
SmartPC: Hierarchical Pace Control in Real-Time
Federated Learning System

Li Li†,1, Haoyi Xiong†,2, Zhishan Guo3, Jun Wang4, and Cheng-Zhong Xu1,5

1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen China
2Big Data Lab (BDL), Baidu, Inc., Beijing, China

3Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL
4School of Computer Science, McGill University, Montréal, Canada

5Department of Computer and Information Science, University of Macau, Macau, China

Abstract—Federated Learning is a technique for learning AI
models through the collaboration of a large number of resource-
constrained mobile devices, while preserving data privacy. In-
stead of aggregating the training data from devices, Federated
Learning uses multiple rounds of parameter aggregation to train
a model, wherein the participating devices are coordinated to
incrementally update a shared model with their own param-
eters locally learned. To efficiently deploy Federated Learning
system over mobile devices, several critical issues including real-
timeliness and energy efficiency should be well addressed.

This paper proposes SmartPC, a hierarchical online pace
control framework for Federated Learning that balances the
training time and model accuracy in an energy-efficient manner.
SmartPC consists of two layers of pace control: global and local.
Prior to every training round, the global controller first oversees
the status (e.g., connectivity, availability, and energy/resource
remained) of every participating device, then selects qualified
devices and assigns them a well-estimated virtual deadline for
task completion. Within such virtual deadline, a statistically
significant proportion (e.g., ≥60%) of the devices are expected
to complete one round of their local training and model updates,
while the overall progress of multi-round training procedure is
kept up adaptively. On each device, a local pace controller then
dynamically adjusts device settings such as CPU frequency so
that the learning task is able to meet the deadline with the
least amount of energy consumption. We performed extensive
experiments to evaluate SmartPC on both Android smartphones
and simulation platforms using well-known datasets. The exper-
iment results show that SmartPC reduces up to 32.8% energy
consumption on mobile devices and achieves a speedup of 2.27
in training time without model accuracy degradation.

I. INTRODUCTION

With rapid development of real-time embedded systems,

mobile devices (e.g., smartphone and wearable devices) have

been widely used to provide ubiquitous services together

with computation-intensive artificial intelligence (AI) tasks. As

these devices are carried about everyday and everywhere, they

could collect a huge amount of private data about the mobile

users using the embedded sensors (e.g., camera, microphone,

GPS, accelerometer). With the collected data, learning pre-

dictive models to adapt users’ behaviors/contexts becomes a

promising way to improve user experience [1]–[3]. However,

the sensitive nature of the user data means there are serious

issues collecting and storing them in a centralized location [4].

†Equal contribution; Li Li is a visitor at Baidu Research.

To ensure data privacy in the learning procedure, Federated

Learning systems have been proposed to enable a large number

of mobile devices to train a shared model collaboratively

without sharing local private data [5], [6]. To achieve the goal,

a Federated Learning system usually organizes all participating

mobile devices around a central server for model/parameter

sharing (instead of data sharing). Training is started at the

same time from a common initialization and will continue in

multiple training rounds. During each round of the learning

procedure, every mobile device computes its own updates

based on the current shared model using its local training

data, then forwards the local updates to the central server. On

the other hand, once the central server receives the updates

from these mobile devices, it improves the shared model

and sends the updated one to the participating devices. This

process iterates until an accuracy level of the learning model

is reached. In this way, the accurate predictive model can

be obtained while the user data privacy is well protected, as

the local training data are not shared directly. Thus, different

kinds of data-sensitive applications can be well supported by

Federated Learning systems, such as face detection [7], next-

word prediction, on-device item ranking, content suggestions

for on-device keyboards, next word prediction [8] and human

activity recognition.

Despite all the promising benefits, several obstacles exist for

Federated Learning to be viable. When conducting training on

mobile devices, federated learning can be costly because the

whole learning process requires multiple rounds of communi-

cation between the central server and the devices before the

model converges. From the perspective of energy consumption,

on-device training is highly energy demanding and hurts the

battery lifetime of mobile devices. Previous research simply

assumes that the training program is only carried out when the

smartphone is being charged [7]. Yet, such strong assumption

contradicts the original purpose of analyzing data on mobile

devices, i.e., understanding the collected data ubiquitously and

timely. Conducting machine learning in real-time is becoming

more and more important in time-critical applications and fast

changing environments, such as autonomous vehicles, military

applications, health-care informatics, and business analytics

[9]. Moreover, a lot of time-sensitive applications can also

406

2019 IEEE Real-Time Systems Symposium (RTSS)

2576-3172/19/$31.00 ©2019 IEEE
DOI 10.1109/RTSS46320.2019.00043

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:16 UTC from IEEE Xplore. Restrictions apply.

benefit from real-time mobile-based federated learning. For

instance, the renowned ride-share service provider Uber uses

machine learning through clients’ smartphones to analyze the

demand of vehicles in real time for their pricing model [10].

From the perspective of training completion time, the het-
erogeneity in a Federated Learning system can also greatly

impact the efficiency of the training process. Mobile devices

in a Federated Learning system often have different hard-

ware configurations and computing capacities. Moreover, the

training data on different mobile devices are usually highly

unbalanced. Heterogeneous hardware configurations coupled

with unbalanced training data lead to large variations in

completion time in each training round. Current Federated

Learning system adopts the synchronous model averaging

approach [11], which means that the system does not enter the

next training round until the central server receives the updated

weights from all the participating devices. The progress of

the overall training process is thus bottle-necked by the less-

powerful devices that require more time to complete the

training rounds. Thus, a framework that can effectively
balance the training progress, model accuracy and energy
consumption in real time is urgently required for Federated
Learning systems.

In this paper, we explore the possibility of enabling Feder-

ated Learning on multiple battery-powered devices. In order to

make Federated Learning practical, we propose SmartPC, a hi-

erarchical pace control framework that efficiently coordinates

the training progress of the whole Federated Learning system

and optimizes the energy consumption of the participating

mobile devices with heterogeneous hardware configurations.

Specifically, SmartPC contains two main layers, 1) a global

control layer and 2) a local control layer. The global pace con-

troller intelligently determines the global training deadline for

each training round according to the hardware configuration

and runtime behavior collected from the participating mobile

devices. A proper training deadline is important for training

pace control. If the deadline is too tight, most of the participat-

ing devices can not catch the deadline and successfully submit

their weight updates, and the model accuracy can be severely

affected. On the other hand, if the deadline is too loose, it takes

a large amount of time to complete the training for each com-

munication round and prolongs the overall training progress.

In this work, we design a feedback-based deadline assignment

mechanism that dynamically determines the training deadline

based on actual training progress information as well as the

computing capacity of the devices to guarantee that a specific

percentage of participants can successfully submit the weight

updates to achieve the predefined model accuracy level.

After receiving the training deadline, the local pace con-

troller dynamically adjusts the system configuration of the

participating device so that the participant can meet the

training deadline while minimizing the energy consumption.

Our experiments show that the default governor on Android

system is not energy optimal for Federated Learning system;

it always selects unnecessarily high system configurations.

