions. These models are well suited to generate features from
raw IMU data to make predictions. We further develop a novel CNN-
RNN based deep super learner model, Deep Bagging, Boosting, and
Weighted Average Ensemble (DeepBBWAE-Net). This super learner
implements various traditional ensemble methods (bagging, boosting,
weighted average ensemble) to combine the deep learning neural
networks. Combining predictions from multiple models improves
the accuracy of the joint angle estimation. Our experimental results
suggest that the proposed super learner method outperforms each of
the learners individually. Furthermore, DeepBBWAE-Net uses raw
data as the input of the neural network without any feature extraction
or time normalization and minimizes the system’s time complexity,
paving the way for real-time gait monitoring.

The rest of this paper is organized as follows: Section II briefly
reviews recent literature about machine learning-based kinematics es-
timation using IMUs and the fundamental machine learning concepts
that are used in the construction of the DeepBBWAE-Net framework.
The problem statement as well as the structures of the DeepBBWAE-
Net framework and its base learners are discussed in Section III.
Section IV describes the procedures followed for data collection,
data pre-processing, the parameters chosen for the machine learning
model, statistical validation methods, and the results of the prediction.
Section V discusses implications of these results, describes study
limitations, and proposes future work. We conclude the paper in
Section VI. II. RELATED WORK

This section will discuss the current state-of-the-art machine learn-
ing methods for IMU-based kinematics estimation and traditional

machine learning components used in our framework. First, we will
discuss studies where a complete set of IMU sensors was used to
estimate the kinematics. Then we will discuss attempts to employ
a reduced number of IMU sensors to achieve similar kinematic
predictions. After that, we will discuss the literature related to
traditional machine learning techniques used in our framework.

A. IMU and Machine learning-based approach
Mundt et al. [19] used five IMU sensors to estimate 3D joint

kinematics. They segmented and normalized their time-series data
into gait cycles before inputting it into a feed-forward neural network.
By enlarging the training data set with simulated IMU signals using
marker trajectory data, they decreased the prediction’s mean RMSE
from 4.8° to 4.3° and increased its correlation coefficient from 0.85 to
0.89. In [14], [23], the author used simulated IMU sensor data for 3D
kinematic prediction using a Long Short Term Memory (LSTM) and
Artificial Neural Network (ANN) based model to achieve correlation
coefficients higher than 0.98. However, because they only validated
their study with simulated data, it is difficult to determine how their
approach will perform with actual IMU signal. In [20], a simulation
technique with a musculoskeletal model was used to augment a data
set to train a deep learning model using a 2D convolutional layer to
predict kinematics for running and walking using four IMU sensors
on a single leg. Their simulation technique was able to decrease
the RMSE of hip, knee, and ankle joint angles by 17%, 27% and
23% respectively. In [24], five IMU sensors were used to estimate
kinematics in walking and running on a treadmill using a deep model
based on convolutional and long-short term memory recurrent layers
(DeepConvLSTM) with mean absolute errors ranging from 2.2° to
5.1°. More recently, in [25], the authors combined deep learning
and optimization frameworks to estimate 3D kinematics using seven
IMU sensors for walking and running, achieving an RMSE of 1.27°
( ± 0.38°) for knee flexion/extension. However, because they only
validated their study with simulated IMU data, it is unclear how their
method will perform using real IMU data. These studies have used a
relatively large set of sensors and were only conducted on treadmill
or overground conditions.

B. Reduced Sensor-Based Approach
Many studies have employed machine learning for kinematics

estimation of treadmill and overground walking conditions [19], [14],
[23], [24], [20], [25] using a large number of sensors (4-7 sensors).
Due to the impracticality associated with using a full set of IMU
sensors, some studies have employed a reduced set of IMU sensors to
estimate joint kinematics. Lim et al. [21] used a single IMU mounted
on participants’ sacrum to estimate kinetics and kinematics, achieving
RMSEs of 3.1°, 2.2°, 3.4° for hip, knee, and ankle angles during the
stance phase. To do this, they processed the IMU data to calculate
acceleration, velocity, and displacement over time and used this data
as input for an ANN. This data processing was done retroactively,
and the pre-processing they performed may have resulted in an
additional error. The method was also not able to estimate kinetics
and kinematics for both legs simultaneously. Gholami et al. [22]
proposed a single accelerometer based approach for calculating the
kinematics of running on a treadmill and achieved RMSEs of 5.6°,
6.5°, 4.7° for hip, knee, and ankle angles with an inter-participant
model (exclusion of test subject during training). As their deep
learning model uses input data from past and future samples for
present kinematics prediction, it cannot make predictions for the start
and the end portions of the data. As they have built their model based
on treadmill data, a repetitive process, the predictions are good as it
is easier to predict repetitive kinematics when both past and future
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data are provided. But in an uncontrolled environment like stair and
slope conditions, their predictive model may not perform well. More
recently, Alcaraz et al. [26] used a single IMU sensor on the foot to
estimate kinematics during overground walking. They have achieved
an average RMSE of 1.91°, 2.12° and 2.57° for the hip, knee, and
ankle joints. The reason for their good prediction may be due to them
using 80/20% splits of each participant’s data for training/testing sets,
resulting in same subject’s data in both sets. Additionally, they used
gait cycle normalization, a Hilbert-Huang transformation, to process
the data making it difficult for real-time prediction due to the longer
computation time. Moreover, using a single sensor on the foot may
create ambiguity when the foot is in full contact with the ground
because the IMU doesn’t record any acceleration or angular velocity,
but the hip, knee, and ankle angles are still changing.

