
Neural Networks 26 (2012) 99–109
Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

A one-layer recurrent neural network for constrained pseudoconvex
optimization and its application for dynamic portfolio optimization✩

Qingshan Liu a, Zhishan Guo b, Jun Wang c,∗

a School of Automation, Southeast University, Nanjing 210096, China
b Department of Computer Science, University of North Carolina - Chapel Hill, Chapel Hill, NC 27599, USA
c Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

a r t i c l e i n f o

Article history:
Received 26 June 2011
Accepted 1 September 2011

Keywords:
Recurrent neural networks
Pseudoconvex optimization
Differential inclusion
Convergence
Lyapunov function

a b s t r a c t

In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization
problems subject to linear equality and bound constraints. Compared with the existing neural networks
for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving
more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is
capable of solving constrained fractional programming problems as a special case. The convergence of
the state variables of the proposed neural network to achieve solution optimality is guaranteed as long
as the designed parameters in the model are larger than the derived lower bounds. Numerical examples
with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In
addition, an application for dynamic portfolio optimization is discussed.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Constrained optimization problems arise in widespread scien-
tific and engineering applications, such as filter design, signal pro-
cessing, system identification, robot control, and power system
planning.

In the past decades, many recurrent neural networks were
developed for solving constrained optimization problems (e.g.,
see Tank & Hopfield, 1986; Wang, 1993; Kennedy & Chua, 1988;
Xia, H, & J, 2002; Forti, Nistri, & Quincampoix, 2004, and refer-
ences therein). Among them, based on the penalty functions and
gradient methods, constrained optimization problems were first
converted approximately or exactly to unconstrained optimiza-
tion problems, then some gradient-based neural network models
were constructed to compute the approximate or exact optimal
solutions. Two classical recurrent neural network models for op-
timization are the Hopfield neural network proposed by Tank and
Hopfield (1986) for linear programming, and that by Kennedy and
Chua (1988) for nonlinear programming. The gradientmethodwas
widely used in the neural network design. Based on the l2-norm

✩ The work described in the paper was supported by the Research Grants Council
of theHongKong Special Administrative Region, China, underGrants CUHK417209E
and CUHK417608E, and by the National Natural Science Foundation of China under
Grant 61105060.
∗ Corresponding author.

E-mail addresses: qsliu@seu.edu.cn (Q. Liu), zsguo@cs.unc.edu (Z. Guo),
jwang@mae.cuhk.edu.hk (J. Wang).

0893-6080/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2011.09.001
penalty function and gradient method, a neural network model
was developed for constrained optimization (Lillo, Loh, Hui, & Zak,
1993). The lp-norm (1 ≤ p ≤ ∞) penalty functions were used to
derive a class of neural networks for linear programming (Chong,
Hui, & Zak, 1999).

In addition to the gradient method, other methods have
been developed for neurodynamic optimization. Based on the
Lagrangian function and Lagrangian optimality conditions, the
Lagrangian network (Zhang & Constantinides, 1992) was proposed
for solving the general optimization problems, in which the local
convergence was guaranteed. For convex optimization, the global
convergence of the Lagrangian network was analyzed and proven
by Xia (2003). The deterministic annealing neural networks were
developed for solving linear and nonlinear convex programming
problems by Wang (1993, 1994), which were utilized to solve the
assignment problems (Wang, 1997) and shortest path problems
(Wang, 1998).

In recent years, based on the Karush–Kuhn–Tucker optimal-
ity conditions, the primal-dual network (Xia, 1996), dual net-
work (Xia, Feng, & Wang, 2004) and simplified dual network (Liu
& Wang, 2006) were developed for solving convex optimization
problems. Based on the projectionmethod (e.g., see Xia et al., 2002;
Hu & Wang, 2007; Liu & Cao, 2010, and references therein), op-
timality conditions for constrained optimization problems can be
written in the form of linear (or nonlinear) variational inequalities,
and transformed into projection equations. Then neural networks
based on the projection equations were constructed for solving
the constrained optimization problems.Moreover, for convex opti-
mization problems, the global convergence of the projection neural

http://dx.doi.org/10.1016/j.neunet.2011.09.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:qsliu@seu.edu.cn
mailto:zsguo@cs.unc.edu
mailto:jwang@mae.cuhk.edu.hk
http://dx.doi.org/10.1016/j.neunet.2011.09.001

100 Q. Liu et al. / Neural Networks 26 (2012) 99–109
networks can be guaranteed for the global optimal solutions (Xia
&Wang, 2004b; Hu &Wang, 2007a; Barbarosou & Maratos, 2008).
To reduce the model complexity, some one-layer recurrent neural
networkswere proposed for solving linear and quadratic program-
ming problems (Xia & Wang, 2004a; Liu & Wang, 2008a, 2008b).

Apart from the recurrent neural networks for solving smooth
constrained optimization problems, neurodynamic approaches to
nonsmooth constrained optimization were investigated by some
researchers recently. The generalized nonlinear programming cir-
cuit for solving nonsmooth nonconvex optimization problems
were proposed by Forti et al. (2004); Forti, Nistri, and Quincampoix
(2006). We proposed some neural networks with simple model
complexity for solving the constrained nonsmooth convex opti-
mization problems (Liu & Wang, 2006a, 2009). The subgradient-
based neural networks (Xue & Bian, 2008; Bian and Xue, 2009)
were proposed for solving nonsmooth optimization problemswith
more general constraints than that by Forti et al. (2004). Inspired
by the work in Forti et al. (2004); Forti et al.. (2006), Xue and Bian
(2008) and Bian and Xue (2009), this paper contributes to present a
one-layer recurrent neural network with discontinuous activation
functions for solving pseudoconvex optimization problems subject
to linear equality and bound constraints.

While most neural network approaches to optimization focus
on convex optimization, nonconvex optimization is rarely inves-
tigated. In particular, among nonconvex optimization problems,
pseudoconvex optimization has many applications, such as frac-
tional programming, computer vision (Olsson, Eriksson, & Kahl,
2007), production planning, financial and corporate planning,
health-care and hospital planning. Hu and Wang (2006) extended
the projection neural network for optimization with differentiable
pseudoconvex objective functions and bound constraints. How-
ever, for more general pseudoconvex optimization problems sub-
ject to linear equality and bound constraints, the projection neural
network is not applicable for solving these problems due to its con-
vergence conditions.

In this paper, a recurrent neural network will be presented for
solving pseudoconvex optimization problems with linear equality
and bound constraints. The remainder of this paper is organized as
follows. Section 2 discusses some preliminaries. In Section 3, the
problem formulation and neural networkmodel are described. The
theoretical analysis of the proposed neural network is shown in
Section 4. Illustrative Examples are given to show the effectiveness
and performance of the proposed neural network in Section 5.
Next, in Section 6, the proposed neural network is utilized for
dynamic portfolio optimization. Finally, Section 7 concludes this
paper.

2. Preliminaries

For the convenience of later discussions, we present some
definitions and properties concerning set-valued map, nonsmooth
analysis and pseudoconvex functions in this section. We refer
readers to Clarke (1983), Aubin and Cellina (1984), Filippov (1988)
and Forti et al.. (2006) for more thorough discussions. Throughout
this paper, ∥ · ∥1 and ∥ · ∥2 denote the l1 and l2 norms of a vector
(or matrix) in Rn (or Rm×n), respectively.

2.1. Nonsmooth analysis

Definition 1. Suppose E ⊂ Rn. F : x → F(x) is called a set-valued
map from E ↩→ Rm, if to each point x of the set E, there corresponds
a nonempty closed set F(x) ⊂ Rm.
Definition 2. A function ϕ : Rn
→ R is said to be Lipschitz near

x ∈ Rn if there exist ε, δ > 0, such that for any x′, x′′
∈ Rn

satisfying ∥x′
− x∥2 < δ and ∥x′′

− x∥2 < δ, we have |ϕ(x′) −

ϕ(x′′)| ≤ ε∥x′
− x′′

∥2. If ϕ is Lipschitz near any point x ∈ Rn, then
ϕ is also said to be locally Lipschitz in Rn.

Assume that ϕ is Lipschitz near x. The generalized directional
derivative of ϕ at x in the direction v ∈ Rn is given by

ϕ0(x; v) = lim sup
y→x
s→0+

ϕ(y + sv)− ϕ(y)
s

.