The designed energy minimization approach overrides the

default governor and dynamically selects the optimal system

configuration according to the local training progress in order

to complete the local training in an energy efficient way.

We compare SmartPC with a state-of-the-art Federated

Learning control system and show that SmartPC achieves

up to 32.8% less energy consumption and accelerates the

overall training progress up to 2.27 times. We also test the

performance of SmartPC with different apps concurrently

running in the foreground. Our results show that SmartPC can

intelligently control the local training progress with negligible

impact on the performance of the foreground app. To our

best knowledge, SmartPC is the first work that studies the

trade-off between training progress and energy efficiency in

real-time Federated Learning systems. Specifically, our major

contributions are as follows:

• We propose SmartPC, a hierarchical pace control frame-

work that intelligently coordinates the overall training

progress in a Federated Learning system.

• We make the observation that only a proportion of up-

dates from the devices is required to achieve high model

accuracy. Consequently, we design a deadline assignment

mechanism to determine the training deadline in each

training round in order to intelligently trade off model

accuracy and training completion time.

• We design an energy optimizer to minimize the energy

consumption of the participating devices during the train-

ing process while catching each training deadline.

• We prototype SmartPC on a Federated Learning system

consisting of commercial mobile devices with heteroge-

neous hardware configurations.

• We demonstrate that Federated Learning can be success-

fully performed even when the participating devices have

foreground apps running.

The rest of the paper is organized as follows. Section II

introduces the background about Federated Learning and the

key observations that motivate the design of SmartPC. Section

III discusses the design of the global layer and the local layer,

respectively. Section IV presents the system implementation

and evaluation of SmartPC. Then Section V discusses prior

research that is closely related to SmartPC. Finally, Section

VI concludes the paper.

II. BACKGROUND AND OBSERVATION

In this section, we first briefly introduce the related back-

ground about Federated Learning. After that, we discuss the

three key observations that motivate our design of SmartPC.

A. Background about Federated Learning system

A Federated Learning system usually consists of two main

components: 1) a central server and 2) multiple mobile devices

that participate in the training process. Figure 1 represents the

workflow of a Federated Learning system which contains the

following main steps:

1) At the beginning of each training round, the central

server selects a set of online devices to participate in

the training process.

407

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:16 UTC from IEEE Xplore. Restrictions apply.

Training
Round

Training
Epoch

Fig. 1: A typical architecture of federated learning over cloud-

edge infrastructures.

2) The selected devices download the current global model

state (e.g., current model parameters(wt)).

3) Each mobile device performs local training based on

the global model state and its local training dataset for

a specific number of training epochs.

4) After completing the local training process, each mobile

device sends the model updates (e.g., Δw) back to the

central server.

5) After receiving the model updates from all the mobile

devices, the central server aggregates these gradient

updates and generates the updated global model. Then,

the system enters a new training round.

6) The whole process iterates until the global model con-

verges.

We can note that, at no point in time in the entire training

process does the central server directly or indirectly access

the local training data (e.g., raw data generated during user

interaction with mobile devices). Data privacy is therefore well

preserved-a key advantage of Federated Learning.

A number of important technical issues must be addressed

for a Federated Learning system to be viable. Previous re-

search in this area focus on such problems as: 1) reducing the

communication cost [11], 2) guaranteeing the system security

[12] and 3) analyzing the convergence bound [13]. However, in

this paper, we aim at addressing a critical problem for efficient

deployment of federated learning on mobile devices (e.g., pace

control in a Federated Learning system to effectively trade off

the energy efficiency, model accuracy and training progress).

B. Motivation

With the above background on Federated Learning, we now

discuss a few key observations that motivate this work.

Observation1: A certain percentage of successful weight
updates is enough to guarantee the predictive accuracy. A

Federated Learning system usually includes mobile devices of

diverse hardware configurations. Therefore, in each training

round, the completion time of the devices can have great

variations. We have conducted a Federated Learning task

to train the image classification model Lenet5 [14] on four

0

100

200

300

400

1 2 3 4

Ti
m

e
(s

)

Different types of Smartphones

(a) Training Completion Time.

0.9

0.92

0.94

0.96

0.98

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ur
ac

y

Fraction of Participating Devices

2D_CNN
Lenet-5
AlexNet

(b) Participating devices vs. Accuracy.

Fig. 2: Runtime information and model accuracy. ((a) training

completion time on different mobile devices: 1-RedMi2, 2-

Samsung Galaxy S4, 3-Huawei Honor 8, 4-Honor V9. (b)

Impact of percentage of participants on model accuracy.)

different smartphones, i.e., RedMi2, Samsung Galaxy S4,

Huawei Honor 8, and Honor V9, respectively, and collected the

local training completion time during the training process. We

can see from the results in Figure 2a that the completion time

of the same training process with the same size of data set,

differs greatly – RedMi 2 spends 12× more time compared

to Honor V9. This is largely due to difference in hardware

configurations. For instance, the RedMi2 is powered by a 4-

core 1.2GHz ARM Cortex-A53 CPU while Huawei Honor V9

has an 8-core CPU with 4 2.36GHz ARM Cortex-A73 and

4 1.84GHz Cortex-A53. Therefore, if the central server in a

Federated Learning system has to wait for all the participating

devices to send their updates before entering the next round, it

is likely to be bottle-necked by the slowest devices. To reduce

the overall training time, it is necessary not to wait for all

devices to complete their round.

Figure 2b shows the impact of the proportion of weight

updates on the model accuracy in a Federated Learning sys-

tem. In this experiment, we train different models, including

2 Layer CNN, Lenet-5, AlexNet [15], with the Mnist [16]

data set. The training data are evenly distributed among 200

participants. The x-axis shows the percentage of participants

whose weight updates are successfully received by the central

server. The y-axis shows the corresponding model accuracy.

We can find that the model accuracy does not increase linearly

with the fraction of participants that successfully send their

weight updates. Above a certain threshold (e.g., 0.8 in this

case), the accuracy improvement is negligible. Thus, weight

updates from all the participated device are not required. A

certain percentage of successful weight updates is enough in

408

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:16 UTC from IEEE Xplore. Restrictions apply.

0%

50%

100%

0.
25

0.
35

0.
45 0.
5

0.
6

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

Ti
m

e
Pe

rc
en

ta
ge

CPU Frequency (GHz)

(a) Frequency Selection.

32000
37000
42000
47000
52000
57000
62000
67000

100

300

500

700

900

0.
25

0.

35

0.
45

0.

50

0.
60

0.

80

0.
90

1.

00

1.
10

1.

20

1.
30

1.

40

1.
50

1.

60

C
on

su
m

ed
 E

ne
rg

y
(u

A
h)

Ti
m

e
(s

)

CPU Frequency(GHz)

Time
Consumed Energy

(b) Completion Time Vs. Energy.

Fig. 3: Runtime information during local training process on

a Galaxy S4 smartphone ((a) CPU frequency selected by

the default governor, (b) energy consumption and training

completion time under different CPU frequency level).

order to guarantee the model accuracy.

