
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020 3385

Efficient Feasibility Analysis for Graph-Based
Real-Time Task Systems

Jinghao Sun, Rongxiao Shi, Kexuan Wang, Nan Guan , Member, IEEE, and Zhishan Guo

Abstract—The demand bound function (DBF) is a powerful
abstraction to analyze the feasibility/schedulability of real-time
tasks. Computing the DBF for expressive system models, such
as graph-based tasks, is typically very expensive. In this article,
we develop new techniques to drastically improve the DBF com-
putation efficiency for a representative graph-based task model,
digraph real-time tasks (DRT). First, we apply the well-known
quick processor-demand analysis (QPA) technique, which was
originally designed for simple sporadic tasks, to the analysis of
DRT. The challenge is that existing analysis techniques of DRT
have to compute the demand for each possible interval size, which
is contradictory to the idea of QPA that aims to aggressively skip
the computation for most interval sizes. To solve this problem, we
develop a novel integer linear programming (ILP)-based analysis
technique for DRT, to which we can apply QPA to significantly
improve the analysis efficiency. Second, we improve the task uti-
lization computation (a major step in DBF computation for DRT)
efficiency from pseudo-polynomial complexity to polynomial com-
plexity. Experiments show that our approach can improve the
analysis efficiency by dozens of times.

Index Terms—Demand bound function (DBF), digraph real-
time tasks (DRT), feasibility, linear program (LP).

I. INTRODUCTION

REAL-TIME systems are often implemented by a num-
ber of concurrent tasks sharing hardware resources, in

particular the execution processors. Traditionally, a real-time
task system is modeled as a collection of periodically or spo-
radically repeating computation requests [1], [2]. With the
increased complexity of real-time embedded software, com-
plex control flow structures, such as mode switches, local
loops, and if-else branches, cannot be fully captured by
these simple periodic and sporadic task models. A natural
representation of these complex structures is the task graph,

Manuscript received April 17, 2020; revised June 17, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current ver-
sion October 27, 2020. This work was supported in part by the National
Foundation of Science of China under Grant 61972076, Grant U1808206,
and Grant 61672140; in part by the Research Grants Council of Hong Kong
under Grant GRF 15204917 and Grant 15213818; and in part by the National
Science Foundation under Grant CNS-1850851. This article was presented in
the International Conference on Embedded Software 2020 and appears as part
of the ESWEEK-TCAD special issue. (Corresponding author: Nan Guan.)

Jinghao Sun is with the School Of Computer Science and Technology,
Dalian University of Technology, Dalian 116024, China.

Rongxiao Shi and Kexuan Wang are with the School Of Computer Science
and Engineering, Northeastern University, Shenyang 110819, China.

Nan Guan is with the Department of Computing, Hong Kong Polytechnic
University, Hong Kong (e-mail: nan.guan@polyu.edu.hk).

Zhishan Guo is with the Department of Electrical and Computer
Engineering, University of Central Florida, Orlando, FL 32816 USA.

Digital Object Identifier 10.1109/TCAD.2020.3012174

where vertices represent different types of jobs, and edges
represent the possible flow of control. Each vertex (job)
is characterized by its worst-case execution time (WCET)
requirement and relative deadline. Each edge is labeled with
the minimum separation time between the release of the two
vertices (jobs) it connects. The first graph-based real-time task
model is the recurring branching task model which is proposed
to formulate some restricted forms of conditional real-time
process code [3]. Over years, more and more expressive graph-
based task models are proposed to precisely describe complex
embedded real-time systems [3]–[10], and the digraph real-
time (DRT) task model [10] is a representative one among
them, which generalizes most known real-time task models.

When scheduling a real-time task system on a target execu-
tion platform, we concern with a fundamental analysis problem,
called the feasibility analysis, i.e., “how do we determine
whether the tasks can be scheduled in such a manner that all
jobs complete by their deadlines?”. In this article, we restrict
our attention to pre-emptive scheduling (i.e., a job executing
on the processor can be interrupted at any instant in time, and
its execution resumes later with no cost or penalty) of the DRT
tasks. The demand bound function (DBF) analysis technique is
a standard methodology for the feasibility analysis of real-time
tasks under pre-emptive scheduling, which is centered upon
the idea of the DBF for tasks: this quantifies the maximum
amount of processor time that all jobs generated by the task
can require in an interval of specified size, and attempt to
determine whether there is an interval size for which the DBF
summed over all tasks in the system exceeds the processor
capacity (i.e., the overflow occurs). Briefly, the computation of
DBF for DRT tasks is conducted in the following two steps.

Step 1: Compute the utilization (e.g., the amount of pro-
cessor demand required by a task per time unit)
for each task and determine an interval-size bound
L by using the utilization summed over all tasks.

Step 2: For each interval size less than L, compute the
DBF for each task, and then sum the DBF over all
tasks, and check whether the summed DBF (i.e.,
the maximum processor demand required by all
tasks) exceeds this interval size (i.e., the processor
capacity).

The DBF methodology is originally proposed for analyzing
the simplest sporadic tasks (e.g., [2]), and further is adapted
to analyze the DRT task model [10]. When analyzing the sim-
plest sporadic tasks, the DBF method is quite efficient, i.e.,
the bound L and the DBF for any specified interval size can
be computed within a constant time. The only problem left

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:36:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3775-911X

3386 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

is that the bound L has a pseudo-polynomial scale, and by
following the traditional DBF methodology, it is inefficient to
check all interval sizes (less than L). To this end, Zhang and
Burns [11] proposed an efficient technique, called the quick
processor-demand analysis (QPA), to accelerate the traditional
DBF analysis for the simplest sporadic tasks. The main ben-
efit of the QPA technique is that QPA does not require to
do analysis for every interval size, but only needs to check
few interval sizes for which the overflow may occur. With the
help of QPA, the calculation effort (of analyzing the simplest
sporadic task set) is exponentially reduced [11].

However, when the DBF method is applied to analyze the
DRT task model, it suffers a sharply increased complexity, and
it is challenging to directly adapt QPA (for simple sporadic
tasks) to accelerate the DBF analysis of DRT tasks, due to
the fact that the parameters (e.g., task utilization and DBF)
that are frequently calculated during the analysis progress are
more complicated to compute, and more specifically, we have
the following.

1) DRT Task’s Utilization Is More Complicated to
Compute: In the simplest sporadic task model, the uti-
lization of a task can be computed within O(1) time,
but in the DRT task model, computing the task utiliza-
tion is equivalent to solving the densest cycle of the
task graph. The traditional method in [10] solves this
problem in pseudo-polynomial time.

2) DRT Task’s DBF Is More Complicated to Compute,
and the Traditional Method in [10] Cannot Fit QPA:
The DBF for a simple sporadic task can be represented
as a formula, which is computed within O(1) time.
However, computing DBF for a DRT task is equiva-
lent to searching an optimal path on the task graph with
the maximum workload and bounded length. The tra-
ditional method in [10] uses a dynamic programming
(DP)-based approach to deal with the exponential path
explosion during the graph search progress, which relies
on sequentially checking all interval sizes less than L and
thus is contradictory with the idea of QPA.

Contributions: In this article, we aim to solve the above
challenging problems, and as the main contribution of this
article, we propose efficient acceleration techniques for the
DBF analysis of the DRT task model. More specifically, we
accelerate the DBF analysis in two parts.

1) We integrate the QPA framework into the analysis of
DRT tasks. Instead the traditional DP method, we pro-
pose an integer linear programming (ILP) model to
directly solve the DBF, which does not need to sequen-
tially check all interval sizes, and thus this makes it
possible to apply the QPA framework for analyzing DRT
tasks. To make our ILP model more efficient to solve,
we divide the constraints of our ILP model into two
parts: a) easy constraints and b) complex constraints.
We develop a row generation algorithm to iteratively
solve our ILP model which initially only involves easy
constraints, and dynamically adds complex constraints
when necessary.

2) We find that the task utilization computation that
is solved by traditional method in [10] within

Fig. 1. Example DRT task model.

pseudo-polynomial time actually has a polynomial time
complexity. We develop a linear programming (LP)
approach to solve the densest cycle of a task graph,
and thus derive the task utilization within polynomial
time, which clearly outperforms the traditional method
and further accelerates the analysis progress.

We conduct experiments with randomly generated task
systems to evaluate the efficiency of our proposed method.
The experimental results show that our method is much faster
than the traditional method in [10].

The motivation for accelerating the DBF analysis is twofold.
The first requirement comes from online systems. During the
runtime of a real-time system, new tasks may arrive, and need
to be added to the current task set. The system must rean-
alyze feasibility online to decide whether to allow the new
tasks to enter into the system or not. Such online admis-
sion control gives a stronger requirement on the efficiency
of the feasibility test as the decisions have to be made in a
very short time. Second, efficient analysis is very useful in
design-space exploration of real-time systems, in which many
different parameter profiles need to be checked. An automated
search may even be undertaken as part of the architectural
definition of the system. An efficient but accurate feasibility
scheme is therefore needed.