The Clarke’s generalized gradient of f is defined as

∂ϕ(x) = {y ∈ Rn
: ϕ0(x; v) ≥ yTv, ∀v ∈ Rn

}.

When ϕ is locally Lipschitz in Rn, ϕ is differentiable for almost
all (a.a.) x ∈ Rn (in the sense of Lebesgue measure). Then, the
Clarke’s generalized gradient of ϕ at x ∈ Rn is equivalent to

∂ϕ(x) = K

lim
n→∞

∇ϕ(xn) : xn → x, xn ∉ N , xn ∉ E

,

where K(·) denotes the closure of the convex hull, N ⊂ Rn is an
arbitrary set with measure zero, and E ⊂ Rn is the set of points
where ϕ is not differentiable.

Definition 3. A function ϕ : Rn
→ R, which is locally Lipschitz

near x ∈ Rn, is said to be regular at x if there exists the one-sided
directional derivative for any direction v ∈ Rn which is given by

ϕ′(x; v) = lim
ξ→0+

ϕ(x + ξv)− ϕ(x)
ξ

,

and we have ϕ0(x; v) = ϕ′(x; v). The function ϕ is said to be
regular in Rn if it is regular for any x ∈ Rn.

Regular functions are very important in the Lyapunov approach
and nonsmooth analysis used in this paper, which has been
studied in the literature (e.g., see Clarke, 1983; Filippov, 1988). In
particular, a nonsmooth convex function on Rn is regular at any
x ∈ Rn. For a finite family of functions ϕi(i = 1, 2, . . . , n), which
are regular at x, we have ∂(

n
i=1 ϕi)(x) =

n
i=1 ∂ϕi(x).

Consider the following ordinary differential equation (ODE):

dx
dt

= ψ(x), x(t0) = x0. (1)

A set-valued map defined as

φ(x) =


ε>0


µ(N)=0

K [ψ(B(x, ε)− N)],

where µ(N) is the Lebesgue measure of set N , B(x, ε) = {y :

∥y−x∥2 ≤ ε}. A solution of (1) is an absolutely continuous function
x(t) defined on an interval [t0, t1](t0 ≤ t1 ≤ +∞), which satisfies
x(t0) = x0 and differential inclusion:

dx
dt

∈ φ(x), a.a. t ∈ [t0, t1].

In the regular case, the following chain rule is of key importance
in the Lyapunov approach used in this paper.

Lemma 1 (Chain Rule Clarke (1983)). If V : Rn
→ R is regular at

x(t) and x(t) : R → Rn is differentiable at t and Lipschitz near t,
then

d
dt

V (x(t)) = ξ T ẋ, ∀ξ ∈ ∂V (x(t)).

Q. Liu et al. / Neural Networks 26 (2012) 99–109 101
2.2. Normal cone

Definition 4. Suppose that E ⊂ Rn is a nonempty closed convex
set. The normal cone to the set E as x ∈ E is defined as

NE(x) = {v ∈ Rn
: vT (x − y) ≥ 0, ∀y ∈ E}.

Lemma 2 (Clarke, 1983). If E1, E2 ⊂ Rn are closed convex sets and
satisfy 0 ∈ int(E1 − E2), then for any x ∈ E1


E2, NE1


E2(x) =

NE1(x)+ NE2(x), where int (·) denotes the interior of the set.

Lemma 3 (Clarke, 1983). Suppose that f is Lipschitz near x and
attains a minimum over S at x, then 0 ∈ ∂ f (x)+ NS(x).

2.3. Pseudoconvex and pseudomonotone

Definition 5 (Penot & Quang, 1997). Let E ⊂ Rn be a nonempty
convex set. A function f : E → R is said to be pseudoconvex on E
if, for every pair of distinct points x, y ∈ E

∃ η ∈ ∂ f (x) : ηT (y − x) ≥ 0 H⇒ f (y) ≥ f (x).

Definition 6 (Penot & Quang, 1997). Let E ⊂ Rn be a nonempty
convex set. A set-valued map F : E → Rm is said to be
pseudomonotone on E if, for every pair of distinct points x, y ∈ E

∃ ηx ∈ F(x) : ηTx (y − x) ≥ 0 H⇒ ∀ηy ∈ F(y) : ηTy (y − x) ≥ 0.

It is shown in Penot and Quang (1997) that a continuous
function f (x) is pseudoconvex if and only if its generalized gradient
∂ f (x) is a pseudomonotone mapping.

3. Problem formulation and model description

In this paper, we are concerned with the following nonlinear
programming problem:

minimize f (x),
subject to Ax = b,

u ≤ x ≤ v,
(2)

where x = (x1, x2, . . . , xn)T ∈ Rn, f (x) : Rn
→ R is assumed to

be locally Lipschitz continuous, A ∈ Rm×n which is full row-rank
(i.e., rank (A) = m ≤ n), b ∈ Rm, u = (u1, u2, . . . , un)

T
∈ Rn and

v = (v1, v2, . . . , vn)
T

∈ Rn.
For a given x ∈ Rn, let D(x) =

n
i=1 d(xi) with d(xi) (i =

1, 2, . . . , n) defined as

d(xi) =

xi − vi, xi ≥ vi,
0, ui < xi < vi,
−xi + ui, xi ≤ ui.

(3)

Then d(xi) ≥ 0 and D(x) ≥ 0. We define that
I+(x) = {i ∈ {1, 2, . . . , n} : d(xi) > 0},
I0(x) = {i ∈ {1, 2, . . . , n} : d(xi) = 0}.
The region where the constraints are satisfied (feasible region) is
defined as S = {x ∈ Rn

: Ax = b, u ≤ x ≤ v}. Moreover, we define
that C = {x ∈ Rn

: Ax = b}. Then, it is clear that S = C


[u, v],
where [u, v] = {x ∈ Rn

: u ≤ x ≤ v}.
Throughout this paper, the objective function f (x) is not

necessary to be convex or smooth, whereas the following two
assumptions on the optimization problem (2) are needed.

Assumption 1. There exist x̂ ∈ Rn and r > 0 such that x̂ ∈

int ([u, v])


C and [u, v] ⊂ B(x̂, r), where B(x̂, r) = {x ∈ Rn
:

∥x − x̂∥2 ≤ r} is the r neighborhood of x̂.

Assumption 2. The objective function f (x) of problem (2) is
pseudoconvex and regular on S, and Lipschitz bounded on B(x̂, r).

Remark 1. In Assumption 2, the objective function is assumed to
be pseudoconvex and regular on S. For a pseudoconvex function,
several classes of them are regular. For example, let f : Rn
→ R

be Lipschitz on S, then, (i) if f is strictly differentiable on S, it is
regular on S; (ii) if f is convex on S, it is regular on S. Consequently,
problem (2) includes the pseudoconvex optimization problems
investigated by Hu and Wang (2006) as its special case, and
also includes the smooth and nonsmooth convex optimization
problems investigated by Liu and Wang (2009) and Xia and Wang
(2005) as its special cases. Therefore, the optimization problem (2)
under the above assumptions includes a larger part of optimization
problems.

The dynamic equation of the proposed recurrent neural
network model for solving (2) is described in the following
differential inclusion:

ϵ
dx
dt

∈ −∂ f (x)− µg[u,v](x)− σATg0(Ax − b), (4)

where ϵ is a positive scaling constant, σ and µ are nonnegative
constants, ∂ f (x) is the generalized gradient of f (x), g[u,v] is a
discontinuous activation function with its components are defined
as

g[u,v](y) =


1, y > vi,
[0, 1], y = vi,
0, ui < y < vi,
[−1, 0], y = ui,
−1, y < ui,

(i = 1, 2, . . . , n) (5)

and its special case for u = v = 0 is defined as

g0(y) =

1, y > 0,
[−1, 1], y = 0,
−1, y < 0.

(6)

Note that g0(y) and g[u,v](y) are discontinuous at y = 0 and y = ui
or vi, respectively.

Remark 2. One of the important classes of pseudoconvex opti-
mization problems is the quadratic fractional programming prob-
lems in the following form:

minimize f (x) =
xTQx + aT x + a0

cT x + c0
,

subject to Ax = b,
u ≤ x ≤ v,

(7)

where Q ∈ Rn×n is a symmetric matrix, a, c ∈ Rn, a0, c0 ∈

R, A, b, u and v are defined in (2). It is well known that f is
pseudoconvex on X = {x ∈ Rn

: cT x + c0 > 0} if Q is
positive semidefinite. Specially, when c = 0, (7) is reduced to
the classic quadratic programming problem, and when Q = 0, it
is reduced to the so called linear fractional problem, which is, of
course, pseudoconvex on X .

