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Abstract—In the past few years, we have envisioned an in-
creasing number of businesses start driving by big data analytics,
such as Amazon recommendations and Google Advertisements.
At the back-end side, the businesses are powered by big data
processing platforms to quickly extract information and make
decisions. Running on top of a computing cluster, those platforms
utilize scheduling algorithms to allocate resources. An efficient
scheduler is crucial to the system performance due to limited
resources, e.g. CPU and Memory, and a large number of user
demands. However, besides requests from clients and current
status of the system, it has limited knowledge about execution
length of the running jobs, and incoming jobs’ resource demands,
which make assigning resources a challenging task. If most of
the resources are occupied by a long-running job, other jobs will
have to keep waiting until it releases them. This paper presents
a new scheduling strategy, named DRESS that particularly aims
to optimize the allocation among jobs with various demands.

Specifically, it classifies the jobs into two categories based on their
requests, reserves a portion of resources for each of category, and
dynamically adjusts the reserved ratio by monitoring the pending
requests and estimating release patterns of running jobs. The
results demonstrate DRESS significantly reduces the completion
time for one category, up to 76.1% in our experiments, and in
the meanwhile, maintains a stable overall system performance.

I. INTRODUCTION

Over the past few years, data-driven businesses have pro-

vided a promising experience for clients from various aspects.

For example, Amazon provides personalized product recom-

mendation using clients’ past purchasing records, personal

information (e.g., employment status and residence location)

as well as the contextual information (e.g., weather). On

the other hand, Google’s advertising system is optimized to

retrieve the advertisements that the clients are potentially

interested in using their browsing cookies, searching his-

tory, email contents, and even their friends’ recent purchase

records. Financial companies utilize machine learning [1]–

[4] and computational modeling [5]–[9] to provide advanced

services. Given such tremendous data for processing, mining

and analyzing, there needs a computing cluster that provides

infrastructural supports for those data-intensive applications,

at the back-end side of businesses.

To enable and optimize the big data analytics, the system

usually first decompose the overall computational job into

multiple small tasks, then itemizes the usage of systems

into large set resources, such as CPU hour, or space of

storage/memory, and further allocates computing resources to

the tasks.

To optimize the data processing systems, the researchers

have put tremendous efforts on job scheduling, resource man-

agement, and program design to improve system performance.

In this field, there are two widely used schedulers, Fair [10]

and Capacity [11] schedulers, for managing the resources in

the cluster. Fair scheduler is a method of assigning resources

to jobs such that all jobs get, on average, an equal share of

resources over time. On the other hand, Capacity scheduler

is designed to allow sharing a large cluster while giving

each organization a minimum capacity guarantee. Although

these two schedulers have different strategies for resource

management, both of them add jobs to the queues following

a first-come-first-serve manner.

 Job2 (R4, L20)

 Job3 (R3, L10)

 Job1 (R3, L10)

Job4

(R1/L5)

Container

Job

Fig. 1: 4 incoming jobs for a

cluster with 6 containers

However, this manner does

not take diverse demands

from clients, which include

various resource requests and

occupancy length, into con-

sideration. Fig 1 illustrates a

simplified example of 4 in-

coming jobs in a cluster with

6 containers. Suppose 4 jobs

are submitted in order with

a 1 second interval and each

of them specifies its resource demand along with expected

execution length (as shown on the figure). For example, Job

1 requests 3 (R3) containers and lasts for 10s (L10). If the

first-come-first-serve manner is in effect, Job 1 executes first,

followed by Job 2, which waits until Job 1 finish and finally,

Job 3 & 4 running in parallel. The makespan of four jobs

would be 40s. The waiting time for Job 1 to Job 4 is 0s, 9s,

28s, 27s, respectively, and 16s on average. In this schedule,

only Job 3 and Job 4 are run in parallel in the system.

Towards a more efficient scheduler, it should consider the

diverse demands from, not only running jobs, but also pending

jobs. In the above intuitive example, if the scheduler can delay

the decision making and rearrange the execution order, where

Job 1 and 3 run concurrently, and then Job 2 and 4 execute in

parallel. Under the new schedule, the makespan reduces to 30s

and average waiting time reduces to 5.75s. Although Fig 1 is

a simplified example, it shows the benefits that a system can

obtain by considering the resource demands from clients.

