
Information and Computation 281 (2021) 104743
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Narrowing the speedup factor gap of partitioned EDF

Xingwu Liu a, Xin Han b,∗, Liang Zhao c, Zhishan Guo d,∗
a School of Mathematical Sciences, Dalian University of Technology, China SKL Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
b Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Software School, Dalian University of Technology, Dalian,
China
c Software School, Dalian University of Technology, Dalian, China
d Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32766, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 November 2020
Accepted 17 March 2021
Available online 26 March 2021

Keywords:
Real-time sporadic tasks
Resource augmentation bound
Partitioned scheduling
Approximate demand bound function

Schedulability is a fundamental problem in analyzing real-time systems, but it often has
to be approximated because of the intrinsic computational hardness. Partitioned earliest
deadline first (EDF) is one of the most popular polynomial-time and practical scheduler on
multiprocessor platforms, and it was shown to have a speedup factor of at most 2.6322 −
1/m. This paper further improves the factor to 2.5556 − 1/m for both the constrained-
deadline case and the arbitrary-deadline case, and it is very close to the known (non-
tight) lower bound of 2.5 − 1/m. The key ideas are that we develop a novel method to
discretize and regularize sporadic task sets that are schedulable on uniprocessors, and we
find that the ratio (ρ) of the approximate demand bound value to the machine capacity is
upper-bounded by 1.5556 for the arbitrary-deadline case, which plays an important role in
estimating the speed factor of partitioned EDF.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Scheduling plays a fundamental role in real-time systems. Basically, given a finite set of tasks, each sequentially releasing
infinitely many jobs, the mission of real-time scheduling is to allocate computing resources so that all the jobs are done
in a timely manner. Formally, a schedule defines at each time instant which jobs receive the required computing resources
(while others must wait). The fundamental question of schedulability naturally arises: is it possible at all to successfully
schedule these tasks so as to meet all the deadlines?

Unfortunately, answering this question is often not “easy”; for example, the schedulability of a set of constrained-
deadline1 sporadic tasks, which is the focus of this article, is co-NP-hard even on a uniprocessor platform [2]. For the
multiprocessor case, it remains NP-hard for partitioned scheduling, even for implicit-deadline task sets, where the relative
deadline of each task equals its period [3]. Here partitioned scheduling means that once a task is assigned to a processor, all
the jobs released by the task will be scheduled on the dedicated processor. These hardness results imply that it is impossible
to exactly decide schedulability in polynomial time, unless P=NP.

* Corresponding authors.
E-mail addresses: hanxin@dlut.edu.cn (X. Han), zsguo@ucf.edu (Z. Guo).

1 A set of tasks is said to be a constrained-deadline task set if the relative deadline of each task is at most its period (otherwise it is a arbitrary-deadline
task set).
https://doi.org/10.1016/j.ic.2021.104743
0890-5401/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2021.104743
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2021.104743&domain=pdf
mailto:hanxin@dlut.edu.cn
mailto:zsguo@ucf.edu
https://doi.org/10.1016/j.ic.2021.104743

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
Because of the hardness, real-time schedulability problems are usually solved approximately by pessimistic algorithms
that always answer “no” unless some sufficient conditions for schedulability are met. To evaluate the performance of such
an approximate algorithm (say, A), the concept of the speedup factor, also known as the resource augmentation bound,
has been proposed. Specifically, algorithm A has a speedup factor of s ≥ 1 if whenever a set of tasks is schedulable (by an
optimal approach) on a platform with speed 1, A will return “yes” when the speed of the platform is increased to s. Despite
some recent discussion on potential pitfalls [4–6], the speedup factor has been a major metric and standard theoretical tool
for assessing scheduling algorithms since the seminal work of Kalyanasundaram and Pruhs [7] in 2000.

Recent years have witnessed impressive progress in finding scheduling algorithms with low speedup factors. For preemp-
tive scheduling (i.e., running jobs might be interrupted by emergent ones), global EDF has a speedup factor of 2 − 1/m [8]
for scheduling tasks on m identical processors, and there is a polynomial-time algorithm for uniprocessors whose speedup
factor is 1 + ε [9], where ε > 0 is arbitrarily small. For nonpreemptive scheduling, there are also a variety of results [10,11].
In addition to the speedup factor, there are several articles concerning the utilization bound [12–14].

Although the speedup factor on uniprocessors is already known to be tight, the multiprocessor case remains open. Among
all schedulers, partitioned scheduling is of particular interest because of its implementation friendliness, simplicity, and
capability of extending most uniprocessor results to the multiprocessor scenario directly under naive “partition” heuristics;
i.e., once the task-to-core mapping is fixed, the scheduling in the multiprocessor case is reduced to multiple uniprocessor
scheduling problems, where classical solutions exist. Since EDF is an optimal preemptive scheduler on a uniprocessor, this
article focuses on partitioned EDF.2 Note that partitioned-deadline-monotonic [15] is also commonly implemented, with a
best known speedup factor of 2.8431, while global EDF is not a partitioned paradigm.

A breakthrough in partitioned EDF was made in 2005, when Baruah and Fisher [16] established an upper bound of
3 − 1/m for the speedup factor on constrained-deadline task sets and an upper bound of 4 − 2/m for the speedup factor
on arbitrary-deadline task sets, where m is the number of identical processors. In 2011, Chen and Chakraborty [1] further
improved the speedup factor to 2.6322 − 1/m for the constrained-deadline case and to 3 − 1/m for the arbitrary-deadline
case. Also, they established an asymptotical lower bound of 2.5 for the speedup factor for the constrained-deadline case.
Since then, the speedup factor bounds have never been improved.

Deriving the upper bound of the speedup factor of partitioned EDF relies heavily on a quantity ρ concerning scheduling
on uniprocessors. The quantity ρ , called the relaxation factor in this article and formally defined in formula (1) in Section 2,
roughly indicates how much the approximate demand bound function (defined in Section 2) deviates from the machine
capacity. Baruah and Fisher [16] bridged the relaxation factor and the speedup factor of partitioned EDF by showing that in
the case of constrained deadlines, the speedup factor is at most 1 +ρ −1/m. As a result, upper-bounding the speedup factor
is reduced to upper-bounding of ρ , and it is in this manner that both Baruah and Fisher [16] and Chen and Chakraborty [1]
obtained their estimates of the speedup factor. Hence, the relaxation factor itself deserves deep investigation. Baruah and
Fisher [16] upper-bounded it by 2, and Chen and Chakraborty [1] narrowed its range to [1.5, 1.6322].

On this ground, we explore a better upper bound of the relaxation factor, and on this basis provide a better estimate of
the speedup factor of partitioned EDF for sets of constrained-deadline sporadic tasks. The contributions are summarized as
follows:

1. We improve the best existing upper bound of the relaxation factor from 1.6322 to 1.5556 (Theorem 1), which is very
close to the lower bound of 1.5 for the uniprocessor case. The result holds for both constrained-deadline tasks and
arbitrary-deadline tasks. Accordingly, the speedup factor of partitioned EDF for constrained-deadline tasks decreases
from 2.632 − 1/m to 2.5556 − 1/m (Theorem 2) for the multiprocessor case.

2. We identify a lossless way to discretize and regularize the tasks. As a result, the execution times of the tasks of interest
can be fixed to be 1 and the deadlines can be fixed to be 1, 2, . . . , n, where n is number of tasks to be scheduled
(Lemmas 3, 7, and 8). The only parameter that varies is the period. The transformation is lossless in the sense that the
relaxation factor does not change although the parameters are extremely simplified.