Observation2: Default DVFS governor does not well
balance the training progress and energy in a Federated
Learning system. In order to further understand the system

behavior during the local training process, we collect the

CPU frequency selected by the default governor (e.g., the

interactive governor on Android system). Figure 3a

shows the results on Samsung Galaxy S4 as an example. We

can find that the system spends more than 98% of the time on

the highest CPU frequency (1.6GHz in this case) during the

local training. This is because, on a typical Android device,

the default governor determines the CPU frequency solely

based on CPU load. If the CPU load is higher than a certain

threshold, the governor would select the high frequencies.

Therefore, for CPU-intensive tasks such as on-device training,

the highest frequency will often be selected. Although this

allows the task to be completed in the shortest possible time,

it is generally not energy optimal on a mobile device. Figure

3b shows the completion time and energy consumption (the

whole smartphone, based energy + training energy) at different

fixed CPU frequencies on the Galaxy S4. As expected, the

training time decreases monotonically as frequency increases.

However, energy consumption does not share that trend. In

fact, beyond a certain point (0.6GHz) energy increases mono-

tonically as frequency increases. Moreover, in a Federated

Learning system, though the highest frequency can complete

the training in a short time, the whole system still needs to

wait for weight updates from other devices in order to enter

the next round.

Observation 3: The concurrent running foreground
apps can highly impact the background local training

(a) Training Completion Time (b) Training Process IPS.

(c) Foreground Scenario Load. (d) Foreground Perf Degradation.

Fig. 4: Impact of different concurrent running foreground

tasks on the background local training process (S1-Reading,

S2-Typing, S3-Gaming1 (2D-AngryBirds), S4-Gaming2 (3D-

Basketball), S5-Video Playing).

process. Figure 4 shows the runtime information when the

local training process runs concurrently with foreground apps

in different common scenarios (e.g., S1-Reading, S2-Typing,

S3-Gaming1 (2D-AngryBirds), S4-Gaming2(3D BasketBall),

S5-Video Playing). Specifically, Figure 4a, 4b, 4c, 4d show

the local training completion time, Instructions Per Second

(IPS) of the local training process, CPU load of the foreground

app and performance degradation of the foreground app based

on a Nexus 6 smartphone, respectively. We can find that

user interaction with the foreground app can highly impact

the background training process. For instance, the training

completion time of a minibatch is 2.368s (IPS 4.91GHz) with

the reading scenario (CPU Load = 0%), while it increases

up to 5.02s (IPS 1.75GHz) with the 3D gaming scenario

(CPU Load = 31%). The concurrently running foreground

apps can compete for the computing resources in different

ways and thus impact the local training process. Moreover,

mobile system usually assign higher priority to foreground

apps and during this process the performance degradation of

the foreground app is negligible as shown in Figure 4d.

III. SYSTEM DESIGN

In this section, we discuss the system design of SmartPC,

a pace control framework that effectively balances model

accuracy and training time and at the same time optimizes en-

ergy efficiency for mobile-based Federated Learning systems.

Specifically, we first briefly introduce the system overview and

then present the two-layer (i.e., global layer and local layer)

design in detail.

A. System Overview

Figure 5 shows the system architecture of SmartPC which

mainly contains two layers, the global layer and the local layer.

The central server hosts the global pace controller while each

participating device has a local pace controller. The job of the

global pace controller is to intelligently balance the progress

of each training round and the model accuracy, whereas the

409

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: System Architecture of SmartPC.

local pace controller is responsible for trading off the pace

and energy consumption of the local training process for its

hosting device. Together, the two layers strive to dynamically

achieve optimal balance among training time, model accuracy,

and energy efficiency for the Federated Learning system.

The system workflow of SmartPC can be represented as the

following main steps:

1) At the initialization step, the global controller first

oversees the status (e.g., connectivity, availability, and

energy/resource remained) of every participating device,

then selects qualified devices. After that, each selected

mobile device sends the following local information

to the central server: 1) hardware information (e.g.,

available CPU frequency range) and 2) size of local

training data.

2) After receiving the local information from the selected

participants, the global pace controller estimates a virtual

deadline of the upcoming training round to balance

the overall training progress and model accuracy. The

controller then broadcasts the virtual deadline to all the

participants.

3) The local pace controller performs the local optimiza-

tion to determine the optimal scheduling of hardware

resources (e.g., CPU frequency) in order to minimize

the energy consumption of local training while meeting

the virtual deadline.

4) When the virtual deadline arrives, the global controller

checks the progress of the current training round (i.e.,

percentage of model updates the server has received

from all the participants). If the central server has

already received enough weight updates to guarantee

the model accuracy, the system directly enters the next

training round. Otherwise, the controller notifies the par-

ticipating mobile devices the synchronization deadline

(timely secure the synchronization of local parameter

updates for gradients aggregation in the central server

per round) which is configured based on the requirement

of the specific application.

5) The participants that have not completed the local

training adjust their hardware configuration based on

the received synchronization deadline (performed by the

local pace controller) and try to complete their remaining

training job.

6) When the synchronization deadline arrives, the global

pace controller determines whether this round of training

is successful or not based the percentage of model

updates received by the central server. If the current

training round is successful, the central server performs

model averaging and the system enters the next training

round. Otherwise, the current training round restarts to

avoid waiting indefinitely.

It is important to note that SmartPC is mainly limited to

soft real-time applications. Moreover, the training process on

mobile devices can be highly dynamic. Different uncertainties

(e.g., mobile devices may experience delay or even failure in

sending back updates due to connectivity or battery issues)

can take place during this process. The following mechanisms

are designed to handle the uncertainties during the training

process in each training round. First, SmartPC does not require

all the devices to successfully upload their local updates to the

central server, but only requires the central server to receive

updates from a certain percentage of participating devices in

order to guarantee the model accuracy. This effectively reduces

the impact of random uncertainties that could occur on the

participating mobile devices. Moreover, the synchronization

deadline is designed to prevent the system from waiting

indefinitely in a certain round in order to effectively handle the

uncertainties. Figure 6 shows the deadline assignment (global

pace control) and local training process (local pace control) in

each training round. It is a challenging problem to efficiently

trade off the training progress, model accuracy and energy

consumption in such a heterogeneous system. In the following

sections, we discuss the design of the global and local pace

control in detail.

Model
Download

Model
Update

Local
Training

Training Round i Training Round i+1

Mobile
Devices

Central
Server

Training

Training

Training

Model
Average

Virtual
Deadline

Synchronization
Deadline

Fig. 6: Deadline assignment and local training.

B. Global Pace Control

The Global Pace Control assigns the training deadline for

each training round in order to balance model accuracy and

training progress. However, determining the right deadline is

not trivial. If the deadline is too tight, many of the mobile

devices may fail to complete the local training in time and

410

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:16 UTC from IEEE Xplore. Restrictions apply.

to submit their model updates. This negatively impacts the

model accuracy. If the deadline is too loose, the overall training

progress is slowed down. Thus, determining the amount of

weight updates required to guarantee the model accuracy and

accurately estimating the local completion time is critical for

deadline determination.