Motivated by the fact that jobs with large demand will

starve the system and delay other jobs, this paper presents

http://arxiv.org/abs/1805.08359v2
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DRESS, a Dynamic RESource-reservation Scheme. Compared

to the prior work, DRESS collects the resource demands

of jobs, distributes them into two categories with separate

resource pools. and, rearranges the execution order to increase

the degree of parallelism. Specifically, DRESS utilizes a re-

source reservation ratio, which is calculated based on real-

time demands, to allocate system resources to each category.

Additionally, DRESS estimates the resource release patterns.

In summary, our main contributions are as follows: (1) We

propose DRESS for congested data-intensive computing plat-

forms that considers various demands from jobs and reserve

resource for different categories. (2) We develop algorithms

to estimate the resource release pattern for running jobs in

the system. Based on the estimation along with demands from

waiting jobs, we dynamically adjust the resource reservation

ratio. (3) We present a complete implementation on Hadoop

YARN platforms. The experiment-based evaluation shows a

significant improvement on compilation time for small jobs,

up to 76.1%.

II. RELATED WORK

Commercial companies and academic researchers utilize the

computing systems to perform various jobs from different

perspectives [12]–[20]. There are many big data computing

systems available in the market. Among various of them,

the Hadoop YARN and its ecosystems have become major

players. Various applications from different users run on top

the platforms and share resources in a cluster. Traditionally,

Fair [10] and Capacity [11] are widely used to ensure each job

to get a proper share of the available resources. To improve

the performance of the computing systems, many research

efforts have been spent on optimizing the system and job

scheduling in different directions. Some major related works

are introduced as follows.

Resource-aware scheduling focuses on improving the re-

source utilization of the cluster. In this area, Haste [21]

is a fine-grained resource scheduling which leverages the

information of requested resources and resource capacities

to improve the resource utilization. In addition, FRESH [22]

and OMO [23] have developed dynamic resource manage-

ment schemes according to the various workloads of different

jobs. Another direction in system scheduling considers the

heterogeneous environment. In this area, Teris [24] packs tasks

to machines based on their multiple resource requirements.

LATE [25], Hopper [26], and eSplash [27] aim to prevent

unnecessary speculative executions in order to improve the

performance in heterogeneous clusters.

Data locality is also considered in the scheduling of big

data computing systems. To improve the performance, authors

in [28] propose an optimal task selection algorithm for better

data locality and fairness. In addition, job characteristics are

taken into consideration in the job-aware scheduling algo-

rithms. In ARIA [29], a scheduler is proposed to allocate

appropriate resources to jobs to meet the predefined deadline.

Sparrow [30] targets on the scheduling problems with a huge

amount of small jobs. Piranha [31] creates an agent layer

beyond Hadoop to schedule hybrid types of applications.

Inspired by the preceding works, we develop a dynamic

resource allocation scheme, DRESS, to reserve a portion of

resources for the applications with small resource requests.

With a branch of hybrid jobs assigned in the cluster, based

on the characteristics of each job and the estimating resources

release of the cluster, DRESS can significantly improve the

performance of small jobs with limited impacts on large jobs.

III. DRESS: DYNAMIC RESOURCE RESERVATION SCHEME

In this section, we present our solution DRESS, which aims

to reduce the waiting time of small jobs in a congested cluster

and at the same time, maintains a stable makespan among

all jobs. The key idea of DRESS is to redirect the jobs into

two categories and reserve a certain amount of resources for

each category. As the system goes on, various jobs join and

leave the categories when arriving and finishing. The challenge

lies in dynamically adjusting the reserved resources ratio to

each category. If a large portion of resources is reserved

for one category, jobs in the other one would keep waiting.

Towards a better ratio adjustment, we not only need to know

the total available resources, the number of pending jobs in

each category, but also the release patterns of running jobs to

estimate the future availability of resources. In the rest of this

section, we first study the task execution in the parallel system,

then, describe our techniques to estimate the overall resource

availability in the future. Finally, based on the estimation,

we propose an algorithm that dynamically adjusts the reserve

ratio. Table I lists the notations that are used in this paper.