4. Theoretical analysis

In this section, the convergence and optimality conditions of the
proposed neural network are investigated.

Definition 7. x̄ is said to be an equilibrium point of system (4) if

0 ∈ ∂ f (x̄)+ σATK [g0(Ax̄ − b)] + µK [g[u,v](x̄)]; (8)

i.e., if there exist η̄ ∈ ∂ f (x̄), γ̄ ∈ K [g0(Ax̄−b)], and ξ̄ ∈ K [g[u,v](x̄)]
such that

η̄ + σAT γ̄ + µξ̄ = 0. (9)

4.1. Boundedness of the state vector x(t)

In this subsection, the boundedness of the state vector of neural
network (4) is proven. According to Assumption 2, f (x) is Lipschitz

102 Q. Liu et al. / Neural Networks 26 (2012) 99–109
bounded on B(x̂, r). Throughout this paper, we denote lf as an
upper bound of Lipschitz constant of f (x) on B(x̂, r). First, it is easy
to get the following lemma.

Lemma 4. For any x ∈ Rn, Ax = b if and only if Px = q, where
P = AT (AAT)−1A and q = AT (AAT)−1b.

Next, inspired by the work in Xue and Bian (2008) and Bian and
Xue (2009), the following two lemmas are given.

Lemma 5. Suppose Assumption 1 holds. For any x ∈ Rn
\ [u, v] and

ξ ∈ K [g[u,v](x)], (x−x̂)T ξ > ω, whereω = min1≤i≤n{vi−x̂i, x̂i−ui},
and x̂i is the ith element of x̂.

Proof. From the definition of g[u,v](x), for any x ∈ Rn and ξ ∈

K [g[u,v](x)], we have (xi − x̂i)ξi ≥ 0 (i = 1, 2, . . . , n), where
xi, x̂i and ξi are the ith elements of x, x̂ and ξ respectively. For any
i ∈ I+(x), one gets that (xi − x̂i)ξi > min{vi − x̂i, x̂i − ui}. Since
for any x ∈ Rn

\ [u, v], we have I+(x) ≠ ∅, then (x − x̂)T ξ =n
i=1(xi−x̂i)ξi ≥


i∈I+(x)(xi−x̂i)ξi > min1≤i≤n{vi−x̂i, x̂i−ui}. �

Lemma 6. Suppose Assumption 1 holds. For any x ∈ (B(x̂, r)


C) \
[u, v] and ξ ∈ K [g[u,v](x)],∥(I−P)ξ∥2 > ω/r, where I is the identity
matrix and ω is defined in Lemma 5.

Proof. From Lemma 4, for any x ∈ C, Px = Px̂ = q. According
to Lemma 5, for any x ∈ (B(x̂, r)


C) \ [u, v], we have (x −

x̂)T (I − P)ξ = (x − x̂)T ξ > ω, where ξ ∈ K [g[u,v](x)]. Since
(x− x̂)T (I − P)ξ ≤ ∥x− x̂∥2∥(I − P)ξ∥2 ≤ r∥(I − P)ξ∥2, it follows
that ∥(I − P)ξ∥2 > ω/r . �

The boundedness of the state vector of neural network (4) is
stated as the following theorem.

Theorem 1. Suppose that Assumptions 1 and 2 hold. For any x0 ∈

B(x̂, r), the state vector of neural network (4) satisfies x(t) ∈ B(x̂, r)
if µ > rlf /ω.

Proof. Let ρ(x(t)) = ϵ∥x(t) − x̂∥2
2/2. For any x0 ∈ B(x̂, r), there

exist η ∈ ∂ f (x), γ ∈ K [g0(Ax − b)] and ξ ∈ K [g[u,v](x)] such that

d
dt
ρ(x(t)) = ϵ(x(t)− x̂)T ẋ(t)

= (x(t)− x̂)T (−η − σATγ − µξ)

= (x(t)− x̂)T (−η − µξ)− σ(Ax(t)− b)Tγ ,

in which the last equality holds since Ax̂ = b. From the definition
of g in (6), (Ax(t)− b)Tγ ≥ 0 for any γ ∈ K [g0(Ax − b)]. Then we
have
d
dt
ρ(x(t)) ≤ (x(t)− x̂)T (−η − µξ)

≤ ∥x(t)− x̂∥2∥η∥2 − µ(x(t)− x̂)T ξ .

If x(t) ∉ [u, v], according to Lemma 5, one gets that (x(t) −

x̂)T ξ > ω. Then we have

d
dt
ρ(x(t)) < ∥x(t)− x̂∥2∥η∥2 − µω. (10)

If µ > rlf /ω, we say that x(t) ∈ B(x̂, r). If not so, the state x(t)
leaves B(x̂, r) at time t1, and we have ∥x(t1) − x̂∥2 = r . Then we
have dρ(x(t))/dt|t=t1 ≥ 0. From (10), combining that ∥η∥2 ≤ lf ,
we have
d
dt
ρ(x(t))


t=t1

< rlf − µω < 0,

which is a contradiction.
If x(t) ∈ [u, v], then we have x(t) ∈ B(x̂, r) directly.
Consequently, for any x0 ∈ B(x̂, r), the state vector of neural

network (4) satisfies x(t) ∈ B(x̂, r) if µ > rlf /ω. �
4.2. Finite-time convergence to C

In this subsection, we prove that the state vector of the neural
network (4) reaches the equality feasible region C in finite time
and stays there thereafter.

Theorem 2. Suppose that Assumptions 1 and 2 hold. For any x0 ∈

B(x̂, r), the state vector of neural network (4) reaches the equality
feasible region C in finite time and stays there thereafter, if σ >

(lf +
√
nµ)/


λmin(AAT) andµ > rlf /ω, where λmin is the minimum

eigenvalue of the matrix.

Proof. Let B(x) = ϵ∥Ax − b∥1. According to the chain rule, we
have
d
dt

B(x) = ζ T ẋ(t), ∀ζ ∈ ∂B(x(t)).

From Theorem 1, for any x0 ∈ B(x̂, r), x(t) ∈ B(x̂, r) if µ >
rlf /ω. When x ∈ B(x̂, r) \ C, there exist η ∈ ∂ f (x), γ ∈ K [g0(Ax −

b)] and ξ ∈ K [g[u,v](x)] such that

d
dt

B(x) = γ TA(−η − σATγ − µξ)

≤ ∥ATγ ∥2(∥η∥2 + µ∥ξ∥2 − σ∥ATγ ∥2)

For any η ∈ ∂ f (x), we have ∥η∥2 ≤ lf . For any ξ ∈ K [g[u,v](x)],
from the definition of g[u,v](x), it follows that ∥ξ∥2 ≤

√
n. For any

x ∈ B(x̂, r) \ C and γ ∈ K [g0(Ax − b)], since ϵATγ ∈ ∂B(x), we
have ATγ ≠ 0 and at least one of the components of γ is −1 or 1.
On one hand, since A has full row-rank, AAT is invertible. It follows
that

∥(AAT)−1AATγ ∥2 = ∥γ ∥2 ≥ 1.

On the other hand, we have

∥(AAT)−1AATγ ∥2 ≤ ∥(AAT)−1A∥2∥ATγ ∥2.

Since AAT is positive definite, we have

∥(AAT)−1A∥2 =


λmax[(AAT)−1A((AAT)−1A)T]

=


λmax((AAT)−1)

=
1

λmin(AAT)
> 0,

where λmin and λmax are the minimum and maximum eigenvalues
of the matrices respectively. It follows that

∥ATγ ∥2 ≥


λmin(AAT).

Let α =

λmin(AAT). If σ > (lf +

√
nµ)/α, we have

d
dt

B(x) ≤ α(lf +
√
nµ− σα) < 0.

Denote k = α(σα − lf −
√
nµ). Then k > 0 and

d
dt

B(x) ≤ −k. (11)

Integrating both sides of (11) from t0 = 0 to t , we have

B(x(t)) ≤ B(x(t0))− kt.

Thus, when t = B(x(t0))/k, B(x(t)) = 0. Therefore, the state of
neural network (4) reaches the equality feasible region C in finite
time by an upper bound of the hit time t = B(x(t0))/k.

