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Abstract—Even though earliest-deadline-first (EDF) is opti-
mal in terms of uniprocessor schedulability, it is co-NP-hard
to precisely verify uniprocessor schedulability for constrained-
deadline task sets. The most efficient way to solve this problem
in polynomial time is via a partially linear approximation of the
demand bound function. Such approximation leads to a simple
uniprocessor schedulability testing with speedup factor ρ. Such a
result further leads to Deadline-Monotonic Partitioned-EDF on
multi-processors with speedup factor of 1 + ρ − 1/m (where m
is the number of processors). The current state of the art results
indicate that ρ is within the range [1.5, 14/9]. Especially, it has
been a conjecture that ρ = 1.5.

This paper improves the range of ρ to (1.5026, 1.5380). The
improved lower bound disproves the conjecture of lower bound
1.5. A novel technique is to construct an auxiliary function
that is larger than the approximate demand bound function but
keeps the supremum ρ unchanged. It solves the dilemma that
beating the lower bound 1.5 requires extremely large task sets,
while the large size makes it difficult to check the schedulability.
This technique not only enables us to disprove 1.5 by a task
set of only eight tasks, but also sheds light on future work in
transferring/downsizing task sets and deriving utilization bound
based tests for various workload abstraction models, such as
DAG tasks.

Index Terms—Sporadic tasks, resource augmentation bound,
partitioned scheduling, demand bound function

I. INTRODUCTION

Given a finite set of constrained-deadline sporadic tasks,

each sequentially releasing infinitely many jobs, the mission

of real-time scheduling is to allocate computing resources

so that all the jobs complete their executions in a timely

manner. It is long-known that EDF is optimal in terms of

uniprocessor schedulability [1] [2], i.e., if a task set has a

feasible schedule, then all deadlines can be met under EDF

priority settings. However, conducting the schedulability test

that judges whether the set is schedulable by EDF is co-NP-

hard on a uniprocessor platform [3] (for constrained/arbitrary

task sets), and even when total utilization is capped strictly

below 1 [4]. Although there exists pseudo-polynomial-time

∗Corresponding author

approach [5], and attempts have been made in transforming

the problem (e.g., [6]), the hardness result implies that it is

impossible to decide EDF schedulability exactly in polynomial

time, unless P=NP.

As a result, approximation algorithms that run in polynomial

time have been actively studied [7] [8] [9] [10]. Usually, these

approximation algorithms are pessimistic, i.e., always deciding

“No” unless some sufficient condition of schedulability is met.

The performance of such an algorithm can be measured by the

speedup factor [11], also known as the resource augmentation

bound, which is the smallest s ≥ 1 such that whenever the

algorithm decides “No” with processor speed 1, the task set is

not schedulable with processor speed 1/s. Although potential

concerns were raised recently [12] [13] [14], the speedup

factor has become a standard theoretical tool for evaluating

schedulability tests [15].

Since a fully polynomial-time approximation scheme (FP-

TAS) with speedup factor 1 + ε exists for uniprocessors [8],

attention has been shifting towards multiprocessors, especially

partitioned scheduling, where each task is scheduled on a

dedicated processor. Although it remains NP-hard to determine

schedulability of partitioned scheduling even for the implicit-

deadline case (where the relative deadline of each task equals

to its period), partitioned scheduling has been a hot topic due

to its simplicity and wide-applicability to industry systems.

Deadline-Monotonic Partitioned-EDF (PDM -EDF in short)

proposed by Baruah and Fisher [16] uses a partially linear

approximation of the demand bound function to determine

per-core schedulability. It is the best-known polynomial-time

scheduling algorithm of partitioned style in terms of resource

efficiency. However, determining its speedup factor has been

a long-term challenge.

A milestone is that the speedup factor of PDM -EDF for

constrained deadline tasks on identical multi-processors is

proven to be at most 1 + ρ − 1
m [16]. Here m is the

number of processors and ρ, called the relaxation factor as

in [17], is the speedup factor of uniprocessor schedulability

testing by the piece-wise linearly approximated demand bound
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function [8] (see Equation (2) for a formal definition). The

connection between ρ and multi-processor scheduling was

further strengthened by Chen and Chakraborty (Theorem 2,

[18]), who implicitly proved that the lower bound of the

speedup factor of PDM -EDF with a random fitting strategy

(instead of first-fit, as originally proposed by Baruah and

Fisher) is asymptotically equal to 1 + ρ. Hence, ρ in itself

deserves a thorough investigation.

Great progress has been made to estimate ρ. For

constrained-deadline tasks, ρ is upper bounded by 2 by Baruah

and Fisher [16] in 2005, by 1.6322 by Chen and Chakraborty

[18] in 2011, and by 14/9 by Han et al. [19] in 2018, which is

the best known result so far. In [17], Liu et al. further showed

that the upper bound 14/9 remains valid for arbitrary-deadline

tasks. The lower bound is more challenging. Since Chen and

Chakraborty [18] obtained an asymptotic lower bound of 3/2
a decade ago, no improvement has appeared. Actually, it has

been conjectured that this lower bound is tight (oral at the

presentation of [18] and written in [17] [19] [20]).

