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Abstract—Multi-sensor data fusion is essential in autonomous
systems to support accurate perception and intelligent decisions.
To perform meaningful data fusion, input data from different sen-
sors must be sampled at time points in close propinquity to each
other, otherwise the result cannot accurately reflect the status of
the physical environment. ROS (Robotic Operating System), a
popular software framework for autonomous systems, provides
message synchronization mechanisms to address the above prob-
lem, by buffering messages carrying data from different sensors
and grouping those with similar timestamps. Although message
synchronization is widely used in applications developed based
on ROS, little knowledge is known about its actual behavior and
performance, so it is hard to guarantee the quality of data fusion.
In this paper, we model the message synchronization policy in
ROS and formally analyze its worst-case time disparity (maximal
difference among the timestamps of the messages grouped into
the same output set). We conduct experiments to evaluate the
precision of the proposed time disparity upper bound against the
maximal observed time disparity in real execution, and compare
it with the synchronization policy in Apollo Cyber RT, another
popular software framework for autonomous driving systems.
Experiment results show that our analysis has good precision and
ROS outperforms Apollo Cyber RT in terms of both observed
worst-case time disparity and the theoretical bound.

I. INTRODUCTION

Modern autonomous systems, e.g., autonomous vehicles,

robots and drones, heavily rely on multi-sensor data fusion

to accurately perceive the surrounding physical environment

and make intelligent decisions [1], [2]. Usually, the fusion

algorithms are developed under the assumption that input

data from different sensors are sampled at the same time.

However, this assumption rarely holds in reality, due to both

the intrinsic hardware characteristics (e.g., different sensors

may have different sampling frequencies and there are clock

drifts among different sensors) and the software-incurred delay

(e.g., due to preprocessing and transfer of the sensor data).

In this paper, we use time disparity (which will be formally

defined in Section II) to describe the temporal inconsistency

of input data from different sensor sources. The fusion results

will be much less useful or even completely meaningless if

the time disparity is too large. For example, in autonomous

vehicles, perception of the external environment usually relies

on fusion of independent measurements from multiple sensors.

If the measurements from two sensors, e.g., a camera and a

LiDAR, happened at two substantially different time points,

the fusion of their information will not be useful to reconstruct

an accurate view of the surrounding environment [3].

Fig. 1: The role of Message Synchronizer. Arrows denote mes-

sages and the number above each arrow denotes its timestamp.

ROS (Robotic Operating System) [4] is a popular software

framework for developing robotic systems. ROS has been used

by hundreds of thousands of developers to power a large

number and different types of robots and other autonomous

systems. ROS provides a Message Synchronizer [5] to reduce

the time disparity of data inputs to fusion algorithms. As

shown in Fig. 1, the Message Synchronizer receives input

messages from multiple channels. Each message carries data

from some sensor and has a timestamp indicating when the

data was sampled. The Message Synchronizer selects one

message from each input channel to form an output message

set and sends it to the subsequent data fusion component.

The Message Synchronizer is widely used in ROS-based

applications. For example, Autoware [6], [7], an open-source

software framework for autonomous driving systems based on

ROS, uses the Message Synchronizer to synchronize camera

data and 3D LiDAR data before sending them to the data

fusion node. However, although widely used, ROS provides

little public information about how its Message Synchronizer

actually works, and in particular, what is the exact policy

used to select input messages to form the output message set.

Therefore, most developers have to use it as a black box, and

rely on testing to examine whether the time disparity of its

output can meet the fusion algorithm’s requirement.

In this paper, we model the ROS Message Synchronizer

and formally derive a tight upper bound of the worst-case
time disparity of its output message sets. Different from

testing which only covers a limited part of all possible system

behaviors and thus in general is not able to capture the worst-

case time disparity, our formal analysis provides an absolute

guarantee for the maximal time disparity of the output message

set under any circumstance at run time. Therefore, as long

as the derived bound falls into the tolerable range of the

fusion algorithm, it is ensured that the fusion algorithm will

always offer expected quality at run time. Such guarantees are
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especially important to the design of mission-critical and safe-

critical systems, in which (occasional) low-quality outputs may

lead to serious consequences.

Our formal analysis is also useful to systems that are less

critical and can tolerate occasional low-quality outputs of the

fusion algorithm (and thus can tolerate occasional violation of

the expected time disparity range). This is because our analysis

results provide useful information to efficiently guide system

design. In testing, when the observed time disparity is too

large, there is no guiding information about how to revise the

system design. The common practice is to gradually tune the

system parameters and redo the testing, and iterate until the

observed time disparity is satisfactory. In contrast, the worst-

case time disparity bound derived in this paper has a closed-

form relationship with the timing parameters of the sensor

data streams, by which we can quickly find the proper range

of these parameters to meet the requirement. This is much

more efficient than the testing-based approach.

We conduct experiments to evaluate the precision of the

time disparity upper bound developed in this paper against

the maximal observed time disparity in real execution in

ROS with various parameter settings. Experiment results show

that our analysis has good precision. We also compare the

synchronization policy in ROS with the (simple) policy used

in Apollo Cyber RT [8], another popular open-source software

framework for autonomous driving systems. Experiment re-

sults show that the synchronization policy in ROS outperforms

Apollo Cyber RT in terms of both observed worst-case time

disparity and the theoretical bound.

II. PROBLEM MODEL

In this section, we introduce the system model and the prob-

lem to be solved in this paper. The system receives inputs from

several sensors, each repeatedly generating messages carrying

sensor data. Each message is associated with a timestamp,

which represents the time when its carried sensor data is

sampled. Each message may experience some delay (due to,

e.g., pre-processing or data transfer) before arriving at the

Message Synchronizer. The Message Synchronizer, according

to some synchronization policy, decides how to select arrived

messages from different sensors to form an output message
set and publishes it. We will introduce the synchronization

policy used in ROS Message Synchronizer in Section III. Our

target is to analyze the worst-case time disparity, i.e., the

maximum difference among the timestamps of all messages in

an output message set published by the Message Synchronizer.

In the following, we will introduce the notations to describe

the relevant aspects of the system and then formally define the

worst-case time disparity metric.

The Message Synchronizer has N input channels. Each

channel has a buffer queue Qi to temporally store the messages

arrived at this channel. For this moment, we assume that

each queue Qi is sufficiently long and thus no overflow

occurs. Later in Section V, we will get rid of this assumption

by providing upper bounds of the required queue size. For

simplicity of presentation, we also use Qi to refer to the

10 12 14 16 18 20 22 24
timestamp

Fig. 2: An example, where the x-axis represents the timestamp.

ith input channel of the Message Synchronizer, when it is

unambiguous from the context.

We use mk
i to represent the kth message currently in queue

Qi. For simplicity, sometimes we also use mi to represent a

message in queue Qi when there is no need to specify which

message it is exactly. Each message mk
i has a timestamp,

denoted by t(mk
i ), which represents the time when the sensor

data carried by mk
i was sampled. The difference between the

timestamps of two consecutive messages in Qi is at least TB
i

and at most TW
i (both TB

i and TW
i are strictly greater than

0). For the special case where a sensor periodically generate

messages, TB
i = TW

i . We assume that the messages in the

same queue Qi arrive in the same order as their timestamps,

i.e., ∀k : t(mk
i ) < t(mk+1

i ).
A message may experience some delay before arriving at the

Message Synchronizer. Therefore, the timestamp of a message

is in general different from the time when the message arrives

at the Message Synchronizer. We use DB
i and DW

i to represent

the best-case and worst-case delay experienced by messages

in Qi, respectively, and use a(mk
i ) to denote the time when

message mk
i arrives at the Message Synchronizer, so we have

t(mk
i ) +DB

i ≤ a(mk
i ) ≤ t(mk

i ) +DW
i

The Message Synchronizer selects one message from each

queue Qi to form an output message set and publishes it.