Next we prove that when t ≥ B(x(t0))/k, the state vector
of neural network (4) remains inside C thereafter. If not so, we
suppose that the state trajectory leaves C at time t1 and stays
outside of C for almost all t ∈ (t1, t2), where t1 < t2. Then,

Q. Liu et al. / Neural Networks 26 (2012) 99–109 103
B(x(t1)) = 0, and from the above analysis,B(x(t)) < 0 for almost
all t ∈ (t1, t2). By the definition of B(x), we have B(x(t)) ≥ 0
for any t ∈ [t0,∞), which contradicts the result above. That is
the state vector of neural network (4) reaches the equality feasible
region C by t = B(x(t0))/k and stays there thereafter. �

4.3. Finite-time convergence to S

In this subsection, neural network (4) is further proved to be
convergent to the feasible region S in finite time.

Theorem 3. Suppose that Assumptions 1 and 2 hold. For any x0 ∈

B(x̂, r), the state vector of neural network (4) reaches the feasible
region S in finite time and stays there thereafter, if σ > (lf +
√
nµ)/


λmin(AAT) and µ > rlf /ω.

Proof. According to Theorem 2, the trajectory of x(t) reaches the
equality feasible region C in finite time and stays there thereafter.
It remains to show that once in the setC, the trajectory reaches the
set [u, v] in finite time and stays there thereafter.

According to its definition, D(x) in Section 3 is convex in Rn. By
the chain rule, we have

d
dt

D(x) = ζ T dx(t)
dt

, ∀ζ ∈ ∂D(x(t)).

From Theorem 1, for any x0 ∈ B(x̂, r), we have x(t) ∈ B(x̂, r). Since
x ∈ C, from Lemma 4, we have Px = q. Thus Pẋ = 0. Since x can be
written as x = Px+(I−P)x, then ẋ = (I−P)ẋ. From (4), combining
that (I − P)AT

= 0, we have

ϵ
dx
dt

∈ −(I − P)(∂ f (x)+ µK [g[u,v](x)]). (12)

Then, for any x ∈ (B(x̂, r)


C) \ [u, v], there exist η ∈ ∂ f (x)
and ξ ∈ K [g[u,v](x)] such that

ϵ
d
dt

D(x) = ϵξ T ẋ(t)

= −ξ T (I − P)(η + µξ)

= −ξ T (I − P)η − µξ T (I − P)ξ
≤ ∥(I − P)ξ∥2(∥η∥2 − µ∥(I − P)ξ∥2),

in which the last inequality holds since (I − P)2 = I − P .
For any η ∈ ∂ f (x), we have ∥η∥2 ≤ lf . By Lemma 6, for any

ξ ∈ K [g[u,v](x)], ∥(I − P)ξ∥2 > ω/r . Then, if µ > rlf /ω, we have

ϵ
d
dt

D(x) <
ω

r


lf −

µω

r


< 0.

Denote s = ω(µω/r − lf)/(ϵr). Then s > 0 and

d
dt

D(x) < −s. (13)

Integrating (13) from tC to t , we have

D(x(t)) ≤ D(x(tC))− s(t − tC),

where tC is the time that x(t) reaches to C. Thus, when t ≥

D(x(tC))/s + tC , D(x(t)) ≤ 0. Therefore, the state of neural
network (4) reaches S in finite time.

Similar to the proof of Theorem 2, we can prove that the state
vector of neural network (4) stays in S thereafter. �

4.4. Optimality analysis

Theorem 4. Suppose that Assumptions 1 and 2 hold. Any equilibrium
point of neural network (4) is an optimal solution to problem (2) and
vice versa, if σ > (lf +

√
nµ)/


λmin(AAT) and µ > rlf /ω.
Proof. Let x∗ be an optimal solution of problem (2), then x∗
∈ S.

Since x∗ is a minimum point of f (x) over the feasible region S,
according to Lemma 3, we get that

0 ∈ ∂ f (x∗)+ NS(x∗),

where NS(x∗) is the normal cone to the set S at x∗. Since
int([u, v])


C ≠ ∅, we get that 0 ∈ int([u, v] − C). From

Lemma 2, it follows that NS = N[u,v] + NC . Then

0 ∈ ∂ f (x∗)+ NC(x∗)+ N[u,v](x∗).

Suppose x∗
∈ bd ([u, v])


C, where bd(·) denotes the bound-

ary of the set. It follows that there exists η ∈ NS(x∗) such that η ∈

−∂ f (x∗) and ∥η∥2 ≤ lf . By simple derivation, we get thatNC(x∗) =

{νATγ : ν ≥ 0,−1 ≤ γi ≤ 1 and at least one γi = 1 or − 1} and
N[u,v](x∗) = {νξ : ν ≥ 0, ξ ∈ K [g[u,v](x∗)] and at least one ξi =

1 or −1}. Then, there exist α ≥ 0, β ≥ 0, γ ∈ Rm and ξ ∈ Rn such
that αATγ ∈ NC(x∗), βξ ∈ N[u,v](x∗) and

η = αATγ + βξ.

Then we prove that η ∈ σATK [g0(Ax∗
− b)] + µK [g[u,v](x∗)].

We say that β ≤ µ. If not, we have β > µ. Similar to the proof of
Lemma 5, we have (x∗

− x̂)T ξ =
n

i=1(x
∗

i − x̂i)ξi ≥ ω, where ω is
defined in Lemma 5. Since x∗, x̂ ∈ C, Ax∗

= Ax̂ = b. Then we have
(x∗

− x̂)Tη = α(x∗
− x̂)TATγ +β(x∗

− x̂)T ξ = β(x∗
− x̂)T ξ ≥ βω >

µω. Thus ∥η∥2 > µω/∥x∗
− x̂∥2 ≥ µω/r . If µ > rlf /ω, we have

∥η∥2 > lf , which contradicts ∥η∥2 ≤ lf . Consequently β ≤ µ and
it follows that βξ ∈ µK [g[u,v](x∗)].

We say that α ≤ σ . If not, then α > σ . We have ∥η∥2 =

∥αATγ + βξ∥2 ≥ α∥ATγ ∥2 − β∥ξ∥2. According to the proof of
Theorem 2, ∥ATγ ∥2 ≥


λmin(AAT). Combining that ∥ξ∥2 ≤

√
n

and β ≤ µ, we have ∥η∥2 ≥ σ

λmin(AAT) −

√
nµ. If σ > (lf +

√
nµ)/


λmin(AAT), we have ∥η∥2 > lf , which contradicts ∥η∥2 ≤

lf . Hence, α ≤ σ and it follows that αATγ ∈ σATK [g0(Ax∗
− b)].

Then we have η ∈ σATK [g0(Ax∗
− b)] + µK [g[u,v](x∗)].

Consequently, 0 ∈ ∂ f (x∗)+σATK [g0(Ax∗
−b)]+µK [g[u,v](x∗)],

which means that x∗ is an equilibrium point of neural network (4).
Similarly, when x∗

∈ int([u, v])


C, the result also holds.
Next, let us prove the reverse side. Let x̄ be an equilibrium point

of neural network (4), then there exist η̄ ∈ ∂ f (x̄), γ̄ ∈ K [g0(Ax̄ −

b)] and ξ̄ ∈ K [g[u,v](x̄)] such that

η̄ + σAT γ̄ + µξ̄ = 0. (14)

According to Theorem 3, if the conditions of the theorem hold,
x̄ ∈ [u, v]. From (14), we get the following projection formulation

x̄ = φ[u,v](x̄ − η̄ − σAT γ̄),

where φ[u,v](y) = (φ[u1,v1](y1), φ[u2,v2](y2), . . . , φ[un,vn](yn))
T

with φ[ui,vi](yi) (i = 1, 2, . . . , n) defined as

φ[ui,vi](yi) =


vi, yi ≥ vi,
yi, ui < yi < vi,
ui, yi ≤ ui.

Furthermore, using the well-known projection theorem (Kinder-
lehrer & Stampacchia, 1982), it is equivalent to the following vari-
ational inequality

(x − x̄)T (η̄ + σAT γ̄) ≥ 0, ∀x ∈ [u, v].

