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Schedulability is a fundamental problem in analyzing real-time systems, but it often has 
to be approximated because of the intrinsic computational hardness. Partitioned earliest 
deadline first (EDF) is one of the most popular polynomial-time and practical scheduler on 
multiprocessor platforms, and it was shown to have a speedup factor of at most 2.6322 −
1/m. This paper further improves the factor to 2.5556 − 1/m for both the constrained-
deadline case and the arbitrary-deadline case, and it is very close to the known (non-
tight) lower bound of 2.5 − 1/m. The key ideas are that we develop a novel method to 
discretize and regularize sporadic task sets that are schedulable on uniprocessors, and we 
find that the ratio (ρ) of the approximate demand bound value to the machine capacity is 
upper-bounded by 1.5556 for the arbitrary-deadline case, which plays an important role in 
estimating the speed factor of partitioned EDF.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Scheduling plays a fundamental role in real-time systems. Basically, given a finite set of tasks, each sequentially releasing 
infinitely many jobs, the mission of real-time scheduling is to allocate computing resources so that all the jobs are done 
in a timely manner. Formally, a schedule defines at each time instant which jobs receive the required computing resources 
(while others must wait). The fundamental question of schedulability naturally arises: is it possible at all to successfully 
schedule these tasks so as to meet all the deadlines?

Unfortunately, answering this question is often not “easy”; for example, the schedulability of a set of constrained-
deadline1 sporadic tasks, which is the focus of this article, is co-NP-hard even on a uniprocessor platform [2]. For the 
multiprocessor case, it remains NP-hard for partitioned scheduling, even for implicit-deadline task sets, where the relative 
deadline of each task equals its period [3]. Here partitioned scheduling means that once a task is assigned to a processor, all 
the jobs released by the task will be scheduled on the dedicated processor. These hardness results imply that it is impossible 
to exactly decide schedulability in polynomial time, unless P=NP.
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1 A set of tasks is said to be a constrained-deadline task set if the relative deadline of each task is at most its period (otherwise it is a arbitrary-deadline 
task set).
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Because of the hardness, real-time schedulability problems are usually solved approximately by pessimistic algorithms 
that always answer “no” unless some sufficient conditions for schedulability are met. To evaluate the performance of such 
an approximate algorithm (say, A), the concept of the speedup factor, also known as the resource augmentation bound, 
has been proposed. Specifically, algorithm A has a speedup factor of s ≥ 1 if whenever a set of tasks is schedulable (by an 
optimal approach) on a platform with speed 1, A will return “yes” when the speed of the platform is increased to s. Despite 
some recent discussion on potential pitfalls [4–6], the speedup factor has been a major metric and standard theoretical tool 
for assessing scheduling algorithms since the seminal work of Kalyanasundaram and Pruhs [7] in 2000.

Recent years have witnessed impressive progress in finding scheduling algorithms with low speedup factors. For preemp-
tive scheduling (i.e., running jobs might be interrupted by emergent ones), global EDF has a speedup factor of 2 − 1/m [8]
for scheduling tasks on m identical processors, and there is a polynomial-time algorithm for uniprocessors whose speedup 
factor is 1 + ε [9], where ε > 0 is arbitrarily small. For nonpreemptive scheduling, there are also a variety of results [10,11]. 
In addition to the speedup factor, there are several articles concerning the utilization bound [12–14].

Although the speedup factor on uniprocessors is already known to be tight, the multiprocessor case remains open. Among 
all schedulers, partitioned scheduling is of particular interest because of its implementation friendliness, simplicity, and 
capability of extending most uniprocessor results to the multiprocessor scenario directly under naive “partition” heuristics; 
i.e., once the task-to-core mapping is fixed, the scheduling in the multiprocessor case is reduced to multiple uniprocessor 
scheduling problems, where classical solutions exist. Since EDF is an optimal preemptive scheduler on a uniprocessor, this 
article focuses on partitioned EDF.2 Note that partitioned-deadline-monotonic [15] is also commonly implemented, with a 
best known speedup factor of 2.8431, while global EDF is not a partitioned paradigm.

A breakthrough in partitioned EDF was made in 2005, when Baruah and Fisher [16] established an upper bound of 
3 − 1/m for the speedup factor on constrained-deadline task sets and an upper bound of 4 − 2/m for the speedup factor 
on arbitrary-deadline task sets, where m is the number of identical processors. In 2011, Chen and Chakraborty [1] further 
improved the speedup factor to 2.6322 − 1/m for the constrained-deadline case and to 3 − 1/m for the arbitrary-deadline 
case. Also, they established an asymptotical lower bound of 2.5 for the speedup factor for the constrained-deadline case. 
Since then, the speedup factor bounds have never been improved.

Deriving the upper bound of the speedup factor of partitioned EDF relies heavily on a quantity ρ concerning scheduling 
on uniprocessors. The quantity ρ , called the relaxation factor in this article and formally defined in formula (1) in Section 2, 
roughly indicates how much the approximate demand bound function (defined in Section 2) deviates from the machine 
capacity. Baruah and Fisher [16] bridged the relaxation factor and the speedup factor of partitioned EDF by showing that in 
the case of constrained deadlines, the speedup factor is at most 1 +ρ −1/m. As a result, upper-bounding the speedup factor 
is reduced to upper-bounding of ρ , and it is in this manner that both Baruah and Fisher [16] and Chen and Chakraborty [1]
obtained their estimates of the speedup factor. Hence, the relaxation factor itself deserves deep investigation. Baruah and 
Fisher [16] upper-bounded it by 2, and Chen and Chakraborty [1] narrowed its range to [1.5, 1.6322].

On this ground, we explore a better upper bound of the relaxation factor, and on this basis provide a better estimate of 
the speedup factor of partitioned EDF for sets of constrained-deadline sporadic tasks. The contributions are summarized as 
follows:

1. We improve the best existing upper bound of the relaxation factor from 1.6322 to 1.5556 (Theorem 1), which is very 
close to the lower bound of 1.5 for the uniprocessor case. The result holds for both constrained-deadline tasks and 
arbitrary-deadline tasks. Accordingly, the speedup factor of partitioned EDF for constrained-deadline tasks decreases 
from 2.632 − 1/m to 2.5556 − 1/m (Theorem 2) for the multiprocessor case.

2. We identify a lossless way to discretize and regularize the tasks. As a result, the execution times of the tasks of interest 
can be fixed to be 1 and the deadlines can be fixed to be 1, 2, . . . , n, where n is number of tasks to be scheduled 
(Lemmas 3, 7, and 8). The only parameter that varies is the period. The transformation is lossless in the sense that the 
relaxation factor does not change although the parameters are extremely simplified.