We say a message set S is a regular message set if S has N
elements and each element in S comes from a different queue.

An output message set published by the Message Synchronizer

must be a regular message set. The time disparity of a set of

messages is defined as:

Definition 1 (Time Disparity). Let S = {m1, ...,mN} be a set
of messages. The time disparity of S, denoted by Δ(S), is the
maximal difference between the earliest and latest timestamps
of messages in S:

Δ(S) = max
mi∈S

{t(mi)} − min
mj∈S

{t(mj)}

For example, in Fig. 2, the time disparity of regular message

set {m3
1,m

3
2,m

1
3} is 24 − 22 = 2, and the time disparity of

regular message set {m2
1,m

2
2,m

1
3} is 22− 16 = 6.

The problem to solve in this paper is to analyze the worst-

case time disparity, i.e., the maximal time disparity of output

message sets produced by the Message Synchronizer.

III. ROS MESSAGE SYNCHRONIZATION POLICY

The ROS Message Synchronizer has two synchronization

policies: the ExactTime policy [9] and the ApproximateTime
policy [10]. The ExactTime policy is simple: it only selects
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messages from different input channels with exactly the same
timestamp to form an output set, and discards messages that

cannot find their exact matches. The time disparity of any

output message set published under the ExactTime policy

is trivially 0. However, in reality it is too restrictive to

require data from different sensors to have exactly the same

timestamp, so the ExactTime policy is rarely used in practice.

Therefore, we will limit our attention to the widely used

ApproximateTime policy, which is much more complex and

difficult to analyze. Although ROS is evolving actively over

years, its Message Synchronizer component is stable. We have

checked all ROS 2 C++ versions until the latest Humble [11],

and ROS 1 C++ versions since Diamondback [12], where the

message synchronization policies are the same, so the model

and results of this paper apply to all these versions.

The ApproximateTime policy aims to find and publish

regular message sets with as small time disparity as possible.

The ApproximateTime policy is quite complex and has many

optimization and implementation details. It is both infeasible

and unnecessary to build a full model equivalent to its source

code. Instead, we will develop a high-level abstract model

which captures the essential aspects relevant to the analysis

problem studied in this paper, and exclude those irrelevant

low-level details. In particular, we will only model what is

its output, rather than how the output is obtained in its actual

implementation.

It is a natural question whether our abstract model can cor-

rectly represent the ApproximateTime policy itself. To address

this, we conducted intensive experiments to empirically valid

our model by comparing the actual outputs of its original

implementation in ROS and the expected outputs according

to our abstract model. As will be shown in Section VI-A, the

actual outputs match the expected outputs according to our

model in all experiments. Although this still does not give any

absolute assurance, it should be fair to claim the correctness

of our abstract model with high confidence. In the following,

we present our abstract model, starting with introducing some

important concepts used in the ApproximateTime policy.

A. Predicted Message

Each queue Qi stores not only messages that are already

arrived (called arrived messages), but also an artificial pre-
dicted message at the end of Qi. A predicted message is

never included in output message sets. Instead, it is only used

to provide auxiliary information in the selection procedure.

mk
i represents the message stored in the kth position in Qi,

no matter it is an arrived message or a predicted message.

If Qi currently stores messages {m1
i , ...,m

k
i }, mk

i must be a

predicted message and m1
i , ...,m

k−1
i are all arrived messages.

The timestamp of a predicted message mk
i is set to be

t(mk
i ) = t(mk−1

i ) + TB
i

where mk−1
i is the last arrived message in Qi, and TB

i is

the minimal difference between two consecutive messages’

timestamps in this channel. When the system starts at time

0, a predicted message with timestamp 0 was initially put into

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Predicted messageArrived message Pivot message

timestamp

Fig. 3: An example illustrating the predicted messages, pivot
and selected set.

each queue. Note that sometime a queue may only have a

predicted message but no arrived message.

By considering the predicted messages, the Approximate-
Time policy can exploit the possibility that the arrived mes-

sages may team up with some messages that will arrive in the

future to form an output message set with even smaller time

disparity. For example, suppose there are two input channels

Q1 and Q2, with TB
1 = TW

1 = TB
2 = TW

2 = 10. Suppose

currently there is only one arrived message m1
1 in Q1 with

t(m1
1) = 2 and only one arrived message m1

2 in Q2 with

t(m1
2) = 10. If we use m1

1 and m1
2 to form an output message

set, its time disparity is t(m1
2)−t(m1

1) = 10−2 = 8. However,

as messages in Q1 arrives periodically, the timestamp of the

next message to arrive at Q1 will be t(m1
1)+TW

1 = 2+10 =
12, so it is actually better to wait the next message in Q1 to

arrive and let it team up with m1
2, which results in a smaller

time disparity 12− 10 = 2.

In general, TW
i is larger than TB

i , so the actual timestamp of

the next message arrived at Q1 may be later than the timestamp

of the predicted message. For example, we change TW
1 of the

above example to 20 and assume that the actual timestamp of

the next message of Qi is 22. In this case, after m2
1 arrives (and

its actual timestamp is known), the ApproximateTime policy

will select m1
1 and m1

2 to form the output message set because

teaming up m2
1 and m1

2 will lead to larger time disparity, as

will be introduced later in this section.

B. Pivot

Definition 2 (Pivot). Let S1 = {m1
1, ...,m

1
N}, where each m1

i

is the first arrived message in Qi. The pivot mP is the one
with the largest timestamp among all elements in S1.

If several messages in S1 all have the latest timestamp, the
message with the maximum queue number is the pivot.

Intuitively, the pivot is a message that must be included in

the next published output message set, and other messages will

be selected based on how close (in terms of timestamps) they

are to the pivot. The pivot changes over time as the status of

the queues changes.

The queue containing the pivot is the pivot queue, and other

queues are non-pivot queues. For example, suppose the current

queue status is shown in Fig. 3, then m1
4 is the pivot since it
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has the latest timestamp among all first messages in all queues.

Q4 is the pivot queue, and Q1, Q2, Q3 are non-pivot queues.

C. Selected Set

The selected set is the one with the smallest time disparity

among all regular message sets including the pivot.

Definition 3 (Selected Set). Let Λ be the set of all regular
message sets consisting of messages currently in queues (either
arrived or predicted) and including the pivot. The selected set

has the smallest time disparity among all elements in Λ.
If multiple elements in Λ all have the smallest time dis-

parity, the selected set S = {m1, ...,mN} must satisfy the
following condition: there does not exist another element
S′ = {m′

1, ...,m
′
N} in Λ s.t. (i) Δ(S′) = Δ(S) and (ii)

∃mi ∈ S : t(m′
i) < t(mi).