From Theorem 3, if the conditions of the theorem hold, x̄ ∈ C
and it follows that Ax̄ = b. For any x ∈ S, we have Ax = b. Then,
for any x ∈ S, (x − x̄)T η̄ ≥ 0. Since f (x) is pseudoconvex on S, it
follows that f (x) ≥ f (x̄) for any x ∈ S. Therefore, x̄ is a minimum
point of f (x) over S. �

104 Q. Liu et al. / Neural Networks 26 (2012) 99–109
4.5. Convergence analysis

In this subsection, the convergence property of neural network
(4) is investigated by using the Lyapunov method and differential
inclusion theory (e.g., see Aubin & Cellina, 1984; Clarke, 1983; Forti
et al., 2004; Lu & Chen, 2006, and references therein).

Theorem 5. Suppose that Assumptions 1 and 2 hold. For any x0 ∈

B(x̂, r), the state vector of neural network (4) is convergent to an
optimal solution of problem (2) if σ > (lf +

√
nµ)/


λmin(AAT)

and µ > rlf /ω.

Proof. Let x̄ be an equilibrium point of neural network (4).
According to Theorem 4, x̄ is an optimal solution of problem (2).
Thus Ax̄ = b and x̄ ∈ [u, v]. From Theorem 3, we can suppose
that x0 ∈ S. Let ψ(x) = f (x) + σ∥Ax − b∥1 + µD(x). There exist
η̄ ∈ ∂ f (x̄), γ̄ ∈ K [g0(Ax̄ − b)] and ξ̄ ∈ K [g[u,v](x̄)] such that

η̄ + σAT γ̄ + µξ̄ = 0. (15)

Consider the following Lyapunov function

V (x) = ϵ


ψ(x)− ψ(x̄)+

1
2
∥x − x̄∥2

2


. (16)

Since x̄ is a minimum point of f (x) on S, then for any x ∈ S,
ψ(x) ≥ ψ(x̄). Thus V (x) ≥ ϵ∥x − x̄∥2

2/2.
We have

∂V (x) = ϵ[∂ψ(x)+ x − x̄].

By using the chain rule, it follows that V (x(t)) is differentiable
for almost all (a.a.) t ≥ t0 and it results in

d
dt

V (x(t)) = ζ (t)T ẋ(t), ∀ζ (t) ∈ ∂V (x(t)).

From (4), ϵẋ(t) ∈ −∂ψ(x(t)), hence by choosing ζ (t) =

ϵ[−ϵẋ(t)+ x − x̄] ∈ ∂V (x(t)), we have

d
dt

V (x(t)) = ϵ[−ϵẋ(t)+ x − x̄]T ẋ(t)

= −∥ϵẋ(t)∥2
2 + ϵ(x − x̄)T ẋ(t)

≤ sup
θ∈∂ψ(x)

(−∥θ∥2
2)+ sup

θ∈∂ψ(x)
[−(x − x̄)T θ]

= − inf
θ∈∂ψ(x)

∥θ∥2
2 − inf

θ∈∂ψ(x)
(x − x̄)T θ. (17)

For any θ ∈ ∂ψ(x), there exist η ∈ ∂ f (x), γ ∈ K [g0(Ax − b)]
and ξ ∈ K [g[u,v](x)] such that θ = η + σATγ + µξ . Since f (x)
is pseudoconvex on S, ∂ f (x) is pseudomonotone on S. From the
proof of Theorem 4, for any x ∈ S, (x − x̄)T η̄ ≥ 0. Then it implies
that (x − x̄)Tη ≥ 0 for any η ∈ ∂ f (x). For x, x̄ ∈ S, we have
(x− x̄)TATγ = 0 since Ax = Ax̄ = b. From the definition of g[u,v](x),
we have (xi − x̄i)ξi ≥ 0 (i = 1, 2, . . . , n). Thus (x − x̄)T ξ ≥ 0.
Consequently, for any θ ∈ ∂ψ(x), we have (x − x̄)T θ ≥ 0. Then,

d
dt

V (x(t)) ≤ − inf
θ∈∂ψ(x)

∥θ∥2
2. (18)

Define H(x) = infθ∈∂ψ(x) ∥θ∥2
2. It is easy to get that H(x) = 0 if

and only if x is an equilibrium point of neural network (4).
Since x(t) ∈ S is bounded, from (4), ∥ẋ(t)∥2 is also bounded,

denoted by M . Then, there exists an increasing sequence {tk} with
limk→∞ tk = ∞ and a limit point x̃ such that limk→∞ x(tk) = x̃.

Next, we prove that H(x̃) = 0. If it does not hold, that is
H(x̃) > 0. From the definition of H(x), there exist ε > 0 and
δ > 0, such that H(x) > ε for all x ∈ B(x̃, δ), where B(x̃, δ) =

{x ∈ Rn
: ∥x − x̃∥2 ≤ δ} is the δ neighborhood of x̃. Since

limk→∞ x(tk) = x̃, there exists a positive integerN , such that for all
k ≥ N , ∥x(tk)− x̃∥2 ≤ δ/2. When t ∈ [tk − δ/(4M), tk + δ/(4M)]
and k ≥ N , we have

∥x(t)− x̃∥2 ≤ ∥x(t)− x(tk)∥2 + ∥x(tk)− x̃∥2

≤ M|t − tk| +
δ

2
≤ δ.

It follows that H(x(t)) > ε for all t ∈ [tk − δ/(4M), tk + δ/(4M)].
On one hand, since the Lebesguemeasure of the set t ∈


k≥N [tk −

δ/(4M), tk + δ/(4M)] is infinite, then we have
∞

t0
H(x(t))dt = ∞. (19)

On the other hand, by (18), V (x(t)) is monotonically nonin-
creasing and bounded on S, then, there exists a constant V0 such
that limt→∞ V (x(t)) = V0. We have

∞

t0
H(x(t))dt = lim

s→∞

 s

t0
H(x(t))dt

≤ − lim
s→∞

 s

t0
V̇ (x(t))dt

= −


lim
s→∞

V (x(s))− V (x(t0))


= −V0 + V (x(t0)),

which contradicts (19). Therefore, we have H(x̃) = 0. That is, the
limit point x̃ is an equilibrium point of neural network (4).

Finally, let us define another Lyapunov function

Ṽ (x) = ϵ


ψ(x)− ψ(x̃)+

1
2
∥x − x̃∥2

2


.

Similar to the above proof, we have Ṽ (x(t)) ≥ ϵ∥x − x̃∥2
2/2 and

˙̃V (x(t)) ≤ 0. From the continuity of function Ṽ (x(t)), for any ε̃ > 0,
there exists δ̃ > 0 such that Ṽ (x(t)) < ε̃2 when ∥x− x̃∥2 ≤ δ̃. Since
Ṽ (x(t)) is monotonically nonincreasing on interval [t0,∞), there
exists a positive integer L, such that when t ≥ tL,

ϵ∥x(t)− x̃∥2
2 ≤ 2Ṽ (x(t)) ≤ 2Ṽ (x(tL)) < 2ε̃2.

That is limt→+∞ x(t) = x̃. Then the state vector of neural
network (4) is convergent to an equilibrium point. Combiningwith
Theorem 4, this completes the proof. �

4.6. Further results on finite-time convergence

Recently, the finite-time convergence of recurrent neural
networks were investigated for solving linear programming
problems (e.g., see Chong et al., 1999; Forti et al., 2004; Liu,
Cao, & Chen, 2010). In Marco, Forti, and Grazzini (2006), the
robustness of convergence in finite time was investigated for the
linear programming neural networks. Here, the convergence to an
optimal solution of problem (2) can be achieved in finite time if a
mild condition is satisfied. Similar to that in Forti et al. (2004), to
achieve the finite-time convergence, another assumption is stated
as follows.

Assumption 3. There exists α > 0 such that

inf
x∈S\M


inf

θ∈∂ψ(x)
∥θ∥2


> α,

where ψ(x) = f (x)+ σ∥Ax − b∥1 + µD(x) and M is the optimal
solution set of problem (2).

Theorem 6. Suppose that Assumptions 1–3 hold. For any x0 ∈

B(x̂, r), the state of neural network (4) is convergent to an optimal
solution of problem (2) in finite time if σ > (lf +

√
nµ)/


λmin(AAT)

and µ > rlf /ω.

Q. Liu et al. / Neural Networks 26 (2012) 99–109 105
Fig. 1. Transient behaviors of the state variables of neural network (4)with σ = 16
and µ = 12 in Example 1.