3. We invent a method to further transform the tasks so that the period of each task ranges over integers between 1 and
2n (Lemma 9). Although this transformation is not guaranteed to be lossless, the loss, if any, is negligible since we prove
that the relaxation factor increases by at most 0.0556 (for both constrained-deadline task sets and arbitrary-deadline
task sets). These transformation techniques may be further applied to real-time scheduling analysis or other problems.

The rest of this article is organized as follows. Section 2 presents the model and preliminaries. Section 3 focuses on the
uniprocessor case, and in it we derive a new upper bound (14/9) of the relaxation factor. Section 4 provides a new upper
bound (23/9 − 1/m) of the speedup factor for partitioned EDF. Finally, Section 5 concludes the article and provides some
potential future directions.

2 In partitioned EDF, each task is assigned one and only one processor for the execution of all the jobs this task releases, while on each processor the
jobs are executed according to the earliest-deadline-first priority rule.
2

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
2. System model and preliminaries

We consider a finite set τ of sporadic tasks. Each task τi can be represented by a triple τi = (ei, di, pi), where ei is the
worst-case execution time, di is its relative deadline, and pi is the minimum interarrival separation length (also known as
the period). Such a task releases infinitely many jobs, each of which has an execution time of at most ei and has to be
finished within time di after arrival, while the interarrival time of consecutive jobs is at least pi . The task τi is said to be a
constrained-deadline task if di ≤ pi , and an arbitrary-deadline task if no restriction is set between di and pi . When di > pi , a
job cannot start its execution until its predecessor (released by the same task one period ahead) finishes its execution.

We follow the widely adopted identical multiprocessor model, which consists of m ≥ 1 processors of speed s (unless
explicitly mentioned, s = 1 by default). For any task (e, d, p), its jobs can be executed on any of the processors, and the
execution of any job takes at most e

s time units. The aim of schedulability testing is to decide weather a set of sporadic
tasks is schedulable on a platform. Here schedulable means that there exists a schedule for the set of tasks such that each
job can cumulatively receive enough execution time between its release and its deadline.

Given a set of tasks, a schedulability test is a set of conditions to check—it returns success when all the deadlines can
be guaranteed to be met. A schedulability test has a speedup factor (also known as a resource augmentation factor) of s
(≥ 1) if any task set that is schedulable on a unit-speed platform will successfully pass this test on a platform with speed s.
Informally, the speedup factor measures how “far away” a given schedulability test is from an optimal one—it reflects
the effectiveness of a schedulability test. A smaller speedup factor indicates a better schedulability test, while a speedup
factor of 1 indicates an optimal test. Our objective is to estimate the speedup factor of partitioned EDF on multiprocessor
platforms.

Before continuing, we introduce some notation. Given a task τi , the demand bound function dbf (τi, t) [17] and its
approximation dbf ∗(τi, t) [9] are defined to be

dbf (τi, t) =
{

0 if t < di,(⌊
t−di

pi

⌋
+ 1

)
· ei otherwise,

dbf ∗(τi, t) =
{

0 if t < di,(
t−di

pi
+ 1

)
· ei otherwise.

Roughly speaking, dbf (τi, t) represents the total workload of task τi that has to be finished by time t , and dbf ∗ is a linear
approximation of dbf .

These functions can be extended to task sets. For any set τ of tasks, we define

dbf (τ , t) =
∑
τi∈τ

dbf (τi, t), dbf ∗(τ , t) =
∑
τi∈τ

dbf ∗(τi, t).

It is well known that the demand bound function fully determines the schedulability on uniprocessors, according to the
following lemma.

Lemma 1 ([17]). A set τ of tasks is schedulable on uniprocessors if and only if dbf (τ , t) ≤ t for any t ≥ 0.

We are now ready to define the relaxation factor ρ , which plays a critical role in fulfilling our objective in this article:

ρ = sup
τ∈�

dbf ∗(τ ,d)

d
, (1)

where � is the family of sporadic task sets that are schedulable on uniprocessors, and d is the largest relative deadline in
τ . Roughly speaking, ρ approximately stands for the growth rate of the demand over [0, d) of schedulable task sets. Such a
growth rate will have larger values at some deadline points, and thus elaboration of all the deadlines (d) will suffice.

We will see that the relaxation factor ρ is the optimum value of the following mathematical program M P0:

sup
dbf ∗(τ ,dn)

dn
(M P0) (2)

subject to dbf (τ , t) ≤ t, ∀t > 0, (3)

di + pi > dn, 1 ≤ i ≤ n − 1, (4)

d1 ≤ d2 ≤ · · · ≤ dn, (5)

n ∈Z+, ei,di, pi ∈R+, 1 ≤ i ≤ n, (6)

where Z+ is the set of positive integers, while R+ stands for the set of positive real numbers (the superscript + in this
article excludes 0). Condition (3) means τ is schedulable because of Lemma 1, and condition (4) means each task releases
exactly one job during the period [0, dn).
3

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
Fig. 1. Illustration of the task transformation in Lemma 2.

Fig. 2. The flow of the proofs in Section 3. The constraints are added incrementally, so each box presents only the new constraint. The overall constraints
in each box are formulated into a mathematical program whose name M P∗ is given at the lower-right corner of the box.

Lemma 2. The relaxation factor is the optimum value of M P0.

Proof. Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} be an arbitrary set of sporadic tasks that is schedulable on a uniprocessor with
speed 1. Assume that d1 ≤ d2 ≤ · · · ≤ dn . Apply the transformation proposed in [1]:

e′
i =

(⌊
dn − di

pi

⌋
+ 1

)
· ei, (7)

p′
i =

(⌊
dn − di

pi

⌋
+ 1

)
· pi, (8)

d′
i =

(⌊
dn − di

pi

⌋)
· pi + di . (9)

Let τ ′ = {τ ′
1, τ

′
2, . . . , τ

′
n}, with τ ′

i = (e′
i, d

′
i, p

′
i) for any 1 ≤ i ≤ n. The transformation is illustrated in Fig. 1. The underlying

idea is to increase the values of the parameters ei , di , and pi such that each task releases exactly one job before dn while
the system is as busy as before.

It was proven in [1] that the following results hold simultaneously:

1. dbf ∗(τ , t) = dbf ∗(τ ′, t) for any t ≥ dn .
2. dbf (τ , t) ≥ dbf (τ ′, t) for t > 0.
3. d′

n < d′
i + p′

i for 1 ≤ i ≤ n.
4. d′

n = dn .

This immediately leads to our lemma. �
3. Improved upper bound of the relaxation factor

To estimate the speedup factor for multiprocessor partitioned scheduling, we first analyze the relaxation factor and
hence focus on uniprocessors. The main result of this section is Theorem 1, which establishes 14/9 as an upper bound of
the relaxation factor for sporadic tasks.
4

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
The basic idea of our proof is to discretize any given task set into a regular form, thus reducing the problem to an
optimization one on bounded integers with several constraints (M P4). Roughly speaking, Lemma 3 ensures that the opti-
mum value remains ρ if the parameters of the tasks are restricted to be rational numbers. Lemma 7 claims that further
requiring di = ei + di−1 for all i keeps the optimum value unchanged. The trend continues in Lemma 8 even if all the tasks
are required to have the same worst-case execution time. Finally, Lemma 9 enables us to consider only tasks with bounded
periods. These transformations reduce the estimation of ρ to a simpler optimization problem that is solved approximately
in Lemma 11. These results immediately lead to Theorem 1. The overall proof flow is illustrated in Fig. 2.

3.1. Rationalizing the parameters

We first observe that the optimum value of M P0 remains unchanged even if the domain R+ is replaced by Q+ , the set
of positive rational numbers.

sup
dbf ∗(τ ,dn)

dn
(M P1) (10)

subject to dbf (τ , t) ≤ t, ∀t > 0, (11)

di + pi > dn, 1 ≤ i ≤ n − 1, (12)

d1 ≤ d2 ≤ · · · ≤ dn, (13)

n ∈Z+, ei,di, pi ∈Q+, 1 ≤ i ≤ n. (14)

Lemma 3. M P0 and M P1 have the same optimum value.