If only one regular message set in Λ has the smallest time

disparity, it is clearly the selected set. If multiple regular mes-

sage sets in Λ all have the smallest time disparity, according

to the second half of Definition 3, the one with as-early-as-

possible messages is the selected set. For example, in Fig. 3,

among all regular message sets including the pivot m1
4, the

two sets S = {m2
1,m

2
2,m

3
3,m

1
4} and S′ = {m2

1,m
2
2,m

4
3,m

1
4}

both have the smallest time disparity 6. According to the sec-

ond half of Definition 3, S′ is not the selected set because there

exists S containing m3
3 which is earlier than its correspondence

m4
3 in S′. S is the selected set, because there is no other regular

message set containing the pivot has the same time disparity

as S and satisfies ∃mi ∈ S : t(m′
i) < t(mi).

Although the selected set is defined as selecting among all

regular message sets including the pivot, which could be ex-

ponentially many, it is found by a polynomial-time procedure

in its implementation in the ROS Message Synchronizer. As

we aim to provide a high-level model focusing on what is

the result generated by the policy, but not how the results are

obtained, we will not further discuss details of its polynomial-

time implementation in ROS.

D. The ApproximateTime Policy

Algorithm 1 shows the pseudo-code for the Approximate-
Time policy to select and publish the output message set

when a new message arrives. Suppose at the current moment

Qi originally has k messages {m1
i , ...,m

k
i }, where mk

i is a

predicted message (recall that the last message in a queue

must be a predicted message). The algorithm first updates Qi

with the newly arrived message mi (Line 1 to 3), by discarding

the original predicted message mk
i , putting the newly arrived

message to the end of Qi as mk
i , and finally generating a new

predicted message mk+1
i with t(mk+1

i ) = t(mk
i ) + TB

i and

put it to the end of Qi.

Next, the algorithm repeatedly checks whether each queue

currently contains at least one arrived message or not. If not,

i.e., some queue only has a predicted message, it is impossible

to publish an output message set anyway, so the algorithm

simply stops without any further checking. If yes, it first sets

the current pivot according to Definition 2 (Line 5). Then it

Algorithm 1: Publish output message sets when a new

message arrives under the ApproximateTime policy

Input: the newly arrived message mi

1 discard the last message in Qi;

2 put mi to the end of Qi;

3 generate a predicted message with timestamp

t(mi) + TB
i and put it to the end of Qi ;

4 while each queue has at least one arrived message do
5 mP ← the current pivot (Definition 2);

6 if all predicted messages’ timestamps > t(mP)
then

7 S ← the selected set (Definition 3) ;

8 if all messages in S are arrived messages then
9 publish S ;

10 for each mj ∈ S do
11 discard mj and all messages before mj

in the corresponding Qj ;

12 else
13 return;

14 else
15 return;

16 return;

checks whether all predicted messages’ timestamps are no

earlier than t(mP) (Line 6). If not, the algorithm returns

without publishing any output message set (Line 15), the

intuition behind which is explained as follows. If a predicted

message mk in some queue Qk has t(mk) < t(mP), then

the timestamps of the arrived messages (if any) in this queue

are even smaller, so this predicted message has the closest

timestamp to the pivot mP. Therefore, the next message to

arrive in this queue has a chance to make a better output

message set than the existing arrived messages in Qk, so it

makes sense to wait until the next message of Qk arrives (and

its actual timestamp is revealed) to make the decision1.

If all predicted messages’ timestamps are no earlier than

t(mP), the algorithm will find the selected set S according

to Definition 3 (Line 7), and checks whether all messages

in S are arrived messages (Line 8). If not, i.e., S contains

at least one predicted message, S cannot be published and

the algorithm stops (Line 13). If yes, S is published as an

output message set (Line 9). After that, for each queue Qj ,

the corresponding message mj in S and all messages in Qj

before mj are discarded.

From Algorithm 1, we can see that under the Approximate-
Time policy, the output message sets are decided based on the

messages’ timestamps, but not their arrival times. The arrival

1If the checking of Line 6 is removed, the selected set includes a predicted
message and thus cannot be published anyway. Therefore, removing this
checking (i.e., removing Line 6, 14 and 15) actually does not change the result
of Algorithm 1. However, the checking in Line 6 guarantees the existence of
mY

i when finding the selected set as will be discussed in the Section IV, so
we keep it in our abstract model.
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(c) (d)
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80 100 120 140 80 100 120 140 160 180 140 160 180 200
(e) (g)

100 100 807060 120 130

(h)
180160140 200

Fig. 4: An example illustrating the ApproximateTime policy.

times affect when Algorithm 1 is executed and thus when the

output message sets are published.

E. An Illustrative Example

We use Fig. 4 to illustrate Algorithm 1. The x-axis rep-

resents the timestamp and the messages’ arrival time is not

explicitly depicted in the figure. TB
1 = 30, TB

2 = TB
3 = 40 and

TW
1 = TW

2 = TW
3 = +∞. The original queue status is shown

in Fig. 4-(a), and at some later time point a message with

timestamp 60 arrives at Q3. Note that TB
3 is the minimal sep-

aration between the timestamps of two consecutive messages

in Q3, and this newly arrived message’s timestamp is larger

than the corresponding predicted message (m1
3 in Fig. 4-(a)).

This newly arrived message triggers the execution of Algo-

rithm 1. First, Q3 is updated, discarding the original predicted

message, inserting the newly arrived message to Q3 as the new

m1
3 and generating a new predicted message m2

3, as shown in

Fig. 4-(b). Now each queue has at least one arrived message, so

the while-condition in Line 4 is true. m1
3 is the pivot (denoted

by mP) since it has the largest timestamp among the first

messages of all queues. Since the timestamp of the predicted

message m2
2 is smaller than mP, the if-condition in Line 6 is

false and the algorithm stops.

At some later point, a message with timestamp 50 arrived

at Q2, which triggers the execution of Algorithm 1. After

updating Q2 with this newly arrived message, m1
3 is still the

pivot, as shown in Fig. 4-(c). Now the if-condition in Line 6

is satisfied. The regular message set S = {m2
1,m

2
2,m

1
3} has

the smallest time disparity, so it is the selected set. Since this

selected set contains only arrived messages (satisfying the if-

condition in Line 8), it will be published and the messages in

S and those messages earlier than the corresponding message

in S are discarded, resulting in Fig. 4-(d).

Algorithm 1 may publish more than one output message

set (i.e., iterate for more than one time in the while-loop).

Suppose the current queue status is shown in Fig. 4-(e). Now

the selected set is {m2
1,m

1
2,m

1
3}, which cannot be published

since m2
1 is a predicted message. Later, the next messages

in all queues all arrived, but the one in Q1 has a timestamp

much later than predicted, as shown in Fig. 4-(f). Now the

selected set is {m1
1,m

1
2,m

1
3}, which are all arrived messages

and can be published. After that, Algorithm 1 enters the second

iteration of the while-loop. Now, as shown in Fig. 4-(g), m1
1

becomes the pivot and the selected set is {m1
1,m

1
2,m

1
3}, which

contains only arrived messages and thus can also be published,

after which the queue status is shown in Fig. 4-(h).

IV. TIME DISPARITY ANALYSIS

This section derives an upper bound of the time disparity

of any output message set published by Algorithm 1. We

assume that the timestamps of any two messages (either in

the same channel or not) are different. This assumption is

only for simplicity of presentation, but does not compromise

the generality of our analysis. If two messages indeed have

the same timestamp, we can treat them as if one’s timestamp

is later than the other’s by an arbitrarily small amount of time.

Our analysis focuses on an arbitrary output message set SPUB

published by Algorithm 1 at some time point. Our target is to

upper-bound Δ(SPUB). We will do this indirectly, by finding a

reference set S∗ with Δ(S∗) = Δ(SPUB) and derive an upper

bound for Δ(S∗).