II. TASK MODEL

We consider a task system T consisting of a set of n inde-
pendent DRT tasks, i.e., T = {τ1, τ2, . . . , τn}. A DRT task τk

is represented by a directed graph Gk = (Vk, Ek), where Vk

denotes the set of vertices in Gk, and Ek denotes the set of
edges in Gk. The vertices in Vk represent the types of all jobs
that can be released by τk. Each vertex vi of Vk has the WCET
Ci ∈ N, and the relative deadline Di ∈ N. The edges in Ek

represent the order in which τk’s job instances are released.
Each edge (vi, vj) ∈ Ek is labeled with pij ∈ N denoting the
minimum inter-release separation time (or equally, the period)
between vertices vi and vj. We assume that the task system T
satisfies the frame separation property [6] by which all jobs’
deadlines are constrained to not exceed the inter-release sepa-
ration times: for all vertices vi and their outgoing edges (vi, vj),
we require Di ≤ pij. If the task system does not meet the frame
separation property, then the techniques proposed in this arti-
cle will be over-approximate. We discuss this in Section III-A
in details. An example DRT task is given in Fig. 1. There are
five vertices and seven edges. Each vertex vi is labeled by a
pair of integers, where the first integer represents the execu-
tion time of the job released by vi, and the second integer
represents the deadline of the job released by vi. Each edge
(vi, vj) is labeled by an integer, representing its period.

Execution Semantics: The semantic of a DRT task system
T is defined as the set of job sequences it may generate. In

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:36:48 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT FEASIBILITY ANALYSIS FOR GRAPH-BASED REAL-TIME TASK SYSTEMS 3387

the following, we introduce the job sequences generated by
T in more details. Before going into details, we first give
some useful notations as follows. A job instance is repre-
sented by a tuple (r, e, d) consisting of an absolute release
time r, an execution time e, and an absolute deadline d. The
job sequence σk = [(r0, e0, d0), (r1, e1, d1), . . .] is a sequence
of job instances generated by τk, which corresponds to a path
π = (v0, v1, . . .) in Gk such that the xth tuple (rx, ex, dx) of σk

corresponds to the xth vertex vx of π , and thus, the following
equalities hold, i.e., rx+1 − rx ≥ px,x+1, dx = rx + Dx, and
ex ≤ Cx, for all x ≥ 0. Combining the job sequences σk of
individual tasks τk ∈ T results in a job sequence �T of the
whole system T , i.e., �T = {σk|τk ∈ T }.

Fig. 1 shows an example to illustrate the semantics of
DRT tasks. The system can start at an arbitrary vertex
of Gk, i.e., the task τk releases its first job instance of
any job type. The released job sequence corresponds to
a path through Gk. We consider the job sequence σk =
[(5, 2, 14), (23, 5, 31), (37, 4, 46)] which corresponds to path
π = (v5, v1, v2) in Gk (the edges in π are marked in red).
Note that not every job instance in σk is released as early as
possible, e.g., the second job instance (associated with v1) is
released 2 time units later than its earliest release time.

III. FEASIBILITY ANALYSIS

The main focus of this work on the DRT task model is to
solve the associated feasibility problem defined as follows.

Definition 1 (Feasibility): A task set T is pre-emptive
uniprocessor feasible, if and only if all job sequences

∑
T

generated by T can be executed on a pre-emptive uniprocessor
platform such that all jobs meet their deadlines.

In particular, we say a job (r, e, d) is successfully scheduled
to meet its deadline, if there is an accumulated duration of e
time units where the job executes exclusively on the proces-
sor within the time interval [r, d). It is known that the earliest
deadline first (EDF) is an optimal algorithm for schedul-
ing real-time tasks on a pre-emptive uniprocessor. Thus, the
feasibility problem is equivalent to EDF schedulability.

In the following, we first introduce a general feasible-
analysis methodology. After that, we give a brief introduction
to the relevant prior work about such a methodology.

A. Demand Bound Function Methodology

As stated in Section I, the DBF technique is a standard
methodology for the feasibility analysis of real-time tasks. For
DRT tasks, the notion of DBF expresses accumulated execu-
tion time that a task set can demand from the processor within
any time interval of a specified size. Formally, we have the
following definition.

Definition 2 (DBF): For any task τk ∈ T (with the frame
separation property) and an interval size t, DBFk(t) denotes the
maximum cumulative execution requirement of tasks with both
release time and deadline within an interval of the specified
interval size t, over all task sequences generated by τk. More
precisely

DBFk(t) = max{e(π)|π ∈ Gk ∧ l(π) ≤ t} (1)

Fig. 2. DBF DBFk(t) calculated for the DRT task τk in Fig. 1. The dots
depict the demand pairs of that task.

where for any path π = (v1, v2, . . . , vh) of Gk, vx is the xth
vertex visited along the path π , l(π) is the length of path π ,
i.e., l(π) = ∑h−1

x=1 px,x+1 + Dh, and e(π) is the workload of
path π , i.e., e(π) = ∑h

x=1 Cx. Further, for a task system T and
a specified interval size t, the DBF DBF(t) of T is defined as

DBF(t) =
∑

k:τk∈T
DBFk(t). (2)

The DBF computation formula in (1) may be over-
approximate if the frame separation property does not hold.
The reason is as follows. If a digraph Gk is not required to meet
the frame separation property, the path π of Gk with length
less than t may contain a vertex vi such that the job released
by vi has relative deadline larger than t. In this case, the work-
load of the job released by vi should not contribute to DBFk(t),
but it is accounted for in DBFk(t) according to (1). Therefore,
DBFk(t) calculated by (1) may be larger than the exact one if
the frame separation property does not hold. Formula (1) plays
a very important role in developing our schedulability analy-
sis methods (see Section III), and this is why we require the
frame separation property in this article. Moreover, the defi-
nition of DBF(t) as the sum of DBFk(t) of all tasks τk relies
on their independence of each other. The definition of DBF is
tight since for each interval size t, there is a job sequence �T
generated by task set T in which some jobs actually require a
processor demand of DBF(t) within an interval of t time units.
Since we assume discrete time, i.e., DBF DBF(t) is defined for
all t ∈ N, changes clearly only occur at integers.

Example 1: Consider again job sequence σk = [(5, 2, 14),

(23, 5, 31), (37, 4, 46)] which corresponds to path π =
(v5, v1, v2), generated by task τk from Fig. 1. This sequence
σk shows that in a time interval t = 41, task τ may generate
a demand of 11 on the processor as follows. The first job is
released at t1 = 5 and the third job has its deadline at d3 = 46.
Thus, all three jobs of the sequence have both their release time
and deadline within time interval [5, 46] of interval size 41.
Together, their execution time is 2 + 5 + 4 = 11. In fact, there
are no job sequences generated by τk with a higher demand
within an interval of length 41. We can conclude that the DBF
DBFk(41) = 11 for our example task τk. The DBF calculated
for τk in Fig. 1 is given in Fig. 2.

The following theorem (proposed in [10]) shows how the
DBF can be used in the feasibility analysis (or equally, the
EDF-schedulability test) of the system T .

Theorem 1 [10]: Task system T is EDF-schedulability
upon pre-emptive uniprocessor if and only if ∀t ≥ 0,
DBF(t) ≤ t.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:36:48 UTC from IEEE Xplore. Restrictions apply.

3388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Algorithm 1: DBF Methodology

1 for each interval size t̂ = 1, 2, 3, . . . , L do
2 if DBF(t̂) > t̂ then
3 return “infeasible” // according to Thm. 1

4 return “feasible”

According to Theorem 1, the EDF-schedulability of T can
be checked by determining whether there is a tf violating
DBF(tf) ≤ tf . Such a tf can be bounded by a constant L whose
value depends upon the exact characteristics of DRT tasks in
the system. The feasibility analysis framework for the task
system T based upon the DBF is described in Algorithm 1.
For each interval size t̂ ∈ [1, L], we compute the DBF DBF(t̂)
by (1), and check the schedulability condition in line 2.

1) If overflow occurs, i.e., t̂ < DBF(t̂), then it returns
“infeasible” according to Theorem 1.

2) Otherwise, the computation and checking procedure
continues for the next iteration, and finally, it returns
“feasible” if DBF(t̂) ≤ t̂ holds for all interval sizes
t̂ ∈ [1, L].

The analysis framework of Algorithm 1 applies the DBF
computation as a point-to-point checking procedure: as shown
in lines 1–3, it needs to compute the DBF DBF(t̂) and to check
the schedulability condition for all interval sizes t̂ ranging from
1 to L. As shown in [10], the interval-size bound L may have a
pseudo-polynomial scale, which is a very large number espe-
cially when the total utilization summed over all tasks gets
close to 1 (see in Section III-B1). The point-to-point check-
ing procedure usually is time-consuming, and there is a lot
of space for optimization and improvement. For the simplest
sporadic task model, Zhang and Burns [11] designed a very
efficient framework to accelerate the traditional DBF analysis,
and we will review Zhang’s framework in Section III-B2, and
discuss how to adapt their technique to accelerate the analysis
of DRT tasks.