Proof. The lemma immediately holds if the following two claims are true:

1. The objective functions of M P0 and M P1 are the same and continuous.
2. The domain of M P1 is a dense subset of that of M P0. Dense means that for any ε > 0 and any feasible solution

τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} to M P0, there is a feasible solution τ ′ = {τ ′
i = (e′

i, d
′
i, p

′
i) : 1 ≤ i ≤ n} to M P1 such that

for any 1 ≤ i ≤ n,

|e′
i − ei | < ε, |d′

i − di | < ε, |p′
i − pi| < ε. (15)

It suffices to prove claim 2 since claim 1 obviously holds.
Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} be an arbitrary set of tasks that is a feasible solution to M P0, and let ε be an arbitrary

positive real number. Without loss of generality, assume that ε < min1≤i≤n ei . For any 1 ≤ i ≤ n, arbitrarily choose

p′
i ∈

(
pi + ε

2
, pi + ε

)
∩Q+,

d′
i ∈

(
di + (i − 1)ε

2n
,di + iε

2n

)
∩Q+,

e′
i ∈ (ei − ε, ei) ∩Q+.

Obviously, we have p′
i > pi, d′

i > di, e′
i < ei . Let τ ′ denote the set of tasks {τ ′

i = (e′
i, d

′
i, p

′
i) : 1 ≤ i ≤ n}.

We now show that τ ′ is a feasible solution to M P1. Since τ ′ meets conditions (14) and (15) by definition, it is enough
to check conditions (11)–(13).

To continue, arbitrarily fix an integer 1 ≤ i ≤ n.
Observe that

d′
i > di + (i − 1)ε

2n
≥ di−1 + (i − 1)ε

2n
> d′

i−1.

Hence, τ ′ satisfies condition (13) of M P1.
5

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
Fig. 3. Illustration of the proof of Lemma 4.

The task set τ ′ satisfies condition (12) because

d′
i + p′

i > di + (i − 1)ε

2n
+ pi + ε

2

≥ di + pi + ε

2

> dn + ε

2
(since τ satisfies condition (4))

> d′
n.

Regarding condition (11), arbitrarily fix t > 0. When t < d′
i , we have

dbf (τ ′
i , t) = 0 ≤ dbf (τi, t).

When t ≥ d′
i , because p′

i > pi, d′
i > di, e′

i < ei , we have

dbf (τ ′
i , t) =

(⌊
t − d′

i

p′
i

⌋
+ 1

)
· e′

i

<

(⌊
t − di

pi

⌋
+ 1

)
· ei = dbf (τi, t).

As a result, we always have dbf (τ ′, t) ≤ dbf (τ , t). Since dbf (τ , t) ≤ t by condition (3), we also have dbf (τ ′, t) ≤ t , so τ ′
satisfies condition (11).

Altogether, τ ′ is a feasible solution to M P1. �
3.2. Tightening the deadlines

Hereafter, let d0 = d′
0 = 0. The objective of this subsection is to prove that the optimum value of M P1 remains unchanged

even if the deadlines are tight. Here “tightness” requires that di = di−1 + ei for all 1 ≤ i ≤ n, intuitively meaning that the
system remains busy in the early phase. The proof consists mainly of two steps: Lemma 5 justifies tightening the first n − 1
deadlines, while Lemma 6 enables us to handle the last deadline. This immediately leads to the equivalence between M P1

and the following mathematical program:

sup
dbf ∗(τ ,dn)

dn
(M P2) (16)

subject to dbf (τ , t) ≤ t, ∀t > 0, (17)

di + pi > dn, 1 ≤ i ≤ n − 1, (18)

di = ei + di−1, 1 ≤ i ≤ n, (19)

n ∈Z+, ei,di, pi ∈Q+, 1 ≤ i ≤ n. (20)

We now present a technical lemma that will be frequently used.

Lemma 4. Suppose d, p, d′, p′ ∈R+ are such that d + p = d′ + p′ and d > d′ . For any real number t,

t − d′

p′ >
t − d

p

if and only if t < d + p.
6

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
Fig. 4. Task transformation in Lemma 5.

Fig. 5. (a) τ ′ remains feasible. (b) The objective value of τ ′ is at least that of τ .

Proof. The basic idea is illustrated in Fig. 3. Let δ = d − d′ = p′ − p.
Then

t − d′

p′ >
t − d

p
⇔p · (t − d′) > p′ · (t − d)

⇔p · (t − d + δ) > (p + δ) · (t − d)

⇔p · δ > δ · (t − d)

⇔p > t − d. �
The following definition M(τ) will be used in Lemmas 5 and 6. For any feasible solution τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n}

to M P1, let S(τ) = {i : 1 ≤ i ≤ n, di
= ei + di−1}. Define

M(τ) =
{

n − min S(τ) if S(τ)
= ∅
−1 otherwise.

We further prove a property of M P1.

Lemma 5. For any feasible solution τ to M P1 with M(τ) ≥ 1, there is another feasible solution τ ′ to M P1 such that M(τ ′) < M(τ)

and dbf ∗(τ ′,d′)
d′ ≥ dbf ∗(τ ,d)

d , where d and d′ are the maximum relative deadlines in τ and τ ′ , respectively.

Proof. Arbitrarily fix a feasible solution τ to M P1 with M(τ) ≥ 1. Suppose τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n}. Let k = n −
M(τ) = min S(τ) < n.

Basically, we will modify dk to be ek + dk−1, and prove that the new task set remains feasible and that the objective
value does not decrease. Figs. 4 and 5 demonstrate such a transformation and relationship.

Specifically, by the definition of k, we have dk
= ek + dk−1, di = ei + di−1 for all i < k, and

k−1∑
i=1

ei = dk−1. (21)

Since dk ≥ di for any i < k, we have

k∑
i=1

ei ≤
k∑

i=1

dbf (τi,dk) (by the definition of dbf)

≤ dbf (τ ,dk) ≤ dk,

where the last inequality holds because τ satisfies condition (11). This, together with formula (21), leads to ek ≤ dk − dk−1.
By the assumption that ek
= dk − dk−1, we get

ek < dk − dk−1. (22)

Construct τ ′ = {τ ′
i = (e′

i, d
′
i, p

′
i) : 1 ≤ i ≤ n}, where

d′ = di, p′ = pi, e′ = ei for any i
= k
i i i

7

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
and

e′
k = ek,d′

k = dk−1 + ek, p′
k = dk + pk − d′

k.

By formula (22), d′
k < dk . By definition, d′

i = e′
i + d′

i−1 for all i ≤ k, so

M(τ ′) ≤ n − (k + 1) < n − k = M(τ).

We now prove that τ ′ is a feasible solution to M P1.
First of all, τ ′ satisfies condition (14) by definition.
Then, note that τ ′

i = τi for any i
= k. Since τ satisfies condition (12), τ ′ satisfies condition (12) for i
= k. Furthermore,

p′
k + d′

k = dk + pk (by the definition of p′
k)

> dn (because τ satisfies condition (12))

= d′
n (by the definition of d′

n),

so τ ′ also satisfies condition (12) for i = k. Likewise, considering that d′
i = di for i
= k and dk−1 < d′

k < dk ≤ dk+1, τ ′ satisfies
condition (13) because so does τ .