A. Reference Set

Let mP denote the current pivot. For each non-pivot queue

Qi, we define mX
i and mY

i as:

• mX
i : the last message in Qi with t(mi) < t(mP).

• mY
i : the first message in Qi with t(mi) > t(mP).

Fig. 5 shows an example illustrating mX
i and mY

i . The concepts

of mX
i and mY

i only make sense for non-pivot queues. How-

ever, we also define mX
i = mY

i = NULL when Qi is the pivot

queue, where NULL is an special value that does not equal

any message (this enables us to use mX
i and mY

i for all queues,

without explicitly distinguishing the difference between pivot

and non-pivot queues, which simplifies the presentation).

The definitions of mX
i and mY

i by themselves do not

guarantee their existence, i.e., it may be possible that the
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10 12 14 16 18 20 22 24 26 28 30
timestamp

Fig. 5: An example illustrating neighbour set, reference set
and dominated queue (Q3 is dominated by Q1).

timestamps of messages in Qi are all smaller (or all larger)

than t(mP). However, when SPUB is published, mX
i and mY

i

indeed both exist:

• If the timestamps of all messages in Qi are larger than

t(mP), in particular, the timestamp of the first message

in Qi is larger than t(mP), it contradicts that the pivot’s

timestamp is the largest among the first messages in all

queues. Therefore, mX
i must exist.

• If the timestamps of all messages in Qi are smaller than

t(mP), in particular, the timestamp of the last message in

Qi (which is a predicted message) is smaller than t(mP),
it contradicts that Algorithm 1 publishes SPUB only if

all predicted messages’ timestamps > t(mP) (Line 6).

Therefore, mY
i must exist.

Definition 4 (Neighbor Set). Let mP be the pivot. A neighbor

set S = {m1, ...,mN} is a regular message set s.t.,
1) S includes the pivot mP and
2) Each mi in S, except the pivot, is either mX

i or mY
i .

In Fig. 5, {mX
1 ,m

Y
2 ,m

X
3 ,mP} and {mY

1 ,m
Y
2 ,m

Y
3 ,mP} are

two neighbor sets. A neighbor set can choose either mX
i or

mY
i for each Qi (i = 1, 2, 3), so there are in total 23 = 8

neighbor sets in this example.

Definition 5 (Reference Set). A reference set S∗ has the
smallest time disparity among all neighbor sets, i.e.,

Δ(S∗) = min
σ∈Ω

{Δ(σ)} (1)

where Ω is the set of all neighbor sets.

There could be multiple reference sets, which all have the

smallest time disparity among the neighbor sets. For example,

in Fig. 5, there are two reference sets, {mX
1 ,m

X
2 ,m

X
3 ,mP} and

{mX
1 ,m

Y
2 ,m

X
3 ,mP}, both having the smallest time disparity 5.

Lemma 1. Let SPUB be a published output message set and
S∗ the reference set, then

Δ(SPUB) = Δ(S∗) (2)

Proof. If SPUB is a neighbor set, it must be the reference set

since it has the smallest time disparity, so the lemma trivially

holds. In the following we prove for the case that SPUB is not

a neighbor set.

An output message set must be a selected set, so

Δ(SPUB) = min
S∈Λ

{Δ(S)} (3)

where Λ is the set of all regular message sets including the

pivot. Ω is set of all neighbor sets, and we know Ω ⊆ Λ, so

by (1) and (3) we know that Δ(SPUB) ≤ Δ(S∗).
Then we prove Δ(S∗) ≤ Δ(SPUB). For an output message

set SPUB ∈ Λ\Ω, we construct a neighbor set S ∈ Ω: the

pivot in SPUB is also in S; for each non-pivot queue Qi and

mi ∈ SPUB:

• if t(mi) < t(mP), S includes mX
i .

• if t(mi) > t(mP), S includes mY
i .

For both cases, the selected message from Qi in S is closer

to the pivot in terms of timestamp than the correspondence

in SPUB, so Δ(S) ≤ Δ(SPUB). By (1), we know Δ(S∗) ≤
Δ(S) ≤ Δ(SPUB). In conclusion, the lemma is proved.

In the following we will derive an upper bound of Δ(S∗).
We first introduce some auxiliary notations. For each non-pivot

queue we define

xi = t(mP)− t(mX
i ) (4)

yi = t(mY
i )− t(mP) (5)

For a neighbor set S = {m1, · · · ,mN}, we define

l(S) = lX(S) + lY(S), where

lX(S) = max
mi=mX

i

{xi}, lY(S) = max
mi=mY

i

{yi}

For example, in Fig. 5, S = {mY
1 ,m

Y
2 ,m

X
3 ,mP} is a neighbor

set, for which we have lX(S) = 2, lY(S) = 5 and l(S) = 7.

Lemma 2. Let S∗ be the reference set and Ω the set of all
neighbor sets, then

Δ(S∗) = min
σ∈Ω

{l(σ)} (6)

Proof. For each neighbor set S = {m1, ... ,mN}:
Δ(S) = max

mj∈S
{t(mj)} − min

mi∈S
{t(mi)}

= max
mj∈S

{t(mj)− t(mP)}+ max
mi∈S

{t(mP)− t(mi)}

Since mi 	= mX
i =⇒ t(mP)− t(mi) < 0 and mi 	= mY

j =⇒
t(mi)− t(mP) < 0,

Δ(S) = max
mj=mY

j

{t(mP)− t(mj)}+ max
mi=mX

i

{t(mi)− t(mP)}

= max
mj=mY

j

{yi}+ max
mi=mX

i

{xi} = lY(S) + lX(S) = l(S)

and by (1), the lemma is proved.

B. Removing the Dominated Queues

With Lemma 2, our remaining task is to derive an upper

bound for minS∈Ω {l(S)}. To this end, we first exclude the

dominated queues from our consideration.

Definition 6 (Dominated Queue). A non-pivot queue Qj is a
dominated queue if there exists a non-pivot queue Qk s.t.,

xj < xk ∧ yj < yk
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In this case, we say Qj is dominated by Qk.

Definition 7 (Reduced Neighbor Set). S is a neighbor set.
The reduced neighbor set corresponding to S, denoted by Ŝ,
is obtained by removing all messages in dominated queues
from S.

S\Ŝ is the subset of messages in S in dominated queues.

For example, in Fig. 5, Q3 is dominated by Q1, since x3 <
x1 and y3 < y1. S = {mY

1 ,m
Y
2 ,m

Y
3 ,mP} is a neighbor set, and

Ŝ = {mY
1 ,m

Y
2 ,mP} is the corresponding reduced neighbor set

where mY
3 in the dominated queue Q3 is removed.

The definition of l(·), lX(·) and lY(·), which were originally

defined for a neighbor set S, can also be applied to Ŝ or S \ Ŝ
in the same way. For example, lX(Ŝ) equals the maximal xi

among all messages in Ŝ that selects mX
i ; lY(S\Ŝ) equals the

maximal yi among all messages in S\Ŝ that selects mY
i .

Lemma 3. Let S∗ be a reference set and Ω̂ the set of all
reduced neighbor sets, then

Δ(S∗) = min
σ∈Ω̂

{l(σ)}

Proof. Let Ŝ be a reduced neighbor set with minimal l(·), i.e.,

l(Ŝ) = minσ∈Ω̂ {l(σ)}. We construct S based on Ŝ: the pivot

in Ŝ is also in S; for each non-pivot queue Qi

• if Qi is not a dominated queue, the selection between

mX
i and mY

i in S is the same as the selection between

mX
i and mY

i in Ŝ.