Algorithm 1 only gives the basic analysis framework, but
leaves two main computation problems as follows.

1) How do we compute the interval-size bound L?
2) How do we compute DBF(t̂) for a specified interval

size t̂?
Stigge et al. [10] proposed a dynamical programming-based

approach to solve the above problems, and we will briefly
introduce their work in Section III-B1, exploring why Zhang’s
acceleration technique (for the simplest sporadic task model)
is difficult to be integrated into Stigge’s method for DRT tasks.

B. Relevant Prior Research

We now review some prior work that studies how the pro-
cessor demand criteria methodology in Algorithm 1 is applied
to analyze the DRT task model, and which studies the possi-
ble techniques to accelerate the methodology in Algorithm 1.
Some notations proposed in the prior work are also used in
the methods we derive in this article.

1) Stigge’s Method for DRT Tasks: Stigge et al. [10]
applied the DBF methodology in Algorithm 1 to analyze the

DRT task model. Their main contribution is that they pro-
pose a DP-based approach to solve the DBF computation
problem and derive a pseudo-polynomial-scale bound L. We
will introduce their work in these two aspects.

DBF Computation: For a task τk and a specified interval
size t, computing the DBF DBFk(t) is equivalent to finding
an optimal path π∗ such that π∗ has the maximum work-
load and the length l(π∗) of π∗ is no more than t, according
to (1). Stigge et al. [10] developed a DP algorithm to com-
pute DBFk(t) by solving the optimal path problem on task
graph Gk. The main idea of Stigge’s method is to use the
notion of demand triples as an abstraction of concrete paths
through the task graph, preventing exponential path explosion.
More specifically, for any vertex vi, the demand triple of ver-
tex vi is denoted as (e, d, vi), representing a finite path π such
that π ends at vi and has the workload equal e, i.e., e(π) = e,
and the length of π is no more than d, i.e., l(π) ≤ d. Using all
demand triples (e, d, vi), we can calculate DBFk(t) as follows:

DBFk(t) = max{e|(e, d, vi) demand triple with d ≤ t}. (3)

Now the remaining problem is how to compute all demand
triples. In [10], the demand triple computation is applied as
an iterative procedure as follows.

1) Base Case: Initially, the demand triples corresponding
to all zero-length paths are computed and stored.

2) Iterative Case. For any stored demand triple (e, d, vi),
consider all successors vj of vi. For each such vj, one
can use the demand triple (e, d, vi) to compute a new
demand triple (e′, d′, vj) corresponding to a path that has
been extended by vj with a heavier workload e′ and a
longer length d′. Each newly computed demand triple
(e′, d′, vj) is stored if it is not stored yet and d′ ≤ t.

The above step is repeated until there are no
new demand triples. Note that under the iterative proce-
dure, the demand triples with shorter length are used to
compute the demand triples with longer length. Moreover,
during the runtime of the DBF analysis of Algorithm 1, for
any interval sizes t and t′ (with t < t′), the demand triples
that are used to derive DBFk(t′) must rely on the demand
triples that are used to derive DBFk(t). This restricts the DBF
analysis to be a forward checking procedure.

Bound Computation: We now introduce the
pseudo-polynomial interval-size bound L proposed by
Stigge et al. [10]. Before going into details, we first introduce
some useful notations.

Definition 3 (Density): For any cycle π = (v1, . . . , vh, v1),
its density u(π) is calculated as

u(π) =
∑h

i=1 Ci
∑h

i=1 pi,i+1
. (4)

For example, in Fig. 1, the density of cycle (v1, v2, v3, v1)

is (10/47), and the density of cycle (v2, v3, v4, v2) is (7/39).
Definition 4 (Utilization): For any DRT task τk, its utiliza-

tion uk is calculated as follows:

uk = max{u(π)|π is a cycle in Gk} (5)

where u(π) is the density of the cycle π . Moreover, we say
the cycle in Gk that has the density uk is the densest cycle.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:36:48 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT FEASIBILITY ANALYSIS FOR GRAPH-BASED REAL-TIME TASK SYSTEMS 3389

Algorithm 2: QPA

1 t := max{dk|dk < L}
2 while h(t) ≤ t ∧ h(t) > dmin do
3 if h(t) < t then
4 t := h(t)

5 else
6 t := max{dk|dk < t}
7 if h(t) ≤ dmin then
8 the task set is schedulable

9 else
10 the task set is not schedulable

For example, in Fig. 1, the densest cycle is (v1, v2, v3, v1),
and thus, the utilization is (10/47).

The following lemma (proposed in [10]) gives the upper
bound of the interval size tf that violates DBF(tf) ≤ tf .

Theorem 2 [10]: If task system T is not EDF-
schedulability upon pre-emptive uniprocessor, there is a
tf with DBF(tf) > tf such that

tf < L =
∑n

k=1 ωk

1 − ∑n
k=1 uk

(6)

where ωk is the total workload of τk, i.e., ωk = ∑
vi∈Gk

Ci,
and uk is the utilization of τk.

From Theorem 2, the interval-size bound L used in
Algorithm 1 is derived by (6), and the key problem for solv-
ing L is to calculate the task utilization uk for each task τk.
Stigge et al. [10] pointed out that the task utilization uk can be
solved by enumerating all simple cycles of the task graph Gk.
Since explicit cycle enumeration is still an exponential proce-
dure, Stigge et al. [10] reused their path abstraction framework
which was already used to reduce the complexity of the DBF
computation, and they state that their method clearly has a
pseudo-polynomial time complexity, e.g., O(P2|Vk|), where
|Vk| is the number of vertices in Gk, and P = ∑

(vi,vj)∈Gk
pij is

the summation of the periods of all edges in Gk (please refer
to [10, p. 346]).

2) Quick Processor-Demand Algorithm: As shown in
Algorithm 1, the traditional DBF methodology is usually
implemented as a point-to-point checking procedure, such that
all interval sizes in [1, L] should be checked one by one. Note
that the interval-size bound L usually is a very large number.
Zhang and Burns [11] designed an efficient framework, called
QPA, for accelerating the DBF analysis. Zhang’s work is only
available for the simplest sporadic task system consisting of
n tasks (where each sporadic task τk has a WCET Ck, a rel-
ative deadline Dk, and a period Tk. The utilization uk of τk

equals (Ck/Tk), and we let U = ∑n
k=1 uk), and their result is

summarized by the following theorem.
Theorem 3 [11]: A task set is EDF-schedulable if and only

if U ≤ 1, and the result of the following iterative algorithm is
h(t) ≤ dmin, where dmin = min{Di}, and h(t) is the processor
demand function (or equally, the DBF) of the task set.

Here, dk is the absolute deadline of a job of τk. The pro-
cessor bound function h(t) of the task set is calculated as
follows:

h(t) =
n∑

k=1

max

{

0, 1 +
⌊

t − Dk

Tk

⌋}

Ck (7)

and the interval-size bound L is calculated as

L = max

{

D1, . . . , Dn,

∑n
k=1(Tk − Dk)uk

1 − U

}

. (8)

Different from the traditional analysis framework of
Algorithm 1, QPA applies the DBF analysis by using a
backward checking procedure as shown in lines 1–6 of
Algorithm 2. Most importantly, Algorithm 2 does not check
all interval sizes less than L, but only checks few interval
sizes when necessary (lines 4 and 6). This is the key to
sharply reduce the computational complexity. Moreover, the
parameters [e.g., processor demand function h(t) and the
interval-size bound L] can be computed by (7) and (8), which
have a very low complexity. QPA reduces the calculation effort
exponentially in practice [11].

Difficulties to Adapting QPA to DRT Tasks: In this arti-
cle, we aim to integrate the QPA framework into the DBF
analysis for the DRT task model. However, the traditional
method for DRT tasks (proposed in [10]) does not fit the
QPA framework well. The reason is that QPA uses a backward
checking procedure and aims to prune a lot of interval sizes
for which overflow will not occur. However, the traditional
method in [10] applies a forward checking procedure, i.e., they
use a DP-based algorithm to compute the DBFs, which relies
on sequentially checking all interval sizes less than L and does
not allow interval-size pruning. This is clearly contradictory
with the idea of QPA. In order to use QPA for accelerating the
analysis of DRT tasks, we will propose some new techniques
to solve the DBF (instead of the DP technique), which could
fit the QPA framework better (see in Section IV).

IV. ACCELERATION TECHNIQUES

In this section, we propose efficient techniques to accelerate
the DBF analysis of the DRT task model. The basic analysis
framework is borrowed from the QPA method, which applies
a backward checking procedure, and only checks the interval
sizes for which the overflow may occur, see in Algorithm 3.