C. Fundamental Neural Network Components and
Methodologies

This study aims to use machine learning techniques to estimate
lower extremity joint angles as accurately as possible. Using an
effective machine learning model is an essential step for this purpose.
In this subsection, we will briefly discuss the theoretical details of
the methods used to build DeepBBWAE-Net and justify their use.
Gated Recurrent Unit (GRU). Long-short term memory (LSTM) is
a special type of Recurrent neural network (RNN) that can capture
time-dependency in time series data without suffering from the
gradient vanishing or explosion problem [27], and thus can process
longer sequences of data (compared to regular RNN). Nevertheless,
LSTM is heavily parameterized and takes a longer time to train. Cho
et al. [28] first proposed Gated Recurrent Units (GRU), a special case
of LSTM without an output gate, resulting in fewer parameters and a
reduction in the required training time. GRU will be used for feature
learning from the accelerometer and gyroscope time-series data in
our study.
Convolutional Neural Networks (CNN). CNN’s are computation-
ally optimized feedforward deep neural networks with sparse con-
volutional layers. Each convolutional layer has kernel functions that
convolute small patches of the input signal. This makes convolutional
networks more optimized for feature extraction and less computation-
ally expensive. The use of pre-processed data from the convolutional
network is advantageous as handcrafted features extracted by humans
may not sufficiently represent the underlying relations. CNN models
can use raw data from the input to learn their feature representation
through backpropagation while maximizing the best mapping of the
IMU data to the joint kinematic data.
Bagging. Bootstrap aggregating (bagging) is a classic ensemble
machine learning technique proposed by Breiman [29] which can
be applied in both classification and regression problems. Bootstrap
samples are created using random sampling with replacement from a
data set. Each bootstrap data subset is then passed to a homogeneous
learner to create multiple distinct trees, which can be aggregated
by voting or averaging for classification and regression problems,
respectively. Bagging reduces the variance of prediction and increases
the stability and accuracy of the machine learning model.
Boosting. In bagging, multiple models are trained independently,
while in boosting, multiple weak learners are trained sequentially in
an adaptive way to form a stronger learner. To reduce bias during the
learning process, models adaptively give more weight to the instances
in the data set that were weakly interpreted by previous models (and
less weight to cases of successful interpretations). We implement
Gradient Boosting Machine (GBM) [30], which can be considered
an optimization process toward finding a model that minimizes loss.
Weighted Average Ensemble (WAE). Model averaging is another
ensemble approach where predictions from each model are ag-

gregated to generate a final prediction in a regression problem.
Different weights are applied to different models according to their
effectiveness toward the prediction to ensure optimal performance
from the final ensemble model.
Convex Optimization. Sequential least-square programming
(SLSQP) is a gradient-based optimization method, which was first
proposed by Kraft and Schnepper [31]. In our framework, we
use this optimization procedure to find the optimal weights of the
models and to minimize the RMSE between ground truth and the
predictions.

III. PROPOSED APPROACH

In this section, we will discuss the problem statement, detailed
workflow of DeepBBWAE-Net Framework, and base learners used
for building the framework.

A. Problem Statement

The purpose of the study is to estimate joint angles of the
hip, knee, and ankle using two shoe-mounted sensors in different
practical walking scenarios: stair, slope, and overground. To date,
no study has attempted to employ a reduced number of sensors to
estimate joint angles for various walking conditions. As the number
of sensors is reduced, an effective machine learning model is essential
for accurate kinematic estimations. For this reason, we proposed
a novel framework, DeepBBWAE-Net, which leverages bagging,
boosting, and weighted average ensemble techniques to improve
the prediction performance. We believe two sensors should be the
minimum necessary number and thus set this limit in our design.
When one foot is in full contact with the ground, its IMU signal
becomes zero, so a sensor on the other foot is necessary to provide
the network with information about kinematics at that time.

B. DeepBBWAE-Net Framework

The DeepBBWAE-Net framework consists of three fundamental
blocks: BagBoost, Weighted Average Ensemble (WAE), and Base-
Boost (Fig. 1). The BagBoost block consists of multiple BagBoost
cells. The function of each BagBoost cell is to apply bagging and
boosting to each base learner to improve the prediction performance.
The function of the BaseBoost block is to generate boosted predic-
tions of the base learner using the whole data set. This block gives
additional information to the framework for improving the prediction
performance. The function of the WAE block is to combine the
outputs of the multiple BagBoost and BaseBoost blocks using optimal
weighted averaging to generate the final prediction.
BagBoost block. The BagBoost block consists of multiple BagBoost
cells. The number of BagBoost cells (n) will depend on the number
of base learners used in the framework. Fig. 2 demonstrates the
workflow of a single BagBoost cell. In each cell, a single base
learner is used to get two predictions: Ybag and Ybagboost. Ensemble
learning–bagging and GBM are used to get these two predictions.
At first, k bootstrap samples are created from the training data,
and each sample is used to train the same base learner. Predictions
from each base learner are then averaged to get Ybag . Additionally,
each Ybag is passed to a GBM, trained with the validation data, to
increase generalization. The prediction from each GBM learner is
then averaged to get Ybagboost.
BaseBoost block. Unlike in the BagBoost cells, the entire training
data set is used to train the base learners in the BaseBoost block. To
further improve the performance, results from the base learners are
passed to a GBM, trained with the validation data, and has an output
named Ybaseboost.
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Fig. 1. DeepBBWAE-Net consisting of three blocks- a BagBoost, WAE, and BaseBoost Block

Fig. 2. A BagBoost Cell

WAE block. In the WAE block, we have four WAE cells: WAE-1,
WAE-2, WAE-3, WAE-4. The function of each cell is to combine
results from multiple branches to generate a better prediction.

In WAE-1, prediction Ybag from the BagBoost cells are used to
generate Bag-WAE-Net. In WAE-2, prediction Ybagboost from the
BagBoost cells are used to create BagBoost-WAE-Net. In WAE-3,
prediction Ybaseboost from the BaseBoost cells are used to generate
BaseBoost-WAE-Net. WAE-1, WAE-2, and WAE-3 are then used
to build WAE-4, which produces the final prediction. To find the
optimal weights in the WAE block, we used a convex optimization
method, the SLSQP optimization algorithm, where the loss function
was defined as the RMSE between ground truth kinematic data and
the kinematic predictions.

C. Base learners
This subsection will discuss the details of the five base learners

that we have developed to build DeepBBWAE-Net. We used several
blocks consisting of 1D/2D convolutional layers, Bi-GRU layers, and
fully connected layers to create the base learners. First, we will
introduce the base learners. Then, we will describe the different
fundamental blocks used to create the base learners.