• if Qi is a dominated queue, the selection between mX
i

and mY
i in S is the same as the selection between mX

j

and mY
j in Ŝ, where Qj is a queue dominating Qi.

l(S) =lX(S) + lY(S)

=max
(
lX(Ŝ), lX(S\Ŝ)

)
+max

(
lY(Ŝ), lY(S\Ŝ)

)

By the construction of S, for each message mi ∈ S \ Ŝ, if

mi = mX
i , then ∃mj ∈ Ŝ: mj = mX

j and xj > xi, so we

have max(lX(Ŝ), lX(S\Ŝ)) = lX(Ŝ). By the same reasoning,

we also have max(lY(Ŝ), lY(S\Ŝ)) = lY(Ŝ), so we have

l(S) = lX(S) + lY(S) = lX(Ŝ) + lY(Ŝ) = l(Ŝ) (7)

Next we prove l(S) = minσ∈Ω {l(σ)}. We prove it by

contradiction, assuming ∃ : S′ ∈ Ω : l(S′) < l(S). Let Ŝ′

denote the reduced neighbor set corresponding to S′.

l(S′) = lX(S′) + lY(S′)

= max
(
lX(Ŝ′), lX(S′\Ŝ′)

)
+max

(
lY(Ŝ′), lY(S′\Ŝ′)

)

=⇒ lX(Ŝ′) + lY(Ŝ′) ≤ l(S′)

which together with our assumption l(S′) < l(S) and (7) gives

l(Ŝ′) = lX(Ŝ′) + lY(Ŝ′) < l(S) = l(Ŝ)

which contradicts that Ŝ has the minimal l(·) among all

reduced neighbor sets, so our assumption must be false and

thus l(S) = minσ∈Ω {l(σ)}. Combining this with l(Ŝ) =
minσ∈Ω̂ {l(σ)}, (6) and (7), the lemma is proved.

10 12 14 16 18 20 22 24 26 28 30
timestamp

Fig. 6: Illustration for renumbering the queues after removing

the dominated queues for the case in Fig. 5.

C. Deriving the Upper Bound

Next we will derive an upper bound for minσ∈Ω̂ {l(σ)}. We

use N̂ to denote the number of queues in a reduced neighbor

set. We renumber2 the queues so that:

• Q1, ..., QN̂−1 are non-pivot queues, QN̂ is the pivot

queue, and

• Q1, ..., QN̂−1 are sorted in decreasing order of xi, i.e.,

∀i ∈ [1, N̂ − 2] : xi > xi+1 (8)

Since Qi+1 is not dominated by Qi, we also have

∀i ∈ [1, N̂ − 2] : yi < yi+1 (9)

For example, after removing dominated queue Q3 in Fig.

5, the remaining queues are renumbered as shown in Fig. 6.

In the following, we will prove that a reduced neighbor set

Ŝ = {m̂1, ..., m̂N̂} with the minimal l(·) must comply with

a particular pattern: if m̂i selects mX
i , then m̂i+1, ..., m̂N̂−1

must also select mX
i , as stated in the following lemma.

Lemma 4. Let Ŝ = {m̂1, ..., m̂N̂} be a reduced neighbor
set with the minimal l(·) among all reduced neighbor sets. If
∃m̂i ∈ Ŝ : mi = mX

i , then ∀k ∈ [i+ 1, N̂ − 1] : m̂k = mX
k.

Proof. Let i be the smallest index with m̂i = mX
i and j largest

index with m̂j = mY
j (so i 	= j). We will show that j > i leads

to a contradiction, so it must be j < i and the lemma holds.

Since i is the smallest index with m̂i = mX
i and j is the

largest index with m̂j = mY
j , by (8) and (9) we know lX(Ŝ) =

xi and lY(Ŝ) = yj . If j > i, then xi > xj and yi < yj .

Now we consider another Ŝ′, which selects mX
j instead of

mY
j and all the other selections are the same as Ŝ. We know

that lX(Ŝ′) = max{xi, xj} = xi, i.e., lX(Ŝ′) = lX(Ŝ). On the

other hand, lY(Ŝ′) must become smaller than yj so lY(Ŝ′) <
lY(Ŝ). In summary, l(Ŝ′) < l(Ŝ), which contradicts that Ŝ has

the smallest l(·) among all reduced neighbor sets in Ω̂.

The pattern specified in the above lemma can be further

divided into three cases, as shown in Fig. 7:

• Case 1: m̂1, ..., m̂N̂−1 all select mX
i (Fig. 7-(a)).

• Case 2: m̂1, ..., m̂N̂−1 all select mY
i (Fig. 7-(b)).

• Case 3: ∃i: m̂1, ..., m̂i select mY
i and m̂i+1, ..., m̂N̂−1

select mX
i (Fig. 7-(c)).

2We renumber the queues to simplify the presentation of the following
proofs. This does not compromise the generality of our analysis, as one can
arbitrarily renumber the queues without affecting the analysis results.
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(a) Case 1. (b) Case 2. (c) Case 3.

Fig. 7: The three cases of the pattern specified in Lemma 4.

Now we are ready to upper-bound minσ∈Ω̂ {l(σ)}:
Lemma 5. Let Ω̂ be the set of all reduced neighbor sets and
N̂ the number of messages in a reduced neighbor set, then

min
σ∈Ω̂

{l(σ)} ≤ 1

N̂

N̂−1∑
i=1

TW
i (10)

Proof. Let Ŝ = {m̂1, ..., m̂N̂} be the one with smallest l(·)
among all elements in Ω̂. For each i ∈ [1, N̂ − 2], we define

σi = {mY
1 , ... ,m

Y
i ,m

X
i+1, ... ,m

X
N̂−1

,mP}

where mP is the pivot. By (8) and (9) we know ∀i ∈ [1, N̂−
2] : l(σi) = yi+xi+1. We use σall-x to represent the element in

Ω̂ which selects mX
i for each i ∈ [1, N̂ − 1], so l(σall-x) = x1,

and use σall-y to represent the element in Ω̂ which selects mY
i

for each i ∈ [1, N̂ − 1], so l(σall-y) = yN̂−1.