TABLE I: Notation Table

Ji ∈ J The ith job of all the jobs (J) in the cluster

pi ∈ Jx The ith phase of a particular job (Jx)

ti ∈ px The ith task of a particular phase (px)

αi/βi The start and finish time of Ji

γpx
The earliest finish time among all the tasks,
ti ∈ px

psif /psil The starting time of the first / last task in pi
∆psi The starting variation of pi

fi(t)/pi(t)
Resource release function. Given t, it out-
puts an estimated number of containers that
released by Ji/pi

F (t)
Available resource function. Given t, it out-
puts an estimated number of available con-
tainers in system

Ac/TotR
The number of available containers / total
containers in the system

RJi
/Rpx The number of containers occupied by Ji/px

RT (t)pi/CT (t)pi

The number of running/completed tasks in
phase pi (represented by the states of con-
tainers)

δ / θ Reserve ratio / Job indicator

A. Characteristics of Task Execution

Without prior knowledge about the features of data and

algorithms, it’s a challenge to estimate the job execution

length. This is due to the fact that different jobs target on

diverse data sets in terms of size, type, etc., and various

algorithms will be applied to the data. For a better estimation,
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we experimentally study the task execution in three aspects,

starting time variation, heading tasks, and trailing tasks.

1) Starting Time Variation: Focusing on a specific job, it

consists of multiple tasks that can be grouped into multiple

phases. Inside each phase, tasks perform the same operations

with the same algorithms on similar data sets in order to

process it in parallel. Considering this characteristic, the task

execution length in the same phase should be similar with each

other. Fig 2 plots a classic MapReduce WordCount job with

20 Map tasks and 4 Reduce tasks. Clearly, the job contains

two phases (Map and Reduce) and the tasks can be divided

into two groups. As we can see the tasks in the same phase,

Map and Reduce as on Fig 2, have a similar execution length.

The finishing time of Map tasks is varied due to the different

starting time. There are mainly two reasons for the difference

in starting time. Firstly, in a congested cluster, the scheduler

assigns the containers to jobs through multiple rounds of

resource requests. Secondly, the transition delay varies from

time to time when a container’s state moves from New to

Running, that passes by the other three states, Reserved

Allocated, and Acquired. These reasons result in the starting

time variances of jobs in each phase. As shown on Fig 2, ∆ps1

and ∆ps2 for phase 1 and 2.

2) Heading Task: Fig 3 illustrates a PageRank example

running on YARN with MapReduce. The PageRank job in-

cludes two stages and each stage contains one Map and one

Reduce phase. Therefore, tasks of a PageRank job can be natu-

rally grouped into four phases. It is clear to find the same trend

of starting time variation on the tasks of the PageRank job.
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Data 
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Heading

Tasks

Data
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Fig. 5: Heading Tasks of a Job with

two chunks in the dataset

However, there is an

abnormal task in Re-

duce phase if the

first stage that con-

sists of 9 Reduce

tasks. While the av-

erage length of first

8 tasks is 18.25s with

the variance of 1.45s,

the last task (ID 42) only costs 1.26s that is less than 10% of

the others’. This extreme case is caused by the fact that a large

data set will be split into small data blocks and each task is

responsible for one or more blocks (controlled by the size of

map split).

Although the data blocks have the same limit on size, for

tasks at the end, they may result in processing less data than

previous tasks. Fig. 5 shows an example of a job that targets on

a data set of two chunks of 1,664MB (Data A) and 1,280MB

(Data B). The block size and map split are set to 512MB. Thus,

Data A and B will be stored in four and three data blocks,

respectively. The last blocks of Data A and B are underloaded

with only 128MB and 256MB, which lead to heading tasks.

3) Trailing Tasks: Fig 4 plots a PageRank job running

with Spark-on-YARN, which is a two-layer scheduling system,

and we only collect data from Hadoop YARN. Unlike the

previous heading task example, there is no distinct Map and

Reduce phases on Spark. In a Spark-on-YARN system, each

task handles a partition of a large data set. However, due to

the Data Skew Problem [32]–[34], some partitions may much

larger than others that lead to a longer execution time of those

tasks, which we named trailing tasks. We can easily locate one

trailing task on Fig 4 that costs 17.6s which consumes 38%

more than the second longest one. Comparing with normal

tasks, the trailing tasks occupy resources in a different pattern

and significantly longer than others.

B. Estimation Function

The proposed solution, DRESS, relies on an important

parameter, which is the estimated resource availability in the

system. It is a critical factor that directly affects the estimated

accuracy. Utilizing characteristics in the previous subsection,

we present our estimation function. In our problem setting,

we consider a system running multiple jobs simultaneously.

Each running job holds a certain amount of resources that

are represented by containers. A job is divided into multiple

tasks and each of them runs in a container. Our objective is to

estimate the overall resource availability of the system in the

near future.

Suppose there are n jobs, J1, J2, ..., Jn ∈ {J} in the

system. For each one, Ji ∈ {J}, we define a function fi(t) to

represent Ji’s estimated resource release frequency at time unit

t. Let F (t) denotes the total number of available containers.