1) Base learner 1: Conv2D-Net: In base learner 1 (Fig. 3),
two fundamental blocks, i.e., 2D convolutional and fully connected
blocks, were used. First, batch normalization (BN) is applied on
the input signal to address the heterogeneity of source data [32] to
perform regularization. After batch normalization, a 2D convolutional
block and a fully connected block were added consecutively. A
flattening layer is added to flatten the output from the fully connected
blocks, which is then connected to the last prediction layer.

2) Base learner 2: Bi-GRU-Net: In Base learner 2 (Fig. 3), a Bi-
GRU block is used after batch normalizing the input data. A flattening
layer was then added to flatten the output from Bi-GRU block and
connected to the final output layer.

3) Base learner 3: Hybrid Conv1D-GRU-Net: Base learner 3
(Fig. 3) consists of a Bi-GRU, a 1D convolutional, and a fully
connected block. After batch normalization, features are extracted
from the input using the Bi-GRU block. The output of the Bi-GRU
block is then passed to a 1D convolutional block to extract the
features further. A fully connected block was added after the 1D
convolutional block. The output from the fully connected block was
then flattened to connect to the output layer.

4) Base learner 4: Hybrid Conv2D-GRU-Net-1: In base learner
4 (Fig. 3), we concatenated the output from the flattening layer of
base learners 1 and 2. Both Conv2D-Net and Bi-GRU-Net were used
to extract features from the IMU data. To get advantages from both
model’s feature extraction, we concatenated features from both of the
models. This concatenated layer is then connected to the output layer
for prediction.

5) Base learner 5: Hybrid Conv2D-GRU-Net-2: In base learner
5 (Fig. 3), a 2D convolutional block is first used to extract features.
A regular flattening layer will flatten the input into a 2D tensor and
reduces the temporal and feature dimensions into a single one. For
this reason, we instead used a TimeDistributed wrapper of Keras [33]
to flatten the output to produce a 3D tensor, which is the required
input of the Bi-GRU layer. With this, a Bi-GRU block was added
after the 2D convolutional block to extract features further. Finally,
we flattened the output and connected it to a dense layer for predicting
the joint angles.

6) Fundamental Blocks: This subsection will discuss the funda-
mental blocks specifically designed to create effective base learners
for our problem. Fig. 4 demonstrates all the fundamental blocks used
to build the base learners.

2D Convolutional Block. A 2D Convolutional Block consists of 2D
convolutional, batch normalization (BN), and max-pooling layers.
First, we have a 2D convolutional layer followed by a batch nor-
malization layer. This batch normalization helps reduce the internal
covariance shift of the network [34]. Internal covariance shift is the
change in data distribution during model training as weights of the
layers change during the training process. A max-pooling layer is then
applied to reduce the feature space, reducing the complexity of the
training [35]. Max-pooling also helps to select dominant convolved
features to ensure efficient model learning. Convolutional, batch
normalization, and max-pooling layers form the basic component of
the 2D Convolutional block. This series of components are repeated
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Fig. 3. All five base learners consist of: Fundamental Building Block, Input, Batch Normalization, Flatten, Concatenation, and Output layers

Fig. 4. The fundamental building blocks of the base learners: 1D
Convolutional Block, Bi-GRU Block, 2D Convolutional Block, and Fully
Connected (FC) Block

serially three times to build the 2D convolutional block.

1D Convolutional Block. In a 1D convolutional block, two convo-
lutional layers, a batch normalization layer, and a max-pooling layer
are used as a basic building block. Two of these basic building block
sequences are combined in series to construct the 1D convolutional
block.

Bi-GRU Block. In bidirectional GRU, two GRU layers are trained
simultaneously with input windows in both the positive and negative
time directions [36]. As a result, bidirectional GRU can learn feature
representation from both the past and the future for its predictions.
This learning gives additional context to the network for training and
often results in better model performance. Dropout layers were added
after the Bi-GRU layers to avoid overfitting. A series of two Bi-GRU
layers, each followed by a dropout layer, is used in the Bi-GRU block.

Fully Connected Block. A fully connected block consists of two
fully connected dense layers (FC-1, FC-2). To avoid overfitting, a
dropout layer was added after each fully connected dense layer.

IV. EXPERIMENTS

A. Data Collection
Ten healthy subjects (six male, four female, age: 23.9±2.91

years, height: 1.65±0.06 m, weight: 63.41±6.81 kg) participated
in the study. Table I displays the demographics information of
the participants. The informed written consent of all participants

is received before participation in the experiment. The Institutional
Review Board (IRB) of the University of Central Florida (UCF)
approved the study’s protocol (IRB ID: STUDY00002011).

Two inertial measurement unit sensors were placed onto the
participants’ shoes with a pre-defined sensor orientation (Fig.5). Each
participant performed twelve trials: 4 treadmill, 4 overground, 2 stair,
and 2 slope. Participants walked on a 5m overground at four self-
selected speeds,i.e., slow, normal, fast, and very fast. Each subject
performed two trials on five-step stairs (27 inch wide, 9 inch deep,
and 7 inch rise steps) with their self-selected speed. Participants also
performed inclined and declined walking on a slope of 20% [37], [38]
at a self-selected speed. The participants walked on the treadmill at
four different speeds for approximately 2 minutes. Non-dimensional
slow, normal, fast, and very fast walking velocities were determined
based on subject leg length, measured from the greater trochanter
to the ground [39]. The actual treadmill speed was calculated by
multiplying non-dimensional velocity with

√
gLleg , where g is the

gravitational acceleration, and Lleg is the length of the participant’s
leg. During the trials, thirty-four reflective markers were placed on
the participant (Fig. 5) based on a modified Helen-Hayes marker
set [40]. Three-dimensional marker trajectories were captured with
twelve infrared light cameras (Vicon, Oxford, UK) with a sampling
rate of 100 Hz. The accelerometer and gyroscope data were recorded
with a sampling frequency of ∼148 Hz (sampling period: 6.75 ms)
using Avanti wireless EMG/IMU (Delsys, Boston, MA). A trigger
signal was sent from the motion capture system to start the left
and right leg IMUs synchronously. We used OpenSim [9], an open-
source musculoskeletal analysis tool, to calculate joint angles during
walking conditions. First, we scaled a generic musculoskeletal model
while the participant held an anatomical pose. We performed inverse
kinematics after scaling to estimate kinematics of the 23 coordinates
of the musculoskeletal model for the dynamic walking trials. The
sagittal plane angles of the hip, knee, and ankle for both legs, six
joint angle coordinates, were taken as ground truth kinematics used
in the training and validation of the machine learning models.