This paper tries to further narrow the range of the relax-

ation factor ρ, hence better estimating the speedup factor of

Partitioned-EDF. Our main contribution lies in three aspects.

1) We prove a new lower bound of 1.5026 for ρ, which is

greater than 1.5 that was established a decade ago [18].

Since it has been conjectured that ρ = 1.5, the signifi-

cance of our finding mainly lies in that this conjecture is

disproven and a reasonable new conjecture is called for.

As a corollary, no matter which fitting strategy is used

(including random ones), the asymptotic lower bound

of the speedup factor of PDM -EDF for constrained-

deadline tasks is improved from 2.5 to 2.5026.

2) We improve the best existing upper bound of ρ from

14/9 to 1.5380. Accordingly, the speedup factor of

PDM -EDF for constrained-deadline tasks is upper-

bounded from above by 2.5380− 1
m instead of the looser

23/9− 1
m . Compared to the best known results, the gap

between the lower and upper bound is reduced by a

fraction of 33%.

3) We propose a counter-intuitive approach for analyzing

speedup factors of schedulability testing. An auxiliary

function is constructed that enlarges the approximate

demand bound function while preserving the supremum,

enabling to observe much tighter lower bounds with

small task sets. Using this method, we easily disprove

the 1.5 lower bound of ρ by a set of eight tasks (found by

brute-force search). On the contrary, to reach the same

lower bound by the original demand bound function, the

minimal task set we identify is as large as half a million

tasks (such a big set is currently impossible to be found

by brute-force search). The method may also shed light

on estimating the resource augmenting factors of other

scheduling problems/approaches in real-time systems,

such as handling dependencies (e.g., DAG tasks).

The rest of the paper is organized as follows. Section

II provides the models, notations, and preliminary results.

Section III proves the lower bound 1.5026 of ρ, while Section

IV improves the upper bound of ρ to 1.5380. Section V

concludes the work and points out future directions.

II. SYSTEM MODEL AND PRELIMINARIES

A. Notational Convention

Z+: the set of positive integers.

R+: the set of positive real numbers.−→p : a vector, whose i-th entry is denoted by pi.

Throughout this paper, f(·) is the function such that for any

real number x,

f(x) =

{
0 if x < 0
�x�+ 1 otherwise

.

B. System Model

We consider a set of sporadic real-time tasks, with each task

being characterized by a triple (e, d, p)— meaning that the task

sporadically releases jobs with inter-arrival time (also called

period) at least p, the worst-case execution time (WCET) of

any job is at most e, and any job has to be done within

relative deadline d after it is released. Task (e, d, p) is called

constrained-deadline provided that d ≤ p.

Our ultimate goal is to improve the speedup factor of

Deadline-Monotonic Partitioned-EDF algorithm. When par-

titioning tasks to processors, it considers tasks in non-
decreasing order of their relative deadlines (DM) while us-

ing any fit heuristic for bin-packing. The schedulability test

applied to each processor leverages the approximate demand-
bound function (see dbf∗-based test in formula (2)). Please

refer to Section III in [16] or Algorithm 1 in [18] for

more detail. Note that Baruah and Fisher restricted the fitting

strategy to first-fit only, while Chen and Chakraborty [18]

pointed out that the speedup factor results hold for any fitting

strategy (even random), as far as the order for partitioning the

tasks is restricted to DM. Similar properties and restrictions

holds for this paper, and we refer to this specific approach

as ‘PDM -EDF’ in short in the rest of the paper—it has the

best-known speedup factor and resource efficiency within the

whole family of polynomial-time partitioned-EDF algorithms.

It is well-known (Lemma 1) that the speedup factor of PDM -

EDF can be reduced to that of uniprocessor schedulability test.

Hence, we will focus on the uniprocessor case from now on.

Given a finite set τ of tasks, it is called feasible if there ex-

ists a schedule such that all jobs can receive executions of their

WCETs upon their deadlines (on a unit-speed uniprocessor).

Let n = |τ |, and suppose τ consists of tasks τi = (ei, di, pi),
1 ≤ i ≤ n. According to the result in [5], τ is feasible if and

only if its demand bound function (dbf ) meets

dbf(τ, t) �
n∑
i=1

f

(
t− di
pi

)
· ei ≤ t for any t ∈ R+. (1)

Since EDF is optimal on uniprocessor [1], Condition (1)

is also the exact (necessary and sufficient) schedulability test

for uniprocessor EDF scheduling with constrained-deadline

sporadic tasks. However, it is computationally hard to check
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Condition (1), even when total system utilization is bounded

strictly below 1 [4].

Hence, a schedulability test based on approximate demand
bound function (dbf∗) has been proposed:

dbf∗(τ, t) �
n∑
i=1

f∗
(
t− di
pi

)
· ei ≤ t for any t ∈ R+, (2)

where f∗(x) = x+ 1 if x ≥ 0 and f∗(x) = 0 otherwise.

Then quantity ρ(τ) is defined as below:

ρ(τ) � dbf∗(τ, d)
d

with d = max
1≤i≤n

di. (3)

Based on ρ(τ), we define the relaxation factor ρ to be

ρ � sup
n∈Z+

sup
|τ |=n

ρ(τ), (4)

where τ ranges over feasible sets of sporadic tasks. Intuitively,

ρ indicates how much the approximate demand bound function

deviates from machine-capacity.