Therefore, we have,

F (t) = F1(t) + F2(t) = Ac + f1(t) + f2(t)...+ fn(t) (1)

Where Ac is the number of currently available containers in

the system that the scheduler can observe by monitoring the

available resources on slave nodes, F1(t) and F2(t) are the

estimated releasing resources for two categories.
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For a specific Ji, before running, it does not occupy any

containers. Thus, fi(t) = 0, if Ji is not started yet. When

Ji finished all tasks, fi(t) = 0 since all occupied resources

have been released. Let Ji starts at time unit αi and finishes at

βi, where αi and βi can be easily measured through heartbeat

messages from slave nodes. The main activities, which includ-

ing starting / executing tasks, occupying / releasing containers,

and etc, happen inside the interval [αi, βi]. As described

before, throughout the job execution, the tasks can be grouped

into multiple phases that tasks in each particular phase have

the same operations, and similar input/output data for parallel

processing. In an ideal setting, tasks in each phase will start

and finish at the same time. However, in a real system, due

to the limited resources and characteristics of task execution,

the resource occupation and task completion time varied in

phases. Assume there are m phases in the task execution of

Ji and let pj(t) be a function of resource release pattern for

the jth phase in Ji, then we have,

fi(t) =







0 t < αi
∑m

0
pj(t) t ∈ [αi, βi]
0 t > βi

(2)

Specifically, phase j, where pj ∈ Ji, will not release any

container until one of its task finishes. When the first task

finishes its execution, containers that occupied by this task

will be returned to the system. Other tasks in phase j, which

has the same operations and similar data sets, should about

to complete. Depending on the starting time, the completion

time of tasks in phase j varies in a short period. We assume

that the task completion time is equally distributed in the short

period of ∆t, where ∆t can be measured from starting time

variation. As a result, we have,

pj(t) =











0 t ∈ [αi, γpj
]

t−γpj

∆psj
× cpj

t ∈ [γi, γpj
+∆psj ]

0 t ∈ [γpj
+∆psj , βi]

(3)

where αi/βi are the start and finish time of Ji (pj ∈ Ji); cpj
is

the total number of containers that occupied by pj; γpj
is the

earliest finishing time of the tasks in pj ;
t−γpj

∆psj
is a percentage

that represents the release progress in this phase.

IV. PARAMETER ANALYSIS AND ALGORITHMS

From the analysis of the previous section, we can use

Equation 1, 2, 3 to predict the resource release. However, both

fi(t) and pj(t) are based on several unknown parameters. In

this section, we analyze the parameters that are required by

the equations and present the algorithms.

A. Calculation of starting variation for each phase

Calculating fi(t), we need to identify the phases for Ji and

determine the value of γpj
and ∆psj for each pj ∈ Ji. The

key idea to estimate container release patterns of jobs is to

group the task into different phases. Tasks of a phase run in

parallel to achieve the same goal (e.g. producing intermediate

output). Therefore, as the first step, we have to identify each

phase of a job. As discussed in the previous section, ideally,

tasks in the same phase would start simultaneously. However,

in reality, there is a starting time variation between them. For

each pj in Ji, we need to identify the start time of the first

task in pj that denotes by psjf and start time of last task in pj
that presents by psjl , which denoted by ∆psj = psjl − psjf .

We use a window-based algorithm to identify each phase.

Algorithm 1 Starting Variation of jth Phase for Ji
1: i = 0, α = 0, Spj

= false, cpj
= 0

2: psjf = 0, psjl = 0, RJi
= {Rp1

, Rp2
, ...}

3: RTpj
(t), pw: phase window

4: for ti ∈ Ji do

5: if ti.state = Running then

6: Ji → ti and RJi
← ti

7: RTpj
(t) = |RJi

| and ti.start = t
8: cpj

= cpj
+ 1

9: if i = 0 then

10: αi = t
11: if RTpj

(t)−RTpj
(t− pw) > ts then

12: Spj
= true

13: psjf = min{ti.start | RJi
}

14: else if psjf 6= 0 and RTi(t)−RTi(t−pw) = 0 then

15: psil = max{ti.start | RJi
}

16: ∆psj = psjl − psjf
17: i = i+ 1

Algorithm 1 describes how we calculate ∆psj for pj ∈ Ji.
First of all, we initialize the parameters, where j is a phase