B. Data Pre-processing

Marker data collected from the motion capture system have a
frequency of 100 Hz, where IMU data were collected at a rate of
∼148 Hz. IMU data were resampled to 100 samples per second
to synchronize with the motion capture data before inputting to the
machine learning model. In addition to the three-axis accelerometer
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Fig. 5. Placement of markers and IMU sensors. Each IMU sensor
was mounted on the dorsum of foot in the same orientation for each
participant. Musculoskeletal model was created using Scale tool of
OpenSim.

TABLE I
DEMOGRAPHICS OF THE PARTICIPANTS

Subject Gender Age Weight Height Length
(Kg) (m) of leg (m)

Subject 1 Male 28 60.18 1.70 0.75
Subject 2 Female 22 53.47 1.55 0.71
Subject 3 Male 21 65.54 1.73 0.73
Subject 4 Male 26 55.62 1.62 0.70
Subject 5 Male 21 72.90 1.74 0.81
Subject 6 Male 22 74.48 1.68 0.77
Subject 7 Male 26 68.90 1.67 0.70
Subject 8 Female 21 65.30 1.61 0.80
Subject 9 Female 23 58.00 1.60 0.77

Subject 10 Female 29 59.69 1.60 0.77

and gyroscope data, we also calculated the norm of three-axis
acceleration and angular rotation, resulting in eight features from
each IMU sensor. We segmented the data into individual gait cycles
for overground, stair, and slope trials, discarding the gait initialization
phase. We allowed participants to initiate gait with either leg on the
stair and slope trials. This will not introduce any bias to the model as
we have sensors on both left and right feet. Table II shows maximum
and minimum angles for hip, knee, ankle found with motion capture
for different walking conditions to put later prediction RMSEs into
context. In Table III, we showed the total time and number of gait
cycles for each condition.

The machine learning models considered a window length of 80
frames (0.80s) as an input. We found that 80 frames of data gave
satisfactory results for joint angle prediction. As the 80 frame input
includes data from 6 joint angles, we have an output size of 480 for
each 80 frame time interval.

One subject’s data were set aside as the testing set for leave-out-
one subject cross-validation from the whole data set. The remainder
of the data were split into a training set (80%) for training the base
learners and a validation set (20%) to validate the model.

C. Implementation Details
We implemented our proposed algorithm in Keras on an NVIDIA

Tesla P100 GPU with a training time of approximately 13 hours. The
total inference time for DeepBBWAE-Net is approximately 60ms for
a 0.8s input window. As DeepBBWAE-Net has multiple independent
branches in its framework, the inference time can be lower down
to 6ms by implementing parallel computing of ten branches of the
BagBoost Cell (Fig. 2).

TABLE II
MEAN AND STANDARD DEVIATION OF MAXIMUM AND MINIMUM HIP,
KNEE, AND ANKLE ANGLES FOR DIFFERENT WALKING SCENARIOS

Walking
Condition Hip (°) Knee (°) Ankle (°)

Treadmill Max 26.66 ± 8.17 0.03 ± 3.96 13.47 ± 4.13
Min -22.85 ± 10.44 -65.19 ± 15.77 -18.28 ± 6.75

Overground Max 22.03 ± 7.86 -1.37 ± 4.3 14.14 ± 4.92
Min -19.98 ± 12.89 -63.14 ± 19.32 -15.82 ± 7.78

Slope Ascent Max 39.83 ± 13.55 -9.6 ± 11.86 21.01 ± 5.21
Min -13.63 ± 17.67 -66.38 ± 7.91 -11.18 ± 10.96

Slope Descent Max 15.47 ± 4.29 -2.09 ± 4.1 22.3 ± 5.45
Min -11.4 ± 6.37 -76.83 ± 8.12 -9.21 ± 4.97

Stair Ascent Max 55.72 ± 10.4 -12.33 ± 8.45 25.5 ± 4.78
Min -1.41 ± 9.57 -97.94 ± 12.07 -12.89 ± 10.22

Stair Descent Max 30.09 ± 9.17 -12.77 ± 8.1 36.22 ± 8.38
Min 0.31 ± 6.52 -93.4 ± 13.96 -23.56 ± 10.61

TABLE III
TOTAL DATA SET TRIAL TIMES FOR VARIOUS WALKING CONDITIONS

Condition Trial Time (s) No of Gait Cycle
Treadmill 5192.36 4621

Overground 1683.78 1458
Slope Ascent 767.48 609
Slope Descent 780.24 609
Stair Ascent 751.21 482
Stair Descent 662.12 480

1) DeepBBWAE-Net: Ten bootstrap samples (k=10) were gen-
erated for each BagBoost cell. We found that ten bootstrap samples
work well for our problem. Bootstrap aggregation (bagging) is
applied when the model becomes overfit, and significant variance is
present in the data set. During training, the model may seem to fit the
training data perfectly. When the model estimates the kinematics of a
novel subject, it may not perform well due to high naturally occurring
inter-subject gait pattern variability. So, indirectly the model has
become overfit to the training data. As bagging is applied when the
model becomes overfit and the data set has high variance, bagging
can be an excellent approach to more accurate joint angle prediction.
To further improve the generalization of joint angle prediction, we
use GBM after bagging. Data used to validate the base models was
utilized for training the gradient boosting model. Although we use
dropout to avoid overfitting, the model had poor performance with
the validation data compared to the training data. For this reason, to
improve the generalization of the model, we used gradient boosting
(GBM) techniques after the bagging prediction. We used the same
methods after each base learner when training the base learners with
the whole data set.

All the cells of the WAE block are generated using predictions from
the leave-out-one subject cross-validation data. More specifically, we
first estimated the kinematics of each subject with the BagBoost and
BaseBoost blocks using leave-out-one cross-validation. We use the
rest of the subjects’ leave-out-one prediction data to find the optimal
weights for each cell in the WAE block during test subject evaluation.
We also compared the weighted average ensemble prediction of the
base learners (named Base-WAE-Net) against our proposed method.
We have used five base learners (n=5) to create the DeepBBWAE-Net
framework.