Hardware
Config
Data
Size

Virtual
Deadline

al
ne

Runtime Training Speed

Fig. 7: Workflow of Global Pace Control.

Global Pace Control Overview. Figure 7 shows the

workflow of global pace control. In the initialization step,

after receiving the hardware configuration information and

the local training data size, the global pace control estimates

the local completion time of each participating device. Then,

with the completion information and the required weight

update percentage value, the Deadline Determination compo-

nent determines the global training deadline and broadcasts

it as input to the local pace controllers. At the end of each

training round, the global pace control receives the feedback

of the local training speed from the local pace controllers for

completion time prediction in order to effectively estimate the

new deadline for the next round.
Completion Time Model. With the received hardware

configuration information and the size of local training data,

the time required by device i to complete the local training

process can be modeled [6] as:

ti =
ciDi

fi
(1)

where, ci represents the number of CPU cycles required to

process one data object on mobile device i, which can be

obtained through offline profiling, Di represents the number of

data objects in the local training data set, and fi is a particular

CPU frequency available on device i. Because the data objects

(e.g., pictures) in a training set usually have the same size,

the number of CPU cycles required for device i to run a local

iteration can be modeled as ciDi.
Given this model, if fi max is the maximum CPU frequency

on device i, the shortest training completion time is:

Ti min =
ciDi

fi max
(2)

Completion Time Prediction. When a mobile device has

no foreground app running, using Eqn. 1 to predict local train-

ing completion time can be sufficiently accurate. However, as

discussed above, we intend to have mobile devices participate

in Federated Learning even when they are in use. As Figure 4

shows, foreground apps can affect the performance of the

background training process. This has to be accommodated

in order to accurately predict training time. In SmartPC, we

adopt an exponential moving average (EMA) formula for

the completion time prediction as follows. For each training

round j, the local pace control located on each mobile device

monitors the starting time tji start and the ending time tji end

of the training process. Moreover, it monitors the number of

data objects Sj
i that have been processed in each round. We

define the training speed of mobile device i in round j as

follows:

rji =
Sj
i

tji end − tji start

(3)

With this definition, the training speed of the upcoming

training round k, Rk
i can be predicted as follows:

Rk
i =

{
r1i , k = 1

α ∗ rk−1
i + (1− α) ∗Rk−1

i , k > 1
(4)

where Rk
i (k > 1) is the new predicted value, Rk−1

i is the last

predicted value, rk−1
i is the latest measured training speed on

device i, and α is a constant attenuation factor in the range

between 0 to 1. The parameter α controls the relative weight of

recent and past history in the prediction– when α > 0.5, more

weight is given to the most recent sample, and vice versa.

In our implementation, we use the the real user interaction

trace from LiveLab [17], which records the user interaction

from different users, to select the best value of α in order

to achieve the best prediction accuracy. With the predicted

training speed Rk
i , the completion time of the upcoming round

k can be estimated as

tki =
Di

Rk
i

, k > 1 (5)

For the very first round, we use Ti min in Eqn. 2 as the

estimation.

Deadline Determination. As shown in Figure 2b, a cer-

tain percentage (not 100%) of successful weight updates

is sufficient for achieving a high level of model accuracy.

Thus, the training deadline is determined as the shortest time

within which a specific percentage (Urequired) of participating

devices can send back their weight updates to the central

server. Using Urequired (< 100%) has two main advantages:

1) it makes the system more robust considering mobile devices

can be offline due to various reasons (e.g., out of battery,

user shutdown, system failure), and 2) it accelerates the

overall training process – the Federated Learning system will

not be bottle-necked by the low-end devices and/or those

experiencing performance issues at the moment. We formulate

the deadline determination problem for training round k as

follows:

Min{dk} (6)

subject to

∑i=N
i=1 I(tki)

N
≥ Urequired (7)

where tki is the estimated completion time (Eqn. 5), and the

indicator function I(tki) is defined as follows:

411

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:16 UTC from IEEE Xplore. Restrictions apply.

I(tki) =

{
0 tki > dk

1 tki ≤ dk
(8)

After that, the determined deadline dk is sent out as input

to the local pace controllers.

Virtual
Deadline

Training
Speed

Sys
Config

Fig. 8: Local pace control in SmartPC.

C. Local Pace Control

After receiving the global deadline dk from the inter-

device layer, the local pace control aims to meet the deadline

while minimizing the energy consumption of the local training

process. Figure 8 shows the workflow of the local pace

control. First, the Speed Determination component calculates

the optimal speed (in terms of IPS) for the local training

process that allows the deadline to be met with minimal

energy. After that, the Resource Scheduler, guided by the

optimal speed, computes a resource schedule for the device

to balance the power and performance for the local training

process. Additionally, the Local Speed Monitor monitors the

average training speed and sends back to the global pace

control for deadline determination of the next training round.

1) Speed Determination: As discussed in Section II-B, due

to its compute-intensive nature, the local training process on

an Android system is executed in a race-to-idle manner, i.e.,

the highest CPU frequencies are used for the entire duration

of the task, which may not be energy optimal. In SmartPC, we

find a suitable speed for the local training process such that

the deadline is met while energy consumption is minimized.

We model the energy consumption of a device in one

training round as follows:

E = ptrain ∗ ttrain + pidle ∗ tidle (9)

where pidle represents the base power when the smartphone

is powered on but not actively used, ptrain represents the

power consumed while the training process is running, and

tidle and ttrain are the time spent in the idle and training

state, respectively.

Given a deadline and assuming that the training round can

finish before the deadline, running the training process at a

higher CPU frequency means it can be completed sooner

(i.e., smaller ttrain), but with a higher ptrain. We therefore

formulate the training speed determination as a constrained

optimization problem, as explained below.

Training Power Model. The idle power pidle in Eqn. 9 can

be easily obtained through measurement. The training power,

on the other hand, can be modeled as follows [13]:

ptrain = β ∗ f3 (10)

where β is the effective capacitance coefficient of the comput-

ing chipset of the mobile device which can be obtained through

the profiled power data at different frequency levels, and f
represents the CPU frequency adopted during the training

process.

Problem Formulation. With the power model in Eqn. 10

and the completion time model in Eqn. 1, we formulate the

local speed determination problem as a constrained optimiza-

tion problem. For a specific global training round with training

deadline dk, we aim to minimize the energy consumption of

the mobile device under the condition that the training round

be completed before dk is reached. Denote by Ei(fi) the

energy consumption of device i in a particular training round

when the training process is run with CPU frequency fi. The

problem therefore is to find:

argmin
fi

Ei(fi), fmin
i ≤ fi ≤ fmax

i (11)

s.t. tidlei + ttraini (fi) = dk, 0 ≤ tidle, ttrain(fi) ≤ dk (12)

where Ei(fi) is the energy consumption in Eqn. 9 when the

CPU frequency is fi.

In the above, Eqn. 11 indicates that the optimization prob-

lem is to find the CPU frequency in the available range on the

device that results in the least amount of energy consumption.

Equation 12 requires that the training completion time meet

the deadline dk set for the training round.