In Algorithm 3, we first compute the interval-size bound L
according to Theorem 2 and initialize t to be L (lines 1–3).
We check interval sizes t in a backward checking way: for
any interval size t of interest, we check whether the DBF
DBF(t) is no more than t. If this is the case, then we set
t := DBF(t) − 1 (line 9). Otherwise, an overflow occurs, and
we return “unfeasible” (line 11). If no overflow occurs during
checking progress, we return “feasible” (line 12).

The main benefit of using this method is the following. We
do not need to check interval sizes in a point-to-point way.
Instead, once we complete the check of interval size t, and
find that � = t−DBF(t) ≥ 0, we then can directly “jump” to
the smaller interval size t′ = t −�−1 which may be far from
t, and start the check procedure for the new interval size t′.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:36:48 UTC from IEEE Xplore. Restrictions apply.

3390 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Algorithm 3: Acceleration Framework for DRT Tasks

1 for each k = 1, . . . , n do
2 compute the utilization uk of task τk

3 compute L by (6), and let t := L
4 while t > 0 do
5 for each k = 1, · · · , n do
6 compute DBFk(t)

7 compute DBF(t) by (2)
8 if t ≥ DBF(t) then
9 t := DBF(t) − 1

10 else
11 return “infeasible”

12 return “feasible”

Fig. 3. Basic idea of our acceleration technique.

The correctness of this method is based on the observation
described in the following lemma.

Lemma 1: For any interval size t, if DBF(t) < t, then
DBF(t′) ≤ t′ ∀t′ ∈ [DBF(t), t].

Proof: Since the DBF is nondecreasing when interval size
increases, for any interval size t′ ∈ [DBF(t), t], DBF(t′) ≤
DBF(t). Moreover, since t′ ≥ DBF(t), we have DBF(t′) ≤ t′.

According to Lemma 1, for any t such that DBF(t) < t,
there is no interval size within [DBF(t), t] violating the con-
dition of Lemma 1. As illustrated in Fig. 3, the DBF line is
always below the threshold line DBF(t) = t during [DBF(t), t].
Thus, it does not need to check the interval sizes in [DBF(t), t].
In Section V, experimental results show that during the
schedulability test, only a few interval sizes should be checked.

So far, we only introduce the framework of our method,
but leave two main problems (e.g., DBF computation and uti-
lization computation) that should be solved. Certainly, one
choice is to solve the above problems by directly apply-
ing Stigge’s method in [10]. As stated in Section III-B,
Stigge’s DP approach does not fit the acceleration framework
(Algorithm 3). In the following, we revisit the two computa-
tion problems and develop more efficient techniques to solve
these problems.

1) Utilization Computation: Stigge et al. [10] proposed
a pseudo-polynomial time algorithm to solve the DRT
task’s utilization. We find that this utilization computa-
tion problem actually has a polynomial-time complexity.
We propose an LP for computing the utilization as
shown in Section IV-A.

2) DBF Computation: We propose an ILP to formulate the
DBF computation (see in Section IV-B). By using the

ILP technique, we can directly solve DBFk(t), which
does not restrict to a point-to-point forward checking
procedure and, thus, it fits the acceleration framework
of Algorithm 3 better. The empirical result shows that
our ILP-based method is much faster than Stigge’s DP
algorithm.

A. Utilization Computation

According to (5), we know that computing τk’s utilization
uk means to find the densest cycle of Gk, where the density
u(π) of a cycle π is defined in (4). We use LP techniques
to solve the densest cycle problem. We first give some useful
notations and variables as follows.

For any vertex vi ∈ Gk, we use PRED(vi) to denote the
set of vi’s predecessors, i.e., PRED(vi) = {vj|(vj, vi) ∈ Gk},
and we use SUCC(vi) to denote the set of vi’s successors, i.e.,
SUCC(vi) = {vj|(vi, vj) ∈ Gk}. For any edge (vi, vj) of Gk, we
denote a variable xij(≤ 1) such that xij > 0 if the densest cycle
travels (vi, vj). Otherwise, xij = 0. The LP model is given as
follows:

MODEL I: max uk =
∑

(vi,vj)∈Gk

Cixij (9)

s.t.
∑

vj∈PRED(vi)

xji −
∑

vj∈SUCC(vi)

xij = 0, vi ∈ Gk (10)

∑

(vi,vj)∈Gk

pijxij = 1. (11)

Constraint (10) ensures that the flows coming into and going
out of the vertex vi are balanced, which formulates the cycle
π of Gk. Constraint (11) normalizes the cycle π ’s length (to
unit time). After this normalization, the (normalized) cycle π ’s
workload

∑
(vi,vj)∈π Cixij equals the density u(π) of cycle π .

Objective function (9) maximizes cycle π ’s density, and thus
obtains the utilization uk of Gk.

Correctness: In the following, we discuss whether our LP
model is capable of solving the densest cycle of Gk. We start
with the condition that a densest cycle needs to satisfy (see
Lemma 2).

Lemma 2: The densest cycle is a simple cycle, or a set of
simple cycles with the same density.

Proof: Suppose that the densest cycle π is not a simple cycle
and, thus, π is constructed by several simple cycles. Without
loss of generality, we let π consist of two simple cycles π1 and
π2. The lemma follows if π1 and π2 have the same density.
Hence, in the following, we consider the case that π1 and π2
have different densities, and we assume u(π1) > u(π2).

By (4), the densities of cycles π1 and π2 are calculated
as u(π1) = [e(π1)/l(π1)] and u(π2) = [e(π2)/l(π2)], where
e(πi) and l(πi) are the workload and the length of the cycle
πi, respectively (for i = 1, 2). From u(π1) > u(π2), we have

e(π1)

l(π1)
>

e(π2)

l(π2)

⇔ e(π1)l(π2) + e(π1)l(π1) > e(π2)l(π1) + e(π1)l(π1)

⇔ e(π1)

l(π1)
>

e(π1) + e(π2)

l(π1) + l(π2)

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:36:48 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT FEASIBILITY ANALYSIS FOR GRAPH-BASED REAL-TIME TASK SYSTEMS 3391

and since e(π) = e(π1) + e(π2) and l(π) = l(π1) + l(π2),
we have [e(π1)/l(π1)] > [e(π)/l(π)]. By (4), we eventually
derive u(π1) > u(π), i.e., the simple cycle π1 is denser than
π , which contradicts to the assumption that π is the densest
cycle.

We use the following lemma to show that the solution space
of our LP model is restricted to simple cycles of Gk or a set
of simple cycles with the same density of Gk.

Lemma 3: MODEL I’s solution is a simple cycle or a set of
simple cycles with the same density.

Proof: Constraint (10) ensures that the solution of MODEL I

is a set of simple cycles. Without loss of generality, we assume
that the solution X = [xij|(vi, vj) ∈ Gk] of MODEL I consists
of two simple cycles π1 and π2. If π1 and π2 have the same
density, this lemma certainly holds. Hence, in the following,
we focus on the case that π1 and π2 have different densities,
and we assume u(π1) > u(π2). We rewrite constraint (11) as∑

(vi,vj)∈π1
pijxij +∑

(vi,vj)∈π2
pijxij = 1, where xij ∈ X for each

edge (vi, vj) ∈ Gk. We modify the solution X as follows.
1) For each edge (vi, vj) ∈ π2, we let x′

ij = 0.
2) For each (vi, vj) ∈ π1, we let x′

ij = xij + �, where � is
a constant defined as follows:

� =
1 − ∑

(vi,vj)∈π1
pijxij

∑
(vi,vj)∈π1

pij
. (12)

3) For each edge (vi, vj) ∈ Gk − (π1 ∪ π2), we let x′
ij = 0.

We now obtain the new solution X′ = [x′
ij|(vi, vj) ∈ Gk] that

only contains simple cycle π1. In the following, we prove that
the solution X′ satisfies the constraints of MODEL I.

1) Satisfaction of Constraint (10): On the one hand, since
X satisfies constraint (10), we know that for vi ∈ π1

∑

vj∈PRED(vi)

xji =
∑

vj∈SUCC(vi)

xij

⇔
∑

vj∈PRED(vi)

(xji + �) =
∑

vj∈SUCC(vi)

(xij + �)

⇔
∑

vj∈PRED(vi)

x′
ji =

∑

vj∈SUCC(vi)

x′
ij. (13)

On the other hand, for any vertex vi that is not in cycle
π1, the edges (vj, vi) coming into vi correspond to zero
variables xji = 0, and the edges (vi, vj) going out of
vi also correspond to zero variables xij = 0, i.e., for
vi ∈ Gk − π1

∑

vj∈PRED(vi)

x′
ji =

∑

vj∈SUCC(vi)

x′
ij = 0. (14)

By (13) and (14), the solution X′ satisfies constraint (10).
2) Satisfaction of Constraint (11): Since only the edges

(vi, vj) visited along π1 have positive variable, we have
∑

(vi,vj)∈Gk

pijx
′
ij =

∑

(vi,vj)∈π1

pijx
′
ij

and since x′
ij = xij + �, for each (vi, vj) ∈ π1, we have
∑

(vi,vj)∈Gk

pijx
′
ij =

∑

(vi,vj)∈π1

pij(xij + �)

and by (12), we know that
∑

(vi,vj)∈Gk

pijx
′
ij =

∑

(vi,vj)∈π1

pijxij + 1 −
∑

(vi,vj)∈π1

pijxij = 1.