3. We invent a method to further transform the tasks so that the period of each task ranges over integers between 1 and 
2n (Lemma 9). Although this transformation is not guaranteed to be lossless, the loss, if any, is negligible since we prove 
that the relaxation factor increases by at most 0.0556 (for both constrained-deadline task sets and arbitrary-deadline 
task sets). These transformation techniques may be further applied to real-time scheduling analysis or other problems.

The rest of this article is organized as follows. Section 2 presents the model and preliminaries. Section 3 focuses on the 
uniprocessor case, and in it we derive a new upper bound (14/9) of the relaxation factor. Section 4 provides a new upper 
bound (23/9 − 1/m) of the speedup factor for partitioned EDF. Finally, Section 5 concludes the article and provides some 
potential future directions.

2 In partitioned EDF, each task is assigned one and only one processor for the execution of all the jobs this task releases, while on each processor the 
jobs are executed according to the earliest-deadline-first priority rule.
2
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2. System model and preliminaries

We consider a finite set τ of sporadic tasks. Each task τi can be represented by a triple τi = (ei, di, pi), where ei is the 
worst-case execution time, di is its relative deadline, and pi is the minimum interarrival separation length (also known as 
the period). Such a task releases infinitely many jobs, each of which has an execution time of at most ei and has to be 
finished within time di after arrival, while the interarrival time of consecutive jobs is at least pi . The task τi is said to be a 
constrained-deadline task if di ≤ pi , and an arbitrary-deadline task if no restriction is set between di and pi . When di > pi , a 
job cannot start its execution until its predecessor (released by the same task one period ahead) finishes its execution.

We follow the widely adopted identical multiprocessor model, which consists of m ≥ 1 processors of speed s (unless 
explicitly mentioned, s = 1 by default). For any task (e, d, p), its jobs can be executed on any of the processors, and the 
execution of any job takes at most e

s time units. The aim of schedulability testing is to decide weather a set of sporadic 
tasks is schedulable on a platform. Here schedulable means that there exists a schedule for the set of tasks such that each 
job can cumulatively receive enough execution time between its release and its deadline.

Given a set of tasks, a schedulability test is a set of conditions to check—it returns success when all the deadlines can 
be guaranteed to be met. A schedulability test has a speedup factor (also known as a resource augmentation factor) of s
(≥ 1) if any task set that is schedulable on a unit-speed platform will successfully pass this test on a platform with speed s. 
Informally, the speedup factor measures how “far away” a given schedulability test is from an optimal one—it reflects 
the effectiveness of a schedulability test. A smaller speedup factor indicates a better schedulability test, while a speedup 
factor of 1 indicates an optimal test. Our objective is to estimate the speedup factor of partitioned EDF on multiprocessor 
platforms.

Before continuing, we introduce some notation. Given a task τi , the demand bound function dbf (τi, t) [17] and its 
approximation dbf ∗(τi, t) [9] are defined to be

dbf (τi, t) =
{

0 if t < di,(⌊
t−di

pi

⌋
+ 1

)
· ei otherwise,

dbf ∗(τi, t) =
{

0 if t < di,(
t−di

pi
+ 1

)
· ei otherwise.

Roughly speaking, dbf (τi, t) represents the total workload of task τi that has to be finished by time t , and dbf ∗ is a linear 
approximation of dbf .

These functions can be extended to task sets. For any set τ of tasks, we define

dbf (τ , t) =
∑
τi∈τ

dbf (τi, t), dbf ∗(τ , t) =
∑
τi∈τ

dbf ∗(τi, t).

It is well known that the demand bound function fully determines the schedulability on uniprocessors, according to the 
following lemma.

Lemma 1 ([17]). A set τ of tasks is schedulable on uniprocessors if and only if dbf (τ , t) ≤ t for any t ≥ 0.

We are now ready to define the relaxation factor ρ , which plays a critical role in fulfilling our objective in this article:

ρ = sup
τ∈�

dbf ∗(τ ,d)

d
, (1)

where � is the family of sporadic task sets that are schedulable on uniprocessors, and d is the largest relative deadline in 
τ . Roughly speaking, ρ approximately stands for the growth rate of the demand over [0, d) of schedulable task sets. Such a 
growth rate will have larger values at some deadline points, and thus elaboration of all the deadlines (d) will suffice.

We will see that the relaxation factor ρ is the optimum value of the following mathematical program M P0:

sup
dbf ∗(τ ,dn)

dn
(M P0) (2)

subject to dbf (τ , t) ≤ t, ∀t > 0, (3)

di + pi > dn, 1 ≤ i ≤ n − 1, (4)

d1 ≤ d2 ≤ · · · ≤ dn, (5)

n ∈Z+, ei,di, pi ∈R+, 1 ≤ i ≤ n, (6)

where Z+ is the set of positive integers, while R+ stands for the set of positive real numbers (the superscript + in this 
article excludes 0). Condition (3) means τ is schedulable because of Lemma 1, and condition (4) means each task releases 
exactly one job during the period [0, dn).
3
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Fig. 1. Illustration of the task transformation in Lemma 2.

Fig. 2. The flow of the proofs in Section 3. The constraints are added incrementally, so each box presents only the new constraint. The overall constraints 
in each box are formulated into a mathematical program whose name M P∗ is given at the lower-right corner of the box.

Lemma 2. The relaxation factor is the optimum value of M P0.

Proof. Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} be an arbitrary set of sporadic tasks that is schedulable on a uniprocessor with 
speed 1. Assume that d1 ≤ d2 ≤ · · · ≤ dn . Apply the transformation proposed in [1]:

e′
i =

(⌊
dn − di

pi

⌋
+ 1

)
· ei, (7)

p′
i =

(⌊
dn − di

pi

⌋
+ 1

)
· pi, (8)

d′
i =

(⌊
dn − di

pi

⌋)
· pi + di . (9)

Let τ ′ = {τ ′
1, τ

′
2, . . . , τ

′
n}, with τ ′

i = (e′
i, d

′
i, p

′
i) for any 1 ≤ i ≤ n. The transformation is illustrated in Fig. 1. The underlying 

idea is to increase the values of the parameters ei , di , and pi such that each task releases exactly one job before dn while 
the system is as busy as before.

It was proven in [1] that the following results hold simultaneously:

1. dbf ∗(τ , t) = dbf ∗(τ ′, t) for any t ≥ dn .
2. dbf (τ , t) ≥ dbf (τ ′, t) for t > 0.
3. d′

n < d′
i + p′

i for 1 ≤ i ≤ n.
4. d′

n = dn .