We will prove that l(Ŝ) is upper-bounded by the RHS of

(10) in three cases:

Case 1: m̂1, ..., m̂N̂−1 all select mX
i (Fig. 7-(a)). All queues

are sorted in decreasing order of xi, so l(Ŝ) = x1. Since l(Ŝ)
is the minimal among all reduced neighbor sets, we know

l(σall-y) ≥ l(Ŝ) and ∀i ∈ [1, N̂ − 2] : l(σi) ≥ l(Ŝ), i.e.,⎧⎪⎪⎨
⎪⎪⎩

x1 ≤ y1 + x2

· · ·
x1 ≤ yN̂−2 + xN̂−1

x1 ≤ yN̂−1

Adding all these inequalities gives

(N̂−1)x1 ≤ y1+x2+y2+· · ·+xN̂−2+yN̂−2+xN̂−1+yN̂−1

By adding x1 and dividing N̂ on both sides, and combining

xi + yi ≤ TW
i (∀i ∈ [1, N̂ − 1]), we get

l(Ŝ) = x1 ≤ 1

N̂

N̂−1∑
i=1

TW
i

Case 2: m̂1, ..., m̂N̂−1 all select mY
i (Fig. 7-(b)). The proof

of this case is symmetric to Case 1, so we only briefly sketch

it to save space. In this case, l(Ŝ) = yN̂−1, and we know

⎧⎪⎪⎨
⎪⎪⎩

yN̂−1 ≤ x1

yN̂−1 ≤ y1 + x2

· · ·
yN̂−1 ≤ yN̂−2 + xN̂−1

Putting them together and by xi + yi ≤ TW
i for each i ∈

[1, N̂ − 1], we get

l(Ŝ) = yN̂−1 ≤
1

N̂

N̂−1∑
i=1

TW
i

Case 3: ∃i: m̂1, ..., m̂i select mY
i and m̂i+1, ..., m̂N̂−1 select

mX
i (Fig. 7-(c)). By Lemma 4, we know there is some k such

that Ŝ = σk, so ∀i ∈ [1, N̂ − 2] : l(σk)≤ l(σi). We also have

l(σk)≤l(σall-x)=x1 and l(σk)≤l(σall-y)=yN̂−1′ . So we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yk + xk+1 ≤ x1

yk + xk+1 ≤ y1 + x2

· · ·
yk + xk+1 ≤ yN̂−2 + xN̂−1

yk + xk+1 ≤ yN̂−1

(11)

by which we get

l(Ŝ) = l(σk) = xk+1 + yk ≤ 1

N̂

N̂−1∑
i=1

TW
i

In summary, for all three cases, we have proved

l(Ŝ) ≤ 1

N̂

N̂−1∑
i=1

TW
i

Theorem 1. The time disparity of a published set SPUB is
upper-bounded by

Δ(SPUB) ≤ max
2≤n≤N

⎧⎨
⎩

1

n

∑
n−1 largest

TW
i

⎫⎬
⎭ . (12)

Proof. By Lemma 1, Lemma 3 and Lemma 5, we have

Δ(SPUB) ≤ 1

N̂

N̂−1∑
i=1

TW
i .

It is unknown which queues are dominated queues. However,

we can assume the N̂ − 1 queues with the largest TW
i are the

non-dominated non-pivot queues to upper-bound
∑N̂−1

i=1 TW
i ,

and we know 2 ≤ N̂ ≤ N , so the theorem is proved.

For example, suppose N = 4, TW
1 = 20, TW

2 = 30,

TW
3 = 60 and TW

4 = 75. The time disparity bound in (12) is

computed by max( 752 , 60+75
3 , 30+60+75

4 ) = 60+75
3 = 45.

We can see that the bound in (12) only depends on TW
i of

each queue, but is unrelated to DB
i and DW

i . This is consistent

with that the time disparity of an output message set published

by Algorithm 1 only depends on the messages’ timestamps,

but not the delay they experienced.
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Fig. 8: Illustration for the case of the worst-case time disparity

of 50.

D. Tightness

Now we prove that the time disparity bound in Theorem 1

is tight, i.e., for any N ≥ 2, there exists a system with N input

channels whose worst-case time disparity exactly equals the

bound in Theorem 1. We can construct the desired system as

follows: let TW
1 = 100, TW

N = 50 and TW
2 = ... = TW

N−1 =
40. It is not difficult to see that this system’s actual worst-case

time disparity is 50. Take the scenario shown in Fig. 8 as an

example. After publishing the first two output message sets,

the worst-case time disparity of 50 occurs at the third output

message set, i.e., {m3
1,m

3
2,m

3
3, ...,m

3
N−1,m

3
N}. On the other

hand, the bound in Theorem 1 equals 50, so its tightness is

proved.

Although the above example has already proved the tight-

ness of the bound in Theorem 1, its construction only covers a

particular case where the maximal 1
n

∑
n−1 largest

TW
i is achieved

with n = 2 or n = 3. Actually, we can even prove a stronger

conclusion in the sense that the bound 1
n

∑
n−1 largest

TW
i is tight

for any n, i.e., the bound (10) in Lemma 5 is also tight.

Lemma 6. The bound (10) in Lemma 5 is tight.

Proof. Let the system have N ≥ 2 queues and ∀i ∈ [1, N ] :
TW
i = X , where X is an arbitrary number that is not too

small (e.g., X > 10). We construct the worst-case scenario

as follows. First, mN in QN is currently the pivot. Second,

the timestamps of the first message after the pivot and the

last message before the pivot for each non-pivot queue are

constructed to satisfy the following constraints:⎧⎪⎪⎨
⎪⎪⎩

x1 = y1 + x2

· · ·
x1 = yN−2 + xN−1

x1 = yN−1

i.e., change all the inequalities in Case 1 of the proof of

Lemma 5 into equations. By the same reasoning as in the

proof of Lemma 5, the one with the minimal time disparity

among all reduced neighbor sets must fall in one of the three

cases in Lemma 5, i.e., its time disparity is either x1, or yN−1

or yi−1 + xi (for some i), which all equal x1 by the above

equations. Summing up both sides of the above equations gives

Nx1 = x1 + (y1 + x2) + . . . + (yN−2 + xN−1) + yN−1

On the other hand, we know

(x1+y1)+(x2+ . . . +yN−2)+(xN−1+yN−1) = (N −1)X

In summary we have x1 = (N−1)X
N , which exactly equals the

bound computed by Lemma 5.

V. REQUIRED QUEUE SIZE BOUND

The model and analysis introduced so far are based on

the assumption that all queues are sufficiently long and no

overflow occurs. In this section, we will get rid of this

assumption by showing that we can find an upper bound of

the queue size with which Theorem 1 still holds.

In reality, the ROS message synchronizer may discard

messages for two reasons:

• Active discard. Recall that Algorithm 1 (Line 11) discards

the published messages and all messages earlier than the

published one in each queue. In this case, we say these

messages are actively discarded.

• Passive discard. If a queue is full when a new message ar-

rives, the earliest message in this queue will be discarded.

In this case, we say the message is passively discarded.

To upper-bound the needed queue size, it seems that we need

to find the condition under which passive discard never occurs.

However, this is actually unnecessary. Consider two scenarios

with the same system input:

S1. Queues sizes are unlimited and no passive discard occurs.

S2. Queues sizes are limited and some messages that are not
published in S1 are passively discarded.

The passive discard in S2 should not affect the selection of

pivots and the corresponding selection of published output

message sets, and the outputs in these two scenarios are the

same. In other words, we can view each unlimited queue in

S1 as having two parts: the first part has the same size as

the corresponding queue in scenario S2, and the second part

has unlimited size and stores the messages that are passively

discarded in scenario S2. In this case, a message can be

published only if it is in the first part of the queue, and

messages in the second part will be discarded anyway.

Therefore, in the following, we will calculate the required

size of each queue so that when an output message set is

published, the queue is large enough to store all messages that

contain this published message and ensure the pivot remains

unchanged once it is selected, regardless whether the messages

before those have been passively discarded or not.

Definition 8 (Required Size of Qi). SPUB = {m1, ...,mN} is
an output message set published at time t. The required size

of Qi for SPUB is the number of arrived messages in Qi, and
mi ∈ SPUB satisfies:

• if t(mi) ≤ t(mP), mi is the earliest message in Qi, or
• if t(mi) > t(mP), there must exist an only message m1

i

with t(m1
i ) ≤ t(mP) that is the earliest message in Qi.