2) Base Learners: In this subsection, we will provide details on
the implementation of the base learners.

Conv2D-Net. As a 2D convolutional layer requires a 4D tensor, we
reshaped the 16 inputs of two sensors into 8 features×2 sensors.
For three convolutional layers in the block, we used a filter size of
64, 64, and 128, respectively. The kernel size was 3 × 3 for all the
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TABLE IV
MEAN AND STANDARD DEVIATION OF RMSE FOR HIP, KNEE, AND ANKLE ANGLES OF ALL MODELS FOR ALL WALKING SCENARIOS.

Family Model Hip (°) Knee (°) Ankle (°) Mean (°) Family
Mean (°)

Conv2D-Base-Net 6.51 ± 0.99 8.44 ± 1.19 4.91 ± 0.62 6.62 ± 0.93
Bi GRU-Base-Net 5.23 ± 0.66 6.07 ± 0.64 4.09 ± 0.32 5.13 ± 0.54

Base Hybrid Conv1D-GRU-Base-Net 5.25 ± 0.76 6.24 ± 1.17 4.14 ± 0.38 5.21 ± 0.77 5.62 ± 0.74
Hybrid Conv2D-GRU-Base-Net-1 5.11 ± 0.66 5.88 ± 0.83 4.16 ± 0.30 5.05 ± 0.60
Hybrid Conv2D-GRU-Base-Net-2 6.25 ± 0.91 7.46 ± 1.13 4.65 ± 0.60 6.12 ± 0.88

Conv2D-BaseBoost-Net 6.47 ± 0.91 7.77 ± 1.12 4.75 ± 0.63 6.33 ± 0.88
Bi GRU-BaseBoost-Net 5.19 ± 0.63 5.94 ± 0.72 4.08 ± 0.29 5.07 ± 0.55

BaseBoost Hybrid Conv1D-GRU-BaseBoost-Net 5.26 ± 0.68 5.94 ± 0.93 4.09 ± 0.30 5.10 ± 0.64 5.49 ± 0.70
Hybrid Conv2D-GRU-BaseBoost-Net-1 5.15 ± 0.65 5.78 ± 0.75 4.03 ± 0.26 4.99 ± 0.55
Hybrid Conv2D-GRU-BaseBoost-Net-2 6.19 ± 0.90 7.21 ± 1.14 4.57 ± 0.61 5.99 ± 0.88

Conv2D-Bag-Net 6.51 ± 1.13 8.20 ± 1.15 4.73 ± 0.68 6.48 ± 0.99
Bi GRU-Bag-Net 4.99 ± 0.67 5.57 ± 0.82 3.89 ± 0.30 4.82 ± 0.60

Bag Hybrid Conv1D-GRU-Bag-Net 4.95 ± 0.74 5.84 ± 1.05 3.94 ± 0.34 4.91 ± 0.71 5.32 ± 0.75
Hybrid Conv2D-GRU-Bag-Net-1 4.91 ± 0.75 5.48 ± 0.85 3.83 ± 0.33 4.74 ± 0.64
Hybrid Conv2D-GRU-Bag-Net-2 5.92 ± 0.85 6.79 ± 1.03 4.30 ± 0.55 5.67 ± 0.81

Conv2D-BagBoost-Net 6.40 ± 1.01 7.53 ± 1.18 4.54 ± 0.66 6.15 ± 0.95
Bi GRU-BagBoost-Net 4.97 ± 0.72 5.56 ± 0.90 3.87 ± 0.32 4.80 ± 0.65

BagBoost Hybrid Conv1D-GRU-BagBoost-Net 4.97 ± 0.66 5.58 ± 0.87 3.90 ± 0.29 4.82 ± 0.61 5.22 ± 0.73
Hybrid Conv2D-GRU-BagBoost-Net-1 4.93 ± 0.74 5.45 ± 0.81 3.80 ± 0.34 4.73 ± 0.63
Hybrid Conv2D-GRU-BagBoost-Net-2 5.89 ± 0.84 6.73 ± 1.03 4.27 ± 0.61 5.63 ± 0.83

Base-WAE-Net 4.89 ± 0.69 5.60 ± 0.88 3.86 ± 0.30 4.78 ± 0.62
BaseBoost-WAE-Net 4.96 ± 0.68 5.51 ± 0.83 3.82 ± 0.31 4.76 ± 0.61

WAE Bag-WAE-Net 4.92 ± 0.75 5.48 ± 0.87 3.77 ± 0.32 4.73 ± 0.65 4.74 ± 0.63
BagBoost-WAE-Net 4.93 ± 0.74 5.45 ± 0.85 3.76 ± 0.34 4.72 ± 0.64
DeepBBWAE-Net 4.90 ± 0.72 5.44 ± 0.86 3.76 ± 0.32 4.70 ± 0.63

convolutional layers. For maxpooling2D, we used a pool size of 2×2
for each layer. For the fully-connected block, we used a neuron count
of 128 and 64 for two FC layers, respectively. A dropout rate of 0.5
was used for each dropout layer.
Bi-GRU-Net. Cell numbers 128 and 64 were used in each of the two
Bi-GRU blocks. A dropout rate of 0.5 was used for each dropout
layer.
Hybrid Conv1D-GRU-Net. The Bi-GRU block used the same pa-
rameters that were used in Bi-GRU-Net. For the 1D convolutional
block, filter sizes of 64, 64, 128, and 128 were used for four
convolutional layers with a kernel size of 3. A pool size of 2 was used
for maxpooling1D. For a fully connected block, the neuron count was
128 and 64 for the dense layer, and a dropout rate was chosen 0.5
for both of the dropout layers.
Hybrid Conv2D-GRU-Net-1. The parameters for Hybrid Conv2D-
GRU-Net-1 were the same as those used in the respective components
in base learners 1 and 2.
Hybrid Conv2D-GRU-Net-2. We used the same parameters in
Hybrid Conv2D-GRU-Net-1 as was used in base learners 1 and 2.
Hyperparameters of the Base Learners. We used mean squared
error as the loss function and an Adam [41] optimizer to optimize the
parameters of all the base learners. A batch size of 64 was selected for
all the base learners. The number of iterations for each base learner
was 250, 70, 200, 200, 70, respectively.