C. Preliminaries

Lemma 1 ( [17], [19]): The speedup factor of PDM -EDF

on constrained-deadline task sets is 1 + ρ − 1
m , where m is

the number of processors.

Hence analyzing speedup factor of PDM -EDF is reduced

to computing ρ. Recently, Han et al. [19] and Liu et al. [17]

have made progress on estimating ρ by introducing a series of

lossless transformation, which leads to the following lemma.

Lemma 2: The value of ρ remains unchanged even if τ in

(4) is further required to consist of tasks τi = (ei, di, pi) with

ei = 1, di = i, pi ∈ Z+ for any 1 ≤ i ≤ n, (5)

where n = |τ |.
Proof: . By Lemmas 2,3,7,8 in [17], ρ equals the optimal

value of the following mathematical program:

sup
dbf∗(τ, dn)

dn
, (MP3) (6)

subject to dbf(τ, t) ≤ t, ∀t > 0 (7)

di + pi > dn, 1 ≤ i ≤ n− 1, (8)

di = ei + di−1, 1 ≤ i ≤ n, (9)

ei = dn/n, 1 ≤ i ≤ n, (10)

n ∈ Z+, ei, di, pi ∈ Q+, 1 ≤ i ≤ n. (11)

The basic idea of the rest of the proof: we sequentially

impose two additional conditions (pi is a multiple of ei, and

ei = 1, respectively) on MP3. These conditions preserve the

optimum value and force the tasks to have the form as in (5).

Specifically, we make two claims.

Claim 1: The optimum value of MP3 remains unchanged

if it is further required that

pi/ei ∈ Z+ for 1 ≤ i ≤ n. (12)

In the proof of Lemma 8 in [17], the number δ can be chosen

such that ei/δ ∈ Z+ and pi/δ ∈ Z+ for any 1 ≤ i ≤ n. That

proof remain valid since any δ satisfying ei/δ ∈ Z+ works.

Claim 1 thus holds.

Claim 2: The optimum value of MP3 remains unchanged

if it is even further required that

ei = 1 for 1 ≤ i ≤ n. (13)

To prove Claim 2, arbitrarily choose a task set τ = {τi =
(ei, di, pi) : 1 ≤ i ≤ n} satisfying Conditions (7)-(12). Let

e = dn/n. Define τ ′ = {τ ′i = (e′i, d
′
i, p

′
i) : 1 ≤ i ≤ n} with

e′i = ei/e = 1,

d′i = di/e = i,

p′i = pi/e ∈ Z+.

By definition, τ ′ satisfies Condition (5).

We proceed to show that τ ′ is a feasible solution to MP3.

It is obvious that Conditions (8)-(11) are satisfied. One only

has to show that Condition (7) is met, namely,

dbf(τ ′, t) ≤ t, ∀t > 0.

There are two cases.

Case 1: t ≤ n. Let i ∈ Z+ be such that i−1 ≤ t < i. Then,

dbf(τ ′, t) =
n∑
j=1

f

(
t− d′i
p′i

)
· e′j =

i−1∑
j=1

e′j = i− 1 ≤ t.

Case 2: t > n. Arbitrarily fix 1 ≤ i ≤ n. Let ji be the

maximal integer such that d′i + jip
′
i ≤ t, which is equivalent

to di + jipi ≤ et. Then we have dbf(τi, et) = (1 + ji)e and

dbf(τ ′i , t) = 1 + ji. Recall that τ satisfies Condition (7), so

et ≥
n∑
i=1

dbf(τ, et) =

n∑
i=1

(1 + ji)e.

Hence,

t ≥
n∑
i=1

(1 + ji) =
n∑
i=1

dbf(τ ′i , t) = dbf(τ ′, t).

As a result, both Cases 1&2 hold, meaning that τ ′ is a

feasible solution to MP3.

Next we show that the objective value is preserved. This

follows from the fact that for any 1 ≤ i ≤ n,

dbf∗(τi, dn)
dn

=

(
dn − di
pi

+ 1

)
ei
dn

=

(
d′n − d′i
p′i

+ 1

)
e′i
d′n

=
dbf∗(τ ′i , d

′
n)

d′n
.

Altogether, Claim 2 also holds and the lemma is proven.

Lemma 2 enables us to discretize Condition (1). As shown

in the following lemma, it suffices to only consider the demand

at integer time points.
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Lemma 3: Given any task set τ satisfying (5), Condition (1)

is equivalent to∑
1≤i≤n

f

(
t− i
pi

)
≤ t for any t ∈ Z+. (14)

Proof: In the setting of (5), Condition (1) trivially implies

Condition (14), so we only show that Condition (14) also leads

to Condition (1).

Suppose τ satisfies Condition (14). Arbitrarily fix t ∈ R+.

It holds that ∑
1≤i≤n

f

(
t− i
pi

)

=
∑

1≤i≤n
f

(�t� − i
pi

)
(since i, pi ∈ Z+)

≤ �t� (since τ satisfies (14) and �t� ∈ Z+)

≤ t (by definition of �·�).
As a result, τ satisfies Condition (1).