index, start time of Ji that represents by αi, Spj
is a boolean

indicator that is used to determine whether pj has started, and

psjf / psjl are initialized to 0. {RJi
} is a set of running tasks

for Ji that grouped by each phases, and RTpj
(t) is a function

that returns the number of running tasks in pj at system timet
(line 1-3). The algorithm keeps tracking containers that have

been assigned to Ji but not in the “Running” state (may in

Reserved, Allocated, and Acquired states). If ti transits to

“Running” state, which means the task is executing, it updates

corresponding parameters (line 4-8). In addition, we update the

job starting time, αi, if ti is the first running task for Ji (line

9-10). Then, within a given window, the algorithm monitors

the number of running tasks. If the difference is larger than a

threshold(ts), it decides that the first task in pj has started at

earliest starting time of ti in {RJi
} (line 11-13). On the other

hand, if RTi(t) stays the same in the window, the algorithm

determines that the last task in pj has started at the latest

starting time of ti in RJi
, calculates ∆psi, and update the

total number of running tasks in pj as well as the phase index

i (line 14-17).

B. Calculation of starting release time of each phase

Besides the ∆psj , another key parameter for the estimation

is γj , which is represented by the earliest finish time among

tasks in pj . According to equation 3, the phase pj will start

releasing container in a period of ∆psi after γi.
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Algorithm 2 presents a procedure to calculate the start

releasing time, γi, of pj in Ji. As the first step, it initializes

the parameters, which are βi for Ji, the starting release time

γj for pj , pj ending indicator(Epj
), running task set RJi

for

Ji, completed task of Ji that is represented by CTJi
, and

completed task function CTpj
(t) that returns the number of

completed tasks for pj at time t (line 1-3). The algorithm keeps

tracking the states of running tasks in Rji , which are grouped

by each phase. When a container transits to “Completed” state,

it indicates that the corresponding task, ti is finishing. The

algorithm adds it into complete task’ set, CTJi
, and updates

RJi
as well as CTpj

(t) (line 4-7). In a given period (pw), if

there are a certain number (te) of tasks move to “Completed”

state, it decides that tasks in pi have started finishing and

records γi (line 8-10). The threshold, te, is designed to filter

out heading tasks. If pj has started finishing (γi 6= 0), but

CTpj
(t) remain the same for a period (pw), additionally, RJi

for pj is not empty, it indicates that there are trailing tasks in

pj . In this case, we count trailing tasks into next phase (line

11-12). Finally, if RJi
for Ji becomes 0, all the tasks have

finished and containers have been releases (line 13-14).

Algorithm 2 Starting Release Time for the jth phase of Ji
1: βi = 0, γj = 0, Epj

= false;

2: RJi
= {Rp1

, Rp2
, ...}, CTJi

= {CTp1
, CTp2

, ...}
3: CTpj

(t) = 0, t: system time, pw: phase window

4: for ti ∈ Rpj
do

5: if ti.state = Completed then

6: ti.f inish = t and CTpj
(t) = |CTJi

|
7: CTJi

← ti and RJi
→ ti

8: if CTpj
(t)− CTpj

(t− pw) > te then

9: Epj
= true

10: γj = min{ti.finish | Ci}
11: else if γj 6= 0 and

CTpi
(t)− CTpi

(t− pw) = 0 and |RJi
| > 0 then

12: cpi+1
= cpi+1

+ |Rpi
|

13: else if |RJi
| = 0 then

14: βi = t

With the values of αi, βi for Ji and ∆psj , and γi for each

phase pj ∈ Ji, we could use the Equation 2 and 3 to estimate

the available containers in the system.

C. Dynamic configuration for reserved resource ratio

In DRESS, we estimate the available resources that guide

the scheduler to dynamically adjust the reserved resource ratio

for each category. Besides available resources which can be

predicted through Equation 1, two more factors should be

taken into consideration, (1) the number of pending jobs in

each category, (2) and the resource demands from them. Our

objective of the dynamic configuration is to reduce the average

waiting and completion length, at the same time, maintain a

stable overall system performance.

While there are many approaches to split the jobs into

different categories, such as job execution lengths, Map or

Reduce intensive, and size of data sets, most of them require

additional user-specified information. Requesting clients to

input jobs’ features need them fully understand both their jobs

and targeted platforms, which is not practical or feasible. In

DRESS, we use the resource demands of jobs as the indicator,

which can be directly obtained from the resource requests.

We denote θ ∈ (0, 1) as a preset indicator factor such that

if the resource request is larger than Ac × θ, the job will

be classified to “large demand”(LD), otherwise, it will join

“small demand”(SD). In our problem setting, there are two

categories in the cluster and we set θ = 10% as the indicator.