We use DW
max and DB

min to denote the maximal DW
i and

minimal DB
i , and TW

max and TB
min the maximal TW

i and

minimal TB
i , among all queues Qi.
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Lemma 7. Let SPUB = {m1, ...,mN} be an output message
set published at time t. The required size of Qi for SPUB is at
most 
 t−a(m1

i )+DW
i −DB

i

TB
i

�+ 1.

Proof. If a message is in Qi at time t, its timestamp is no

later than t − DB
i . On the other hand, the timestamp of mi

is no earlier than a(m1
i )−DW

i . Therefore, the total length of

the time interval to generate messages that are after m1
i and

have arrived at Qi by t is at most t−a(m1
i )+DW

i −DB
i . The

number of such messages is at most 
 t−a(m1
i )+DW

i −DB
i

TB
i

�, and

plus m1
i itself, the required size of Qi at t is upper-bounded

by 
 t−a(m1
i )+DW

i −DB
i

TB
i

�+ 1.

Lemma 8. Let SPUB = {m1, ...,mN} be an output message
set published at time t and mP ∈ SPUB is the pivot. Then for
each mi ∈ SPUB and m1

i is the corresponding earliest message
in Qi, we have

a(mP)− a(m1
i ) ≤ Δ+ TW

i +DW
max −DB

i

where Δ denotes the RHS of (12).

Proof. By Theorem 1, for each mj ∈ SPUB, we know

t(mj) − t(mi) ≤ Δ. Since t(mi) ≤ t(m1
i ) + TW

i , we have

t(mj)− t(m1
i ) ≤ Δ+ TW

i . On the other hand, we also have

a(mj) − t(mj) ≤ DW
j and a(m1

i ) − t(m1
i ) ≥ DB

i . Putting

them together proves

a(mj)− a(m1
i ) ≤ Δ+ TW

i +DW
max −DB

i

Since mP ∈ SPUB, the lemma is proved.

Lemma 9. Let SPUB = {m1, ...,mN} be an output message
set published at time t and mP is the pivot in SPUB, then

t− a(mP) ≤ TW
max +DW

max −DB
min

Proof. Let t′ denote the earliest time point at which each non-

pivot contains at least one arrived message with timestamp

larger than t(mP). By the definition of t′, some message arrives

at t′ and thus Algorithm 1 is executed at t′. We will first

prove SPUB is published no later than t′. We prove this by

contradiction, assuming SPUB is published after t′.
By the definition of t′, the while-condition in Line 4 and

the if-condition in Line 6 in Algorithm 1 are both true, so

the selected set at t′ must not be SPUB (otherwise SPUB is

published at t′). Let S be the selected set at t′. First, S does

not contain any predicted message, since for each Qi there

exists an arrived message with timestamp later than t(mP)
(so the predicted message is “further away” from the mP

than this arrived message). Therefore, the selected set S must

be published, so the pivot mP must not be in S (since the

same message cannot be included in two published output

message sets). Therefore, for the queue of mP, S includes a

message after mP. After S is published, all messages before

the published message in S are discarded, and in particular,

mP is discarded, which contradicts that mP is in SPUB which is

published after t′. Therefore, our assumption is false, so SPUB

is published no later than t′, i.e., t ≤ t′.

We assume message m′
i of Qi arrived at t′ and triggers the

execution of Algorithm 1, so m′
i is the first message in Qi

with timestamp t(m′
i) ≤ t(mP) + TW

i . Assume the pivot mP

is in queue Qk, then t(mP) ≤ a(mP)−DB
k , so in summary we

have t(m′
i) ≤ a(mP)−DB

k + TW
i . On the other hand, since

a(m′
i) = t′, we know t(m′

i) ≥ t′−DW
i . Putting them together,

we have t′ ≤ a(mP) + TW
i +DW

i −DB
k ≤ a(mP) +DW

max +
TW
max −DB

min, and since t ≤ t′, the lemma is proved.

Theorem 2. The required size of Qi for any published output
message set is upper bounded by⌊

Δ+ TW
max + TW

i + 2DW
max +DW

i −DB
min − 2DB

i

TB
i

⌋
+ 1

where Δ denotes the RHS of (12).

Proof. The theorem is proved by combining Lemma 7,

Lemma 9 and Lemma 8.

VI. EXPERIMENTS

We conduct experiments to both validate our high-level

model of the ApproximateTime policy and evaluate the analysis

precision of the time disparity bound in Theorem 1. The source

codes of all experiments are anonymously available online at

https://github.com/ruoxianglee/synchronizer.

A. Model Validation
We implement Algorithm 1 (called our implementation) in

the Message Filter package of ROS2 (the Dashing version) and

let it run in parallel with the original implementation of the Ap-
proximateTime policy in ROS2. We implement Algorithm 1 in

a straightforward way, without any performance optimization,

to reduce the chance of introducing implementation errors.

When a new message arrives at the Message Synchronizer, our

implementation and the original implementation will update

their own queues, select and publish the output message

set independently. We compare all the output message sets

published in the two implementations to see if they are the

same. We run the experiments on an Intel i7 desktop computer

with ROS2 Dashing installed on Ubuntu 18.04, using artificial

input messages generated using timers with different settings,

including different number of input channels (from 2 to 9,

as currently the ROS Message Filter supports up to 9 input

channels), different timestamp separation of each channel (TB
i

chosen between 10ms and 100ms, and the ratio between TB
i

and TW
i chosen between 1 and 1.8). For the experiments in

each setting, the delay experienced by the messages randomly

varies between 1ms and 40ms. We in total conduct experiments

with 700 different settings, and run the system for 0.5 hours in

each setting. In all these experiments, the output message sets

produced by our implementation and the original implementa-

tion are exactly the same. Besides artificial input messages, we

also conduct experiments with sensor data inputs generated by

the SVL simulator [13] (including camera, LiDAR and IMU

sensors in SVL, with different frequency settings), where the

outputs of the two implementations are also the same. These

experiments justify the correctness of our model with high

confidence.

49

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:34:00 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)

(c) (d)

Fig. 9: Evaluation experiment results.

B. Evaluation of the Time Disparity Bound

We conduct experiments to evaluate the precision of the

time disparity bound in Theorem 1 by comparing it with the

maximal observed time disparity in the real execution in ROS.

We also compare with the time disparity (bound) of output

produced by the message synchronizer in Apollo CyberRT

[8], another popular open source runtime framework for au-

tonomous driving systems. Apollo CyberRT uses a simple

synchronization policy: A fixed input channel is selected to

be master channel, and other channels are slave channels.

When a new message arrives in the master channel, if all slave

channels are not empty, the newly arrived message together

with the latest message in each slave channel are published

as an output message set. No output message set is published

upon the arrival of messages in slave channels. For this simple

synchronization policy, we can also easily calculate its worst-

case time disparity bound (proof provided in the appendix):

max

{
max

2≤i≤N

{
TW
i +DW

i

}−DB
1 , DW

1 − min
2≤i≤N

{
DB

i

}}
(13)

where Q1 is the master channel. Different from the Approxi-
mateTime policy in ROS, the time disparity of output messages

under the Apollo CyberRT synchronization policy depends on

the delay experienced by the messages.

For each experiment, we compare the following values:

• ROS-B: the time disparity bound under the ROS Approx-
imateTime policy calculated by (12) in Theorem 1.