In addition, Condition (5) makes it possible to expand

Formula (3):

ρ(τ) =
1

d

n∑
i=1

f∗
(
d− di
pi

)
· ei

=
1

n

n∑
i=1

(
n− i
pi

+ 1

)

(by (Condition 5) and definition of f∗(·))

=1 +
n∑
i=1

n− i
npi

.

This leads to a simplified form of ρ:

ρ = 1 + sup
n∈Z+

sup
−→p∈Z

n
+

∑
1≤i≤n

n− i
npi

, (15)

where −→p satisfies Condition (14).

On this ground, for any n ∈ Z+, define

ξn � sup
−→p∈Z

n
+

∑
1≤i≤n

n− i
npi

, (16)

where −→p satisfies Condition (14). Let ξ = supn∈Z+
ξn.

We immediately have a corollary.

Corollary 1: ρ = ξ + 1
Estimating ρ is thus reduced to estimating ξ. The rest of

this paper is devoted to showing that 0.5026 < ξ < 0.5380,

establishing 1.5026 < ρ < 1.5380.

III. IMPROVED LOWER BOUND FOR ξ

A. Challenges and Insights

Let’s begin with the challenges of analyzing ξ directly and

insights that can be gained from them.

Recall that ξ is the supremum of the sequence in (16), upon

all −→p ’s that satisfy Condition (14). The known range of ξ is

[0.5, 5/9] according to the state-of-the-art results, and it has

been conjectured that 0.5 is the tight lower bound.
Note that for any n ∈ Z+, the all-n vector (n, · · · , n) ∈ Zn+

satisfies Condition (14). Since
∑n
i=1

n−i
n2 = n−1

2n which is

smaller than but converges to 0.5, all-n vectors serve as a

certificate of the lower bound 0.5. However, these vectors are

not worst for calculating ξ, because one can easily find −→p ∈
Zn+ such that

∑n
i=1

n−i
npi

>
∑n
i=1

n−i
n2 . For example, −→p =

(8, 9, 5, 6, 7, 8, 12) satisfies Condition (14), and
∑7
i=1

7−i
7pi

>

0.4308 > 3/7 =
∑7
i=1

7−i
72 . As a result, we conjecture that ξ

might be greater than 0.5.
To search for a certificate, similar to [21], we wrote a

computer program and exhaustively enumerated −→p ∈ Zn+ for

n up to 20. Unfortunately, we have failed to find any vector−→p satisfying both Condition (14) and
∑n
i=1

n−i
npi

> 0.5. Note

that the search space for −→p is mn, where m, set as 25 in our

search, is the size of the search range for each period. Such

an exponential growth makes it computationally difficult to

search for larger task sets (with n > 20).
Such a fact leads to the key insight of this paper:

As n gets larger, ξn is growing so slow that the

search space for lower-bounding the supremum ξ
becomes too large and computationally difficult

to handle. If there is an auxiliary sequence (say,

{ηn}n∈Z+ ) which is element-wise bigger than but
has the same supremum with {ξn}n∈Z+ , one can

easily find a good lower bound of ξ by analyzing

{ηn}n∈Z+
. See Fig. 1 for an intuitive illustration.

Suppose such an auxiliary sequence does exist. Since ηn >
ξn for any n, it might be easier to use brute-force search

to find a small m such that ηm > 0.5. Then we know that

ξ = supn∈Z+
ξn = supn∈Z+

ηn ≥ ηm > 0.5, and the mission

is fulfilled.
Hence, in the rest of this section, we will construct an aux-

iliary sequence which is element-wise bigger than {ξn}n∈Z+ ,

and prove that its supremum is exactly ξ.

Fig. 1. Although the auxiliary sequence {ηi} is bigger than {ξi}, both of
them has the same supremum. Via {ηi}, it is easier to derive a good lower
bound of the supremum.

B. An Auxiliary Sequence
We now propose the auxiliary sequence. ∀n ∈ Z+, let

ηn � sup
−→p∈Z

n
+

∑
1≤i≤n

n− i+ 1
2

npi
, (17)
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where −→p satisfies Condition (14). Let η � supn∈Z+
ηn.

One may immediately realize that this auxiliary sequence

ηn > ξn for any n ∈ Z+. We now proceed to prove the critical

fact that the two sequences share the same supremum, i.e., η =
ξ (Lemma 6). As a basic step, we prove the following Lemma

4, which intuitively means that {ηn} is nearly increasing and

hence approaches its supremum asymptotically.

Lemma 4: ηkn ≥ ηn for any n, k ∈ Z+.

Proof: Arbitrarily fix n, k ∈ Z+ and −→p ∈ Zn+ satisfying

Condition (14). Define −→q ∈ Zkn+ to be such that

qj = kp	 j
k
 for any 1 ≤ j ≤ kn. (18)

Equivalently,

kpi = q(i−1)k+l for any 1 ≤ i ≤ n, 1 ≤ l ≤ k. (19)

The rest of the proof consists of two steps.

Step 1. We prove that −→q satisfies Condition (14).