This indicates that the solution X′ satisfies
constraint (11).

In sum, the newly obtained solution X′ satisfies the con-
straints of MODEL I and consists of a simple cycle.

According to Lemma 3, any solution of MODEL I corre-
sponds to a simple cycle of Gk or a set of simple cycles
with the same density. Moreover, by the objective function (9),
we know that MODEL I must solve the density of the densest
cycles of Gk. Moreover, according to Lemma 2, we conclude
the correctness of MODEL I in Corollary 1.

Corollary 1: MODEL I solves the density of the densest
cycle.

It should be noted that MODEL I aims to solve the density
of the densest cycle. It does not matter whether the densest
cycle is unique or not. If there is more than one densest cycle,
the solution of MODEL I may correspond to a set of (several)
densest cycles, and the objective value of MODEL I equals to
the density of (any one of) the densest cycles.

Complexity: The following proposition indicates that our LP
model is solved within polynomial time.

Proposition 1: There are m variables and n + 1 constraints
in MODEL I, where n is the number of vertices in Gk, and m
is the number of edges in Gk.

Proof: Since each edge (vi, vj) of Gk corresponds to a
variable xij, MODEL I contains m variables. For each vertex
vi ∈ Gk, there is a constraint of (10). Moreover, there is a
single constraint of (11). MODEL I contains n+1 constraints.

Recall that Stigge’s method for computing utilization uk

has the pseudo-polynomial time complexity, e.g., O(P2|Vk|),
where |Vk| is the number of vertices in Gk, and P =∑

(vi,vj)∈Gk
pij. Clearly, our LP model has lower computational

complexity than the Stigge’s method.

B. DBF Computation

For a given t, computing DBFk(t) of τk is to find the optimal
path π of Gk such that π has the maximum workload and π ’s
length is bounded by t according to (1). In this section, we
solve such an optimal path by using ILP techniques. Before
going into details, we first introduce an auxiliary digraph G′

k
of Gk as follows.

To construct the auxiliary digraph G′
k, we add a source

vertex vsrc and a sink vertex vsnk into the original graph
Gk. Both the newly added vertices have zero execution time
(i.e., Csrc = 0, Csnk = 0) and zero deadline (i.e., Dsrc = 0,

Dsnk = 0). For each vertex vi of Gk, we add an edge (vsrc, vi)

from the source vertex vsrc to vi, and add an edge (vi, vsnk)

from vi to the sink vertex vsnk. The edge (vsrc, vi) has a zero
period, i.e., psrc,i = 0. The period of the edge (vi, vsnk) equals
to the deadline of vi, i.e., pi,snk = Di. The auxiliary digraph
G′

k contains all vertices and edges of Gk as well as the newly
added source vertex, sink vertex, and their associated edges.
In the following, we give a very simple example to show how
to construct such an auxiliary digraph.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:36:48 UTC from IEEE Xplore. Restrictions apply.

3392 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 4. Illustration for constructing the auxiliary digraph. (a) Original digraph.
(b) Auxiliary digraph.

Example 2: We consider the original digraph Gk that con-
tains a single vertex v1 and a self-loop edge (v1, v1) as shown
in Fig. 4(a). The WCET and deadline of v1 are C1 = 15 and
D1 = 5, respectively. The period of (v1, v1) is p11 = 20. The
auxiliary digraph G′

k of Gk is shown in Fig. 4(b), where a
source vertex vsrc and a sink vertex with zero WCET and zero
deadline are added into the original digraph Gk. Moreover, the
edge (vsrc, v1) has a zero period and the edge (v1, vsnk) has a
period p1,snk = 5.

In the auxiliary digraph, the source and sink vertices and
their associated edges are essential for solving the optimal path
of the original digraph Gk. We let � be the set of paths in the
auxiliary digraph G′

k that start with the source vertex vsrc and
end at the sink vertex vsnk. The following lemma indicates a
one-to-one correspondence between the paths in the original
digraph Gk and the paths in � of the auxiliary digraph G′

k.
Lemma 4: For any path π of Gk, there is a path π ′ in �

such that π and π ′ have the same workload and the same
length.

Proof: Without loss of generality, we assume that the path
π of Gk starts with vi and ends at vj, i.e., π = (vi, . . . , vj).
We add two edges (vsrc, vi) and (vj, vsnk) to π , and obtain the
path π ′ = (vsrc, vi, . . . , vj, vsnk) of G′

k. Clearly, π ′ starts with
the source vertex vsrc and ends at the sink vertex vsnk, and
thus, π ′ ∈ �. As we know that π ′ has two vertices (e.g., vsrc

and vsnk) more than π , the workload of π ′ is calculated as
e(π ′) = Csrc + Csnk + e(π). Since Csrc = 0 and Csnk = 0,
we have e(π ′) = e(π). Since π ′ has two edges (vsrc, vi) and
(vj, vsnk) more than π , and the last edge of π ′ is (vj, vsnk), the
length of π ′ is calculated as l(π ′) = psrc,i + ∑

(vx,vy)∈π pxy +
pj,snk +Dsnk. Since pj,snk = Dj and Dsnk = 0, we have l(π ′) =
psrc,i + l(π). Moreover, since psrc,i = 0, we have l(π ′) = l(π).
This completes the proof.

According to Lemma 4, we can use the path set � of the
auxiliary digraph G′

k to derive DBFk(t) as follows.
Lemma 5: For any task τk, DBFk(t) is calculated as follows:

DBFk(t) = max{e(π)|π ∈ � ∧ l(π) ≤ t}. (15)

Proof: From Lemma 4, each path π of the original digraph
Gk corresponds to a path π ′ of � such that π and π ′ have the
same workload and the same length. By (1), we derive (15).

According to Lemma 5, we can calculate DBFk(t) by finding
an optimal path π of � with the maximum workload and a
bounded length l(π) ≤ t. Recall that � contains the paths of
the auxiliary digraph G′

k that start with vsrc and end at vsnk.
We model such a path π of � into an ILP formulation. For
the sake of convenience, we propose our ILP model in two
steps. First, we introduce a basic model that only contains a
part of the constraints, called MODEL II. This model is easy
to understand, but has some flaws. Then, we introduce the

remaining constraints of our ILP, which are more complicated,
but address the shortcomings of MODEL II.

Basic Model: For any edge (vi, vj) of the auxiliary digraph
G′

k, we denote a non-negative integer variable zij to represent
the times we travel the edge (vi, vj). Based on these notations,
we give an ILP model as MODEL II as follows:

MODEL II: max DBFk(t) =
∑

(vi,vj)∈G′
k

Cizij (16)

s.t.
∑

vi∈SUCC(vsrc)

zsrc,i = 1 (17)

∑

vi∈PRED(vsnk)

zi,snk = 1 (18)

∑

vj∈PRED(vi)

zji −
∑

vj∈SUCC(vi)

zij = 0, vi ∈ Gk (19)

∑

(vi,vj)∈G′
k

pijzij ≤ t. (20)

Objective function (16) maximizes the workload of path π of
G′

k. Constraints (17) and (18), respectively, enforce that the
path π starts with the source vertex vsrc and ends at the sink
vertex vsnk, i.e., π ∈ �. Constraint (19) ensures that for each
vertex vi of Gk, the flows coming into vi and the flows going
out of vi are the same, which is necessary to formulate a path.
Here, PRED(vi) contains all predecessors of vi (including vsrc),
and SUCC(vi) contains all successors of vi (including vsnk).
Constraint (20) ensures that π ’s length is bounded by t.

To illustrate how MODEL II solves DBFk(t), we take the
DRT task in Fig. 4 as an example. MODEL II is applied on
the auxiliary digraph G′

k as shown in Fig. 4(b). For a given
interval length t = 25, the solution of MODEL II is zsrc,1 =
1, z11 = 1, and z1,snk = 1. This corresponds to the path π ′ =
(vsrc, v1, v1, vsnk). We know that π ′ has the workload e(π ′) =
30 and the length e(π ′) = 25, and accordingly, the objective
value solved by MODEL II equals 30, i.e., the DBF calculated
by MODEL II is DBFk(25) = 30. As shown in Fig. 4(a), the
optimal path π of the original digraph Gk with the length
25 is π = (v1, v1). The workload of π is e(π) = 30, and
thus, DBFk(25) = 30. Therefore, MODEL II computes the DBF
correctly (at least for the instance in Fig. 4).

Lemma 6: For a given interval length t, the solution of
MODEL II upper-bounds DBFk(t).