This immediately leads to our lemma. �
3. Improved upper bound of the relaxation factor

To estimate the speedup factor for multiprocessor partitioned scheduling, we first analyze the relaxation factor and 
hence focus on uniprocessors. The main result of this section is Theorem 1, which establishes 14/9 as an upper bound of 
the relaxation factor for sporadic tasks.
4
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The basic idea of our proof is to discretize any given task set into a regular form, thus reducing the problem to an 
optimization one on bounded integers with several constraints (M P4). Roughly speaking, Lemma 3 ensures that the opti-
mum value remains ρ if the parameters of the tasks are restricted to be rational numbers. Lemma 7 claims that further 
requiring di = ei + di−1 for all i keeps the optimum value unchanged. The trend continues in Lemma 8 even if all the tasks 
are required to have the same worst-case execution time. Finally, Lemma 9 enables us to consider only tasks with bounded 
periods. These transformations reduce the estimation of ρ to a simpler optimization problem that is solved approximately 
in Lemma 11. These results immediately lead to Theorem 1. The overall proof flow is illustrated in Fig. 2.

3.1. Rationalizing the parameters

We first observe that the optimum value of M P0 remains unchanged even if the domain R+ is replaced by Q+ , the set 
of positive rational numbers.

sup
dbf ∗(τ ,dn)

dn
(M P1) (10)

subject to dbf (τ , t) ≤ t, ∀t > 0, (11)

di + pi > dn, 1 ≤ i ≤ n − 1, (12)

d1 ≤ d2 ≤ · · · ≤ dn, (13)

n ∈Z+, ei,di, pi ∈Q+, 1 ≤ i ≤ n. (14)

Lemma 3. M P0 and M P1 have the same optimum value.

Proof. The lemma immediately holds if the following two claims are true:

1. The objective functions of M P0 and M P1 are the same and continuous.
2. The domain of M P1 is a dense subset of that of M P0. Dense means that for any ε > 0 and any feasible solution 

τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} to M P0, there is a feasible solution τ ′ = {τ ′
i = (e′

i, d
′
i, p

′
i) : 1 ≤ i ≤ n} to M P1 such that 

for any 1 ≤ i ≤ n,

|e′
i − ei | < ε, |d′

i − di | < ε, |p′
i − pi| < ε. (15)

It suffices to prove claim 2 since claim 1 obviously holds.
Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} be an arbitrary set of tasks that is a feasible solution to M P0, and let ε be an arbitrary 

positive real number. Without loss of generality, assume that ε < min1≤i≤n ei . For any 1 ≤ i ≤ n, arbitrarily choose

p′
i ∈

(
pi + ε

2
, pi + ε

)
∩Q+,

d′
i ∈

(
di + (i − 1)ε

2n
,di + iε

2n

)
∩Q+,

e′
i ∈ (ei − ε, ei) ∩Q+.

Obviously, we have p′
i > pi, d′

i > di, e′
i < ei . Let τ ′ denote the set of tasks {τ ′

i = (e′
i, d

′
i, p

′
i) : 1 ≤ i ≤ n}.

We now show that τ ′ is a feasible solution to M P1. Since τ ′ meets conditions (14) and (15) by definition, it is enough 
to check conditions (11)–(13).

To continue, arbitrarily fix an integer 1 ≤ i ≤ n.
Observe that

d′
i > di + (i − 1)ε

2n
≥ di−1 + (i − 1)ε

2n
> d′

i−1.

Hence, τ ′ satisfies condition (13) of M P1.
5
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Fig. 3. Illustration of the proof of Lemma 4.

The task set τ ′ satisfies condition (12) because

d′
i + p′

i > di + (i − 1)ε

2n
+ pi + ε

2

≥ di + pi + ε

2

> dn + ε

2
(since τ satisfies condition (4))

> d′
n.

Regarding condition (11), arbitrarily fix t > 0. When t < d′
i , we have

dbf (τ ′
i , t) = 0 ≤ dbf (τi, t).

When t ≥ d′
i , because p′

i > pi, d′
i > di, e′

i < ei , we have

dbf (τ ′
i , t) =

(⌊
t − d′

i

p′
i

⌋
+ 1

)
· e′

i

<

(⌊
t − di

pi

⌋
+ 1

)
· ei = dbf (τi, t).

As a result, we always have dbf (τ ′, t) ≤ dbf (τ , t). Since dbf (τ , t) ≤ t by condition (3), we also have dbf (τ ′, t) ≤ t , so τ ′
satisfies condition (11).

Altogether, τ ′ is a feasible solution to M P1. �
3.2. Tightening the deadlines

Hereafter, let d0 = d′
0 = 0. The objective of this subsection is to prove that the optimum value of M P1 remains unchanged 

even if the deadlines are tight. Here “tightness” requires that di = di−1 + ei for all 1 ≤ i ≤ n, intuitively meaning that the 
system remains busy in the early phase. The proof consists mainly of two steps: Lemma 5 justifies tightening the first n − 1
deadlines, while Lemma 6 enables us to handle the last deadline. This immediately leads to the equivalence between M P1

and the following mathematical program:

sup
dbf ∗(τ ,dn)

dn
(M P2) (16)

subject to dbf (τ , t) ≤ t, ∀t > 0, (17)

di + pi > dn, 1 ≤ i ≤ n − 1, (18)

di = ei + di−1, 1 ≤ i ≤ n, (19)

n ∈Z+, ei,di, pi ∈Q+, 1 ≤ i ≤ n. (20)

We now present a technical lemma that will be frequently used.

Lemma 4. Suppose d, p, d′, p′ ∈R+ are such that d + p = d′ + p′ and d > d′ . For any real number t,

t − d′

p′ >
t − d

p

if and only if t < d + p.
6
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Fig. 4. Task transformation in Lemma 5.

Fig. 5. (a) τ ′ remains feasible. (b) The objective value of τ ′ is at least that of τ .

Proof. The basic idea is illustrated in Fig. 3. Let δ = d − d′ = p′ − p.
Then

t − d′

p′ >
t − d

p
⇔p · (t − d′) > p′ · (t − d)

⇔p · (t − d + δ) > (p + δ) · (t − d)

⇔p · δ > δ · (t − d)

⇔p > t − d. �
The following definition M(τ ) will be used in Lemmas 5 and 6. For any feasible solution τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n}

to M P1, let S(τ ) = {i : 1 ≤ i ≤ n, di 
= ei + di−1}. Define

M(τ ) =
{

n − min S(τ ) if S(τ ) 
= ∅
−1 otherwise.

We further prove a property of M P1.

Lemma 5. For any feasible solution τ to M P1 with M(τ ) ≥ 1, there is another feasible solution τ ′ to M P1 such that M(τ ′) < M(τ )

and dbf ∗(τ ′,d′)
d′ ≥ dbf ∗(τ ,d)

d , where d and d′ are the maximum relative deadlines in τ and τ ′ , respectively.