For any t ∈ Z+, it holds that∑
1≤j≤kn

f

(
t− j
qj

)

=
∑

1≤l≤k

∑
1≤i≤n

f

(
t− ((i− 1)k + l)

q(i−1)k+l

)

(since j can be uniquely decomposed into

j = (i− 1)k + l with 1 ≤ i ≤ n, 1 ≤ l ≤ k)

=
∑

1≤l≤k

∑
1≤i≤n

f

(
t+ k − l − ik

kpi

)
(by (19))

=
∑

1≤l≤k

∑
1≤i≤n

f

(
t+k−l
k − i
pi

)

=
∑

1≤l≤k

∑
1≤i≤n

f

(⌊
t+k−l
k

⌋− i
pi

)
(by property of f(·))

≤
∑

1≤l≤k

⌊
t+ k − l

k

⌋
(by Condition (14) of −→p )

= t.

Step 2. We show that −→q makes ηkn big enough.

ηkn ≥
∑

1≤j≤kn

kn− j + 1
2

knqj
(by Definition (17))

=
∑

1≤l≤k

∑
1≤i≤n

kn− ((i− 1)k + l) + 1
2

knq(i−1)k+l

(since j can be uniquely decomposed into

j = (i− 1)k + l with 1 ≤ i ≤ n, 1 ≤ l ≤ k)

=
∑

1≤l≤k

∑
1≤i≤n

(
kn+ k − ik + 1

2

)− l
k2npi

(by (19))

=
∑

1≤i≤n

∑
1≤l≤k

(
kn+ k − ik + 1

2

)−∑1≤l≤k l
k2npi

=
∑

1≤i≤n

(
kn+ k − ik + 1

2

)
k − k(k+1)

2

k2npi

=
∑

1≤i≤n

n− i+ 1
2

npi

Hence, ηkn ≥
∑

1≤i≤n
n−i+ 1

2

npi
holds for an any −→p satis-

fying Condition (14). By definition of ηn in (17), we have

ηkn ≥ ηn.

Note that Lemma 3 is a very strong result due to arbitrary

selection of k’s and n’s. It indicates that for any item ηj in

the sequence, there is an infinite subsequence {ηkj : k ∈ Z+}
beyond the jth item with all values no smaller than ηj . As a

result, the supremum of the truncated sequence {ηn : n > j}
is also no smaller than ηj .

We then present one more lemma, which intuitively claims

that Condition (14) precludes the vectors from having too

many small entries.

Lemma 5 ( [1]): For any n ∈ Z+, if −→p ∈ Zn+ satisfies

Condition (14), the total utilization satisfies
∑n
i=1

1
pi
≤ 1.

By definition of the sequences {ξn}n∈Z+
and {ηn}n∈Z+

,

Lemma 5 immediately implies that

ξn ≥ ηn − 1

2n
for any n ∈ Z+. (20)

An interesting fact is that enlarging {ξn}n∈Z+
to {ηn}n∈Z+

preserves the supremum, as shown in Lemma 6.

Lemma 6: ξ = η.

Proof: Since ξn ≤ ηn for any n ∈ Z+, we have ξ ≤ η.

Next we prove that ξ ≥ η, which is equivalent to ξ ≥ η− ε
for any ε > 0.

Arbitrarily fix ε > 0. By definition of supremum, there is

an n0 ∈ Z+ such that ηn0
≥ η − ε

2 . By Lemma 4, for any

k ∈ Z+, we have

ηkn0
≥ ηn0

≥ η − ε

2
. (21)

Arbitrarily fix an integer k such that kn0 >
1
ε . Then,

ξkn0 ≥ ηkn0 −
1

2kn0
(by Formula (20))

> ηkn0
− ε

2
(by definition of k)

≥ η − ε. (by Formula (21))

Therefore, ξ ≥ η − ε, as desired.

C. An Improved Lower Bound

Facilitated by the auxiliary sequence {ηn}n∈Z+
, we are

ready to present our first main result of this paper.

Theorem 1: ξ > 0.5026.

Proof: By Lemma 6, it suffices to show that ηn > 0.5026
for some n ∈ Z+. This turns out to be true when n = 8.

Specifically, define −→p ∈ Z8
+ such that
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pi =

⎧⎪⎪⎨
⎪⎪⎩

12 if i = 1 or 8
8 if i = 2, 4, or 6
6 if i = 3 or 5
9 if i = 7

.

A straightforward calculation indicates that

∑
1≤i≤8

8− i+ 1
2

8pi
> 0.502601.

Then we prove that −→p satisfies Condition (14). Observe

that the least common multiple of p1, p2, ..., p8 is 72. As

suggested by Baruah et al. [5], it suffices to show that∑
1≤i≤8 f

(
t−i
pi

)
≤ t for 1 ≤ t ≤ 72 + 8 = 80. This can

be verified computationally and straightforwardly via a simple

code (available in the full version of this manuscript).

Hence this theorem holds.

Combining Theorem 1 and Corollary 1, we get ρ > 1.5026,

disproving the conjecture that ρ is 1.5. We can go one step

further, showing that ρ > 1.5026 remains true for constrained-

deadline task sets. This is immediately implied by the follow-

ing corollary.

Corollary 2: There is m ∈ Z+ and −→q ∈ Zm+ which satisfies

Condition (14) and qj ≥ j for any 1 ≤ j ≤ m, such that

ξm ≥
∑

1≤j≤m

m− j
mqj

> 0.5026.