Proof: For any path π ∈ � with length bounded by t, we
can construct a vector Z = (zij|(vi, vj) ∈ G′

k) as follows. For
any edge (vi, vj) ∈ G′

k, if the path π contains (vi, vj), we let
zij equal the times for which the edge (vi, vj) is traveled in π .
Otherwise, (vi, vj) is not contained in π , and we let zij = 0.
We now show that Z satisfies all constraints of MODEL II.

1) Since there are only out-going edges of the source vertex
vsrc, and the path π starts with vsrc, we know that there
is exactly one vertex vi such that zsrc,i = 1 and, thus, Z
satisfies constraint (17).

2) Since the sink vertex vsnk only has in-coming edges, and
π ends at vsnk, there is exactly one vertex vj such that
zj,snk = 1, and thus, Z satisfies constraint (18).

3) For any vertex vi of Gk, if vi is traveled in π , then the
times we enter into vi must equal to the times we leave

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:36:48 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT FEASIBILITY ANALYSIS FOR GRAPH-BASED REAL-TIME TASK SYSTEMS 3393

Fig. 5. Counter-example for MODEL II.

Fig. 6. DBF of the DRT task τk in Fig. 5.

vi since vi is a medium vertex of π and, therefore, Z
satisfies constraint (19).

4) Since Dsnk = 0, the length of π equals
∑

(vi,vj)∈π pij =
∑

(vi,vj)∈G′
k

pijzij. Moreover, since the length of π is
bounded by t, we have

∑
(vi,vj)∈G′

k
pijzij ≤ t, i.e.,

constraint (20) holds.
In sum, the solution space of MODEL II contains all paths of

� with length bounded by t. Moreover, for any path π , since
the workload of π equals

∑
(vi,vj)∈π Ci = ∑

(vi,vj)∈G′
k

Cizij, the
objective function (16) aims to obtain the maximum workload
among the solutions of MODEL II (including the paths π ∈ �

with length bounded by t). According to Lemma 5, DBFk(t)
equals the maximum workload among all paths of � with
length bounded by t. Therefore, the objective value solved by
MODEL II is no less than DBFk(t).

Flaws of MODEL II: MODEL II may not solve DBFk(t)
exactly, since MODEL II may have some feasible solutions that
are not paths in Gk. We give a counter-example as follows.

Example 3: We consider the auxiliary digraph G′
k with

additional vertices vsrc and vsnk as shown in Fig. 5. For each
vertex vi ∈ Gk, there are two edges (vsrc, vi) and (vi, vsnk).
For a given t = 100, we use MODEL II to solve the maximum
workload of the path in G′

k which is from vsrc to vsnk and has
the length bounded by 100. We obtain the solution Z described
as follows: zsrc,1 = 1, z12 = 1, z23 = 1, z34 = 1, z4,snk = 1,
z56 = 1, z67 = 1, and z75 = 1.The solution Z corresponds to a
path π1 from vsrc to vsnk and a cycle π2 that contains vertices
v5, v6, and v7, as marked red in Fig. 5. The total length of
π1 and π2 is 79(≤ 100), and the total workload solved by
MODEL II is 4+3 = 7. Therefore, the DBF solved by MODEL

II is DBFk(100) = 7. Actually, there are two paths in G′
k from

vsrc to vsnk and with length no more than 100. The first path is
π3 = (vsrc, v1, v2, v3, v4, vsnk) with length 4 and workload 4.
The second path is π4 = (vsrc, v5, v6, v7, v5, vsnk) with length
100 and workload 4. The maximum workload of both paths
equals 4. According to Lemma 5, the actual DBFk(100) equals
4 (see in Fig. 6).

Example 3 shows that the DBF solved by MODEL II may
be much larger than the actual value, e.g., the ratio of the

gap between them is about 75%. Therefore, MODEL II cannot
solve the DBF exactly. The main reason is that the solution
of MODEL II may contain isolated cycles (we say a cycle π is
isolated if the vertices of π are unreachable from the source
vertex vsrc). To preclude isolated cycles, we will add some
additional variables and constraints into MODEL II as follows.

Additional Constraints: For each vertex vi ∈ Gk, we define
a Boolean variable yi such that yi = 1 if vi is traveled along
the path π . Otherwise, yi = 0. The following constraints show
the relation between the variables zij and yi. For each vertex
vi ∈ Gk, using the big number B = ∞

∑

vj∈SUCC(vi)

zij ≥ yi (21)

Byi ≥
∑

vj∈SUCC(vi)

zij. (22)

Constraint (21) ensures that if the vertex vi is traveled
(e.g., yi = 1), then at least one edge goes out of vi, i.e.,∑

vj∈SUCC(vi)
zij ≥ 1. Constraint (22) ensures that if some edges

going out of vi are traveled (e.g.,
∑

vj∈SUCC(vi)
zij ≥ 1), then

the vertex vi must be traveled (e.g., yi = 1).
In the following, we will propose the constraint to preclude

isolated cycles. Before going into details, we first introduce
some useful notations.

Definition 5 (Cut Set): For vertex vi ∈ Gk, the cut set
CUT(vi) is the set of edges in the auxiliary digraph G′

k such
that:

1) the vertex vi is not reachable from the source vertex vsrc

if the edges of CUT(vi) are all removed;
2) for any subset E ⊂ CUT(vi), the vertex vi is reachable

from the source vertex vsrc if the edges of E are removed.
Moreover, we denote the minimum cut set CUTmin(vi) as the
cut set of vi that has the minimum edge number, i.e.,

CUTmin(vi) = min
CUT(vi)∈G′

k

|CUT(vi)|.

For example, in Fig. 5, the cut set CUT(v6) of v6 may
be {(v5, v6)} or {(vsrc, v5), (v2, v5)}. The minimum cut set
CUTmin(v6) = {(v5, v6)}. From Definition 5, we know that
if a path starting with vsrc travels vi, then the path π must
travel the edge in CUT(vi). This is formulated by the following
constraint. For each vi ∈ Gk, using big number B = ∞

B(1 − yi) +
∑

(vj,vl)∈CUT(vi)

zjl ≥ 1 ∀CUT(vi) ∈ G′
k. (23)

The correctness of constraint (23) is illustrated as follows. If
the vertex vi is traveled (e.g., yi = 1), then constraint (23)
becomes

∑
(vj,vl)∈CUT(vi)

zjl ≥ 1, indicating that the edge of
CUT(vi) must be traveled. If the vertex vi is not traveled (e.g.,
yi = 0), then constraint (23) becomes B ≥ 1, indicating that it
is not necessary to travel the edges of CUT(vi).

We combine the newly added variables yi (for all vertices
vi ∈ Gk) and Constraints (21)–(23) into MODEL II, and obtain
the following ILP model, denoted as MODEL III, i.e.,

MODEL III Objective function (16)

s.t. Constraints (17)–(23).

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:36:48 UTC from IEEE Xplore. Restrictions apply.

3394 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Algorithm 4: Row Generation Algorithm

1 solve MODEL II, and obtain the solution Z∗
2 while the solution Z∗ contains isolated cycles do
3 for each isolated cycle π of Gk do
4 CUT := arg minvi∈π |CUTmin(vi)|
5 add B(1 − yi) + ∑

(vi,vj)∈CUT zij ≥ 1 into MODEL II

6 solve MODEL II (with newly added constraints), and
obtain Z∗

7 return DBFk(t) = ∑
(vi,vj)∈G′

k
eiz∗

ij

Clearly, MODEL III solves the optimal path with the length no
more than t and with the maximum workload, and according
to Lemma 5, MODEL III exactly derives DBFk(t). However,
MODEL III may have an exponential number of constraints
in (23), since the number of cut sets CUT(vi) for a vertex vi

may be exponential in m, the number of edges in Gk. It is very
hard to enumerate all constraints of (23) and, thus, MODEL III

cannot be directly solved. In the following, we propose a row
generation algorithm to solve MODEL II efficiently.

Row Generation Algorithm: We solve MODEL III in an
iterative way. The main idea is that we do not enumerate all
constraints of MODEL III, and instead, we solve MODEL III

with part of its constraints, and iteratively add the constraints
only when necessary. As we know that in the operational
research (OR) community, the variables in the ILP are usually
called as columns, and the constraints are called as the rows of
the ILP. Accordingly, our approach that iteratively adds new
constraints is called the row generation algorithm as given in
Algorithm 4.

In Algorithm 4, we solve MODEL II, the initial ILP model
with (16)–(20) and obtain the solution Z∗. If Z∗ indicates a
feasible path, then the objective function of Z∗ is returned
as DBFk(t). Otherwise, there are some isolated cycles in the
solution Z∗. For each isolated cycle π , we find the minimum
cut set CUT among all vertices of π (lines 3 and 4). Based
on the minimum cut set CUT, we add a constraint of (23) into
MODEL II as shown in line 5. Then, we solve the updated
model and obtain the solution Z∗. If Z∗ contains the isolated
cycles, then we start the computation process (lines 2–6) in the
next iteration. This process repeats until the solution contains
no isolated cycle.