It’s easy to classify incoming jobs into more categories by

applying a similar strategy.

Each category maintains its own pool of jobs that consists

of pending and running jobs. For pending jobs, the scheduler

records the total demands of resources, in terms of containers.

For running jobs, the scheduler records the total occupied

containers that will be returned to each category when the

task completed. The number of currently available containers,

Ac, which can be observed from system heartbeats and can

be further divided for each of the category, Ac1 and Ac2

, and Ac = Ac1 + Ac2 . Depending on jobs who release

the containers, we can estimate available resource for each

category with Equation 1, where F1(t) and F2(t) are values

for category 1 and 2.

With the parameters, DRESS use Algorithm 3 to dynam-

ically adjust the reserved resource ratio, δ ∈ (0, 1), which

means TotR × δ containers are assigned to “small demand”

jobs, SD, and TotR × (1 − δ) are for “large demand” jobs,

LD, where TotR is the total number of containers in the

system. Firstly, we initialize the parameters (line 1-2). Then,

the algorithm calculates total resource demands, P1 and P2

from all pending jobs in each category(line 3-6). If, for SD,

the estimated available resources are more than P1 at time t+1,

it assigns redundant resources to LD by reducing δ (line 7-8).

On the other hand, if P1 cannot be satisfied at time t + 1 in

SD, and, LD has redundant resources, it enlarges δ (line 9-

11). If both P1 and P2 cannot be met by estimated resources,

we sort the jobs in each category by their resource demands

ri, and start from the job with smallest resource demand, try

to assign as many jobs as possible to utilize resources (line

12-20). After the assignments, each of the categories may have

some leftover (Ac1 and Ac2 may larger than 0). This is caused

by the diversity in demands. For example, if the smallest

demand is 5 containers but the available resources are 4, these

4 containers are leftover. In this scenario, the algorithm tries

to move the leftover from LD to SD since the jobs in SD
require fewer resources. Starting from the request of Ji+1, we

check whether ri+1 is less than the combined leftovers from

Ac1 and Ac2 . It makes the maximum usage by checking ri+1

iteratively until the next job request is larger than Ac1 +Ac2 .

The δ will be enlarged accordingly (line 21-24). Finally, the

system will return the value of δ (line 25).
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Algorithm 3 Adjusting Reserve Resource Ratio

1: SD: Small demand jobs (category 1); LD: large demand

jobs (category 2); TotR: total resources in the system;

2: F1(t+ 1)/F2(t+ 1); Ac1 /Ac2 ; P1/P2: resource demands

from pending jobs in category 1 and 2;

3: for Ji ∈ SD do

4: P1 = P1 + ri
5: for Ji ∈ LD do

6: P2 = P2 + ri
7: if Ac1 + F1(t+ 1) ≥ P1 then

8: δ = δ − (Ac1 + F1(t+ 1)− P1)÷ TotR
9: else

10: if Ac2 + F2(t+ 1) ≥ P2 then

11: δ = δ + (Ac2 + F2(t+ 1)− P2)÷ TotR
12: else

13: Sort in ascending order for Ji ∈ SD and Jj ∈ LD
based on ri

14: Ac1 = Ac1 + F1(t+ 1) and Ac2 = Ac2 + F1(t+ 1)
15: for i = 1; i < |SD|; i++ do

16: if Ac1 − ri > 0 then

17: Ac1 = Ac1 − ri
18: for j = 1; j < |LD|; j ++ do

19: if Ac2 − rj > 0 then

20: Ac2 = Ac2 − r2
21: for i = i + 1; j < |SD|; i++ do

22: if ri < Ac1 +Ac2 then

23: Ac2 = Ac2 − ri
24: δ = δ + ri ÷ TotR
25: Return δ

V. EVALUATION

A. Implementation, Testbed and Workloads

1) Implementation, Testbed and Parameters: We implement

our solution DRESS on Hadoop YARN 2.7.4. An enriched

heartbeat message is used to transfer the required information,

such as starting delays, between the master and slave nodes.

All the experiments are conducted on NSF Cloudlab [35] data

center at University of Wisconsin. We use the c220g2 server

that has two Intel E5-2660 v3 10-core CPUs at 2.6 GHz

(Haswell EP), 160 GB ECC Memory and three disks (1 ×480

GB SATA SSD and 2× 1.2 TB HDDs ).