Proof. Arbitrarily fix a feasible solution τ to M P1 with M(τ ) ≥ 1. Suppose τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n}. Let k = n −
M(τ ) = min S(τ ) < n.

Basically, we will modify dk to be ek + dk−1, and prove that the new task set remains feasible and that the objective 
value does not decrease. Figs. 4 and 5 demonstrate such a transformation and relationship.

Specifically, by the definition of k, we have dk 
= ek + dk−1, di = ei + di−1 for all i < k, and

k−1∑
i=1

ei = dk−1. (21)

Since dk ≥ di for any i < k, we have

k∑
i=1

ei ≤
k∑

i=1

dbf (τi,dk) (by the definition of dbf )

≤ dbf (τ ,dk) ≤ dk,

where the last inequality holds because τ satisfies condition (11). This, together with formula (21), leads to ek ≤ dk − dk−1. 
By the assumption that ek 
= dk − dk−1, we get

ek < dk − dk−1. (22)

Construct τ ′ = {τ ′
i = (e′

i, d
′
i, p

′
i) : 1 ≤ i ≤ n}, where

d′ = di, p′ = pi, e′ = ei for any i 
= k
i i i

7
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and

e′
k = ek,d′

k = dk−1 + ek, p′
k = dk + pk − d′

k.

By formula (22), d′
k < dk . By definition, d′

i = e′
i + d′

i−1 for all i ≤ k, so

M(τ ′) ≤ n − (k + 1) < n − k = M(τ ).

We now prove that τ ′ is a feasible solution to M P1.
First of all, τ ′ satisfies condition (14) by definition.
Then, note that τ ′

i = τi for any i 
= k. Since τ satisfies condition (12), τ ′ satisfies condition (12) for i 
= k. Furthermore,

p′
k + d′

k = dk + pk (by the definition of p′
k)

> dn (because τ satisfies condition (12))

= d′
n (by the definition of d′

n),

so τ ′ also satisfies condition (12) for i = k. Likewise, considering that d′
i = di for i 
= k and dk−1 < d′

k < dk ≤ dk+1, τ ′ satisfies 
condition (13) because so does τ .

To show that condition (11) is satisfied by τ ′ , we arbitrarily choose t > 0 and proceed case by case.
Case 1: if t < d′

k . Then

dbf (τ ′, t) =
∑

1≤i≤n

dbf (τ ′
i , t)

=
∑

1≤i<k

dbf (τ ′
i , t) (because t < d′

j for j ≥ k)

=
∑

1≤i<k

dbf (τi, t) (because τ ′
i = τi for i < k)

≤ dbf (τ , t)

≤ t (because τ satisfies condition (11)).

Case 2: if d′
k ≤ t < dk . Then

dbf (τ ′, t) =
∑

1≤i≤n

dbf (τ ′
i , t)

=
∑

1≤i≤k

(⌊
t − d′

i

p′
i

⌋
+ 1

)
· e′

i

=
∑

1≤i≤k

e′
i (because d′

i + p′
i > d′

n = dn ≥ dk > t for any i)

=
∑

1≤i≤k

ei = d′
k ≤ t.

Case 3: if dk ≤ t < d′
k + p′

k . Then

dbf (τ ′
k, t) =

(⌊
t − d′

k

p′
k

⌋
+ 1

)
· ek

= ek (because d′
k < dk ≤ t < d′

k + p′
k)

=
(⌊

t − dk

pk

⌋
+ 1

)
· ek,

where the last equality is due to dk ≤ t < d′
k + p′

k = dk + pk .
For any i 
= k, dbf (τ ′

i , t) = dbf (τi, t) since τ ′
i = τi .

As a result, dbf (τ ′, t) = dbf (τ , t) ≤ t because τ satisfies condition (11).
Case 4: if t ≥ d′

k + p′
k . Because

d′
k < dk and p′

k + d′
k = dk + pk,

by Lemma 4, we have
8
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t − d′
k

p′
k

≤ t − dk

pk
.

Then

dbf (τ ′, t) =
∑

1≤i≤n

dbf (τ ′
i , t)

=
∑
i 
=k

dbf (τ ′
i , t) +

(⌊
t − d′

k

p′
k

⌋
+ 1

)
· ek

≤
∑
i 
=k

dbf (τ ′
i , t) +

(⌊
t − dk

pk

⌋
+ 1

)
· ek

=
∑
i 
=k

dbf (τi, t) + dbf (τk, t) (since τ ′
i = τi for i 
= k)

= dbf (τ , t) ≤ t (since τ satisfies condition (11)).

Altogether, τ ′ satisfies condition (11), so it is a feasible solution to M P1.
Finally, we show that

dbf ∗(τ ,dn)

dn
≤ dbf ∗(τ ′,d′

n)

d′
n

.

Since k < n, we have d′
n = dn , so it suffices to show dbf ∗(τ , dn) ≤ dbf ∗(τ ′, d′

n).
By the definition of τ ′ , for any i 
= k,

dbf ∗(τi,dn) = dbf ∗(τ ′
i ,d′

n).

Furthermore, note three facts:

1. p′
k + d′

k = dk + pk .
2. d′

k < dk .
3. dn < dk + pk because of condition (12).

By Lemma 4, these facts mean

dn − dk

pk
<

d′
n − d′

k

p′
k

,

and then

dbf ∗(τk,dn) = (
dn − dk

pk
+ 1)ek ≤ (

d′
n − d′

k

p′
k

+ 1)ek = dbf ∗(τ ′
k,dn).

As a result, dbf ∗(τ , dn) ≤ dbf ∗(τ ′, d′
n). �

When M(τ ) = 0, i.e., di = ei + di−1 for all i < n, and dn > en + dn−1, the proof above does not work. Hence, we need the 
following lemma, which plays a key role in proving Lemma 7.

Lemma 6. For any feasible solution τ to M P1 with M(τ ) = 0, there is a feasible solution τ ′ to M P2 such that dbf ∗(τ ′,d′)
d′ ≥ dbf ∗(τ ,d)

d , 
where d and d′ are the maximum relative deadlines in τ and τ ′ , respectively.

Proof. Arbitrarily fix a feasible solution τ to M P1 with M(τ ) = 0. We prove the lemma by induction on |τ |, the number of 
tasks in τ .

Base: |τ | = 1. τ consists of one task (e, d, p). By straightforward calculation, dbf (τ , d) = dbf ∗(τ , d) = e. Applying condi-
tion (11) with t = d, we have dbf (τ , d) ≤ d, so dbf ∗(τ ,d)

d ≤ 1. Consider the singleton task set τ ′ = {(d, d, d)}. It is a solution 
to M P2, and dbf ∗(τ ′,d)

d = 1 ≥ dbf ∗(τ ,d)
d . Hence τ ′ satisfies the requirement.