The solution to Eqn. 11 and 12 gives the energy-optimal

completion time ttraini . Based on this, we can compute the IPS

target as ii ∗Di/t
train
i , where ii is the number of instructions

for processing one data object and Di is the size of the data set.

This target is then passed as input to the Resource Scheduler.

Fig. 9: Resource Scheduler feedback loop.

2) Resource Scheduler: As discussed, the Speed Determi-
nation component computes a training time target that allows

the training deadline to be met with the least amount of energy,

which can be converted to IPS. The Resource Scheduler
then takes the IPS target as input and dynamically computes

schedules for the device hardware resources in order to achieve

the target in an energy efficient way. In this paper, we limit

the resources to CPU frequencies.

We adopt a two-component design for the Scheduler that

consists of an integral controller and an energy optimizer in a

feedback loop, as shown in Figure 9.

The Resource Scheduler operates in a cyclic manner. The

workflow of one cycle of the scheduling process is as follows:

412

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:16 UTC from IEEE Xplore. Restrictions apply.

(1) The performance of the training process, y(n), is measured

and the control error e(n) = r − y(n) is calculated, where r
is the static target IPS for the round. (2) Using e(n) as input,

the controller, taking into account historical errors, calculates

a dynamic performance as speedup s(n) that minimizes the

accumulated error. (3) The energy optimizer takes s(n) as

input and based on the performance model in Eqn. 1 and

power model in Eqn. 10 computes a CPU frequency schedule

that can achieve s(n) with the least amount of energy. (4) The

schedule is applied, and the process is repeated.

Integral Controller. To minimize the accumulated error∑
e(n) between the static target performance r and the

measured performance y(n), we utilize an integral controller

[18]. The input to the controller is the control error e(n),
i.e., the difference between the target performance r and the

actual performance y(n), and the output is the dynamic target

performance in the form of a speedup s(n) as described below.

First, the dynamic target performance u(n) considering

accumulated error is formulated as follows:

u(n) = u(n− 1) + g · e(n− 1), (13)

where u(0) = r, and the constant g, 0 < g < 1, is the

controller gain that is introduced for stability reasons. In

practice, a value around 0.5 is a reasonable choice.

The performance model in Eqn. 1 is a simple model. To

address the inevitable modeling errors, we decompose the

performance into a base speed b(n) and a dimensionless

speedup s(n), as follows:

u(n) = s(n) · b(n) (14)

the base speed b(n) is the speed of the local training process

when it runs with the minimal CPU frequency. Note that b(n)
is a variable and is estimated every cycle using a Kalman filter

as detailed in [19]. With this formulation of the performance,

the actual output of the controller is the desired speedup as

follows:

s(n) = s(n− 1) + g · e(n− 1)

b(n− 1)
(15)

Energy Optimizer. Once the required speedup s(n) is

calculated by the integral controller, the energy optimizer

determines the energy-optimal CPU frequency schedule that

achieves s(n). This schedule is then applied for the next

control cycle of T time units. As in [19], this optimization

problem can be formulated as a linear programming problem.

Each mobile device has a set of CPU frequencies. Assuming

that for a device we have a selected list of N CPU frequency

values {v1, v2, ..., vN}, Corresponding to each vi, there is

a training process performance si in the form of speedup

as described above, as well as a power consumption pi.
The task of the energy optimizer is to determine a schedule

τ = [τ1, τ2, ...τN], where τi means applying frequency vi
for τi time units. Thus, the optimization problem can be

formulated as follows:

minimize

N∑
i=1

τi · pi (16)

subject to

N∑
i=1

τi · si = s(n) (17)

and

N∑
i=1

τi = T, 0 ≤ τi ≤ T (18)

where T is the control period of the Resource Scheduler.

Eqn. 16 is the optimization goal that minimizes the energy

consumption in the control cycle. Eqn. 17 represents the

performance constraint, while Eqn. 18 shows the constraints

on the time horizon.

The solution to the optimization problem determines a set

of CPU frequencies and their corresponding applied duration,

such that it minimizes the energy consumed by the system

for a time period of T units while maintaining a performance

(speedup) of s(n). Based on the theory of linear programming,

there exists an optimal solution to Equation 16 with at most

two non-zero values for τi in the solution. This means for the

frequency schedule τ we simply need to find a pair of values

τi and τj that satisfies Equations 16 – 18.

3) Speed Monitor: The Speed Monitor monitors the pro-

cessed data objects between the starting and ending points

through instrumenting the local training process. As discussed,

this information is sent back to the global controller at the end

of each round so that it can update the prediction model for

completion time.

IV. EVALUATION

SmartPC is designed to efficiently balance the training

performance and energy consumption for on-device Federated

Learning. We evaluate the performance of SmartPC using

both simulation and physical testbed. We use this hybrid

testbed to cross validate the effectiveness and correctness of

corresponding models and system design. In this section, we

first introduce the experimental methodology and baselines,

and then discuss the corresponding experiments.

A. Experimental Setup

We build a prototype on-device Federated Learning sys-

tem using Android smartphones with heterogeneous hardware

configurations, as listed in Table I. The devices have different

Android versions (i.e., 5.0.5-8.0), different number of CPU

cores (i.e., 4, 6, 8) and different sets of CPU frequencies.

The local training process is implemented based on the DL4J

[20]. It runs as an asynctask in the background and has no

user interface. Communications between the devices and the

central server (PaddlePaddle based parameter server) are based

on the client-server model as shown in Figure 1.

In the local pace controller, we dynamically adjust the CPU

frequency of a mobile device to provide the performance-

energy trade-off. Setting CPU frequency to a specific level is

achieved by writing to pertinent files in the sysfs to first set the

413

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:16 UTC from IEEE Xplore. Restrictions apply.

0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
cc

ep
ta

nc
e

R
at

e

Training Round

Fix SmartPC Default All Target

(a) Weight updates submission rate.

0
2
4
6
8

10

N
or

m
 C

om
p

Ti
m

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Training Round

Fix SmartPC Default All

(b) Completion time of each round.

1
1.2
1.4
1.6
1.8

2
2.2
2.4

N
or

m
 E

ne
rg

y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Training Round

Fix SmartPC Default All

(c) Energy consumption of each round.

Fig. 10: Comparison of schemes in global pace control.

TABLE I: Device Profiles

Device Android Version #Core Frequency

Honor 8.0 8 1.40 - 2.11GHz
Lenovo 5.0.2 4 0.29 - 1.04GHz

ZTE 5.1.1 4 0.20 - 1.09GHz
Mi 5.1.1 6 0.46 - 1.44GHz

Nexus 6.0 4 0.30 - 2.65GHz

governor to userspace, and then to set the CPU frequency. We

use the SimplePerf tool to collect runtime performance data

such as instruction count, and for all power measurements a

Monsoon power monitor is physically connected to the device.

Baselines. We evaluate the effectiveness of SmartPC against

the following baselines.

• Default represents the state-of-the-practice Federated

Learning system in which each mobile device completes

the local training process with the default CPU governor

and the central server performs model averaging after

receiving all the local updates from the mobile devices.