We launch a cluster with 5 nodes to evaluate DRESS. As

used by estimation functions, we set ts, te to 5s, phase window

(pw) to 10s, initial δ to 10% and the job indicator θ = 10%,

such that large jobs request more than 10%×Ac. Particularly,

we choose a 5-node cluster, instead of a very large cluster,

to simulate a congested working environment for DRESS.

Moreover, due to the page limit, we omit the analysis of

thresholds and phase window.

2) Workloads: To evaluate our system, we utilize a widely

accepted benchmark suite named HiBench [36]. In our set-

tings, DRESS can serve various types of jobs. There are

10 different benchmarks of 5 types, including micro bench-

marks, machine learning, database, websearch benchmarks,

and graph benchmarks. Specifically, we have tested the fol-

lowing benchmarks: (1) WordCount: count the occurrence

of each word in the input data, which are generated using

RandomTextWriter [37]. (2) Sort: sort its text input data,

which is generated using RandomTextWriter. (3) TeraSort:

sort (key,value) tuples on the key with the synthetic data as

input. (4) K-means clustering: a well-known clustering algo-

rithm for knowledge discovery and data mining and the input

data set is generated by GenKMeansDataset [38]. (5) Logistic

Regression: the Logistic Regression is implemented and the

input data set is generated by LabeledPointDataGenerator [39].

(6) Bayesian Classification: test the Naive Bayesian trainer

with automatically generated documents whose words follow

the zipfian distribution. (7-8) Scan/Join: SQL (Hive) queries.

(9) PageRank: a search engine ranking benchmark. (10)

NWeight: an iterative graph-parallel algorithm that computes

associations between two vertices that are n-hop away.

Noted that streaming benchmarks are not included in the

evaluation since they are long-running jobs and do not have

resource release patterns. In addition, we conduct the experi-

ments on two type of platforms, Hadoop YARN (benchmarks

1-10) and Spark-on-YARN (benchmarks 4-6 and 9-10). When

running the experiments, we consider 3 different combinations

of jobs. (1) MapReduce jobs: we randomly pick up jobs

for the Hadoop YARN platform and generate various sizes of

datasets for each job. (2) Spark jobs: we randomly pick up the

Spark jobs and execute them on Spark-on-YARN, which is a

two-layer scheduling system (Spark has its own scheduler) and

DRESS only run on the YARN layer. (3) Mixed job setting :

we randomly pick up jobs. After selecting the jobs, they are

submitted to the system one by one with a 5 seconds interval.

3) Evaluation Metrics: In the experiments, we mainly

consider two performance metrics. From the system view, we

compute the makespan that is the total execution time for

all jobs. From the view of each individual job, we measure

the waiting time and job completion time, e.g. from Ji, the

waiting time is the length from the submission of Ji to the

start of its first task, and the completion time is the length

from the submission of Ji to the completion of its last task.

The makespan reflects an overall system performance across

all the jobs, and the waiting time along with the completion

time indicate how the system impact on each individual job.

B. Experiment Results

1) Spark-on-YARN: Fig 6 plots the waiting times of 20

jobs running on Spark-on-YARN, which contains a two-layer

scheduling system, and DRESS only runs on the YARN layer.

Overall, for the first 6 jobs running in the system, as the system

is idle and the resources are enough to run the jobs in parallel,

the waiting times of Jobs 1 to 6 are much shorter than others.

Starting from Job 7 in Capacity scheduler, the waiting time for

each job becomes higher than previous jobs. This is because

after running Job 1-6, the remaining resources in the system is

not enough for Job 7 and it has to wait until one of them finish

and release the resource. Among tested jobs, ID 4, 5, 7, 9, 10,

and 12 are jobs with small demands (less than 10 containers).
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Fig. 6: Waiting Time of 20 Spark-on-Yarn Jobs
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Fig. 7: Completion Time of 20 Spark-on-Yarn Jobs
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Fig. 8: Waiting Time of 20 MapReduce Jobs
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Fig. 9: Completion Time of 20 MapReduce Jobs