It should be noted that Algorithm 4 iteratively adds the con-
straints in (23) into MODEL II, and it adds one constraint at
a time. There are exponential number of constraints implied
by (23), and thus, one may wonder whether Algorithm 4
will do exponentially many iterations. The following lemma
answers this question by showing that only a polynomial
number of constrains in (23) are added when Algorithm 4
terminates.

Lemma 7: Algorithm 4 adds at most |Vk| constraints in (23)
into MODEL II when it terminates, where |Vk| is the number
of vertices in Gk.

Proof: In each iteration, we add one constraint C in (23) for
any isolated cycle π , according to lines 4 and 5 of Algorithm 4.
Without loss of generality, we assume that the cycle π contains

a vertex vi. The constraint C added for precluding π is B(1 −
yi)+∑

(vj,vl)∈CUT(vi)
zjl ≥ 1, which is associated with the vertex

vi, and moreover, the cut set used in the constraint C is denoted
as CUT(vi). After adding the constraint C, we ensure that any
cycle π that contains vi should not be isolated. Otherwise,
we suppose that a cycle π containing vi is isolated, i.e., the
vertices in π (including vi) are traveled, but none of them
is reachable from the source vertex vsrc of G′

k. According to
Definition 5, no edge in CUT(vi) is traveled, indicating that∑

(vj,vl)∈CUT(vi)
zjl = 0. Moreover, we know that yi = 1 since

vi is traveled. Therefore, the constraint C (that have been added
into MODEL II) is violated. This leads to a contradiction.

From above, once Algorithm 4 adds a constraint that is
associated with a vertex vi of Gk, then other constraints that
are associated with the same vertex vi will not be added at
the later iterations. It indicates that the constraints added by
Algorithm 4 are associated with different vertices of Gk. At
each iteration, there is at least one isolated cycle, which must
contain at least one vertex. Therefore, after at most |Vk| iter-
ations, the constraints added by Algorithm 4 are associated
with all vertices of Gk, and Algorithm 4 must terminate.

Lemma 7 shows that instead of doing exponentially many
iterations, Algorithm 4 only iterates at most |Vk| times. In
fact, Algorithm 4 seldomly does such many iterations. In our
experimental work, we observe that isolated cycles can be esti-
mated after only one or two iterations. This makes our method
perform very efficiently in practice.

V. EVALUATIONS

This section reports the comparison between the Stigge’s
method ASTG in [10] and our method ASUN. We randomly gen-
erate the DRT task sets consisting of n DRT tasks and with
the total utilization u. Each DRT task has 5–9 vertices. The
execution time of each vertex ranges from 1 to 4, and the
period of each edge ranges from 100 to 200. We implement
our models by using Python API of Z3 solver. The code runs
on a PC with Intel Core i5-6300U CPU at 2.4GHz with 8G
RAM. Figs. 7–12 conduct experiments with different combi-
nations of parameters. We exhibit our experiments by using
the box plot. In a box plot, the top and the bottom of the box,
respectively, represent the first and third quartiles of data. The
middle line of the box represents the median of data. The
whiskers extended from the box show the range of data. For
each data point, 1000 random experiments have been run. The
longitudinal axes are log 10 transformed to adjust for the wide
range of data.

A. Evaluation of Schedulability Analysis

In this section, we evaluate the overall schedulability anal-
ysis methods. We record the number of interval sizes (written
as #num in the figures) checked by ASTG and ASUN, denoted as
	STG and 	SUN, respectively. We also measure the computa-
tion time of each schedulability analysis method. We use tSUN

and tSTG to denote the computation time of our method and
Stigge’s method, respectively. Since Stigge’s method needs to
check all interval lengths ranging from 1 to L when a task set
is schedulable (but can stop once an overflow is found for an

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:36:48 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT FEASIBILITY ANALYSIS FOR GRAPH-BASED REAL-TIME TASK SYSTEMS 3395

Fig. 7. Impact of the number of tasks in schedulable task sets. (a) Evaluate
#num. (b) Evaluate comp.time.

Fig. 8. Impact of the utilization of schedulable task sets. (a) Evaluate #num.
(b) Evaluate comp.time.

unschedulable task system), we do the experiments separately
for schedulable and unschedulable task sets.

1) Experiments on Schedulable Task Sets: We experi-
ment on the task sets which are schedulable. Fig. 7 shows
how the task number n impacts the schedulability method’s
performance. We let each task set’s utilization be 0.6, and
the task set with such an utilization has a 50% chance to
be schedulable. If a generated task set is unschedulable, the
program discards it and does not count it into the experimen-
tal results. As shown in Fig. 7(a), the checked interval-size
number 	SUN is 10 on average, which does not significantly
change when the task number n increases. 	STG is 1193 on
average, which is 117 times larger than 	SUN. As shown in
Fig. 7(b), tSTG (as well as tSUN) increases when the task num-
ber n increases. When the task number is large (e.g., n = 50),
tSTG is at least 118.68 s, and tSUN is no more than 3.45 s, i.e.,
our method is 34 times faster than Stigge’s method.

Fig. 8 shows the impact on the task set’s utilization u. We
set the task number of each instance as n = 5 to ensure that
Stigge’s method can analyze the generated task sets with both
low and high utilization within a few seconds. As shown in
Fig. 8(a), the checked interval-size numbers 	SUN and 	STG

tend to increase when the utilization u increases. 	SUN is 7 on
average, which is 32 times smaller than 	STG. As shown in
Fig. 8(b), the computation time tSTG as well as tSUN both grow
in an exponential pattern when the utilization u increases. Our
method is 5.7 times faster than the Stigge’s method on average.

2) Experiments on Unschedulable Task Sets: We do exper-
iments on the unschedulable task sets. Figs. 9 and 10 show
the impact on task number n and the utilization u, respec-
tively. In Fig. 9, we set the utilization u = 0.6. In Fig. 10,
we let the task number n = 5, and let the utilization range
from 0.5 to 0.9, since it is hard to generate an unschedulable
task set when the utilization is less than 0.5. We observe that
the checked interval-size number 	SUN is not always smaller
than 	STG. This is because that for an unschedulable task set,
the first deadline missing point is often closer to 1. Stigge’s

Fig. 9. Impact of the number of tasks in unschedulable task sets. (a) Evaluate
#num. (b) Evaluate comp.time.

Fig. 10. Impact of the utilization of unschedulable task sets. (a) Evaluate
#num. (b) Evaluate comp.time.

Fig. 11. Evaluate our method for solving large-scale task sets. (a) Comp.time
of ASUN (u = 6). (b) Time-out instance ratio (u = 9).

method uses forward searching strategy and, thus, it discov-
ers the very first deadline missing point and terminates after
checking few interval sizes (e.g., no more than 46 on average).
On the other hand, our method starts from L and works back-
ward toward 1, which needs to check 8 or more interval sizes
before concluding that the task set is unschedulable. Although
our method cannot dominate Stigge’s method when analyzing
unschedulable task sets, our method is very fast, i.e., the com-
putation time of our method is no more than 2.62 s as shown
in Figs. 9(b) and 10(b).

3) Scalability of Our Method: Our method can scale to
larger task sets. As shown in Fig. 11(a), our method is capa-
ble of analyzing large-scale task sets (consisting of 900 DRT
tasks) within 76.10 s. As we know that there is an exponen-
tial pattern in the growth of our method’s computation time
when the utilization increases, our method may be slow when
dealing with large-scale task sets with high utilization (e.g.,
u = 0.9). If the method (e.g., ASTG and ASUN) cannot com-
plete the schedulability analysis within 500 s, it is considered
to have “timed-out.” We evaluate the timed-out instance ratio
of both methods with different numbers of tasks as shown in
Fig. 11(b). We observe that when the task set has a high uti-
lization 0.9, and the task number exceeds 800, more than 33%
instances are timed-out under our method. We also observe
that if our method is timed-out, Stigge’s method is slow as
well, i.e., timed-out instance ratio of ASTG sharply increases
to 100% when the task number exceeds 700 (and at the same
data point, our method’s time-out instance ratio is only 1%).

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:36:48 UTC from IEEE Xplore. Restrictions apply.

3396 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 12. Evaluate computation time for solving utilization. (a) u = 0.5.

(b) |Vk| = 30.

B. Evaluation for Utilization Computing

We also evaluate the computation time for solving the uti-
lization. We use tI to denote the computation time for solving
MODEL I and use tu to denote the computation time of Stigge’s
utilization computation method. As shown in Fig. 12, MODEL

I can be solved within 0.01 s, and Stigge’s method exceeds
1.94 s on average. The computation time tI increases when the
vertex number |Vk| and the utilization uk of Gk increase.