To show that condition (11) is satisfied by τ ′ , we arbitrarily choose t > 0 and proceed case by case.
Case 1: if t < d′

k . Then

dbf (τ ′, t) =
∑

1≤i≤n

dbf (τ ′
i , t)

=
∑

1≤i<k

dbf (τ ′
i , t) (because t < d′

j for j ≥ k)

=
∑

1≤i<k

dbf (τi, t) (because τ ′
i = τi for i < k)

≤ dbf (τ , t)

≤ t (because τ satisfies condition (11)).

Case 2: if d′
k ≤ t < dk . Then

dbf (τ ′, t) =
∑

1≤i≤n

dbf (τ ′
i , t)

=
∑

1≤i≤k

(⌊
t − d′

i

p′
i

⌋
+ 1

)
· e′

i

=
∑

1≤i≤k

e′
i (because d′

i + p′
i > d′

n = dn ≥ dk > t for any i)

=
∑

1≤i≤k

ei = d′
k ≤ t.

Case 3: if dk ≤ t < d′
k + p′

k . Then

dbf (τ ′
k, t) =

(⌊
t − d′

k

p′
k

⌋
+ 1

)
· ek

= ek (because d′
k < dk ≤ t < d′

k + p′
k)

=
(⌊

t − dk

pk

⌋
+ 1

)
· ek,

where the last equality is due to dk ≤ t < d′
k + p′

k = dk + pk .
For any i
= k, dbf (τ ′

i , t) = dbf (τi, t) since τ ′
i = τi .

As a result, dbf (τ ′, t) = dbf (τ , t) ≤ t because τ satisfies condition (11).
Case 4: if t ≥ d′

k + p′
k . Because

d′
k < dk and p′

k + d′
k = dk + pk,

by Lemma 4, we have
8

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
t − d′
k

p′
k

≤ t − dk

pk
.

Then

dbf (τ ′, t) =
∑

1≤i≤n

dbf (τ ′
i , t)

=
∑
i
=k

dbf (τ ′
i , t) +

(⌊
t − d′

k

p′
k

⌋
+ 1

)
· ek

≤
∑
i
=k

dbf (τ ′
i , t) +

(⌊
t − dk

pk

⌋
+ 1

)
· ek

=
∑
i
=k

dbf (τi, t) + dbf (τk, t) (since τ ′
i = τi for i
= k)

= dbf (τ , t) ≤ t (since τ satisfies condition (11)).

Altogether, τ ′ satisfies condition (11), so it is a feasible solution to M P1.
Finally, we show that

dbf ∗(τ ,dn)

dn
≤ dbf ∗(τ ′,d′

n)

d′
n

.

Since k < n, we have d′
n = dn , so it suffices to show dbf ∗(τ , dn) ≤ dbf ∗(τ ′, d′

n).
By the definition of τ ′ , for any i
= k,

dbf ∗(τi,dn) = dbf ∗(τ ′
i ,d′

n).

Furthermore, note three facts:

1. p′
k + d′

k = dk + pk .
2. d′

k < dk .
3. dn < dk + pk because of condition (12).

By Lemma 4, these facts mean

dn − dk

pk
<

d′
n − d′

k

p′
k

,

and then

dbf ∗(τk,dn) = (
dn − dk

pk
+ 1)ek ≤ (

d′
n − d′

k

p′
k

+ 1)ek = dbf ∗(τ ′
k,dn).

As a result, dbf ∗(τ , dn) ≤ dbf ∗(τ ′, d′
n). �

When M(τ) = 0, i.e., di = ei + di−1 for all i < n, and dn > en + dn−1, the proof above does not work. Hence, we need the
following lemma, which plays a key role in proving Lemma 7.

Lemma 6. For any feasible solution τ to M P1 with M(τ) = 0, there is a feasible solution τ ′ to M P2 such that dbf ∗(τ ′,d′)
d′ ≥ dbf ∗(τ ,d)

d ,
where d and d′ are the maximum relative deadlines in τ and τ ′ , respectively.

Proof. Arbitrarily fix a feasible solution τ to M P1 with M(τ) = 0. We prove the lemma by induction on |τ |, the number of
tasks in τ .

Base: |τ | = 1. τ consists of one task (e, d, p). By straightforward calculation, dbf (τ , d) = dbf ∗(τ , d) = e. Applying condi-
tion (11) with t = d, we have dbf (τ , d) ≤ d, so dbf ∗(τ ,d)

d ≤ 1. Consider the singleton task set τ ′ = {(d, d, d)}. It is a solution
to M P2, and dbf ∗(τ ′,d)

d = 1 ≥ dbf ∗(τ ,d)
d . Hence τ ′ satisfies the requirement.

Hypothesis: The lemma holds when |τ | < n.
Induction: Suppose |τ | = n. Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n}. Since M(τ) = 0, we have dn
= en + dn−1 and

d j = e j + d j−1, for 1 ≤ j ≤ n − 1. (23)
9

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
Like inequality (22) in the proof of Lemma 5, we also have dn > en + dn−1.
Basically, we increase en to be dn − dn−1, but this might overload the system. For adjustment, we accordingly offload the

task τi whose job arrives earliest after time dn , and modify the period pn to be sufficiently large.
Formally, let i = arg min1≤ j≤n d j + p j . There are three cases.
Case 1: i < n and dn − dn−1 − en < ei . Let θ = dn − dn−1 − en . Note that θ > 0 since dn > en + dn−1. We construct a new

task set τ ′ = {τ ′
j = (e′

j, d
′
j, p

′
j) : 1 ≤ j ≤ n} as follows:

• e′
n = en + 2θ, d′

n = dn, p′
n =

⌈
2e′

n
en

⌉
pn .

• e′
i = ei − θ, d′

i = di − θ, p′
i = pi + θ .

• For i < j < n, e′
j = e j, d′

j = d j − θ, p′
j = p j + θ .

• For j < i, τ ′
j = τ j .

We now show that τ ′ is a feasible solution to M P2. Since conditions (18)–(20) hold by definition, we prove that τ ′ satisfies
condition (17) for any t > 0:

1. Suppose t < dn . Let 0 ≤ k < n be such that d′
k ≤ t < d′

k+1. Then

dbf (τ ′, t) =
k∑

j=1

e′
j (since τ ′ satisfies condition (18))

= d′
k (since τ ′ satisfies condition (19))

≤ t (by the definition of k).

2. Suppose dn ≤ t < di + pi . We have dbf (τ ′, t) = ∑n
j=1 e′

j = dn ≤ t .
3. Consider t ≥ di + pi . We first prove that dbf (τi, t) decreases at by least 2θ , and then dbf (τn, t) increases by at most 2θ ,

and for any other j the value of dbf (τ j, t) does not increase.
First,

dbf (τ ′
i , t) =

(⌊
t − d′

i

p′
i

⌋
+ 1

)
· e′

i

≤
(⌊

t − di

pi

⌋
+ 1

)
· e′

i (by Lemma 4)

=
(⌊

t − di

pi

⌋
+ 1

)
· (ei − θ)

≤ dbf (τi, t) − 2θ.

Then, when t < p′
n + dn , dbf (τ ′

n, t) = e′
n = en + 2θ ≤ dbf (τn, t) + 2θ . When t ≥ p′

n + dn , let k ≥ 1 be the integer such that
kp′

n + dn ≤ t < (k + 1)p′
n + dn , and we have

dbf (τ ′
n, t) =(k + 1)e′

n

≤2ke′
n

≤
(

k

⌈
2e′

n

en

⌉
+ 1

)
· en

=dbf (τn,kp′
n + dn)

≤dbf (τn, t)

<dbf (τn, t) + 2θ.