Hypothesis: The lemma holds when |τ | < n.
Induction: Suppose |τ | = n. Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n}. Since M(τ ) = 0, we have dn 
= en + dn−1 and

d j = e j + d j−1, for 1 ≤ j ≤ n − 1. (23)
9
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Like inequality (22) in the proof of Lemma 5, we also have dn > en + dn−1.
Basically, we increase en to be dn − dn−1, but this might overload the system. For adjustment, we accordingly offload the 

task τi whose job arrives earliest after time dn , and modify the period pn to be sufficiently large.
Formally, let i = arg min1≤ j≤n d j + p j . There are three cases.
Case 1: i < n and dn − dn−1 − en < ei . Let θ = dn − dn−1 − en . Note that θ > 0 since dn > en + dn−1. We construct a new 

task set τ ′ = {τ ′
j = (e′

j, d
′
j, p

′
j) : 1 ≤ j ≤ n} as follows:

• e′
n = en + 2θ, d′

n = dn, p′
n =

⌈
2e′

n
en

⌉
pn .

• e′
i = ei − θ, d′

i = di − θ, p′
i = pi + θ .

• For i < j < n, e′
j = e j, d′

j = d j − θ, p′
j = p j + θ .

• For j < i, τ ′
j = τ j .

We now show that τ ′ is a feasible solution to M P2. Since conditions (18)–(20) hold by definition, we prove that τ ′ satisfies 
condition (17) for any t > 0:

1. Suppose t < dn . Let 0 ≤ k < n be such that d′
k ≤ t < d′

k+1. Then

dbf (τ ′, t) =
k∑

j=1

e′
j (since τ ′ satisfies condition (18))

= d′
k (since τ ′ satisfies condition (19))

≤ t (by the definition of k).

2. Suppose dn ≤ t < di + pi . We have dbf (τ ′, t) = ∑n
j=1 e′

j = dn ≤ t .
3. Consider t ≥ di + pi . We first prove that dbf (τi, t) decreases at by least 2θ , and then dbf (τn, t) increases by at most 2θ , 

and for any other j the value of dbf (τ j, t) does not increase.
First,

dbf (τ ′
i , t) =

(⌊
t − d′

i

p′
i

⌋
+ 1

)
· e′

i

≤
(⌊

t − di

pi

⌋
+ 1

)
· e′

i (by Lemma 4)

=
(⌊

t − di

pi

⌋
+ 1

)
· (ei − θ)

≤ dbf (τi, t) − 2θ.

Then, when t < p′
n + dn , dbf (τ ′

n, t) = e′
n = en + 2θ ≤ dbf (τn, t) + 2θ . When t ≥ p′

n + dn , let k ≥ 1 be the integer such that 
kp′

n + dn ≤ t < (k + 1)p′
n + dn , and we have

dbf (τ ′
n, t) =(k + 1)e′

n

≤2ke′
n

≤
(

k

⌈
2e′

n

en

⌉
+ 1

)
· en

=dbf (τn,kp′
n + dn)

≤dbf (τn, t)

<dbf (τn, t) + 2θ.

Finally, for any j /∈ {i, n}, dbf (τ ′
j, t) ≤ dbf (τ j, t) for two reasons. On the one hand, when t < d j + p j , dbf (τ ′

j, t) = e′
j =

e j = dbf (τ j, t). On the other hand, when t ≥ d j + p j , by Lemma 4, 
t−d′

j

p′
j

≤ t−d j
p j

, which means

dbf (τ ′
j, t) =

(⌊
t − d′

j

p′
j

⌋
+ 1

)
· e′

j

≤
(⌊

t − d j

p

⌋
+ 1

)
· e j
j

10
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=dbf (τ j, t).

As a result, dbf (τ ′, t) = ∑n
j=1 dbf (τ ′

j, t) ≤
∑n

j=1 dbf (τ j, t) = dbf (τ , t). Hence, dbf (τ ′, t) ≤ t because τ is a feasible solu-
tion to M P1.

Altogether, we have proven that τ ′ satisfies condition (17).

Next we prove dbf ∗(τ ′,d′
n)

d′
n

≥ dbf ∗(τ ,dn)
dn

. Since d′
n = dn , it is equivalent to show dbf ∗(τ ′, dn) ≥ dbf ∗(τ , dn). This follows from

• dbf ∗(τ ′
n, dn) − dbf ∗(τn, dn) = e′

n − en = 2θ ;
• dbf ∗(τ ′

i , dn) − dbf ∗(τi, dn) ≥ −2θ because

dbf ∗(τ ′
i ,dn) =

(
dn − d′

i

p′
i

+ 1

)
· e′

i

≥
(

dn − di

pi
+ 1

)
· (ei − θ) (by Lemma 4)

=dbf ∗(τi,dn) −
(

dn − di

pi
+ 1

)
θ

≥dbf ∗(τi,dn) − 2θ;
• for i < j < n, dbf ∗(τ ′

j, dn) ≥ dbf ∗(τ j, dn) because

dbf ∗(τ ′
j,dn) =

(
dn − d′

j

p′
j

+ 1

)
· e′

j

≥
(

dn − d j

p j
+ 1

)
· e j (by Lemma 4)

=dbf ∗(τ j,dn);
• for j < i, dbf ∗(τ ′

j, dn) − dbf ∗(τ j, dn) = 0 since τ ′
j = τ j .

Hence, the proof of case 1 is finished.
Case 2: i < n and dn − dn−1 − en ≥ ei . Let θ = ei . We construct a new task set τ ′ = {τ ′

j = (e′
j, d

′
j, p

′
j) : 1 ≤ j ≤ n − 1} as 

follows:

• e′
n−1 = en + 2θ, d′

n−1 = dn, p′
n−1 =

⌈
2e′

n−1
en

⌉
pn .

• For i ≤ j ≤ (n − 2), e′
j = e j+1, d′

j = d j+1 − θ, p′
j = p j+1 + θ .

• For j < i, τ ′
j = τ j .

Next we prove that τ ′ is a feasible solution to M P1. Since conditions (12)–(14) hold by definition, we prove that condition 
(11) holds for any t > 0:

1. Suppose t < dn . Let 0 ≤ k < (n − 1) be such that d′
k ≤ t < d′

k+1. If k < i, then we have dbf (τ ′, t) = ∑k
j=1 e j = dk = d′

k ≤ t . 
Otherwise

dbf (τ ′, t) =
k∑

j=1

e′
j (since τ ′ satisfies condition (12))

=
i−1∑
j=1

e j +
k+1∑

j=i+1

e j = dk+1 − ei

= dk+1 − θ = d′
k (by the definition of τ ′)

≤ t (by the definition of k).