VI. RELATED WORK

Graph-based task models include recurring branching [3],
recurring [4], noncyclic recurring [5], GMF [6], and so on. One
of the most expressive graph-based task models is the DRT
task model [10] using arbitrary directed graphs for modeling
task activations. This section mainly summarizes the related
work for DRT tasks. Stigge et al. [10] first proposed the DRT
task model and developed a pseudo-polynomial time approach
to analyze the schedulability of DRT tasks under the dynamic
priority scheduling (e.g., EDF). In [8], they further clarify
the tractability of schedulability analysis of DRT tasks (under
EDF). For static priority (SP) schedulers, Stigge and Yi [12]
showed the intractability of the schedulability analysis of DRT
tasks, and in [13], they proposed an iterative approach to effi-
ciently cope with the combinatorial explosion in the analysis
process. Using the similar technique, Stigge et al. [14] solved
the response time analysis (RTA) problem for DRT task under
SP scheduling. Guan et al. [15] proposed an approximation
algorithm to solve the RTA problem for DRT tasks under SP
scheduling, and in [16], they used the real-time calculus for
the delay analysis of each vertex in DRT tasks. Gu et al. [17]
used graph transformation methods to improve the schedula-
bility of DRT tasks under SP scheduling. For both dynamic
and SP schedulers, Zeng and Natale [18] used the max-plus
algebra technique to improve the efficiency of the schedula-
bility analysis for the strongly connected DRT tasks. Please
see the survey [19] for details.

DRT task models are extended into different application sce-
narios. Guan et al. [20] and Abdullah et al. [21] studied the
scheduling strategies for the DRT tasks with resource shar-
ing constraints. Ekberg and Yi [22] used DRT task model to
describe the mixed criticality system. Mohaqeqi et al. [23],
Fradet et al. [24], and Xu et al. [25] studied the dependent
DRT tasks, i.e., there are dependence constraints among DRT
tasks. Ben et al. [26] studied the DRT tasks with the probabilis-
tic WCET. Sun [27], Zahaf et al. [28], and Houssam et al. [29]
extended the DRT task model to support the inner paral-
lel tasks. Mohaqeqi et al. [30] used the DRT task model

to formulate the data flow graphs. Abdullah et al. [31] and
Mohaqeqi et al. [32] used DRT tasks to formulate Ada code.
Guo and Baruah studied the adaptive varying rate (AVR) tasks
and used DRT as a possible representation model to formulate
AVR tasks [33].

VII. CONCLUSION

The traditional feasible analysis for the DRT task model
used a DP-based approach to deal with the exponential explo-
sion, but is hard to be accelerated. In this article, we provide
efficient techniques to accelerate the analysis of DRT tasks.
By using LP techniques, we reduce utilization computation’s
complexity from pseudo-polynomial time to polynomial time.
By using the ILP techniques, we propose an efficient method
to compute the DBF, which facilitates the implementation of
acceleration techniques. The experimental work shows that
our method has a much shorter run time than the traditional
method.

ACKNOWLEDGMENT

The students at Northeastern University, particularly
Xisheng Li and Zhiyu Hu have done part of the coding work.
The authors would like to thank them for their hard work.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[2] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in Proc. RTSS, 1990,
pp. 182–190.

[3] S. K. Baruah, “Feasibility analysis of recurring branching tasks,” in
Proc. 10th EUROMICRO Workshop Real Time Syst., 1998, pp. 138–145.

[4] S. K. Baruah, “Dynamic-and static-priority scheduling of recurring real-
time tasks,” Real Time Syst., vol. 24, no. 1, pp. 93–128, 2003.

[5] S. K. Baruah, “The non-cyclic recurring real-time task model,” in Proc.
RTSS, 2010, pp. 173–182.

[6] S. K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok, “Generalized
multiframe tasks,” Real Time Syst., vol. 17, no. 1, pp. 5–22, 1999.

[7] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,”
IEEE Trans. Softw. Eng., vol. 23, no. 10, pp. 635–645, Oct. 1997.

[8] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “On the tractability of
digraph-based task models,” in Proc. ECRTS, 2011, pp. 162–171.

[9] E. Fersman, P. Krcál, P. Pettersson, and W. Yi, “Task automata:
Schedulability, decidability and undecidability,” Inf. Comput., vol. 205,
no. 8, pp. 1149–1172, 2007.

[10] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-time task
model,” in Proc. RTAS, 2011, pp. 71–80.

[11] F. Zhang and A. Burns, “Schedulability analysis for real-time
systems with EDF scheduling,” IEEE Trans. Comput., vol. 58, no. 9,
pp. 1250–1258, May 2009.

[12] M. Stigge and W. Yi, “Hardness results for static priority real-time
scheduling,” in Proc. ECRTS, 2012, pp. 189–198.

[13] M. Stigge and W. Yi, “Combinatorial abstraction refinement for feasi-
bility analysis,” in Proc. RTSS, 2013, pp. 340–349.

[14] M. Stigge, N. Guan, and W. Yi, “Refinement-based exact response-time
analysis,” in Proc. ECRTS, 2014, pp. 143–152.

[15] N. Guan, C. Gu, M. Stigge, Q. Deng, and W. Yi, “Approximate
response time analysis of real-time task graphs,” in Proc. RTSS, 2014,
pp. 304–313.

[16] N. Guan, Y. Tang, Y. Wang, and W. Yi, “Delay analysis of structural
real-time workload,” in Proc. Design Autom. Test Europe (DATE), 2015,
pp. 223–228.

[17] C. Gu, N. Guan, Z. Feng, Q. Deng, X. S. Hu, and W. Yi, “Transforming
real-time task graphs to improve schedulability,” in Proc. RTCSA, 2016,
pp. 29–38.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:36:48 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: EFFICIENT FEASIBILITY ANALYSIS FOR GRAPH-BASED REAL-TIME TASK SYSTEMS 3397

[18] H. Zeng and M. D. Natale, “Using max-plus algebra to improve the
analysis of non-cyclic task models,” in Proc. ECRTS, 2013, pp. 205–214.

[19] M. Stigge and W. Yi, “Graph-based models for real-time workload: A
survey,” Real Time Syst., vol. 51, no. 5, pp. 602–636, 2015.

[20] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Resource sharing protocols
for real-time task graph systems,” in Proc. ECRTS, 2011, pp. 272–281.

[21] J. Abdullah, G. Dai, M. Mohaqeqi, and W. Yi, “Schedulability analy-
sis and software synthesis for graph-based task models with resource
sharing,” in Proc. RTAS, 2018, pp. 261–270.

[22] P. Ekberg and W. Yi, “Schedulability analysis of a graph-based task
model for mixed-criticality systems,” Real Time Syst., vol. 52, no. 1,
pp. 1–37, 2016.

[23] M. Mohaqeqi, J. Abdullah, N. Guan, and W. Yi, “Schedulability anal-
ysis of synchronous digraph real-time tasks,” in Proc. ECRTS, 2016,
pp. 176–186.

[24] P. Fradet, X. Guo, J.-F. Monin, and S. Quinton, “A generalized digraph
model for expressing dependencies,” in Proc. RTNS, 2018, pp. 72–82.

[25] R. Xu, L. Zhang, N. Ge, and X. Blanc, “Schedulability analysis of
real-time tasks with precedence constraints,” in Proc. SEKE, 2018,
pp. 518–527.

[26] S. Ben-Amor, D. Maxim, and L. Cucu-Grosjean, “Schedulability anal-
ysis of dependent probabilistic real-time tasks,” in Proc. RTNS, 2016,
pp. 99–107.

[27] J. Sun, “Feasibility of fork-join real-time task graph models: Hardness
and algorithms,” ACM Trans. Embedded Comput. Syst., vol. 15, no. 1,
pp. 1–28, 2016.

[28] H.-E. Zahaf, A. E. H. Benyamina, G. Lipari, R. Olejnik, and P. Boulet,
“Modeling parallel real-time tasks with DI-graphs,” in Proc. RTNS,
2016, pp. 339–348.

[29] H.-E. Zahaf, G. Lipari, M. Bertogna, and P. Boulet, “The parallel
multi-mode digraph task model for energy-aware real-time heteroge-
neous multi-core systems,” IEEE Trans. Comput., vol. 68, no. 10,
pp. 1511–1524, Oct. 2019.

[30] M. Mohaqeqi, J. Abdullah, and W. Yi, “Modeling and analysis of data
flow graphs using the digraph real-time task model,” in Proc. AEiC,
2016, pp. 15–29.

[31] J. Abdullah, M. Mohaqeqi, and W. Yi, “Synthesis of ADA code from
graph-based task models,” in Proc. SAC, 2017, pp. 1467–1472.

[32] M. Mohaqeqi, J. Abdullah, and W. Yi, “An executable semantics for
synchronous task graphs: From sdrt to ada,” in Proc. AEiC, 2017,
pp. 137–152.

[33] Z. Guo and S. K. Baruah, “Uniprocessor EDF scheduling of AVR task
systems,” in Proc. ACM/IEEE 6th Int. Conf. Cyber Phys. Syst., 2015,
pp. 159–168.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:36:48 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