Proof: Let ε = 10−6, n = 8, k = 1
2εn = 1

16 × 106,m =
kn = 1

2 × 106. Recall the vector −→p ∈ Zn+ in the proof of

Theorem 1. As in Formula (18), define −→q ∈ Zm+ such that

qj = kp	 j
k
 for any 1 ≤ j ≤ m. (22)

Specifically,

qj =

⎧⎪⎪⎨
⎪⎪⎩

12k if k(i− 1) < j ≤ ki for i = 1 or 8
8k if k(i− 1) < j ≤ ki for i = 2, 4, or 6
6k if k(i− 1) < j ≤ ki for i = 3 or 5
9k if 6k < j ≤ 7k

.

Then we prove three facts.

First, by Step 1 of the proof of Lemma 4, −→q satisfies

Condition (14) because so does −→p .

Second, for any 1 ≤ j ≤ m,

qj = kp	 j
k
 (by definition of −→q in (22))

≥ k ×
⌈
j

k

⌉
(since pi ≥ i for any i)

≥ k × j

k
= j.

Finally, ∑
1≤j≤m

m− j
mqj

=
∑

1≤j≤m

m− j + 1
2

mqj
−

∑
1≤j≤m

1

2mqj

≥
∑

1≤j≤m

m− j + 1
2

mqj
− 1

2m
(by Lemma 5)

=
∑

1≤i≤n

n− i+ 1
2

npi
− ε

(by Step 2 of the proof of Lemma 4).

> 0.502601− 10−6 = 0.5026.

As a result, m and −→q meet the requirement.

Remark 1: Even though ηn exceeds 0.5026 when n = 8,

the smallest m we find such that ξm > 0.5026 is as big as
1
2×106. This confirms the advantage of the auxiliary sequence

{ηn} in studying the lower bound of ξ.

IV. IMPROVED UPPER BOUND FOR ξ

This section is devoted to showing that ξ < 0.5380. It

suffices to prove that
∑n
i=1

n−i
npi

< 0.5380 for any −→p ∈ Zn+
that satisfies Condition (14). This mission is challenging

because it is hard to figure out the worst-case −→p ∈ Zn+.

Our basic idea comes from the observation that

n∑
i=1

n− i
npi

=
n−1∑
i=1

n−i∑
k=1

1

npi
. (23)

The summation domain of the right hand side is the triangular

area in Fig. 2(a). We can decompose the domain into three

sub-areas A1, A2, A3 via an additional controllable parameter

c < 1 (as illustrated in Fig. 2(b)), by the curve φc(x) (defined

below) and the line i + k = cn. To upper bound the value

of (23), it suffices to upper bound the summation on each

sub-area Aj , namely Bj �
∑

(i,k)∈Aj
, for any j ∈ {1, 2, 3}.

When c is close to 1, an easy upper bound of B1 is precise

enough. The curve φc(x) (also defined below) is chosen to be

quadratic, since such a curve enables us to find out the vector−→p which leads to the precise/tight upper bound of B3. The

main difficulty lies in estimating B2, but its value gets very

small when c is properly chosen. In this case, any not-too-bad

upper bound of B2 works without causing significant error to

the upper bound of
∑n
i=1

n−i
npi

.

The flow of the proofs in this section is shown in Fig. 3.

First of all, we formalize the decomposition as in Lemma

7, where the three terms on the right hand side correspond

to B1, B2, B3 respectively. The decomposition involves two

functions φc and ψc over domain Z+, where c ∈ R+ is a

parameter ranging over the interval (0, 1). For any x ∈ R+,

these functions are defined such that

φc(x) =
c(n− x)2

n
, ψc(x) = (2c− 1)x− cx2

n
.

Hereunder, arbitrarily fix c ∈ R+ with 1
2 < c < 1.
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Fig. 2. (a) The domain of the right hand side of Formula (23) is a triangular
area. (b) It is decomposed into three sub-areas by a line and a curve φc(x).

Fig. 3. The flow of the proofs in Section IV

Lemma 7:
∑n
i=1

n−i
npi

≤ (1−c)+∑�nc�
i=1

ψc(i)
npi

+
∑�nc�
i=1

φc(i)
npi

.

Proof: For any 1 ≤ i ≤ n, we have

n(1− c) + φc(i) + ψc(i)

= n(1− c) + cn− 2ci+
ci2

n
+ (2c− 1)i− ci2

n
= n− i. (24)

Hence,

n∑
i=1

n− i
npi

=

�nc�∑
i=1

n− i
npi

+
n∑

i=�nc�+1

n− i
npi

(split of sum)

≤
�nc�∑
i=1

n− i
npi

+

n∑
i=�nc�+1

n(1− c)
npi

(range of i ≥ nc)

=

�nc�∑
i=1

n(1− c) + φc(i) + ψc(i)

npi
+

n∑
i=�nc�+1

n(1− c)
npi

(from Formula (24))

=

n∑
i=1

1− c
pi

+

�nc�∑
i=1

φc(i)

npi
+

�nc�∑
i=1

ψc(i)

npi
(merge sums)

≤ (1− c) +
�nc�∑
i=1

φc(i)

npi
+

�nc�∑
i=1

ψc(i)

npi
.