D. Evaluation Methods
For the evaluation, we considered the leave-out-one subject cross-

validation method. Excluding a single subject’s data from the training
set allows for evaluation methods that check for model overfitting
and assess the model’s overall performance. To measure the accuracy
of the predictions, we considered two metrics: RMSE and Pearson
correlation coefficient (PCC). RMSE determines the offset between
the ground truth and the prediction, where the PCC determines
the correlation of ground truth and predicted curves. To show the
accuracy of our proposed approach, we take the average of angles
of both legs to get single RMSE and correlation values for the hip,

knee, and ankle angles on the sagittal plane under each walking test
condition.

E. Results
Table IV, V present RMSE and PCC values for all the base

learners, intermediate models, and final proposed models for each
joint angle under all walking conditions, as well as the overall mean
values for each specific model. The models are categorized into five
families: Base, BaseBoost, Bag, BagBoost, and WAE. To show the
comparative performance of each family, we also reported the family
means. We considered the five base models as the baseline for this
study, so results from the base models are compared to intermediate
and final proposed (DeepBBWAE-Net) models to show the efficacy
of the proposed methods.

While the Conv2D-Base-Net model had an RMSE of 6.62° the use
of boosting in the Base model, generating the Conv2D-BaseBoost-
Net model, resulted in a 4.38% reduction in mean RMSE. Applying
bagging techniques on the training data resulted in a 2.11% reduction
in mean RMSE compared to the Conv2D-Base-Net model. Using
the same boosting methods on the validation data after bagging, as
done in the Conv2D-BagBoost-Net model, reduced the mean RMSE
by 7.10%. Fig. 6 demonstrates the percent reduction of RMSE and
improvement of PCC when bagging, boosting are applied to the base
learners, indicating the effectiveness of adding different components
to the base learners implemented in our proposed workflow.

After creating BaseBoost, Bag, and BagBoost models from the
base learners, we used weighted average ensembles to combine
those models. Base-WAE-Net, BaseBoost-WAE-Net, Bag-WAE-Net,
and BagBoost-WAE-Net were created using the weighted average
ensemble of the Base, BaseBoost, Bag, BagBoost family models,
respectively. Fig. 7 demonstrates the effectiveness of the WAE family
models over the base learners.

Table IV, V demonstrate the gradual improvements in both families
mean RMSE and correlation values as bagging and boosting are
added to the models. Overall, the WAE family reduces the mean
RMSE by 15.66%, 13.66%, 10.90%, and 9.20% compared to the
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TABLE V
MEAN AND STANDARD DEVIATION OF PCC FOR HIP, KNEE, AND ANKLE ANGLE OF ALL MODELS FOR ALL WALKING SCENARIOS.

Family Model Hip Knee Ankle Mean Family
Mean

Conv2D-Base-Net 0.931 ± 0.015 0.95 ± 0.014 0.917 ± 0.012 0.933 ± 0.013
Bi GRU-Base-Net 0.951 ± 0.005 0.975 ± 0.004 0.945 ± 0.005 0.957 ± 0.005

Base Hybrid Conv1D-GRU-Base-Net 0.951 ± 0.006 0.974 ± 0.006 0.943 ± 0.006 0.956 ± 0.006 0.948 ± 0.009
Hybrid Conv2D-GRU-Base-Net-1 0.952 ± 0.008 0.975 ± 0.004 0.947 ± 0.003 0.958 ± 0.005
Hybrid Conv2D-GRU-Base-Net-2 0.934 ± 0.017 0.957 ± 0.016 0.922 ± 0.013 0.938 ± 0.015

Conv2D-BaseBoost-Net 0.932 ± 0.014 0.952 ± 0.013 0.919 ± 0.013 0.934 ± 0.013
Bi GRU-BaseBoost-Net 0.953 ± 0.005 0.975 ± 0.005 0.946 ± 0.005 0.958 ± 0.005

BaseBoost Hybrid Conv1D-GRU-BaseBoost-Net 0.952 ± 0.005 0.974 ± 0.006 0.944 ± 0.005 0.957 ± 0.006 0.949 ± 0.009
Hybrid Conv2D-GRU-BaseBoost-Net-1 0.953 ± 0.007 0.976 ± 0.004 0.948 ± 0.003 0.959 ± 0.005
Hybrid Conv2D-GRU-BaseBoost-Net-2 0.934 ± 0.016 0.957 ± 0.015 0.924 ± 0.013 0.939 ± 0.015

Conv2D-Bag-Net 0.937 ± 0.017 0.954 ± 0.013 0.927 ± 0.013 0.939 ± 0.014
Bi GRU-Bag-Net 0.959 ± 0.005 0.978 ± 0.005 0.954 ± 0.004 0.964 ± 0.004

Bag Hybrid Conv1D-GRU-Bag-Net 0.96 ± 0.006 0.978 ± 0.005 0.951 ± 0.004 0.963 ± 0.005 0.956 ± 0.008
Hybrid Conv2D-GRU-Bag-Net-1 0.961 ± 0.005 0.979 ± 0.004 0.956 ± 0.004 0.966 ± 0.004
Hybrid Conv2D-GRU-Bag-Net-2 0.944 ± 0.013 0.964 ± 0.012 0.936 ± 0.011 0.948 ± 0.012

Conv2D-BagBoost-Net 0.938 ± 0.016 0.956 ± 0.012 0.929 ± 0.012 0.941 ± 0.014
Bi GRU-BagBoost-Net 0.959 ± 0.005 0.978 ± 0.004 0.955 ± 0.004 0.964 ± 0.004

BagBoost Hybrid Conv1D-GRU-BagBoost-Net 0.96 ± 0.006 0.978 ± 0.005 0.952 ± 0.004 0.963 ± 0.005 0.956 ± 0.008
Hybrid Conv2D-GRU-BagBoost-Net-1 0.961 ± 0.005 0.979 ± 0.004 0.956 ± 0.004 0.966 ± 0.004
Hybrid Conv2D-GRU-BagBoost-Net-2 0.945 ± 0.013 0.964 ± 0.012 0.936 ± 0.011 0.948 ± 0.012