Finally, for any j /∈ {i, n}, dbf (τ ′
j, t) ≤ dbf (τ j, t) for two reasons. On the one hand, when t < d j + p j , dbf (τ ′

j, t) = e′
j =

e j = dbf (τ j, t). On the other hand, when t ≥ d j + p j , by Lemma 4,
t−d′

j

p′
j

≤ t−d j
p j

, which means

dbf (τ ′
j, t) =

(⌊
t − d′

j

p′
j

⌋
+ 1

)
· e′

j

≤
(⌊

t − d j

p

⌋
+ 1

)
· e j
j

10

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
=dbf (τ j, t).

As a result, dbf (τ ′, t) = ∑n
j=1 dbf (τ ′

j, t) ≤
∑n

j=1 dbf (τ j, t) = dbf (τ , t). Hence, dbf (τ ′, t) ≤ t because τ is a feasible solu-
tion to M P1.

Altogether, we have proven that τ ′ satisfies condition (17).

Next we prove dbf ∗(τ ′,d′
n)

d′
n

≥ dbf ∗(τ ,dn)
dn

. Since d′
n = dn , it is equivalent to show dbf ∗(τ ′, dn) ≥ dbf ∗(τ , dn). This follows from

• dbf ∗(τ ′
n, dn) − dbf ∗(τn, dn) = e′

n − en = 2θ ;
• dbf ∗(τ ′

i , dn) − dbf ∗(τi, dn) ≥ −2θ because

dbf ∗(τ ′
i ,dn) =

(
dn − d′

i

p′
i

+ 1

)
· e′

i

≥
(

dn − di

pi
+ 1

)
· (ei − θ) (by Lemma 4)

=dbf ∗(τi,dn) −
(

dn − di

pi
+ 1

)
θ

≥dbf ∗(τi,dn) − 2θ;
• for i < j < n, dbf ∗(τ ′

j, dn) ≥ dbf ∗(τ j, dn) because

dbf ∗(τ ′
j,dn) =

(
dn − d′

j

p′
j

+ 1

)
· e′

j

≥
(

dn − d j

p j
+ 1

)
· e j (by Lemma 4)

=dbf ∗(τ j,dn);
• for j < i, dbf ∗(τ ′

j, dn) − dbf ∗(τ j, dn) = 0 since τ ′
j = τ j .

Hence, the proof of case 1 is finished.
Case 2: i < n and dn − dn−1 − en ≥ ei . Let θ = ei . We construct a new task set τ ′ = {τ ′

j = (e′
j, d

′
j, p

′
j) : 1 ≤ j ≤ n − 1} as

follows:

• e′
n−1 = en + 2θ, d′

n−1 = dn, p′
n−1 =

⌈
2e′

n−1
en

⌉
pn .

• For i ≤ j ≤ (n − 2), e′
j = e j+1, d′

j = d j+1 − θ, p′
j = p j+1 + θ .

• For j < i, τ ′
j = τ j .

Next we prove that τ ′ is a feasible solution to M P1. Since conditions (12)–(14) hold by definition, we prove that condition
(11) holds for any t > 0:

1. Suppose t < dn . Let 0 ≤ k < (n − 1) be such that d′
k ≤ t < d′

k+1. If k < i, then we have dbf (τ ′, t) = ∑k
j=1 e j = dk = d′

k ≤ t .
Otherwise

dbf (τ ′, t) =
k∑

j=1

e′
j (since τ ′ satisfies condition (12))

=
i−1∑
j=1

e j +
k+1∑

j=i+1

e j = dk+1 − ei

= dk+1 − θ = d′
k (by the definition of τ ′)

≤ t (by the definition of k).

2. Suppose dn ≤ t < di + pi . We have dbf (τ ′, t) = ∑n−1
j=1 e′

j ≤ dn ≤ t .
3. Consider t ≥ di + pi . First of all, we have dbf (τi, t) ≥ 2ei = 2θ .

Then, when t < p′
n−1 + dn , dbf (τ ′

n−1, t) = e′
n−1 = en + 2θ ≤ dbf (τn, t) + 2θ . When t ≥ p′

n−1 + dn , let k ≥ 1 be the integer
such that kp′ + dn ≤ t < (k + 1)p′ + dn , and we have
n−1 n−1

11

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
dbf (τ ′
n−1, t) =(k + 1)e′

n−1

≤2ke′
n−1

≤
(

k

⌈
2e′

n−1

en

⌉
+ 1

)
· en

=
(

k
p′

n−1

pn
+ 1

)
· en

=dbf (τn,kp′
n−1 + dn)

≤dbf (τn, t)

<dbf (τn, t) + 2θ.

In addition, for any j < i, dbf (τ ′
j, t) ≤ dbf (τ j, t) by definition.

Finally, for any i ≥ j ≤ (n − 2), dbf (τ ′
j, t) ≤ dbf (τ j+1, t) for two reasons. On the one hand, when t < d j+1 + p j+1,

dbf (τ ′
j, t) = e′

j = e j+1 = dbf (τ j+1, t). On the other hand, when t ≥ d j+1 + p j+1, by Lemma 4,
t−d′

j

p′
j

≤ t−d j+1
p j+1

, which
means

dbf (τ ′
j, t) =

(⌊
t − d′

j

p′
j

⌋
+ 1

)
· e′

j

≤
(⌊

t − d j+1

p j+1

⌋
+ 1

)
· e j+1

=dbf (τ j+1, t).

As a result, dbf (τ ′, t) = ∑n−1
j=1 dbf (τ ′

j, t) ≤
∑n

j=1 dbf (τ j, t) = dbf (τ , t). Hence, dbf (τ ′, t) ≤ t because τ is a feasible solu-
tion to M P1.

Altogether, we have proven that τ ′ satisfies condition (11).

We now prove dbf ∗(τ ′,d′
n−1)

d′
n−1

≥ dbf ∗(τ ,dn)
dn

. Since d′
n−1 = dn , it is equivalent to show dbf ∗(τ ′, dn) ≥ dbf ∗(τ , dn). This follows

from

• dbf ∗(τ ′
n−1, dn) − dbf ∗(τn, dn) = e′

n−1 − en = 2θ ;

• dbf ∗(τi, dn) =
(

dn−di
pi

+ 1
)

· ei < 2ei = 2θ ;

• for i ≤ j ≤ n − 2, dbf ∗(τ ′
j, dn) ≥ dbf ∗(τ j+1, dn) because

dbf ∗(τ ′
j,dn) =

(
dn − d′

j

p′
j

+ 1

)
· e′

j

≥
(

dn − d j+1

p j+1
+ 1

)
· e j+1 (by Lemma 4)

=dbf ∗(τ j+1,dn);
• for j < i, dbf ∗(τ ′

j, dn) − dbf ∗(τ j, dn) = 0 since τ ′
j = τ j .

We proceed in two subcases.
Case 2.1: dn −dn−1 −en > ei . Then τ ′ is a feasible solution to M P1 with M(τ ′) = 0. The lemma follows from the induction

hypothesis.
Case 2.2: dn −dn−1 − en = ei . By the definition of τ ′ , one can see that condition (19) also holds, so τ ′ is a desired feasible

solution to M P2. The lemma thus holds.
Hence, the proof of case 2 is finished.
Case 3: i = n. Choose k such that dn + kpn > d1 + p1. Define tasks τ ′

j = τ j for 1 ≤ j < n and τ ′
n = (en, dn, kpn). Let

τ ′ = {τ ′
j : 1 ≤ j ≤ n}. We observe three facts:

1. By the construction, dbf ∗(τ ′,dn)
dn

= dbf ∗(τ ,dn)
dn

.
2. For any t > 0, dbf (τ ′

n, t) ≤ dbf (τn, t) and dbf (τ ′
j, t) = dbf (τ j, t) for any 1 ≤ j < n, meaning that dbf (τ ′, t) ≤ dbf (τ , t) ≤ t .