Proof. From (18) and Assumption 3, for x ∈ S \ M, we have

V̇ (x(t)) ≤ −α2. (20)

Integrating both sides of (20) from tS to t , one gets that

V (x(t)) ≤ V (x(tS))− α2(t − tS),

where tS is the minimum time that x(t) reaches S. Then V (x(t)) ≤

0 when t ≥ V (x(tS))/α2
+ tS . From (16), we have V (x(t)) ≥

ϵ∥x− x̄∥2
2/2, where x̄ is the optimal solution which x(t) converges

to. Consequently, x(t) = x̄ when t ≥ V (x(tS))/α2
+ tS . That is,

x(t) is convergent to an optimal solution of problem (2) in finite
time. �

5. Illustrative examples

In this section, three examples of optimization problems are
solved using the proposed neural network.

Example 1. Consider a nonsmooth optimization problem as
follows:

minimize f (x) = |x1 − x2 − 2x3 + 1| + |x1 + 2x2 − x3
−2| + |x1 + x2 − 1| − |x3 − 1|,

subject to x1 + x2 + x3 = 0,
−1 ≤ x1, x2, x3 ≤ 1.

(21)

In this problem, the objective function f (x) is nonsmooth and
nonconvex. If we substitute x1 + x2 = −x3 into f (x), we get that
f (x) is convex on the feasible region. Consequently, the proposed
neural network in (4) is capable of solving this problem. Let x̂ =

(0, 0, 0)T ∈ int([u, v])


C, then we have ω = 1. Moreover, the
restricted region [u, v] ⊂ B(x̂, r) with r =

√
3. An upper bound

of the Lipschitz constant of f (x) on B(x̂, r) is estimated as lf = 6.5.
Then the design parameters are estimated as σ > 15.02 and µ >
11.26. Let ϵ = 10−5, σ = 16 and µ = 12 in the simulations. Fig. 1
shows the transient behaviors of the state variables of the neural
network with 8 random initial points. Fig. 2 depicts the phase
plot of (x1, x2, x3)T from 8 random initial points, which shows
that the state variables converge to the unique optimal solution
x∗

= (−0.5, 1,−0.5)T .

Example 2. We now use the proposed neural network to solve a
pseudoconvex optimization problem (Hu &Wang, 2006). Consider
Fig. 2. Three-dimensional phase plot of the trajectories of (x1, x2, x3) of neural
network (4) with σ = 16 and µ = 12 in Example 1.

the quadratic fractional programming problem in (7) with

Q =

 5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

 , a =

 1
−2
−2
1

 , a0 = −2,

and

c = (2, 1, 1, 0)T , c0 = 4.

It is easily verified that Q is symmetric and positive definite,
and consequently is pseudoconvex on X = {x ∈ R4

: cT x +

c0 > 0}. This problem was solved by Hu and Wang (2006) with
the constraints x ∈ [u, v] = {x ∈ R4

: 1 ≤ xi ≤ 10, i =

1, 2, 3, 4}, the objective function f (x) is obviously pseudoconvex
on [u, v]. Thus the projection neural network is suitable for solving
the problem in this case (Hu & Wang, 2006). The proposed neural
network herein is capable of solving this problem too. Let x̂ =

(5.5, 5.5, 5.5, 5.5)T ∈ int([u, v]), then we have ω = 4.5.
Moreover, the restricted region [u, v] ⊂ B(x̂, r) with r = 9. An
upper boundof the Lipschitz constant of f (x) onB(x̂, r) is estimated
as lf = 9. Then the design parameter is estimated as µ > 18. Let
ϵ = 10−5 and µ = 19 in the simulations. Fig. 3 depicts that the
state variables of the neural network are convergent to the unique
optimal solution x∗

= (1, 1, 1, 1)T with 10 random initial values.
Next, we consider this problem with both equality and bound

constraints. We assume that the feasible region S = {x ∈ R4
:

Ax = b, 5 ≤ xi ≤ 10, i = 1, 2, 3, 4}, where

A =


1 −1 0 0
0 0 1 −1


, b =


1
2


.

The neural network (4) is still capable of solving this problem. Let
x̂ = (8, 7, 8.5, 6.5)T ∈ int([u, v])


C, then we have ω = 1.5.

Moreover, the restricted region [u, v] ⊂ B(x̂, r) with r = 6.52. An
upper boundof the Lipschitz constant of f (x) onB(x̂, r) is estimated
as lf = 7.34. Then the designed parameters are estimated as
σ > 50.32 and µ > 31.91 respectively. Let ϵ = 10−5, σ = 51
and µ = 32 in the simulations. Fig. 4 shows that the state vector
of the neural network is convergent to the unique optimal solution
x∗

= (6, 5, 7, 5)T with 10 random initial values.

Example 3. Consider the quadratic fractional programming prob-
lem in (7) with

Q =

−1 0.5 1 0
0.5 5.5 −1 −0.5
1 −1 1 0
0 −0.5 0 0

 , a =

 1
−1
−1
1

 ,

106 Q. Liu et al. / Neural Networks 26 (2012) 99–109
Fig. 3. Transient behaviors of the state variables of neural network (4)withµ = 19
in Example 2.

Fig. 4. Transient behaviors of the state variables of neural network (4)with σ = 51
and µ = 32 in Example 2.

a0 = −2,
c = (1, 1, 1,−1)T , c0 = 6,

A =


1 1 −1 0
1 −2 0 1


, b =


3
0


,

and

x ∈ {R4
: 2 ≤ x1, x2, x3, x4 ≤ 4}.

As Q is not positive definite, the objective function f (x) is not
pseudoconvex on X = {x ∈ R4

: cT x + c0 > 0}. However,
if we substitute x3 = x1 + x2 − 3 and x4 = −x1 + 2x2 into
the objective function, the objective function can be written as
f̃ (x1, x2) = (2x21 + 2.5x22 + 4x1x2 − 13x1 + 10)/(cT x + c0), which
is pseudoconvex on X . Furthermore, f (x) is pseudoconvex on the
feasible region S. Then the neural network (4) is capable of solving
this problem. Let x̂ = (3, 3, 3, 3)T ∈ int([u, v])


C, then we

have ω = 1. Moreover, the restricted region [u, v] ⊂ B(x̂, r) with
r = 2. An upper bound of the Lipschitz constant of f (x) on B(x̂, r) is
estimated as lf = 3.28. Then the design parameters are estimated
as σ > 9.99 and µ > 6.56 respectively. Let ϵ = 10−5, σ = 10
and µ = 7 in the simulations. Fig. 5 shows that the state vector of
the neural network is convergent to the unique optimal solution
x∗

= (8/3, 7/3, 2, 2)T with 10 random initial values. Fig. 6 depicts
the simulation results of the projection neural network (Xia et al.,
Fig. 5. Transient behaviors of the state variables of neural network (4)with σ = 10
and µ = 7 in Example 3.

Fig. 6. Transient behaviors of state variables of the projection neural network from
a random initial point in Example 3.

2002; Xia &Wang, 2005) for solving this problem,which show that
the state vector is not convergent from a random initial point.

6. Dynamic portfolio optimization

In this section, the proposed neurodynamic optimization
approach is applied for dynamic portfolio optimization. First, the
objective function of portfolio optimization in a given portfolio
selection model is proven to be pseudoconvex in the feasible
region. Then the setting of initial points is discussed, which
guarantees that the recurrent neural network will yield an optimal
portfolio. Finally, simulation results are discussed and compared
based on the given portfolio selection model.

Portfolio optimization (Markowitz, 1991) is a means to
optimize a set of financial instruments held to achieve high
expected returns by spreading the risk of possible loss due to low
expected performance. A good portfolio is not just a long list of
good stocks and bonds, but also a balanced whole that provides
protections and opportunities with respect to a wide range of
contingencies.

Since Markowitz’s pioneering work of Mean-Variance (MV)
model in portfolio investment (Markovitz, 1952), many studies
have been done to enhance the model. In particular, a portfolio
model to maximize the probability that the rate of return is no less
than an expected one is proposed (e.g., see Liu, Ku, & C, 1993; Liang
& Tang, 2001; Tang, Wang, & Liang, 2002, and references therein).

Q. Liu et al. / Neural Networks 26 (2012) 99–109 107
As the market conditions vary, dynamic portfolio optimization
is both necessary and rewarding. The proposed recurrent neural
network can serve as a parallel computing mechanism for real-
time portfolio optimization.