2. Suppose dn ≤ t < di + pi . We have dbf (τ ′, t) = ∑n−1
j=1 e′

j ≤ dn ≤ t .
3. Consider t ≥ di + pi . First of all, we have dbf (τi, t) ≥ 2ei = 2θ .

Then, when t < p′
n−1 + dn , dbf (τ ′

n−1, t) = e′
n−1 = en + 2θ ≤ dbf (τn, t) + 2θ . When t ≥ p′

n−1 + dn , let k ≥ 1 be the integer 
such that kp′ + dn ≤ t < (k + 1)p′ + dn , and we have
n−1 n−1

11
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dbf (τ ′
n−1, t) =(k + 1)e′

n−1

≤2ke′
n−1

≤
(

k

⌈
2e′

n−1

en

⌉
+ 1

)
· en

=
(

k
p′

n−1

pn
+ 1

)
· en

=dbf (τn,kp′
n−1 + dn)

≤dbf (τn, t)

<dbf (τn, t) + 2θ.

In addition, for any j < i, dbf (τ ′
j, t) ≤ dbf (τ j, t) by definition.

Finally, for any i ≥ j ≤ (n − 2), dbf (τ ′
j, t) ≤ dbf (τ j+1, t) for two reasons. On the one hand, when t < d j+1 + p j+1, 

dbf (τ ′
j, t) = e′

j = e j+1 = dbf (τ j+1, t). On the other hand, when t ≥ d j+1 + p j+1, by Lemma 4, 
t−d′

j

p′
j

≤ t−d j+1
p j+1

, which 
means

dbf (τ ′
j, t) =

(⌊
t − d′

j

p′
j

⌋
+ 1

)
· e′

j

≤
(⌊

t − d j+1

p j+1

⌋
+ 1

)
· e j+1

=dbf (τ j+1, t).

As a result, dbf (τ ′, t) = ∑n−1
j=1 dbf (τ ′

j, t) ≤
∑n

j=1 dbf (τ j, t) = dbf (τ , t). Hence, dbf (τ ′, t) ≤ t because τ is a feasible solu-
tion to M P1.

Altogether, we have proven that τ ′ satisfies condition (11).

We now prove dbf ∗(τ ′,d′
n−1)

d′
n−1

≥ dbf ∗(τ ,dn)
dn

. Since d′
n−1 = dn , it is equivalent to show dbf ∗(τ ′, dn) ≥ dbf ∗(τ , dn). This follows 

from

• dbf ∗(τ ′
n−1, dn) − dbf ∗(τn, dn) = e′

n−1 − en = 2θ ;

• dbf ∗(τi, dn) =
(

dn−di
pi

+ 1
)

· ei < 2ei = 2θ ;

• for i ≤ j ≤ n − 2, dbf ∗(τ ′
j, dn) ≥ dbf ∗(τ j+1, dn) because

dbf ∗(τ ′
j,dn) =

(
dn − d′

j

p′
j

+ 1

)
· e′

j

≥
(

dn − d j+1

p j+1
+ 1

)
· e j+1 (by Lemma 4)

=dbf ∗(τ j+1,dn);
• for j < i, dbf ∗(τ ′

j, dn) − dbf ∗(τ j, dn) = 0 since τ ′
j = τ j .

We proceed in two subcases.
Case 2.1: dn −dn−1 −en > ei . Then τ ′ is a feasible solution to M P1 with M(τ ′) = 0. The lemma follows from the induction 

hypothesis.
Case 2.2: dn −dn−1 − en = ei . By the definition of τ ′ , one can see that condition (19) also holds, so τ ′ is a desired feasible 

solution to M P2. The lemma thus holds.
Hence, the proof of case 2 is finished.
Case 3: i = n. Choose k such that dn + kpn > d1 + p1. Define tasks τ ′

j = τ j for 1 ≤ j < n and τ ′
n = (en, dn, kpn). Let 

τ ′ = {τ ′
j : 1 ≤ j ≤ n}. We observe three facts:

1. By the construction, dbf ∗(τ ′,dn)
dn

= dbf ∗(τ ,dn)
dn

.
2. For any t > 0, dbf (τ ′

n, t) ≤ dbf (τn, t) and dbf (τ ′
j, t) = dbf (τ j, t) for any 1 ≤ j < n, meaning that dbf (τ ′, t) ≤ dbf (τ , t) ≤ t . 

Hence, τ ′ is a feasible solution to M P1.
12
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Fig. 6. Splitting each τi into τ ′(i) = {τ ′
m(i, j) : 1 ≤ j ≤ k(i)}.

3. M(τ ′) = 0 and n > arg min1≤ j≤n d′
j + p′

j , where d′
j and p′

j are the relative deadline and the period of task τ ′
j , respectively. 

The proof is thus reduced to case 1 or case 2.

Altogether, we have finished the proof. �
Applying Lemmas 5 and 6, we immediately get the following result.

Lemma 7. M P1 and M P2 have the same optimum value.

3.3. Unifying execution times

In this subsection, a further constraint is imposed on M P2; namely, all the tasks have identical execution times (into 
M P3). We show that this modification does not change the optimum value.

sup
dbf ∗(τ ,dn)

dn
(M P3) (24)

subject to dbf (τ , t) ≤ t, ∀t > 0, (25)

di + pi > dn, 1 ≤ i ≤ n − 1, (26)

di = ei + di−1, 1 ≤ i ≤ n, (27)

ei = dn/n, 1 ≤ i ≤ n, (28)

n ∈Z+, ei,di, pi ∈Q+, 1 ≤ i ≤ n. (29)

Lemma 8. M P2 and M P3 have the same optimum value.

The basic idea of the proof is that for any feasible solution to M P2, we will construct a feasible solution to M P3 whose 
objective value is no smaller. This leads to the lemma since the feasible domain of M P3 is included in that of M P2 and the 
two mathematical programs have the same objective function.

Roughly speaking, the construction is to split each task into a set of smaller subtasks with identical execution times, as 
demonstrated in Fig. 6. The fact that the splitting keeps the feasibility and does not reduce the dbf ∗ value is intuitively 
shown in Fig. 7.

Proof. Let τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} be an arbitrary feasible solution to M P2. Because of condition (20), we can choose 
δ ∈Q+ such that

k(i) � ei

δ

is an integer for any 1 ≤ i ≤ n. Let n′ = ∑n
i=1 k(i).

For any 1 ≤ l ≤ n′ , define task τ ′
l = (

e′
l,d′

l, p′
l

)
as below, where 1 ≤ i ≤ n and 1 ≤ j ≤ k(i) are such that l = m(i, j) �

j + ∑
1≤h<i k(h):

e′
l = δ,

d′
l = di−1 + j

k(i)
(di − di−1) = di−1 + jδ,

p′
l = pi + di − d′

l .
13
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Fig. 7. (a) The splitting keeps the feasibility. (b) The dbf ∗ value is not reduced.