Hence, τ ′ is a feasible solution to M P1.
12

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
Fig. 6. Splitting each τi into τ ′(i) = {τ ′
m(i, j) : 1 ≤ j ≤ k(i)}.

3. M(τ ′) = 0 and n > arg min1≤ j≤n d′
j + p′

j , where d′
j and p′

j are the relative deadline and the period of task τ ′
j , respectively.

The proof is thus reduced to case 1 or case 2.

Altogether, we have finished the proof. �
Applying Lemmas 5 and 6, we immediately get the following result.

Lemma 7. M P1 and M P2 have the same optimum value.

3.3. Unifying execution times

In this subsection, a further constraint is imposed on M P2; namely, all the tasks have identical execution times (into
M P3). We show that this modification does not change the optimum value.

sup
dbf ∗(τ ,dn)

dn
(M P3) (24)

subject to dbf (τ , t) ≤ t, ∀t > 0, (25)

di + pi > dn, 1 ≤ i ≤ n − 1, (26)

di = ei + di−1, 1 ≤ i ≤ n, (27)

ei = dn/n, 1 ≤ i ≤ n, (28)

n ∈Z+, ei,di, pi ∈Q+, 1 ≤ i ≤ n. (29)

Lemma 8. M P2 and M P3 have the same optimum value.

The basic idea of the proof is that for any feasible solution to M P2, we will construct a feasible solution to M P3 whose
objective value is no smaller. This leads to the lemma since the feasible domain of M P3 is included in that of M P2 and the
two mathematical programs have the same objective function.

Roughly speaking, the construction is to split each task into a set of smaller subtasks with identical execution times, as
demonstrated in Fig. 6. The fact that the splitting keeps the feasibility and does not reduce the dbf ∗ value is intuitively
shown in Fig. 7.

Proof. Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} be an arbitrary feasible solution to M P2. Because of condition (20), we can choose
δ ∈Q+ such that

k(i) � ei

δ

is an integer for any 1 ≤ i ≤ n. Let n′ = ∑n
i=1 k(i).

For any 1 ≤ l ≤ n′ , define task τ ′
l = (

e′
l,d′

l, p′
l

)
as below, where 1 ≤ i ≤ n and 1 ≤ j ≤ k(i) are such that l = m(i, j) �

j + ∑
1≤h<i k(h):

e′
l = δ,

d′
l = di−1 + j

k(i)
(di − di−1) = di−1 + jδ,

p′
l = pi + di − d′

l .
13

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
Fig. 7. (a) The splitting keeps the feasibility. (b) The dbf ∗ value is not reduced.

Let τ ′(i) = {τ ′
m(i, j) : 1 ≤ j ≤ k(i)} for any 1 ≤ i ≤ n, and τ ′ = ∪n

i=1τ
′(i). Let d′

0 = 0. Next we prove that τ ′ is a feasible solution
to M P3.

Since τ ′ satisfies conditions (26)–(29) by definition, we now investigate condition (25) by arbitrarily fixing t > 0 and
proceeding case by case.

Case 1: t < d′
n′ . Let integer h ≥ 0 be such that d′

h ≤ t < d′
h+1. Then

dbf (τ ′, t) =
∑

1≤r≤n′
dbf (τ ′

r , t)

=
∑

1≤r≤h

dbf (τ ′
r , t) (because t < d′

h+1)

=
∑

1≤r≤h

(⌊
t − d′

r

p′
r

⌋
+ 1

)
· e′

r

=
∑

1≤r≤h

e′
r = d′

h ≤ t,

where the fourth equality holds because of the inequality p′
r > t − d′

r , which in turn follows from three facts:

1. For any 1 ≤ i ≤ n and 1 ≤ j ≤ k(i), we have

p′
m(i, j) = pi + di − d′

m(i, j) by definition.

2. From condition (18), pi + di > dn holds for all i, 1 ≤ i ≤ n.
3. dn = d′

n′ > t .

Case 2: t ≥ d′
n′ . It suffices to prove that for any 1 ≤ i ≤ n,

dbf (τ ′(i), t) ≤ dbf (τi, t).

Suppose t < di + pi . We observe that

dbf (τ ′(i), t) =
k(i)∑
j=1

dbf (τ ′
m(i, j), t)

=
k(i)∑(⌊

t − d′
m(i, j)

p′
m(i, j)

⌋
+ 1

)
δ

j=1

14

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
=k(i)δ (because t < di + pi = d′
m(i, j) + p′

m(i, j))

=ei (by the definition of k(i))

=dbf (τi, t) (because di ≤ t < di + pi).

Then consider t ≥ di + pi . For any 1 ≤ j ≤ k(i), since di ≥ d′
m(i, j) and di + pi = d′

m(i, j) + p′
m(i, j) , Lemma 4 implies

t − d′
m(i, j)

p′
m(i, j)

≤ t − di

pi
,

which further leads to

dbf (τ ′(i), t) =
k(i)∑
j=1

(⌊
t − d′

m(i, j)

p′
m(i, j)

⌋
+ 1

)
δ

≤
k(i)∑
j=1

(⌊
t − di

pi

⌋
+ 1

)
δ

=
(⌊

t − di

pi

⌋
+ 1

)
ei

=dbf (τi, t).

Altogether, condition (25) is satisfied in both cases, so τ ′ is a feasible solution to M P3.
The rest of the proof is to show that

dbf ∗(τ ′,d′
n′) ≥ dbf ∗(τ ,dn).

Note that for any 1 ≤ i ≤ n, 1 ≤ j ≤ k(i),

d′
n′ = dn < pi + di = d′

m(i, j) + p′
m(i, j) and d′

m(i, j) ≤ di .

Lemma 4 implies that

d′
n′ − d′

m(i, j)

p′
m(i, j)

≥ dn − di

pi
.

Then for any 1 ≤ i ≤ n, we have

dbf ∗(τ ′(i),d′
n′) =

k(i)∑
j=1

(
d′

n′ − d′
m(i, j)

p′
m(i, j)

+ 1

)
δ

≥
(

dn − di

pi
+ 1

)
ei

= dbf ∗(τi,dn).

Therefore, dbf ∗(τ ′, d′
n′) ≥ dbf ∗(τ , dn). �

3.4. Aligning the periods

It is still difficult to estimate the optimum value of M P3, partly because condition (25) is hard to handle. Thus, instead
of conditions (25) and (26), we require that the task set be aligned, as defined next.

Definition 1. Given a task set τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n}, a permutation π over {1, 2, . . . , n} is called an aligning permu-
tation of τ if

dπ(i) + pπ(i) = dn + di

for any 1 ≤ i ≤ n. τ is said to be aligned if it has an aligning permutation.
15

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
Fig. 8. Illustration of the proof of Lemma 9.

Fig. 9. The transformation in Lemma 9 does not reduce the objective value.

Remark 1. We will consider aligned task sets in the context of conditions (32) and (33) as in the following M P4. Then being
aligned means that every d1 time during period [0, 2dn], there is a job (the first or second job released by some task) that
reaches its deadline. Since any job needs execution time dn

n , the system has to execute the jobs one after another, having no
idle time during [0, 2dn] at all. Hence, neither the periods nor the deadlines of the tasks can be further shrunk to keep the
task set schedulable. Intuitively, aligned task sets make the system as busy as possible during [0, 2dn], so they might lead
to an upper bound of ρ .