Base-WAE-Net 0.959 ± 0.006 0.978 ± 0.004 0.954 ± 0.003 0.964 ± 0.005
BaseBoost-WAE-Net 0.959 ± 0.006 0.979 ± 0.004 0.955 ± 0.003 0.964 ± 0.004

WAE Bag-WAE-Net 0.961 ± 0.005 0.979 ± 0.004 0.956 ± 0.004 0.966 ± 0.004 0.965 ± 0.004
BagBoost-WAE-Net 0.961 ± 0.005 0.979 ± 0.004 0.957 ± 0.004 0.966 ± 0.004
DeepBBWAE-Net 0.961 ± 0.005 0.979 ± 0.004 0.957 ± 0.003 0.966 ± 0.004

Fig. 6. Percentage RMSE reduction (left figure) and percentage PCC improvement (right figure) over base learners when different techniques are
applied (Boost, Bag, BagBoost)

Fig. 7. Percentage RMSE reduction (left figure) and percentage PCC improvement (right figure) over base learners with different WAE family
models

Base, BaseBoost, Bag, BagBoost families, respectively while increas-
ing the Pearson correlation coefficients by 1.76%, 1.66%, 0.95%, and
0.90% respectively.

Table VI demonstrates the RMSE and Pearson correlation coeffi-
cients of all of the base models averaged, the intermediate models
averaged, and of DeepBBWAE-Net for different walking conditions.
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Fig. 8. Percent of RMSE reduction (left figure) and percentage PCC improvement (right figure) of a base learners with Intermediate models and
DeepBBWAE-Net

TABLE VI
RMSES AND PCCS OF BASE MODELS, INTERMEDIATE MODELS, AND DEEPBBWAE-NET FOR DIFFERENT WALKING CONDITIONS

Model Treadmill Overground Slope Ascent Slope Descent Stair Ascent Stair Descent
RMSE (°) Base Models 4.29 4.48 5.81 5.68 6.57 6.92

Intermediate Models 4.09 4.23 5.33 5.25 5.99 6.44
DeepBBWAE-Net 3.87 3.90 4.69 4.73 5.31 5.69

Correlation Base Models 0.966 0.957 0.955 0.922 0.955 0.935
Intermediate Models 0.970 0.962 0.962 0.933 0.964 0.946

DeepBBWAE-Net 0.974 0.968 0.973 0.946 0.973 0.961

Figure 8 shows the percent improvement of the intermediate models’
and DeepBBWAE-Net’s predictions over those of the base models.

Figure 9 compares DeepBBWAE-Net kinematic predictions of two
gait cycles for each walking condition with the motion capture based
kinematics and present their corresponding RMSEs and PCCs to
demonstrate the variance between the prediction and ground truth.
Table VII shows the RMSEs and PCCs of the DeepBBWAE-Net
predictions for each joint for all walking conditions.

V. DISCUSSION

A Novel DeepBBWAE-Net. This paper proposes a novel framework,
DeepBBWAE-Net, by implementing bagging, boosting, and weighted
average ensemble techniques to estimate joint angles of the lower
extremities during gait in different environments using two IMU
sensors. The reduced RMSE indicates DeepBBWAE-Net’s ability to
calculate joint kinematics more accurately than other simpler deep
learning models. DeepBBWAE-Net’s predictions are stable among
the participants with a standard deviation of 0.63° for RMSE. Our
results demonstrate that walking conditions with significantly more
variability lead to predictions with greater RMSE and lower Pearson
correlation coefficients. For example, the joint kinematics of walking
is highly dependent on walking speed [42]. The treadmill trials had
a controlled constant walking speed throughout the data collection
period. On the other hand, when the participants walked back and
forth across 5 meter walkways for the overground and sloped walking
conditions, there was more variation in walking speed leading to
increased joint kinematic variability. Similarly, The variety of walking
strategies for stair walking led to predictions with higher RMSEs
and lower Pearson correlation coefficients than those of kinematic
predictions of other walking conditions. However, DeepBBAWE-Net
achieved better joint kinematic predictions than conventional deep
learning models under these more variable walking patterns (Fig. 8).
Stair and Slope Kinematics. Many studies have implemented
machine learning to estimate kinematics using IMU sensors [14],
[19], [20], [23] for overground or treadmill conditions. But, no study
has developed machine learning-based estimation of joint kinematics

for stair and slope walking. Our final goal is to estimate joint
kinematics outside the lab in different walking environments. Training
an algorithm with data from stair and slope conditions is a big step
toward achieving that goal.

Predictions of the treadmill and overground conditions had lower
RMSEs, while the slope and stair condition predictions produced
greater error (Table VI). One reason for this is the greater number
of consecutive data sets under each controlled walking speed for the
treadmill and overground conditions compared to the slope and stair
conditions. This is further compounded by the fact that the stair and
slope trials have greater kinematic variability. These variances in the
kinematics and reduced data set size makes determining the specific
window size for input data to the algorithm difficult.

Despite new data management and our new algorithm, the stair
condition predictions had greater errors than other walking condi-
tions. The increased error is likely due to the variations in strategies
we observed with subjects in the stair walking condition. We found
that some participants used their forefoot to climb up the stairs while
other participants used their entire foot. Some participants contacted
their toe first while descending the stairs, while other participants
used their whole foot to land on the stair. This increased inter-subject
variability in the stair data set might have made it difficult for the
deep learning model to perform good predictions for those conditions.