• Train-with-all represents the Federated Learning ap-

proach in which the central server must receive local

updates from all the mobile devices. On the device

side, each device performs the same energy optimization

process as SmartPC does.

• Fixed-deadline represents the scheme in which the train-

ing deadlines are fixed for all the training rounds.

B. Evaluation of Global Pace Control

In this section, we evaluate the effectiveness of the global

pace control from different perspectives. We construct a sim-

ulation testbed consisting of 100 smartphones with hardware

configurations randomly selected from Table I. We evaluate

SmartPC in the more general situation where learning is

performed with concurrently running foreground apps. To that

end smartphone usage traces from LiveLab [17] are adopted

that emulate the user interactions with different foreground

apps. We train the Lenet5 [14] model with the Mnist [16]

data set. The training data are evenly distributed among the

mobile devices. In this experiment, we use 80% as the target

of percentage of weight updates the server has to receive at the

end of each training round, which in practice can be configured

by the Federated Learning service provider. It is important

to note that SmartPC focuses on the system perspective of

Federated Learning (e.g., balance the training progress, model

accuracy and energy consumption). We use the well-known

image classification task (e.g., Lenet5) as an example to

demonstrate the effectiveness of SmartPC. However, SmartPC

can be generally applied to different federated learning tasks

(e.g., face detection, next-word prediction, on-device item

ranking, content suggestions for on-device keyboards, next

word prediction and human activity recognition).

Figure 10a shows the percentage of local weight updates

successfully received by the central server with different

schemes. We can see that Fixed-Deadline can not achieve the

predefined completion percentage (i.e., 80%). This is because

Fixed-Deadline only considers the hardware configurations

(e.g., available CPU frequencies) during the deadline deter-

mination process and does not consider the impact of user

interactions on the completion time of the local training pro-

cess. For instance, the low-end devices, e.g., Lenovo and ZTE

in this case, need to run with the highest CPU frequency in

order to meet the training deadline. However, due to resource

contention with the foreground app as shown in Figure 4, the

local training completion time can be extended significantly,

causing them to miss the pre-assigned deadlines. With the pre-

configured acceptance rate of 80%, the average acceptance rate

with Fixed-Deadline is 70% with the worst case being 62%,

which means the Federated Learning system has to restart the

training every time. With SmartPC, in the very first round

the acceptance rate is the same as that with Fixed-Deadline,

since SmartPC also determines the deadline of the first round

based on the hardware configurations. However, in the next

few training rounds, the acceptance rate gradually converges

to the pre-defined target. This is because the training deadline

is adaptively determined based on the predicted training speed

of each participating device. With the Default and Train-with-

414

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:16 UTC from IEEE Xplore. Restrictions apply.

0
1000
2000
3000
4000
5000

1 46 91 13
6

18
1

22
6

27
1

31
6

36
1

40
6

45
1

49
6

54
1

58
6

63
1

67
6

Po
w

er
 (m

W
)

Time Points (s)

(a) Power consumption of one training round.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 101112131415161718

Ti
m

e
(%

)

Frequency Level

Default SmartPC

(b) Frequency level selection with different schemes.

32

34

36

38

40

Ti
m

e
(s

)

1 2 3 4 5 6 7 8 9 1011121314151617181920
Training Epoch

SmartPC Target

(c) Local pace control performance on a Nexus 6 smartphone.

Fig. 11: Local pace control performance on a Nexus 6.

All schemes, the acceptance rates are close to 100%, since they

do not enter the next training round until the central server has

received the weight updates from all the participants.

As shown in Figure 10a, SmartPC, Default and Train-with-
All can all successfully achieve the pre-set acceptance rate

of the weight updates in each training round. In Figure 10b

we compare training completion time (first measured in sec-

onds and then normalized to the smallest value) of different

schemes. We can find that Default and Train-with-All have

similar local training completion time, which is 2.27 times of

that with SmartPC on average. Because these two schemes

always wait for the weight updates from all the participants,

the overall training completion time is bounded by the low-end

devices, particularly those with the highest interference from

the foreground app. SmartPC, on the other hand, proves to be

more robust because it only requires a certain percentage of

accepted weight updates that is statistically significant. This

essentially removes the outlier participants from consideration

without significantly affecting the model accuracy. For large

scale Federated Learning this is especially important because

the probability of having outliers is high. For instance, a

mobile device can be offline due to a number of reasons

(e.g., networking issue, out of battery). When this happens,

the overall training process of either Default or Train-with-All
can be slowed down considerably.

We also evaluate the model accuracy achieved with

SmartPC. Table II compares the model accuracy obtained

with SmartPC and with Default when training three different

models. We can see that SmartPC produces the same level of

model accuracy despite the fact that it only uses updates from

a portion of the participants. Because the training algorithm

itself (e.g., model averaging, stochastic gradient descent) is

not modified in anyway, the only difference from the training

algorithm’s standpoint is the amount of parameter updates.

These results show that, in a Federated Learning system, using

a high enough percentage of inputs can give similar model

accuracy to using all inputs. For the reason that, the Dalvik

Virtual Machine in Android system has a limit for the heap

size (e.g., 512MB on Nexus 6), we select the models and

dataset with less memory requirement for evaluation. However,

SmartPC can be generally applied to other models and data

set.

TABLE II: Model Accuracy

2D CNN Lenet-5 AlexNet

Default 97.61% 97.49% 97.5%
SmartPC 97.46% 97.24% 97.35%

Finally, Figure 10c shows the energy consumption (first

measured in mAh and then normalized to the smallest value) of

each training round. The Default scheme consumes the highest

energy during the training process. Compared with the Default
scheme, SmartPC achieves 28.4% energy savings on average,

due to the intelligent pace control in the local layer, which is

discussed in the following section. We can find that the scheme

All has the lowest energy consumption. This is because the All
scheme expects all the participated device to successfully send

their weight updates, which gives the local layer more time

range to conduct energy optimization. However, the training

completion time of the All scheme is highly extended.

C. Evaluation of Local Pace Control

In this section, we dive into the mobile device to evaluate

the effectiveness of local pace control. In the experiment, we

construct a Federated Learning system consisting of 5 devices,

one each of the models listed in Table I. We first present results

obtained with no foreground apps, and then discuss the impact

of foreground apps in the next section. Figure 11 shows the

results in one training round on a Nexus 6 smartphone. The

global pace controller sets the deadline to 724s, and within this

deadline, 20 training epochs (configured by service provider)

should be completed.

415

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:16 UTC from IEEE Xplore. Restrictions apply.