Being aligned implies condition (26), and in some sense “relaxes” condition (25) for ease of analysis. Hence, we replace
these conditions in M P3 with “aligned,” and show that the optimum value of M P3 does not decrease after the modification.
Specifically, we define a new mathematical program:

sup
dbf ∗(τ ,dn)

dn
(M P4) (30)

subject to τ is aligned, (31)

di = ei + di−1, 1 ≤ i ≤ n, (32)

ei = dn/n, 1 ≤ i ≤ n, (33)

n ∈Z+, ei,di, pi ∈Q+, 1 ≤ i ≤ n. (34)

Lemma 9. The optimum value of M P3 is not more than that of M P4.

The basic idea of the proof is that given any feasible solution to M P3, we sort the tasks increasingly according to their
second deadlines; namely, pi + di . Then we adjust the periods of the tasks so that for any ith task (order in the sorting), its
second deadline is dn + di . This transformation trivially guarantees alignment.

Proof. Arbitrarily choose a feasible solution τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} to M P3. Let π be a permutation over
{1, 2, . . . , n} such that

dπ(1) + pπ(1) ≤ dπ(2) + pπ(2) ≤ · · · ≤ dπ(n) + pπ(n). (35)

For any 1 ≤ i ≤ n, construct a task τ ′
π(i) = (e′

π(i), d
′
π(i), p

′
π(i)), where

e′
π(i) = eπ(i),d′

π(i) = dπ(i), p′
π(i) = dn + di − d′

π(i).

Let τ ′ = {τ ′
i : 1 ≤ i ≤ n}. The construction is demonstrated in Fig. 8.

We will show that τ ′ is a feasible solution to M P4. Since conditions (32)–(34) are satisfied by definition, we need only
to prove condition (31). Because p′

π(i) + d′
π(i) = dn + di = d′

n + d′
i for any 1 ≤ i ≤ n, π is an aligning permutation of τ ′ , and

condition (31) is satisfied.
We now prove dbf ∗(τ ′, d′

n) ≥ dbf ∗(τ , dn), as illustrated in Fig. 9. We first derive an inequality as a tool.
16

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
For any 1 ≤ i ≤ n, let j = π−1(i), i.e., π(j) = i, and we have

di + pi ≥dbf (τ ,di + pi) (since τ satisfies condition (25))

=
∑

1≤l≤ j

dbf (τπ(l),di + pi) +
∑

j<l≤n

dbf (τπ(l),di + pi)

≥
∑

1≤l≤ j

2eπ(l) +
∑

j<l≤n

eπ(l)

=2 jdn

n
+ (n − j)dn

n
=dn + d j (because of conditions (27) and (28)),

where the second inequality is because

di + pi = dπ(j) + pπ(j) ≥ dπ(l) + pπ(l) for any l ≤ j

and di + pi > dn ≥ dπ(l) for any l > j. Hence, by the definition of τ ′ , we have

di + pi ≥ dn + d j = dn + dπ−1(i) = d′
i + p′

i . (36)

For any 1 ≤ i ≤ n, by (36) and di = d′
i , we have p′

i ≤ pi . This, together with e′
i = ei, d′

i = di for any 1 ≤ i ≤ n, implies
dbf ∗(τ ′, d′

n) ≥ dbf ∗(τ , dn). As a result,

dbf ∗(τ ,dn)

dn
≤ dbf ∗(τ ′,d′

n)

d′
n

.

The lemma thus holds. �
We present a technical lemma before moving on.

Lemma 10. For any x1, x2, . . . , xn ∈R+ such that

n∑
i=1

xi = n2,

we have
n∑

i=1

i

xi
≥ 4n

9
.

Proof. By Cauchy’s inequality,(
n∑

i=1

i

xi

)(
n∑

i=1

xi

)
≥

(
n∑

i=1

√
i

)2

.

Note that

n∑
i=1

√
i ≥

n∑
i=1

i∫
i−1

√
xdx (by the monotonicity of

√
x)

=
n∫

0

√
xdx

= 2

3
n

3
2 .

Therefore,

n∑
i=1

i

xi
≥

4
9 n3

n2
= 4n

9
.

Hence, we have proved the lemma. �

17

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
Lemma 11. The optimum value of M P4 is at most 14
9 .

Proof. Arbitrarily choose a feasible solution τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} to M P4. Let δ = dn
n . By conditions (32) and (33),

ei = δ and di = iδ

for any 1 ≤ i ≤ n.
Let π be an aligning permutation of τ . Then we have

n∑
i=1

pπ(i) =
n∑

i=1

(dn + di − dπ(i)) = ndn = n2δ,

which implies
∑n

i=1
pπ(i)

δ
= n2. By Lemma 10,

n∑
i=1

iδ

pπ(i)
≥ 4n

9
.

Hence,

n∑
j=1

d j + p j − dn

p j
=

n∑
i=1

dπ(i) + pπ(i) − dn

pπ(i)

=
n∑

i=1

di

pπ(i)
(since τ is aligned)

=
n∑

i=1

iδ

pπ(i)
≥ 4n

9
.

As a result,

dbf ∗(τ ,dn) =
n∑

j=1

dbf ∗(τ j,dn)

=
n∑

j=1

(
2 − p j + d j − dn

p j

)
e j

=
n∑

j=1

(
2 − p j + d j − dn

p j

)
δ

= 2nδ − δ

n∑
j=1

p j + d j − dn

p j

≤ 2nδ − 4n

9
δ = 14

9
dn.

The lemma holds. �
3.5. Upper-bounding the relaxation factor

We are ready to present one of the main results of this article, which claims that the relaxation factor is at most 1.5556.

Theorem 1. The relaxation factor ρ is at most 14
9 .

Proof. It follows from Lemmas 3, 7, 8, 9, and 11. �

18

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
4. Partitioned scheduling on multiprocessors

This section is devoted to partitioning sporadic tasks on multiprocessors, where the tasks are assumed to have con-
strained deadlines. Note that although Theorem 1 holds for arbitrary deadlines, the extension to multiprocessors applies
only for the constrained-deadline case. We focus on the algorithm of deadline-monotonic partitioned EDF; namely, the
algorithm PARTITION in [16].

Basically, the algorithm PARTITION assigns tasks sequentially in nondecreasing order of relative deadlines to processors
that are numbered by distinct integers. Suppose the (i − 1)th task has just been assigned. Let τ (k) be the set of tasks that
have been assigned to processor k, for any k. Then the ith task is assigned to the least-numbered processor k that can safely
serve the task, i.e., ei + dbf ∗(τ (k), di) ≤ di .

Remember that we have upper-bounded the relaxation factor ρ . The following lemma bridges ρ and the speedup factor
of PARTITION.

Lemma 12 ([16,1]). The speedup factor of the algorithm PARTITION for constrained-deadline tasks is 1 + ρ − 1/m, where m is the
number of processors.

We now present the other main result of this article.

Theorem 2. The speedup factor of the algorithm PARTITION for constrained-deadline tasks is at most 2.5556 − 1/m.

Proof. The theorem immediately follows from Theorem 1 and Lemma 12. �
5. Conclusion and future work

In this article, we improved the upper bound of the speedup factor of (polynomial-time) partitioned EDF from 2.6322 −
1/m to 2.5556 − 1/m for constrained-deadline sporadic tasks on m identical processors, narrowing the gap between the
upper and lower bounds from 0.1322 to 0.0556. This is an immediate corollary of our improvement of the upper bound
of the relaxation factor from 1.6322 to 1.5556, which holds for both the constrained-deadline scenario and the arbitrary-
deadline scenario.

Technically, our improvements are rooted in a novel discretization that transforms the tasks into regular form. The
discretization essentially restricts attention to the tasks with fixed execution times and deadlines. Only the period parameter
remains flexible to some extent—ranging over the set {1, 2, . . . , 2n}, where n is the number of tasks to be scheduled. With
such transformation, the estimation of the relaxation factor is reduced to a much simpler optimization problem. However,
we have not yet proved that the last-step transformation (for periods) is lossless. This means that the discretization might
increase the relaxation factor. The good news is that the incurred loss, if not zero at all, is guaranteed to be no more than
0.0556.