As illustrated in this figure, DRESScan significantly reduce the

waiting times of these small jobs compared to the Capacity

scheduler. Especially, for DRESS, the waiting time of Job 7 is

more than 10x less than the one in Capacity scheduler (28.903s

vs 304.705s). Since Job 7 is a small job, it can use the reserved

resources and after Job 4-5, the DRESS increased the reserved

ratio to accept more small jobs. The same trend is found at

Job 9, 10, and 12. We also notice that the waiting time of

Job 3 with DRESS is much longer than Capacity scheduler

(98.863s vs 35.519s). After tracing back to the execution of

jobs, we found that job 3 is delayed since a part of the

resources are reserved for jobs with fewer demands. Fig 7

illustrates the completion times of all 20 jobs. In DRESS,

for small jobs, the average reduction rate of the completion

time is 27.6%, with a maximum 51.2% reduced completion

time for Job 7. We observe an increase on Job 3, 13, 14 of

32.0%, 10.2%, 6.1%, and on average 16.1%. In this case, the

strategy of reserve resources does affect some jobs, however,

it achieves a significant performance improvement on small

jobs. Table II compares the makespan, average waiting time,

average completion time as well as their median values of

DRESSand Capacity scheduler. As illustrated in this table, the

overall system performance, in terms of makespan, remains

stable.

TABLE II: Overall System Performance

Makespan Avg. W. Median Avg. C. Median

Capacity 1028.6 310.1 381.0 570.1 542.8

DRESS 1035.2 264.5 190.3 532.2 325.1

2) Hadoop YARN: Fig 8 and Fig 9 illustrate the results

from experiments of 20 MapReduce jobs running on Hadoop

YARN. Comparing with the previous experiments, a similar

trend can be discovered from Fig 8. In 20 tested jobs, Job 4,

5, 6, 8, 10, 11 are jobs with small resource requests. As we

can see from the figure, the waiting times for Jobs 1 to 9 are

significantly shorter than others. Unlike Job 3 in the Spark-on-

YARN experiments, in Hadoop YARN tests, Job 7 has been

delayed for the later small jobs (ID 8, 10, and 11). In DRESS,

waiting time for Job 9 is much less than the same job running

with Capacity (19.981s vs 189.246s). Although Job 9 is not a

small job, it also gets benefit from the delayed running of Job

7 since unused resources not only distributes to the queue of

small jobs, but also to the queue that targets on regular jobs.

Fig 9 presents the completion times for those 20 MapReduce

jobs. As the figure shows, DRESS reduces 25.7%, on average,

of completion times for small jobs. In addition, it also benefits

the large jobs of 9, 12, and 13. Their completion times

decrease 23.2%, 17.5%, and 10.0%, respectively. DRESS sac-

rifices Job 7, whose completion time increased 29.3%, and

affects Job 14 and 15, which increased 12.2% and 13.8%.

Overall, in DRESS, the completion times of 12 jobs are

decreased by 18.5% on average and the ones of other 8 jobs

are increased by 8.2% on average.

3) Mixed Job Setting: Next, we present the results from a

mixed job setting, where a cluster accepts both MapReduce

and Spark jobs. In addition, the number of jobs with small

resource demands is another important for the system since

it is directly related to the dynamic configuration of reserved

reservation ratio, which is controlled by Algorithm 3.

Fig 10,11,12,13 plot the experiments of mixed settings with

10%, 20%, 30%, and 40% of small jobs. They plot the waiting

time and the execution time for each job and the sum of

them is the job completion time. Two bars are illustrated

for each job ID. The left bar shows the evaluation results of

DRESS and the right bar shows the ones of Capacity scheduler.

Through analyzing the data in the figures, we can derive a

similar trend as we found from previous experiments. Overall,

the completion time of small jobs is significantly reduced in

DRESS compared to Capacity scheduler. For instance, the

completion times of Job 6 and 8, have been reduced from

484.5s, 540.3s to 111.3s, 134.4s, which is decreased by 76.1%

on average. The reductions of the completion time for small

jobs in the other three job settings are 36.2%, 21.9%, and

23.7% on average.
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Fig. 10: Mixed Job Setting with 10% Small Jobs
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Fig. 11: Mixed Job Setting with 20% Small Jobs
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Fig. 12: Mixed Job Setting with 30% Small Jobs
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Fig. 13: Mixed Job Setting with 40% Small Jobs

VI. CONCLUSION

This paper investigates the resource management in con-

gested clusters. Our goal is to reduce the waiting time and

improve the completion time for jobs with fewer resource

requests. To achieve our objectives, we present DRESS, a

dynamic resource reservation scheme. Specifically, depending

on incoming jobs’ demands, it categories them into two

categories. DRESS reserves a portion of resources for jobs with

small resource requests. The reserve ratio can be dynamically

adjusted according to the number of jobs in each queue. We

implement DRESS in the Hadoop YARN and evaluate it with

both MapReduce and Spark jobs. The experiment result shows

a significant improvement in small jobs, up to 76.1% reduction

on the average completion time, in the meanwhile, achieves a

stable overall system performance.
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