Figure 11a shows the power consumption of the local

training process. We can see that with the default governor

the local training process completes as soon as possible and

then the CPU goes into idle. The average power consumption

of the local training process, ptrain, is 3517.57mW, for a

duration ttrain of 90.2s. The idle power pidle is measured

at 27mW and the idle time tidle is 633.8s. Thus, the total

energy consumption of the training round on this device is

334.4J. On the other hand, with SmartPC, with the deadline

of 724s, the Speed Determination component determines that

it is energy optimal to run the training process for the entire

duration of 724s. Under the Resource Scheduler, the local

training process runs for the entire 689s (during the real

local training process) with an average power consumption of

324.74mW. The energy consumption is 224.6J, representing a

32.8% reduction compared to the Default scheme. To better

understand the energy savings, in Figure 11b we compare

the CPU frequencies selected by SmartPC vs. Default during

the local training process. The x-axis represents the 18 CPU

frequency levels available on the Nexus 6 smartphone. The

y-axis represents the percentage of time the CPU is at a

certain frequency level. We can find that the default governor

always uses the relatively high frequency levels to complete

the local training process in a short time but with high

power consumption at the same time. Specifically, the default

governor spends 51.8% of the time at level 18 (the highest

frequency level) and 24.3% of the time at level 17 (the second

highest frequency level). By contrast, with SmartPC, the local

pace controller spends 87% of the time at level 1 (the lowest

frequency level) in order to complete the local training process

in an energy efficient way while catching the training deadline.

Figure 11c shows the training completion time during

the training process. The x-axis represents different training

epochs and the y-axis represents the completion time of each

training epoch. We can see that the local pace controller can

effectively achieve the training completion time target.

D. Impact of Different Foreground Apps

One important feature of SmartPC is its ability to run

training while the device is being used for other purposes,

as opposed to limiting the training task to running only when

the device is being charged. In this section, we evaluate the

effectiveness of the local pace control with different apps

running in the foreground. We use two apps (i.e., AngryBirds

and BasketBall as discussed in Figure 4) as examples. Figure

12a shows the completion time of each training epoch with

different apps running in the foreground. The x-axis repre-

sents different training epochs and the y-axis represents the

corresponding training completion time. Most of the training

epochs do not miss the deadline. This is because the controller

is able to obtain the IPS (instruction per second) value for the

training process alone and can adjust the CPU frequency to

meet the target IPS. Therefore, the local pace control is able

to effectively perform its task when there is a foreground app

running concurrently.

30
31
32
33
34
35
36
37

Ti
m

e
(s

)

1 2 3 4 5 6 7 8 9 101112131415161718192021
Training Round

With-AngryBird With-BasketBall Target

(a) Training Completion Time.

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ti
m

e
(%

)

CPU Frequency Level

With-AngryBird With-BasketBall

(b) Frequency Level Selection.

Fig. 12: Intra-Device Control with Different Foreground Apps.

(a) App Performance. (b) Energy Consumption.

Fig. 13: App performance and energy consumption of

intra-device control with different foreground apps. (S1-

AngryBird only, S2-AngryBird+Training, S3-BasketBall only,

S4-BasketBall+Training).

Figure 12b shows the CPU frequency selected by SmartPC
with different apps running in the foreground. When Angry-

Birds is running in the foreground, the CPU spends 51%
of the time on frequency level 1 and 45% of the time on

frequency level 3. Whereas, when BasketBall is running in

the foreground, 37% of the time is spent on level 1 and 59%
of the time is spent on level 3. We can find that the controller

selects higher frequency level during the local training process

in these two cases than when there is no app running in the

foreground. This is because the foreground app can compete

for CPU time with the background training process. Thus, in

order to achieve the training performance target, the local pace

controller spends more time on the higher frequency level.

The reason that the local pace controller spends more time on

higher frequency level when the Basketball app is running in

the foreground is that the BasketBall app has higher CPU load

(30%) than that of AngryBirds (22%).

416

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:16 UTC from IEEE Xplore. Restrictions apply.

Figure 13a shows the impact of the background training

process on the performance of the foreground app. S1 repre-

sents the scenario where AngryBirds runs in the foreground

without the training process running in the background. S2

represents the scenario where AngryBirds runs with the back-

ground training process concurrently. S3 and S4 represent the

corresponding scenarios for the Basketball app, respectively.

In the experiment, we use FPS (Frames Per Second) as the

performance metric. For S1, the average FPS is 59.41. For S2,

the average FPS is 59.23. For S3, the average FPS is 56.14 and

for S4, it is 52.21. We can see that the impact of user-perceived

performance of the foreground app is negligible. Figure 13b

shows the energy consumption of the whole smartphone

under the four scenarios. Compared with the default scheme,

SmartPC achieves 17.1% energy saving when AngryBirds

is concurrently running in the foreground and 14.3% when

Basketball is on the foreground, respectively. It is important

to note that the consistent results obtained from our hardware

deployment and simulated testbed verify the efficiency and

correctness of the corresponding mechanism and models.

E. System Overhead

In SmartPC, the global pace controller runs on the central

server and the local pace controller runs on each mobile

device. Thus, the system overhead of the local pace controller

is the main concern for SmartPC. As described in Sec. III-C,

what the local pace controller does is to periodically compute

a resource schedule so that the training process can meet

the deadline with the lowest amount of energy. Since the

computation involved is very limited, most of the time the

controller is in sleep mode. On a Nexus 6 smartphone, with

a control cycle of 2s, each cycle the controller takes less

than 10ms to compute the frequency schedule. Consequently,

the power consumption of the local pace controller itself is

measured at 44mW, which is negligible.

V. RELATED WORK

Our work is closely related to two major research topics,

distributed learning and federated learning.

Distributed Learning. In order to leverage large amount

of data located at different places to train various kinds of

deep learning models, distributed learning has attracted a lot

of attention [6], [21]–[29]. Zhang et al. [21] design a cluster

scheduling system to approximate machine learning training

jobs in order to maximize the overall job quality. So et al.

[22] propose an approach to make efficient parallelization

of the distributed training process and keep the training

information (e.g., training data and model) private in order

to guarantee a secure training process. Li et al. [6] propose a

parameter server framework for distributed learning in order

to manage asynchronous data communication between nodes

and support flexible consistency models, elastic scalability

and continuous fault tolerance. Bao et al. [25] propose a

deep learning-driven ML cluster scheduler to place different

jobs in corresponding machines to minimize the interference

and maximize performance. Though these approaches can

efficiently improve the performance of distributed learning

system, they cannot be directly applied on Federated Learning

system which has its own characteristics. The training data are

placed and the training process is usually performed on central

data centers (e.g., large amount of servers) in a distributed

system, however in a Federated Learning system, the process

is mainly completed on mobile devices which has much higher

limitation on battery lifetime (e.g., energy consumption) and

system heterogeneity.

Federated Learning. Federated Learning is then proposed

to efficiently leverage the data generated from mobile devices

to support intelligent applications [4], [5], [8], [11]–[13],

[30]–[32]. Lalitha et al. [30] propose a distributed learning

algorithm to train a machine learning model over a network

of users in a fully decentralized framework. Konecny et al. [5]

focus on the communication efficiency in a federated learning

system and propose two schemes (e.g., sketched update and

structured update) to reduce the uplink communication costs.

Smith et al. [4] propose a system-aware optimization approach

to consider issues of high communication cost, stragglers, and

fault tolerance for distributed multi-task learning. McMahan

et al. [11] design a practical approach for the federated

learning of deep networks based on iterative model averaging.