Regarding future directions, we conjecture that a upper bound of 1.5 for the relaxation factor can be derived, thus
closing the gap between the upper and lower bounds. If this is the case, the speedup factor of partitioned EDF becomes
fully determined, at least in the case of constrained deadlines.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The authors thank Prof. Sanjoy Baruah from Washington University at St. Louis and Prof. Yungang Bao from the Institute
of Computing Technology, Chinese Academy of Sciences, for fruitful discussions. This work was partially supported by the
National Key Research and Development Program of China (Grant No. 2016YFB1000201), the Key-Area Research and Devel-
opment Program of Guangdong Province (2020B010164003), the National Natural Science Foundation of China (11971091,
62072433, and 62090020), Liaoning Natural Science Foundation (2019-MS-062), the Youth Innovation Promotion Association
of the Chinese Academy of Sciences (2013073), the Strategic Priority Research Program of the Chinese Academy of Sciences
(XDC05030200), and the US National Science Foundation (CNS-1850851).

References

[1] J.-J. Chen, S. Chakraborty, Resource augmentation bounds for approximate demand bound functions, in: 2011 IEEE 32nd Real-Time Systems Symposium
(RTSS), IEEE, 2011, pp. 272–281.

[2] F. Eisenbrand, T. Rothvoß, EDF-schedulability of synchronous periodic task systems is conp-hard, in: Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SIAM, 2010, pp. 1029–1034.
19

http://refhub.elsevier.com/S0890-5401(21)00058-4/bib7C9AFD6B8EC13C6F7AADD084AF50A249s1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib7C9AFD6B8EC13C6F7AADD084AF50A249s1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bibB4334BCF7BAC3FC2B1FD86DA744BFC2As1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bibB4334BCF7BAC3FC2B1FD86DA744BFC2As1

X. Liu, X. Han, L. Zhao et al. Information and Computation 281 (2021) 104743
[3] A.K.-L. Mok, Fundamental design problems of distributed systems for the hard-real-time environment, Ph.D. thesis, Massachusetts Institute of Technol-
ogy, 1983.

[4] J.-J. Chen, G. von der Brüggen, W.-H. Huang, R.I. Davis, On the pitfalls of resource augmentation factors and utilization bounds in real-time scheduling,
in: 29th Euromicro Conference on Real-Time Systems (ECRTS 2017), Leibniz International Proceedings in Informatics (LIPIcs), 2017, pp. 9:1–9:25.

[5] Z. Guo, Regarding the optimality of speedup bounds of mixed-criticality schedulability tests, in: Mixed Criticality on Multicore/Manycore Platforms
(Dagstuhl Seminar Reports) 17131, 2017.

[6] K. Agrawal, S. Baruah, Intractability issues in mixed-criticality scheduling, in: Proceedings of the 30th Euromicro Conference on Real-Time Systems
(ECRTS’18), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[7] B. Kalyanasundaram, K. Pruhs, Speed is as powerful as clairvoyance, J. ACM 47 (2000) 617–643.
[8] C.A. Phillips, C. Stein, E. Torng, J. Wein, Optimal time-critical scheduling via resource augmentation, Algorithmica 32 (2002) 163–200.
[9] K. Albers, F. Slomka, An event stream driven approximation for the analysis of real-time systems, in: Proceedings of the 16th Euromicro Conference on

Real-Time Systems, 2004, ECRTS 2004, IEEE, 2004, pp. 187–195.
[10] R.R. Devillers, J. Goossens, Liu and Layland’s schedulability test revisited, Inf. Process. Lett. 73 (2000) 157–161.
[11] R.I. Davis, A. Thekkilakattil, O. Gettings, R. Dobrin, S. Punnekkat, J. Chen, Exact speedup factors and sub-optimality for non-preemptive scheduling,

Real-Time Syst. 54 (2018) 208–246.
[12] E. Bini, G.C. Buttazzo, Measuring the performance of schedulability tests, Real-Time Syst. 30 (2005) 129–154.
[13] E. Bini, The quadratic utilization upper bound for arbitrary deadline real-time tasks, IEEE Trans. Comput. 64 (2015) 593–599.
[14] J. Theis, G. Fohler, Transformation of sporadic tasks for off-line scheduling with utilization and response time trade-offs, in: Proceedings of the 19th

International Conference on Real-Time and Network Systems, RTNS ’11, Nantes, France, September 29–30, 2011, 2011, pp. 119–128.
[15] J. Chen, Partitioned multiprocessor fixed-priority scheduling of sporadic real-time tasks, in: 2016 28th Euromicro Conference on Real-Time Systems

(ECRTS), 2016, pp. 251–261.
[16] S. Baruah, N. Fisher, The partitioned multiprocessor scheduling of sporadic task systems, in: 26th IEEE International Real-Time Systems Symposium,

2005, RTSS 2005, IEEE, 2005, pp. 321–329.
[17] S.K. Baruah, A.K. Mok, L.E. Rosier, Preemptively scheduling hard-real-time sporadic tasks on one processor, in: Proceedings of the 11th Real-Time

Systems Symposium, 1990, IEEE, 1990, pp. 182–190.
20

http://refhub.elsevier.com/S0890-5401(21)00058-4/bib2371A3D18DFF6A68AD437256C06429EDs1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib2371A3D18DFF6A68AD437256C06429EDs1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bibA3B6E59168ACF6218D8A2AFDC8A75BD5s1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bibA3B6E59168ACF6218D8A2AFDC8A75BD5s1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib598A67D0139F817AA054C4E89615641Es1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib598A67D0139F817AA054C4E89615641Es1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bibB69C9F14D611633FC547994F3E3CD929s1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bibB69C9F14D611633FC547994F3E3CD929s1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib308162D546D44EAEDDAD4538D190D1FBs1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib3BCD6E0CDD5E03574DD053FC6F2031FDs1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib5B92F10BAF683A3837A3131D3EB6B38Bs1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib5B92F10BAF683A3837A3131D3EB6B38Bs1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib33D1CFB1FD9B33FAB6E05EB0FCBFA94Ds1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bibA0E7E7AAB61954C74E622D1296EB5291s1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bibA0E7E7AAB61954C74E622D1296EB5291s1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib98F2FEA1937C37C8917E3704433C9D87s1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bibBEE67143F71B46FB32DFFA46722D3518s1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib618FF26CCB3D373FB79D8534CD532655s1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib618FF26CCB3D373FB79D8534CD532655s1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bibBB9FA28606EC49101E48CDD786ECB79Ds1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bibBB9FA28606EC49101E48CDD786ECB79Ds1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib5BBE1D6B6C5D32C4616BFB2FCBD71D5Ds1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib5BBE1D6B6C5D32C4616BFB2FCBD71D5Ds1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib955828E5C382ACC27BC5B7E5C7122541s1
http://refhub.elsevier.com/S0890-5401(21)00058-4/bib955828E5C382ACC27BC5B7E5C7122541s1

	Narrowing the speedup factor gap of partitioned EDF
	1 Introduction
	2 System model and preliminaries
	3 Improved upper bound of the relaxation factor
	3.1 Rationalizing the parameters
	3.2 Tightening the deadlines
	3.3 Unifying execution times
	3.4 Aligning the periods
	3.5 Upper-bounding the relaxation factor

	4 Partitioned scheduling on multiprocessors
	5 Conclusion and future work
	Declaration of competing interest
	Acknowledgments
	References