6.1. Portfolio optimization

For n securities, suppose that the rate of return is a random
vector ξ = (ξ1, ξ2, . . . , ξn)

T with normal distribution; i.e., ξ ∼
N(a,Q). Here a = (a1, a2, . . . , an)T > 0 is the mean vector of
ξ , and Q ∈ Rn×n is the positive definite covariance matrix of ξ ,
which is usually considered as a measurement of risk. Let x =

(x1, x2, . . . , xn)T be the investment ratio vector, such that


i xi =

1. Thus, the total rate of return is η = xT ξ , η ∼ N(aT x, xTQx),
and (η − aT x)/


xTQx ∼ N(0, 1). Thus the optimization model of

portfolio investment with probability criterion is

maximize P(η ≥ r) = Φ


aT x − r

xTQx


,

subject to
n

i=1

xi = 1,

0 ≤ x ≤ 1,

(22)

where r ≥ 0 is the expected rate of return, Φ(x) =

1
√
2π

 x
−∞

exp(− t2
2)dt is the standard normal distribution function.

Since Φ(·) is monotone increasing on R, the following equivalent
optimization problem can be formulated

minimize f (x) =
r − aT x

xTQx
,

subject to
n

i=1

xi = 1,

0 ≤ x ≤ 1.

(23)

For an expected rate of return r , Φ(−f (x∗)) gives the investors
the maximum probability of the portfolio investment on current n
securities with respect to the expected rate of return r , where x∗ is
an optimal solution of problem (23).

6.2. Theoretical results

Theorem 7. If w : X → R and v : X → R are convex, then f (x) =

w(x)/v(x) is pseudoconvex on X = {x : w(x) < 0, v(x) > 0}.

Proof. By setting (x1 − x2)T∇f (x2) ≥ 0, we have

1
v(x2)


∇w(x2)−

w(x2)
v(x2)

∇v(x2)
T

(x1 − x2) ≥ 0,

where ∇(·) is the gradient of a function.
Since w and v are both convex, ∀x1, x2 ∈ X, we have w(x1) −

w(x2) ≥ (x1 − x2)T∇w(x2) and v(x1)− v(x2) ≥ (x1 − x2)T∇v(x2),
andw(x2)/v(x2) < 0. Then

0 ≤ (x1 − x2)∇w(x2)−
w(x2)
v(x2)

(x1 − x2)T∇v(x2)

≤ w(x1)− w(x2)−
w(x2)
v(x2)

(v(x1)− v(x2))

= w(x1)−
w(x2)
v(x2)

v(x1).

Since v(x1) > 0, w(x1)/v(x1) ≥ w(x2)/v(x2) follows directly
which indicates that f (x) = w(x)/v(x) is pseudoconvex on X. �

According to Theorem 7, the objective function f (x) in (23) is
pseudoconvex on X0 = {x : r − aT x < 0}.
Theorem 8. For all r < maxi ai, the state vector of neural net-
work (4) will converge to the global optimal solution of (23) for any
x0 ∈ X = {x : r − aT x < 0,


i xi = 1, 0 ≤ x ≤ 1} and sufficiently

large parameters σ and µ in the neural network (4).

Proof. First, the set X is not empty for any r < maxi ai since
the vector with the jth element of 1 and the rest 0; i.e., ej =

(01, . . . , 0j−1, 1j, 0j+1, . . . , 0n)T is a feasible state, where j is the
index of maxi ai. Thus we can always find a feasible initial
state x0.

Second, since the denominator of the objective function is
positive for all x ∈ Rn

\{0}, f (x1) < f (x2) always holds if r−aT x1 <
0 and r − aT x2 ≥ 0. As X is not empty, it is clear that the optimal
solution of problem (23) under condition r−aT x < 0 is the optimal
solution of the original problem (23).

Finally, from the theorems in Section 4, we know that for any
x0 ∈ X, the state vector of neural network (4) will remain in
the feasible region forever and converge to the optimal solution
of problem (23) under condition r − aT x < 0, which is also the
optimal solution to problem (23) as just stated. �

6.3. Simulation results

Example 4. Here, we use the proposed neural network to solve
a portfolio optimization problem. The numerical example is
generated randomly in the following steps. First, the expected rate
of return to a particular security varies over time. Thus the function
ai(t) = ri + kit + Ri sin(t/Ti + ωi) (i = 1, 2, . . . , 5) is used
to describe the mean of expected rate of return at time t , where
ki ∼ U(2× 10−4, 6× 10−4), Ri ∼ U(0.3, 1), Ti ∼ U(2, 5), andωi ∼
U(0, 2π) are all randomly generated from uniform distributions.
Fig. 7 shows the statistically expected rate of return a over a time
period.

The covariance matrix Q = Q1 + Q2 is randomly generated
and fixed over time to compare the results directly, where Q1 =

0.01UTU ≽ 0, uij ∼ U(−1, 1) are i.i.d (independent identically
distributed) variables, and Q2 = diag{R1, R2, . . . , R5}:

Q =


1.849 0.548 0.089 0.437 0.207
0.548 2.159 −0.011 −1.155 0.004
0.089 −0.011 1.697 −0.010 −0.547
0.437 −1.155 −0.010 3.252 0.372
0.207 0.004 −0.547 0.372 1.523

 .
Then, based on the statistic results of the expected return rates

and their covariance matrices, the probabilities of expected re-
turning rate are maximized based on the proposed neurodynamic
optimization model. Fig. 8 shows the transient states of the one-
layer recurrent neural network (4) for portfolio optimization. Fig. 9
shows the optimal selection scheme of the five securities over
time. The probabilities that rate of return greater or equal than
an expected value (r = 0.1) is calculated as P(ξ T x∗

≥ r) =

Φ((aT x − r)/

xTQx) and marked in dotted line with ‘+’ in the

figure.
From Figs. 7 and 9, we can see that the selection rate x∗

i of
a particular security i is higher if its expected rate of return ai
is larger and also with less fluctuation (small qii). On one hand,
though a4 ismuch larger than a3 when t > 25, its optimal selection
rate x∗

4 is still quite low since its return rate fluctuates more than
others (with larger q33). On the other hand, though a3 < a1 all
the time, x∗

3 > x∗

1 sometimes since q33 < q11. For some time
(i.e., 5 < t < 25), most of the rates of return for the securities are
not large enough (< 0.14). As a result, the probability P(ξ T x∗

≥ r)
of earnings of 10 percent more (r = 0.1) is smaller than the ones
on other time.

108 Q. Liu et al. / Neural Networks 26 (2012) 99–109
Fig. 7. Mean of expected rate of return a in Example 4.

Fig. 8. Transient states of the neural network (4) in portfolio selection in Example 4.

Figs. 10 and 11 show the optimal portfolios as well as the
possibilities P(ξ T x∗

≥ r) for r = 0.12 and r = 0.08, respectively.
By comparing Figs. 9–11, we can see that even under the same

condition (i.e., exactly the same securities), different expectations
of returning rate lead to different optimal selections. If one is more
greedy expecting higher rate of return (r), the possibility to achieve
the goal is smaller. In one words, high rate of return usually comes
along with high risk.

7. Conclusions

This paper presents a one-layer recurrent neural network with
a simple structure for solving constrained pseudoconvex optimiza-
tion problems. By properly setting two gain parameters beyond
derived lower bounds, the finite-time convergence of any equilib-
rium point of the proposed neural network to solution feasibility is
guaranteed. Furthermore, by using the Lyapunov method and dif-
ferential inclusion theory, the convergence of the neural network
to the solution optimality of pseudoconvex optimization problems
is guaranteed subject to the same condition for feasibility. In con-
trast to existing neural networks for constrained optimization, the
proposed neural network is capable of solving more general prob-
lems of pseudoconvex optimizationwith linear equality and bound
constraints. Simulation results on numerical examples are given to
illustrate the effectiveness and performance of the proposed neu-
ral network. In addition, the proposed recurrent neural network is
Fig. 9. Optimal portfolio selected by the neural network and the resulting
probability when the minimum expected rate of return r is 0.1 in Example 4.

Fig. 10. Optimal portfolio selected by the neural network and the resulting
probability when the minimum expected rate of return r is 0.12 in Example 4.

Fig. 11. Optimal portfolio selected by the neural network and the resulting
probability when the minimum expected rate of return r is 0.08 in Example 4.

shown to be useful for dynamic portfolio optimization based on a
stochastic portfolio model.