Let τ ′(i) = {τ ′
m(i, j) : 1 ≤ j ≤ k(i)} for any 1 ≤ i ≤ n, and τ ′ = ∪n

i=1τ
′(i). Let d′

0 = 0. Next we prove that τ ′ is a feasible solution 
to M P3.

Since τ ′ satisfies conditions (26)–(29) by definition, we now investigate condition (25) by arbitrarily fixing t > 0 and 
proceeding case by case.

Case 1: t < d′
n′ . Let integer h ≥ 0 be such that d′

h ≤ t < d′
h+1. Then

dbf (τ ′, t) =
∑

1≤r≤n′
dbf (τ ′

r , t)

=
∑

1≤r≤h

dbf (τ ′
r , t) (because t < d′

h+1)

=
∑

1≤r≤h

(⌊
t − d′

r

p′
r

⌋
+ 1

)
· e′

r

=
∑

1≤r≤h

e′
r = d′

h ≤ t,

where the fourth equality holds because of the inequality p′
r > t − d′

r , which in turn follows from three facts:

1. For any 1 ≤ i ≤ n and 1 ≤ j ≤ k(i), we have

p′
m(i, j) = pi + di − d′

m(i, j) by definition.

2. From condition (18), pi + di > dn holds for all i, 1 ≤ i ≤ n.
3. dn = d′

n′ > t .

Case 2: t ≥ d′
n′ . It suffices to prove that for any 1 ≤ i ≤ n,

dbf (τ ′(i), t) ≤ dbf (τi, t).

Suppose t < di + pi . We observe that

dbf (τ ′(i), t) =
k(i)∑
j=1

dbf (τ ′
m(i, j), t)

=
k(i)∑(⌊

t − d′
m(i, j)

p′
m(i, j)

⌋
+ 1

)
δ

j=1

14
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=k(i)δ (because t < di + pi = d′
m(i, j) + p′

m(i, j))

=ei (by the definition of k(i))

=dbf (τi, t) (because di ≤ t < di + pi).

Then consider t ≥ di + pi . For any 1 ≤ j ≤ k(i), since di ≥ d′
m(i, j) and di + pi = d′

m(i, j) + p′
m(i, j) , Lemma 4 implies

t − d′
m(i, j)

p′
m(i, j)

≤ t − di

pi
,

which further leads to

dbf (τ ′(i), t) =
k(i)∑
j=1

(⌊
t − d′

m(i, j)

p′
m(i, j)

⌋
+ 1

)
δ

≤
k(i)∑
j=1

(⌊
t − di

pi

⌋
+ 1

)
δ

=
(⌊

t − di

pi

⌋
+ 1

)
ei

=dbf (τi, t).

Altogether, condition (25) is satisfied in both cases, so τ ′ is a feasible solution to M P3.
The rest of the proof is to show that

dbf ∗(τ ′,d′
n′) ≥ dbf ∗(τ ,dn).

Note that for any 1 ≤ i ≤ n, 1 ≤ j ≤ k(i),

d′
n′ = dn < pi + di = d′

m(i, j) + p′
m(i, j) and d′

m(i, j) ≤ di .

Lemma 4 implies that

d′
n′ − d′

m(i, j)

p′
m(i, j)

≥ dn − di

pi
.

Then for any 1 ≤ i ≤ n, we have

dbf ∗(τ ′(i),d′
n′) =

k(i)∑
j=1

(
d′

n′ − d′
m(i, j)

p′
m(i, j)

+ 1

)
δ

≥
(

dn − di

pi
+ 1

)
ei

= dbf ∗(τi,dn).

Therefore, dbf ∗(τ ′, d′
n′) ≥ dbf ∗(τ , dn). �

3.4. Aligning the periods

It is still difficult to estimate the optimum value of M P3, partly because condition (25) is hard to handle. Thus, instead 
of conditions (25) and (26), we require that the task set be aligned, as defined next.

Definition 1. Given a task set τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n}, a permutation π over {1, 2, . . . , n} is called an aligning permu-
tation of τ if

dπ(i) + pπ(i) = dn + di

for any 1 ≤ i ≤ n. τ is said to be aligned if it has an aligning permutation.
15
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Fig. 8. Illustration of the proof of Lemma 9.

Fig. 9. The transformation in Lemma 9 does not reduce the objective value.

Remark 1. We will consider aligned task sets in the context of conditions (32) and (33) as in the following M P4. Then being 
aligned means that every d1 time during period [0, 2dn], there is a job (the first or second job released by some task) that 
reaches its deadline. Since any job needs execution time dn

n , the system has to execute the jobs one after another, having no 
idle time during [0, 2dn] at all. Hence, neither the periods nor the deadlines of the tasks can be further shrunk to keep the 
task set schedulable. Intuitively, aligned task sets make the system as busy as possible during [0, 2dn], so they might lead 
to an upper bound of ρ .

Being aligned implies condition (26), and in some sense “relaxes” condition (25) for ease of analysis. Hence, we replace 
these conditions in M P3 with “aligned,” and show that the optimum value of M P3 does not decrease after the modification. 
Specifically, we define a new mathematical program:

sup
dbf ∗(τ ,dn)

dn
(M P4) (30)

subject to τ is aligned, (31)

di = ei + di−1, 1 ≤ i ≤ n, (32)

ei = dn/n, 1 ≤ i ≤ n, (33)

n ∈Z+, ei,di, pi ∈Q+, 1 ≤ i ≤ n. (34)

Lemma 9. The optimum value of M P3 is not more than that of M P4.

The basic idea of the proof is that given any feasible solution to M P3, we sort the tasks increasingly according to their 
second deadlines; namely, pi + di . Then we adjust the periods of the tasks so that for any ith task (order in the sorting), its 
second deadline is dn + di . This transformation trivially guarantees alignment.

Proof. Arbitrarily choose a feasible solution τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} to M P3. Let π be a permutation over 
{1, 2, . . . , n} such that

dπ(1) + pπ(1) ≤ dπ(2) + pπ(2) ≤ · · · ≤ dπ(n) + pπ(n). (35)

For any 1 ≤ i ≤ n, construct a task τ ′
π(i) = (e′

π(i), d
′
π(i), p

′
π(i)), where

e′
π(i) = eπ(i),d′

π(i) = dπ(i), p′
π(i) = dn + di − d′

π(i).

Let τ ′ = {τ ′
i : 1 ≤ i ≤ n}. The construction is demonstrated in Fig. 8.