(since
∑n
i=1

1
pi
≤ 1 by Lemma 5)

A. Upper bounding
∑�nc�
i=1

φc(i)
npi

Then, we will upper-bound
∑�nc�
i=1

φc(i)
npi

in Lemma 11. Two

techniques will be used: (1) as demonstrated in Lemma 9, we

are able to identify a lower bound of the periods pi; (2) as

illustrated in Lemma 10, a swapping technique is invented to

enables us to figure out the worst-case −→p .

Before continuing, some notations have to be introduced.

Arbitrarily fix n ∈ Z+ and −→p ∈ Zn+, which will be used

throughout this section. For any 1 ≤ i ≤ n, define

Si = {j : 1 ≤ j ≤ n, j + pj ≤ i+ pi},
and let αi be the i-th smallest among the multiset {|Sj | : 1 ≤
j ≤ n}, where |x| is the size of set x. Intuitively, j ∈ Si if

and only if the deadline of the second job of τj is not later

than that of τi. These concepts are exemplified as follows.

Example 1. Consider n = 5 and −→p = (60, 21, 20, 71, 70).
Table I indicates the corresponding Si and αi values.

TABLE I
AN EXAMPLE OF Si AND αi , WHERE n = 5.

i 1 2 3 4 5
pi 60 21 20 71 70

i+ pi 61 23 23 75 75
Si {1,2,3} {2,3} {2,3} {1,2,3,4,5} {1,2,3,4,5}
|Si| 3 2 2 5 5
αi 2 2 3 5 5

We have an easy observation of αi.

Lemma 8: For any n ∈ Z+ and 1 ≤ i ≤ n, αi ≥ i.
The proof is omitted. Hereunder, all the omitted proofs will

appear in the full version of this manuscript.

We can lower-bound pi in terms of Si.
Lemma 9: For any 1 ≤ i ≤ n, pi ≥ n− i+ |Si|.
The proof is omitted.

The following is a technical lemma which will enable us to

figure out the worst-case −→p .

Lemma 10: For any m ∈ Z+ and −→x ,−→y ∈ Rm+ , assume that−→x is increasing and the permutation �π on {1, 2, ...,m} sorts−→y increasingly. Namely, xi ≤ xi+1 and yπi
≤ yπi+1

for any

1 ≤ i < m. Then

m∑
i=1

1

xi + yπi

≥
m∑
i=1

1

xi + yi
, (25)

m∑
i=1

x2i
xi + yi

≤
m∑
i=1

x2i
xi + yπm−i+1

. (26)

The proof is omitted.

We are ready to derive a good upper bound of
∑�nc�
i=1

φc(i)
npi

.

Lemma 11:
∑�cn�
i=1

φc(i)
npi

≤ c(1−(1−c)3)
3 .

Proof: For any 1 ≤ i ≤ �cn�, let βi be the i-th smallest

among the multiset {|Sj | : 1 ≤ j ≤ �cn�}; obviously, βi ≥ αi.
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We have

�cn�∑
i=1

(n− i)2
n2pi

≤
�cn�∑
i=1

(n− i)2
n2(n− i+ |Si|) (by Lemma 9)

≤
�cn�∑
i=1

(n− i)2
n2(n− i+ βi)

(by Inequality (26))

≤
�cn�∑
i=1

(n− i)2
n2(n− i+ αi)

(since βi ≥ αi)

≤
�cn�∑
i=1

(n− i)2
n3

(by Lemma 8)

≤
�cn�∑
i=1

∫ i
n

i−1
n

(1− x)2dx

(since (1− x)2 is decreasing when x ≤ 1)

≤
∫ c

0

(1− x)2dx =
1− (1− c)3

3
.

The lemma follows immediately.

B. Upper bounding
∑�nc�
i=1

ψc(i)
npi

One more technical lemma is needed. It is a variant of

Lemma 5, estimating the sum of 1
pi

over a general interval

of i.

Lemma 12: For any real numbers 0 < a < b < 1, we have

�bn�∑
i=	an


1

pi
≤ 1

2
ln

1 + b− 2a

1− b + o(1).

The proof is omitted.

Now we can derive a good upper bound of
∑�nc�
i=1

ψc(i)
npi

.

The basic idea is to approximate it with a new summation

over the integer points in the left/right part of Figure 4. The

new summation is then estimated via calculus.

Lemma 13:

�nc�∑
i=1

ψc(i)

npi
≤ 1

2

∫ (2c−1)2

4c

0

gc(x)dx+ o(1), where

gc(x) � ln
1 + 3

√
(2c− 1)2 − 4cx

1−√(2c− 1)2 − 4cx
.

Proof: Let C1 = 2 − 1
c ≤ c < 1 (since 1/2 < c < 1).

Note that C1n is the right zero point of the quadratic function

Fig. 4. The summation is over the integer points under the curve and above the
horizontal axis. The left part illustrates

∑
i

∑
k , while the right for

∑
k

∑
i.

The ranges of i and k are adjusted when the summation order changes.