Existing research about federated learning mainly focuses on

the following perspectives: 1) reducing the communication

cost, 2) improving the security during the training process and

3) analyzing the convergence. However, the trade-off among

the energy efficiency, training progress and model accuracy

is ignored by pervious study. In this paper, we try to solve

the problems in a federated learning system from a new

perspective.

VI. CONCLUSION

This paper has proposed SmartPC, a hierarchical pace

control framework for Federated Learning that intelligently

balances the training time and model accuracy in an energy-

efficient manner, through incorporating with two major com-

ponents: a Global pace controller and a Local pace controller.

At the start of every training round, the global controller

first collects the status of every participating devices, then

estimates a virtual deadline for all qualified devices per

selection. More specific, such virtual deadline is selected to

allow a statistically significant proportion (e.g., ≥60%) of the

devices to complete their work and upload model updates,

which guarantees the model accuracy for every round of model

update and ensure the timeliness of the overall progress for

the multi-round training procedure. On each device, a local

pace controller then dynamically adjusts device settings such

as CPU frequency so that the learning task is able to meet

the deadline with the least amount of energy consumption. We

performed extensive experiments to evaluate SmartPC on both

Android smartphones and simulation platforms using well-

known datasets. The experiment results show that SmartPC can

reduce 32.8% energy consumption without model accuracy

degradation. At the same time, SmartPC can achieve a speedup

of 2.27x in training time.

417

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:16 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENT

We appreciate efforts made by shepherd, reviewers, and

PC members. The research is partially supported by Na-

tional Key R&D Program of China (2018YFB1004804),

National Key R&D Program of China (2018YFB1402600),

Chinese Academy of Sciences Shenzhen Basic Research

Program (No. JCYJ20170818153016513), and National Sci-

ence Foundation CNS-1850851. Parts of SmartPC have

been transformed into PaddlePaddle Federated Learning Sys-

tems. The source code related to this paper will be pub-

lished to the open-source community under the folder

https://github.com/PaddlePaddle/models.

The first two authors contributed equally to this paper. Dr. Li

Li implemented the prototype systems, conducted the experi-

ments and wrote part of the paper. Dr. Haoyi Xiong contributed

the original idea, led the overall discussion, and organized the

paper writing and rebuttals. Dr. Zhishan Guo led the discussion

on real-time scheduling theory, contributed in the scheduling

algorithmic design, and wrote the parts of paper. Dr. Jun Wang

and Prof. Cheng-Zhong Xu commented on the manuscript and

wrote parts of the paper. We also appreciate the comments

from Prof. Jun Huan and Mr. Daxiang Dong. Please contact

Dr. Haoyi Xiong (xionghaoyi@baidu.com) and Dr. Zhishan

Guo (zsguo@ucf.edu) for correspondence.

REFERENCES

[1] A. Ram, “How smartphone apps track users and share data,” https://ig.
ft.com/mobile-app-data-trackers/, 2018.

[2] Marketing-Schools, “Marketing Mobile Phones,” http://www.
marketing-schools.org/consumer-psychology, 2018.

[3] S. Halpern, “The champaign for mobile phone voting is getting a
midterm test.” https://www.newyorker.com/tech/annals-of-technology/,
2018.

[4] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Advances in Neural Information Processing
Systems, 2017, pp. 4424–4434.

[5] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[6] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2014, pp. 583–
598.

[7] L. Hautala, “Google tool lets any AI app learn with-
out taking all your data,” https://www.cnet.com/news/
google-ai-tool-lets-outside-apps-get-smart-without-taking-all-your-data/,
2018.

[8] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan et al.,
“Towards federated learning at scale: System design,” arXiv preprint
arXiv:1902.01046, 2019.

[9] Terry Erisman, “Achieving real-time machine learning and
deep learning with in-memory computing,” https://jaxenter.com/
in-memory-computing-machine-learning-145623.html.

[10] RedAlkemi, “5 Real Time Applications of Ma-
chine Learning,” https://www.redalkemi.com/blog/post/
5-real-time-applications-of-machine-learning.

[11] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

[12] F. Mo and H. H, “Efficient and private federated learning using tee,” in
EuroSys, 2019.

[13] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
2019.

[14] Yann Lecun, “Lenet5,” http://yann.lecun.com/exdb/lenet/.
[15] L. Xiao, Q. Yan, and S. Deng, “Scene classification with improved

alexnet model,” in 2017 12th International Conference on Intelligent
Systems and Knowledge Engineering (ISKE), Nov 2017, pp. 1–6.

[16] Yann Lecun, “Mnist,” http://yann.lecun.com/exdb/mnist/.
[17] Rice University, “LiveLab: Measuring wireless networks adn smartphone

users in the field,” http://livelab.recg.rice.edu/traces.html.
[18] K. Ogata, Modern control engineering, 5th ed. Prentice Hall Upper

Saddle River, NJ, 2009.
[19] C. Imes, D. H. Kim, M. Maggio, and H. Hoffmann, “Poet: a portable

approach to minimizing energy under soft real-time constraints,” in
21st IEEE Real-Time and Embedded Technology and Applications
Symposium, 2015, pp. 75–86.

[20] M. Hamblen, “Deep Learning For Java,” https://deeplearning4j.org/.
[21] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq: quality-driven

scheduling for distributed machine learning,” in Proceedings of the 2017
Symposium on Cloud Computing, 2017, pp. 390–404.

[22] J. So, B. Guler, A. S. Avestimehr, and P. Mohassel, “Codedprivateml: A
fast and privacy-preserving framework for distributed machine learning,”
arXiv preprint arXiv:1902.00641, 2019.

[23] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and
M. I. Jordan, “Mlbase: A distributed machine-learning system.” in Cidr,
vol. 1, 2013.

[24] L. Mai, C. Hong, and P. Costa, “Optimizing network performance in
distributed machine learning,” in 7th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 15), 2015.

[25] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement in
distributed machine learning clusters,” in IEEE INFOCOM, 2019.

[26] J. Jiang, F. Fu, T. Yang, and B. Cui, “Sketchml: Accelerating distributed
machine learning with data sketches,” in Proceedings of the 2018
International Conference on Management of Data, 2018, pp. 1269–1284.

[27] S. Sun, W. Chen, J. Bian, X. Liu, and T.-Y. Liu, “Slim-dp: A multi-
agent system for communication-efficient distributed deep learning,” in
Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, 2018, pp. 721–729.

[28] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), 2017, pp. 328–339.

[29] P. Watcharapichat, V. L. Morales, R. C. Fernandez, and P. Pietzuch,
“Ako: Decentralised deep learning with partial gradient exchange,” in
Proceedings of the Seventh ACM Symposium on Cloud Computing, 2016,
pp. 84–97.

[30] A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentralized
federated learning,” in Third workshop on Bayesian Deep Learning
(NeurIPS), 2018.

[31] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[32] M. R. Sprague, A. Jalalirad, M. Scavuzzo, C. Capota, M. Neun,
L. Do, and M. Kopp, “Asynchronous federated learning for geospatial
applications,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 2018, pp. 21–28.

418

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:16 UTC from IEEE Xplore. Restrictions apply.