We will show that τ ′ is a feasible solution to M P4. Since conditions (32)–(34) are satisfied by definition, we need only 
to prove condition (31). Because p′

π(i) + d′
π(i) = dn + di = d′

n + d′
i for any 1 ≤ i ≤ n, π is an aligning permutation of τ ′ , and 

condition (31) is satisfied.
We now prove dbf ∗(τ ′, d′

n) ≥ dbf ∗(τ , dn), as illustrated in Fig. 9. We first derive an inequality as a tool.
16
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For any 1 ≤ i ≤ n, let j = π−1(i), i.e., π( j) = i, and we have

di + pi ≥dbf (τ ,di + pi) (since τ satisfies condition (25))

=
∑

1≤l≤ j

dbf (τπ(l),di + pi) +
∑

j<l≤n

dbf (τπ(l),di + pi)

≥
∑

1≤l≤ j

2eπ(l) +
∑

j<l≤n

eπ(l)

=2 jdn

n
+ (n − j)dn

n
=dn + d j (because of conditions (27) and (28)),

where the second inequality is because

di + pi = dπ( j) + pπ( j) ≥ dπ(l) + pπ(l) for any l ≤ j

and di + pi > dn ≥ dπ(l) for any l > j. Hence, by the definition of τ ′ , we have

di + pi ≥ dn + d j = dn + dπ−1(i) = d′
i + p′

i . (36)

For any 1 ≤ i ≤ n, by (36) and di = d′
i , we have p′

i ≤ pi . This, together with e′
i = ei, d′

i = di for any 1 ≤ i ≤ n, implies 
dbf ∗(τ ′, d′

n) ≥ dbf ∗(τ , dn). As a result,

dbf ∗(τ ,dn)

dn
≤ dbf ∗(τ ′,d′

n)

d′
n

.

The lemma thus holds. �
We present a technical lemma before moving on.

Lemma 10. For any x1, x2, . . . , xn ∈R+ such that

n∑
i=1

xi = n2,

we have
n∑

i=1

i

xi
≥ 4n

9
.

Proof. By Cauchy’s inequality,(
n∑

i=1

i

xi

)(
n∑

i=1

xi

)
≥

(
n∑

i=1

√
i

)2

.

Note that

n∑
i=1

√
i ≥

n∑
i=1

i∫
i−1

√
xdx (by the monotonicity of

√
x)

=
n∫

0

√
xdx

= 2

3
n

3
2 .

Therefore,

n∑
i=1

i

xi
≥

4
9 n3

n2
= 4n

9
.

Hence, we have proved the lemma. �
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Lemma 11. The optimum value of M P4 is at most 14
9 .

Proof. Arbitrarily choose a feasible solution τ = {τi = (ei, di, pi) : 1 ≤ i ≤ n} to M P4. Let δ = dn
n . By conditions (32) and (33),

ei = δ and di = iδ

for any 1 ≤ i ≤ n.
Let π be an aligning permutation of τ . Then we have

n∑
i=1

pπ(i) =
n∑

i=1

(dn + di − dπ(i)) = ndn = n2δ,

which implies 
∑n

i=1
pπ(i)

δ
= n2. By Lemma 10,

n∑
i=1

iδ

pπ(i)
≥ 4n

9
.

Hence,

n∑
j=1

d j + p j − dn

p j
=

n∑
i=1

dπ(i) + pπ(i) − dn

pπ(i)

=
n∑

i=1

di

pπ(i)
(since τ is aligned)

=
n∑

i=1

iδ

pπ(i)
≥ 4n

9
.

As a result,

dbf ∗(τ ,dn) =
n∑

j=1

dbf ∗(τ j,dn)

=
n∑

j=1

(
2 − p j + d j − dn

p j

)
e j

=
n∑

j=1

(
2 − p j + d j − dn

p j

)
δ

= 2nδ − δ

n∑
j=1

p j + d j − dn

p j

≤ 2nδ − 4n

9
δ = 14

9
dn.

The lemma holds. �
3.5. Upper-bounding the relaxation factor

We are ready to present one of the main results of this article, which claims that the relaxation factor is at most 1.5556.

Theorem 1. The relaxation factor ρ is at most 14
9 .

Proof. It follows from Lemmas 3, 7, 8, 9, and 11. �
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4. Partitioned scheduling on multiprocessors

This section is devoted to partitioning sporadic tasks on multiprocessors, where the tasks are assumed to have con-
strained deadlines. Note that although Theorem 1 holds for arbitrary deadlines, the extension to multiprocessors applies 
only for the constrained-deadline case. We focus on the algorithm of deadline-monotonic partitioned EDF; namely, the 
algorithm PARTITION in [16].

Basically, the algorithm PARTITION assigns tasks sequentially in nondecreasing order of relative deadlines to processors 
that are numbered by distinct integers. Suppose the (i − 1)th task has just been assigned. Let τ (k) be the set of tasks that 
have been assigned to processor k, for any k. Then the ith task is assigned to the least-numbered processor k that can safely 
serve the task, i.e., ei + dbf ∗(τ (k), di) ≤ di .

Remember that we have upper-bounded the relaxation factor ρ . The following lemma bridges ρ and the speedup factor 
of PARTITION.

Lemma 12 ([16,1]). The speedup factor of the algorithm PARTITION for constrained-deadline tasks is 1 + ρ − 1/m, where m is the 
number of processors.

We now present the other main result of this article.

Theorem 2. The speedup factor of the algorithm PARTITION for constrained-deadline tasks is at most 2.5556 − 1/m.

Proof. The theorem immediately follows from Theorem 1 and Lemma 12. �
5. Conclusion and future work

In this article, we improved the upper bound of the speedup factor of (polynomial-time) partitioned EDF from 2.6322 −
1/m to 2.5556 − 1/m for constrained-deadline sporadic tasks on m identical processors, narrowing the gap between the 
upper and lower bounds from 0.1322 to 0.0556. This is an immediate corollary of our improvement of the upper bound 
of the relaxation factor from 1.6322 to 1.5556, which holds for both the constrained-deadline scenario and the arbitrary-
deadline scenario.

Technically, our improvements are rooted in a novel discretization that transforms the tasks into regular form. The 
discretization essentially restricts attention to the tasks with fixed execution times and deadlines. Only the period parameter 
remains flexible to some extent—ranging over the set {1, 2, . . . , 2n}, where n is the number of tasks to be scheduled. With 
such transformation, the estimation of the relaxation factor is reduced to a much simpler optimization problem. However, 
we have not yet proved that the last-step transformation (for periods) is lossless. This means that the discretization might 
increase the relaxation factor. The good news is that the incurred loss, if not zero at all, is guaranteed to be no more than 
0.0556.

Regarding future directions, we conjecture that a upper bound of 1.5 for the relaxation factor can be derived, thus 
closing the gap between the upper and lower bounds. If this is the case, the speedup factor of partitioned EDF becomes 
fully determined, at least in the case of constrained deadlines.
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