ψc(x). Hence, ψc(x) < 0 for x > C1n. Then,

�nc�∑
i=1

ψc(i)

npi

≤
�C1n�∑
i=1

ψc(i)

npi

(since C1 ≤ c and ψc(x) < 0 for x > C1n)

≤
�C1n�∑
i=1

�ψc(i)�
npi

+

�C1n�∑
i=1

1

npi

≤
�C1n�∑
i=1

�ψc(i)�
npi

+
1

n

n∑
i=1

1

pi
(since C1 < 1)

=

�C1n�∑
i=1

�ψc(i)�
npi

+ o(1) (by Lemma 5)

=

�C1n�∑
i=1

�ψc(i)�∑
k=1

1

npi
+ o(1).

Let C2 = (2c−1)2

4c . Then maxx∈R+
ψc(x) = C2n. For any

integer k ≤ �C2n�, let yk ≤ zk be the two real roots of the

equation ψc(x) = k, i.e.,

yk =
(2c− 1)−√(2c− 1)2 − 4kc/n

2c/n
, and

zk =
(2c− 1) +

√
(2c− 1)2 − 4kc/n

2c/n
.

The lemma holds since

�C1n�∑
i=1

�ψc(i)�∑
k=1

1

npi

=

�C2n�∑
k=1

�zk�∑
i=	yk


1

npi

(by interchanging the order of sum—see Fig. 4)
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≤
�C2n�∑
k=1

1

2n
ln

1 + zk
n − 2ykn

1− zk
n

+ o(1) (by Lemma 12)

=

�C2n�∑
k=1

1

2n
ln

1 + 3
√

(2c− 1)2 − 4c kn

1−
√

(2c− 1)2 − 4c kn

+ o(1)

(by definition of yk and zk)

=
1

2

�C2n�∑
k=1

1

n
gc

(
k

n

)
+ o(1)

≤ 1

2

�C2n�∑
k=1

∫ k
n

k−1
n

gc(x)dx+ o(1)

(since gc(x) is decreasing when x ≤ C2 )

=
1

2

∫ �C2n�
n

0

gc(x)dx+ o(1)

≤ 1

2

∫ C2

0

gc(x)dx+ o(1).

(since gc(x) ≥ 0 when x ≤ C2 )

C. Upper bounding ξ

Another technical lemma is needed. It claims that the

sequence {ξn}+∞
n=1 converges to ξ. It will enable us to neglect

the o(1) term in Lemma 13 when estimating ξ.

Lemma 14: ξ = limn→+∞ ξn.

The proof is omitted.

Theorem 2: ξ < 0.5380.

Proof: Choose c = 0.8.

n∑
i=1

n− i
npi

≤ 1− c+
�nc�∑
i=1

φc(i)

npi
+

�nc�∑
i=1

ψc(i)

npi
(by Lemma 7)

≤ 1− c+ c

3

(
1− (1− c)3)+ 1

2

∫ (2c−1)2

4c

0

gc(x)dx+ o(1)

(by Lemmas 11 and 13)

≤ 0.2 + 0.2645 + 0.07341 + o(1)

(computed by Mathematica)

= 0.53791 + o(1).

Then, by definition of ξn, we have

ξn ≤ 0.53791 + o(1).

By Lemma 14, it holds that

ξ = lim
n→+∞ ξn ≤ 0.53791 < 0.5380.

Remark 2: Combining Theorem 2 and Corollary 1, we get

ρ < 1.5380. This upper bound of ρ holds even for arbitrary-

deadline tasks, since so do Lemmas 2,3,7,8 in [17]. Then

by Lemma 1, we get asymptotic upper bound 2.5380 of the

speedup factor of PDM -EDF on constrained-deadline tasks.

V. CONCLUSION AND FUTURE WORK

We improved both upper and lower bounds of ρ, the

speedup factor of uniprocessor schedulability testing by an

approximate demand bound function. The new bounds of ρ
hold for both constrained-deadline and constrained-deadline

tasks. Accordingly, the potential range of the speedup factor

of (deadline monotonically) partitioned-EDF (or, PDM -EDF)

gets tighter, due to its connection with ρ. However, the new

range of the speedup factor are valid only for constrained-

deadline tasks, since the connection with ρ was established

only in this case.

We achieve the improvements via three techniques. First,

we construct an auxiliary function which is bigger than the

approximate demand bound function but has the same supre-

mum. This makes it possible to beat the lower bound of 1.5

using a relatively small task set, bypassing the difficulty in

checking schedulability of large task sets. Second, we show

that the approximate demand bound function converges to ρ in

a nearly increasing manner as the task set size goes to infinity.

This enables us to estimate ρ asymptotically, precluding the

effects of vanishing terms. Finally, a better lower bound of

the periods is figured out for schedulable sets of tasks, which

plays a critical role in deriving the upper bound of ρ.

The novel auxiliary function plays a critical role in ana-

lyzing ρ. We would like to point out that it seems to be

a highly transferable technique for shaping and bounding

demands for various types of real-time workloads, such as

resource augmentation bounds in DAG task scheduling.

It is unlikely that our new lower bound or upper bound of ρ
is tight. The small (0.0026) improvement of the lower bound

is significant because it disproves the conjecture that ρ = 1.5.

It is worthwhile to further improve it, or even just to make a

new conjecture.
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