References

Aubin, J., & Cellina, A. (1984). Differential inclusions: set-valued maps and viability
theory. New York: Springer-Verlag.

Q. Liu et al. / Neural Networks 26 (2012) 99–109 109
Barbarosou, M., & Maratos, N. (2008). A nonfeasible gradient projection recurrent
neural network for equality-constrained optimization problems. IEEE Transac-
tions on Neural Networks, 19(10), 1665–1677.

Bian, W., & Xue, X. (2009). Subgradient-based neural networks for nonsmooth
nonconvex optimization problems. IEEE Transactions on Neural Networks, 20(6),
1024–1038.

Chong, E., Hui, S., & Zak, S. (1999). An analysis of a class of neural networks for
solving linear programming problems. IEEE Transactions on Automatic Control,
44(11), 1995–2006.

Clarke, F. (1983). Optimization and nonsmooth analysis. New York: Wiley.
Filippov, A. (1988). Differential equations with discontinuous right hand sides.

Mathematics and its applications (Soviet series). Boston: Kluwer Academic
Publishers.

Forti, M., Nistri, P., & Quincampoix, M. (2004). Generalized neural network for
nonsmooth nonlinear programming problems. IEEE Transactions on Circuits and
Systems-I , 51(9), 1741–1754.

Forti, M., Nistri, P., & Quincampoix, M. (2006). Convergence of neural networks
for programming problems via a nonsmooth Łojasiewicz inequality. IEEE
Transactions on Neural Networks, 17(6), 1471–1486.

Hu, X., & Wang, J. (2007b). A recurrent neural network for solving a class of general
variational inequalities. IEEE Transactions on Systems, Man and Cybernetics-B,
37(3), 528–539.

Hu, X., & Wang, J. (2007a). Design of general projection neural networks for
solving monotone linear variational inequalities and linear and quadratic
optimization problems. IEEE Transactions on Systems, Man and Cybernetics-B,
37(5), 1414–1421.

Hu, X., & Wang, J. (2006). Solving pseudomonotone variational inequalities and
pseudoconvex optimization problems using the projection neural network. IEEE
Transactions on Neural Networks, 17(6), 1487–1499.

Kennedy, M., & Chua, L. (1988). Neural networks for nonlinear programming. IEEE
Transactions on Circuits and Systems, 35(5), 554–562.

Kinderlehrer, D., & Stampacchia, G. (1982). An introduction to variational inequalities
and their applications. New York: Academic.

Liang, J., & Tang,W. (2001). Probability criterion in portfolio investmentmodel with
commission. Systems Engineering , 19(2), 5–10.

Lillo, W., Loh, M., Hui, S., & Zak, S. (1993). On solving constrained optimization
problems with neural networks: a penalty method approach. IEEE Transactions
on Neural Networks, 4(6), 931–940.

Liu, Q., & Cao, J. (2010). A recurrent neural network based on projection operator
for extended general variational inequalities. IEEE Transactions on Systems, Man
and Cybernetics-B, 40(3), 928–938.

Liu, Q., Cao, J., & Chen, G. (2010). A novel recurrent neural network with finite-time
convergence for linear programming. Neural Computation, 22(11), 2962–2978.

Liu, B., & Ku, C. (1993). Probability criterion in inventory systems. Journal of Systems
Science and Mathematical Science, 13(1), 70–75.

Liu, S., & Wang, J. (2006b). A simplified dual neural network for quadratic
programming with its kwta application. IEEE Transactions on Neural Networks,
17(6), 1500–1510.

Liu, Q., & Wang, J. (2008a). A one-layer recurrent neural network with a
discontinuous activation function for linear programming. Neural Computation,
20(5), 1366–1383.

Liu, Q., & Wang, J. (2008b). A one-layer recurrent neural network with a
discontinuous hard-limiting activation function for quadratic programming.
IEEE Transactions on Neural Networks, 19(4), 558–570.

Liu, Q., & Wang, J. (2006a). A recurrent neural network for non-smooth convex
programming subject to linear equality and bound constraints. In LNCS:
Vol. 4233. Proc. 13th Int. conference on neural information processing
(pp. 1004–1013) Springer.
Liu, Q., & Wang, J. (2009). A one-layer recurrent neural network for non-smooth
convex optimization subject to linear equality constraints. In LNCS: Vol. 5507.
Proc. 15th int. conference on neural information processing (ICONIP2008). Part II
(pp. 1003–1010). Springer.

Lu, W., & Chen, T. (2006). Dynamical behaviors of delayed neural network systems
with discontinuous activation functions. Neural Computation, 18, 683–708.

Marco, M., Forti, M., & Grazzini, M. (2006). Robustness of convergence in finite time
for linear programming neural networks. International Journal of Circuit Theory
and Applications, 34(3), 307–316.

Markovitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.
Markowitz, H. (1991). Portfolio selection: efficient diversification of investments.

Cambridge, MA: B. Blackwell.
Olsson, C., Eriksson, A., & Kahl, F. (2007). Efficient optimization for l∞-problems

using pseudoconvexity. In Proc. IEEE international conference on computer vision
(pp. 1–8).

Penot, J., & Quang, P. (1997). Generalized convexity of functions and generalized
monotonicity of set-valued maps. Journal of Optimization Theory and Applica-
tions, 92(2), 343–356.

Tang, W., Wang, Y., & Liang, J. (2002). Fractional programming model for portfolio
with probability criterion. In Proc. IEEE international conference on systems, man
and cybernetics (pp. 516–519). Vol. 6.

Tank, D., & Hopfield, J. (1986). Simple neural optimization networks: An A/D
converter, signal decision circuit, and a linear programming circuit. IEEE
Transactions on Circuits and Systems, 33(5), 533–541.

Wang, J. (1993). Analysis and design of a recurrent neural network for linear
programming. IEEE Transactions on Circuits and Systems-I , 40(9), 613–618.

Wang, J. (1994). A deterministic annealing neural network for convex programming.
Neural Networks, 7(4), 629–641.

Wang, J. (1997). Primal and dual assignment networks. IEEE Transactions on Neural
Networks, 8(3), 784–790.

Wang, J. (1998). Primal and dual neural networks for shortest-path routing. IEEE
Transactions on Systems, Man, and Cybernetics-A, 28(6), 864–869.

Xia, Y. (2003). Global convergence analysis of Lagrangian networks. IEEE
Transactions on Circuits and Systems-I , 50(6), 818–822.

Xia, Y. (1996). A new neural network for solving linear and quadratic programming
problems. IEEE Transactions on Neural Networks, 7(6), 1544–1548.

Xia, Y., Feng, G., & Wang, J. (2004). A recurrent neural network with exponential
convergence for solving convex quadratic program and related linear piecewise
equations. Neural Networks, 17(7), 1003–1015.

Xia, Y., H, Leung, & J, Wang (2002). A projection neural network and its application
to constrained optimization problems. IEEE Transactions Circuits and Systems-I ,
49(4), 447–458.

Xia, Y., & Wang, J. (2004b). A recurrent neural network for nonlinear convex
optimization subject to nonlinear inequality constraints. IEEE Transactions on
Circuits and Systems-I , 51(7), 1385–1394.

Xia, Y., & Wang, J. (2004a). A one-layer recurrent neural network for support vector
machine learning. IEEE Transactions on Systems, Man and Cybernetics-B, 34(2),
1261–1269.

Xia, Y., & Wang, J. (2005). A recurrent neural network for solving nonlinear convex
programs subject to linear constraints. IEEE Transactions on Neural Networks,
16(2), 379–386.

Xue, X., & Bian, W. (2008). Subgradient-based neural networks for nonsmooth
convex optimization problems. IEEE Transactions on Circuits and Systems-I ,
55(8), 2378–2391.

Zhang, S., & Constantinides, A. (1992). Lagrange programming neural networks. IEEE
Transactions on Circuits and Systems-II , 39(7), 441–452.

	A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization
	Introduction
	Preliminaries
	Nonsmooth analysis
	Normal cone
	Pseudoconvex and pseudomonotone

	Problem formulation and model description
	Theoretical analysis
	Boundedness of the state vector x (t)
	Finite-time convergence to C
	Finite-time convergence to S
	Optimality analysis
	Convergence analysis
	Further results on finite-time convergence

	Illustrative examples
	Dynamic portfolio optimization
	Portfolio optimization
	Theoretical results
	Simulation results

	Conclusions
	References