• ROS-O: the maximal observed time disparity under the

ROS ApproximateTime policy in real execution.

• CyberRT-B: the time disparity bound under the synchro-

nization policy in Apollo CyberRT calculated by (13).

• CyberRT-O: the maximal observed time disparity under

Apollo CyberRT synchronization policy in real execution.

Fig. 9-(a) shows the experiment results with different num-

bers of channels (x-axis), where messages of each channel

were generated periodically (i.e., TB
i = TW

i ) with period ran-

domly distributed in [50, 100] and delay randomly distributed

in [1, 40]. For each x-axis value, the result is the average of

1000 experiments. Each experiment in Fig. 9-(b) uses the same

setting as Fig. 9-(a), but sets the number of channels to be 6
and changes the periods as indicated by the x-axis. In Fig.

9-(c), the messages are no longer generated periodically, but

with timestamp separation randomly distributed between TB
i

and TW
i , and the ratio between TW

i and TB
i varies as indicated

by the x-axis. In Fig. 9-(d), we use the same setting as in Fig.

9-(a), but sets the number of channels to be 6 and changes the

range of delay experienced by each message.

From the experiment results we can see that, our time

disparity bound in Theorem 1 in general has good precision,

but the pessimism increases as the timestamp separation falls

in a wider range or the ratio between TW
i and TB

i becomes

larger. Note that the maximal observed time disparity in real

execution only reflects a lower bound of the real worst-case

time disparity because there is no guarantee to capture the real

worst case. Therefore, the actual gap between the real worst-

case time disparity and the derived upper bounds could be

smaller than the gap indicated in Fig. 9.

As expected, ROS-B and ROS-O both remain stable as

the delay increases, while CyberRT-B and CyberRT-O both

increase as the delay increases. The performance of the ROS

ApproximateTime policy is significantly better than the simple

policy in Apollo CyberRT, in terms of both maximal observed

time disparity and the worst-case time disparity bound.

VII. RELATED WORK

Data fusion algorithms are usually developed under the

assumption that data from different sensors are perfectly

aligned, which rarely holds in reality. To solve this problem,

various techniques have been developed to compensate the

temporal inconsistency of input data [14]–[17]. However, such

compensation works only if the temporal inconsistency falls

into a certain range, which is the motivation of this paper.

Previous work [1]–[3], [18] studied how to precisely times-

tamp the sensor data in the context of multi-sensor data fusion.

In this paper, we assume that sensor data are already associated

with valid timestamps in the same coordinate using these

existing techniques, and focus on the problem after that, i.e.,

how to manage the sensor data flows in the computing system

based on these timestamps.

To promote ROS in time-sensitive application domains,

work has been done on measurement-based evaluation of the

real-time performance of ROS. [19] evaluated the capabilities

and performance for ROS1 and ROS2 with different DDS

implementations, considering various metrics, such as latency,

throughput, the number of threads and memory consumption.

[20] conducted communication evaluation for ROS2 real-time

applications taking into account the worst-case latency. To

overcome the bottleneck of performance analysis in robot
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software development, [21] proposes a multipurpose low-

overhead framework for tracing ROS application.

Some work aimed to improve the real-time capability of

ROS from the system architecture perspective. [22] presented

a real-time ROS architecture for separately executing real-time

and non-real-time tasks on a integrated OS environment with

multi-core processors. [23] proposed an offline scheduling

framework for ROS considering both ROS scheduling restric-

tions and CPU/GPU coordination mechanism. [24] presented a

priority-based message transmission mechanism to reduce the

worst-case execution time for node processing and inserting

a sync node to harmonize the frequencies of different sensor

data to improve the time disparity. In [25], a fixed-priority

based DAG scheduling framework was proposed with end-

to-end latency guarantees. The authors also introduced a

synchronization mechanism to reduce the time disparity, but

their work is based on measurement for the specific case but

does not provide any formal analysis.

Some recent work has been done on formal real-time

performance analysis of ROS2. [26], [27] modeled the single-

thread Executor in ROS2 and studied response time analysis

of processing chains executing on it. [28] redesigns the ROS2

executor with a fixed priority assignment policy to overcome

the limitations of the default scheduling strategy of ROS2, and

analyze the end-to-end latency based on the proposed schedul-

ing policy. [29] proposes an automatic latency manager and

apply existing real-time scheduling theory to latency control

of the critical callback chains in ROS2 applications, which

adaptively estimates and adjusts the scheduling parameters

without the user’s involvement. In [30], the authors take both

the starvation freedom and execution-time variance of the

default ROS2 scheduler into consideration, and propose a more

accurate response time analysis for processing chains. [31]

presents two new executors based on the thread dispatch model

and producer-consumer model and developed corresponding

response time analysis techniques. The above work all focus

on the executor component in ROS, while in this paper we

consider another important component: the Message Synchro-

nizer.

Past work on real-time scheduling and analysis studied

different real-time performance metrics, such as response time

[32], [33], tardiness [34] and data freshness [35]. However,

existing analysis and design techniques developed oriented to

these constraints do not apply to the analysis of time disparity
studied in this paper.

VIII. CONCLUSION

In this paper, we model the ApproximateTime message

synchronization policy in ROS and formally analyze the

worst-case time disparity of their output message sets. We

conduct experiments to evaluate the precision of the developed

time disparity upper bound against the maximal observed

time disparity in real execution, and compare them with

the synchronization policy in Apollo CyberRT. Experiment

results show that our analysis has good precision and the

synchronization policy in ROS greatly outperforms Apollo

CyberRT in terms of both observed worst-case time disparity

and the theoretical bound. This is the first step towards the

analytical study of the data synchronization in multi-sensor

data fusion regarding the worst-case time disparity metrics,

and many problems along this direction are still open. For

example, the required queue size bound derived in this paper

is only to show that our time disparity analysis is applicable

without assuming infinite queue sizes, but it is unclear whether

we could develop tighter bound than that, which will be a topic

for our future work. We will also study how to improve the

design and implementation of the ROS Message Synchronizer

for average-case time disparity performance while maintaining

the same (or even better) worst-case time disparity bound.
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APPENDIX

Theorem 3. Under the Apollo CyberRT synchronization pol-
icy, Q1 is the master channel, and Q2, ..., QN are slave
channels. The time disparity Δ(SPUB) of a published output
message set SPUB = {m1, ...,mN} is upper-bounded by:

Δ(SPUB) ≤ max

{
max

2≤i≤N

{
TW
i +DW

i

}−DB
1 , DW

1 −min
2≤i≤N

{
DB

i

}}

Proof. For m1 we know

a(m1)−DW
1 ≤ t(m1) ≤ a(m1)−DB

1 (14)

For an arbitrary slave queue Qi (2 ≤ i ≤ N ), let m′
i be the

next message after mi. We have

t(mi) +DB
i ≤ a(mi) (15)

a(m1) ≤ a(m′
i) ≤ t(m′

i) +DW
i (16)

t(m′
i) ≤ t(mi) + TW

i (17)

Combing (14)-(17), we have

t(mi)+DB
i −DW

1 ≤ t(m1) ≤ t(mi)+TW
i +DB

i −DB
1 (18)

• If t(m1) > t(mi), by (18), we have

t(m1)− t(mi) ≤ TW
i +DW

i −DB
1

• If t(m1) ≤ t(mi), by (18), we have

t(mi)− t(m1) ≤ DW
1 −DB

i

The theorem can be proved by combining these two cases.
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