Another reason for error in slope and stair kinematic predictions
was the data sets’ size. The slope and stair conditions have less data
compared to the those of the treadmill and overground conditions
due to the limited number of stairs and the length of the ramp that
could fit within the limited capture volume of the motion capture
system (Table III). Another factor influencing prediction accuracy of
stair and slope conditions was variable participant walking speed.
The slope and stair conditions were only performed at a single self-
selected speed, while the treadmill and overground conditions had
multiple speeds.
Real-time measurement. One of the advantages of our study is the
potential for estimation of joint kinematics in real-time as raw IMU
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Fig. 9. Sample plots of right hip, knee, and ankle angle for two gait cycles for Subject 2 in all walking scenarios
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TABLE VII
MEAN AND STANDARD DEVIATION OF RMSE AND PCC FOR DEEPBBWAE-NET FOR DIFFERENT WALKING CONDITION

RMSE (°) PCC
Walking Condition Hip Knee Ankle Mean Hip Knee Ankle Mean

Treadmill 3.77 ± 0.76 4.62 ± 1.05 3.22 ± 0.75 3.87 ± 0.58 0.984 ± 0.006 0.984 ± 0.009 0.955 ± 0.013 0.974 ± 0.007
Overground 4.32 ± 0.65 4.28 ± 0.69 3.09 ± 0.57 3.90 ± 0.46 0.971 ± 0.010 0.985 ± 0.005 0.949 ± 0.011 0.968 ± 0.004
Slope Ascent 5.65 ± 1.19 4.94 ± 0.85 3.47 ± 0.55 4.69 ± 0.78 0.98 ± 0.004 0.976 ± 0.005 0.962 ± 0.011 0.973 ± 0.020
Slope Descent 4.33 ± 0.59 6.11 ± 1.57 3.74 ± 0.32 4.73 ± 0.65 0.927 ± 0.021 0.972 ± 0.007 0.941 ± 0.016 0.946 ± 0.012
Stair Ascent 6.01 ± 1.51 5.89 ± 1.37 4.01 ± 0.66 5.31 ± 1.05 0.978 ± 0.004 0.986 ± 0.003 0.955 ± 0.015 0.973 ± 0.006
Stair Descent 5.29 ± 1.53 6.78 ± 1.74 5.02 ± 1.36 5.69 ± 1.39 0.929 ± 0.021 0.974 ± 0.016 0.980 ± 0.006 0.961 ± 0.014

TABLE VIII
COMPARISON OF PREVIOUS STUDIES WITH OUR PROPOSED METHOD

Paper Mundt et al. [19] Dorschky et al. [20] Gholami et al. [22] Lim et al. [21] Ours
Number of sensors 5 IMUs 4 IMUs 1 accelerometer 1 IMU 2 IMUs
Placement of sensor hip, thigh (2), shank (2) hip, thigh, shank, foot Foot Lower back Feet

Prediction Model ANN 2D CNN 1D CNN ANN DeepBBWAE-Net
Walking Type walking walking and running running walking walking

Walking condition overground overground treadmill treadmill treadmill, overground
Hip (RMSE) - 5.08° 5.6° 3.1° (stance phase) 3.77°, 4.32°

Knee (RMSE) 4.62° 4.81° 6.5° 2.2° (stance phase) 4.62°, 4.28°
Ankle (RMSE) 2.42° 4.60° 4.7° 3.4° (stance phase) 3.22°, 3.09°

data is used as input to the model. Previous studies would typically
pre-process the collected sensor signal and motion data before input
to a machine learning algorithm. For example, gait cycles would be
identified and then used to normalized the time data to unify the
input data size [19], [21]. Also, input features are usually extracted
from the collected data to use as algorithm input [21]. This pre-
processing increases computation time, slowing the predictions and
reducing the network’s viability as a real-time system, preventing
the monitoring of kinematics in real-time. Our proposed model uses
raw IMU data, removing the need for computationally expensive pre-
processing and enables application in real-time kinematic estimation
with approximately 6ms inference time for 0.8s input windows.
Comparison with Other Studies. Table VIII compares our results
with those of previous studies that use true IMU data and leave
out cross validation. These comparisons are only for treadmill and
overground conditions, following the limits of what these studies
implement. Our model outperforms most of the previous work, but
direct comparison of this study’s result with others may not be fair as
the data set, sensor position, sensor number, and trial conditions are
different. The data set used in this study consisted of a combination of
treadmill, overground, stair, and slope walking data. While perhaps
a more robust representation of human gait, using a combination
of different conditions may produce less accurate predictions than a
model trained to predict kinematics from the treadmill or overground
data only. For this reason, we mainly compare the results of our
proposed approach with more conventional models applied to the
same data set. Other studies use conventional machine learning or
deep learning models (Table VIII) to predict joint kinematics in gait.
We have integrated bagging, boosting, and WAE techniques in our
framework DeepBBWAE-Net and demonstrated that our proposed
approach outperforms conventional methods when trained from the
same data set (Table IV,V). This result indicates the advantages of
our developed machine learning algorithm over those of other studies
to predict joint kinematics in gait more robustly.
Limitation and Future Work. One of the significant challenges
addressed in this study is the development of a kinematics esti-
mation approach that requires a reduced number of sensors. This
is challenging because the algorithm’s input is missing information
typically captured with a complete sensor set, potentially affecting the
model’s accuracy. While adding the input of thigh or shank sensors
may improve the performance of kinematics estimation, it makes

the system less practical by increasing the potential burden on the
subject. One major limitation of our proposed network DeepBBWAE-
Net is that it is not trained end-to-end. We train multiple models
separately and use a weighted average ensemble to combine their
output. This increases the complexity of training the model, so
making the framework train end-to-end can be a potential future work.
Another limitation of our work is the limited data set. A larger data set
would more effectively train the model and result in better kinematic
predictions. One potential method for expanding the available data set
is to use simulated IMU sensor data [14]. This would be particularly
useful for expanding areas of the data set that were less represented,
such as stair and slope walking conditions [43]. Using simulation to
generate data of hundreds of different artificial subjects may improve
the generalization of DeepBBWAE-Net. In the future, we plan to
add simulated data to the training and assess the model’s performance
with the augmented data set. Additionally, we plan on implementing a
parameter sweep to identify the optimal number of bootstrap samples
(k) for the network.

VI. CONCLUSION

In this paper, we proposed a novel deep learning framework
DeepBBWAE-Net to estimate lower extremity kinematics in dif-
ferent walking conditions. Our proposed framework predicts joint
kinematics with less error compared to other conventional deep
learning models. Our study implements a reduced set of IMU sensors
in order to increase the system’s viability in commercial systems
by increasing user comfort. Our developed algorithm has potential
application in the monitoring of the pathologic walking patterns of
neurologically impaired individuals patients in their daily living. This
would allow clinicians to assess the progression of patient disease
and the outcomes of treatment remotely, reducing the frequency of
required return visits to an outpatient clinic.
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