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Reaction Forces Using IMU Sensors in Multiple Walking

Conditions: A Deep Learning Approach
Md Sanzid Bin Hossain, Student Member, IEEE, Zhishan Guo Senior Member, IEEE, and Hwan

Choi, Member, IEEE

Abstract— Human kinetics, specifically joint moments and
ground reaction forces (GRFs) can provide important clinical infor-
mation and can be used to control assistive devices. Traditionally,
collection of kinetics is mostly limited to the lab environment
because it relies on data that measured from a motion capture
system and floor-embedded force plates to calculate the dynamics
via musculoskeletal models. This spatially limited method makes
it extremely challenging to measure kinetics outside the laboratory
in a variety of walking conditions due to the expensive device setup
and large space required. Recently, employing machine learning
with IMU sensors are suggested as an alternative method for
biomechanical analyses. Although these methods enable estimat-
ing human kinetic data outside the laboratory by linking IMU sen-
sor data with kinetics dataset, they were limited to show inaccurate
kinetic estimates even in highly repeatable single walking condi-
tions due to the employment of generic deep learning algorithms.
Thus, this paper proposes a novel deep learning model, Kinetics-
FM-DLR-Ensemble-Net to estimate the hip, knee, and ankle joint
moments in the sagittal plane and 3 dimensional ground reaction
forces (GRFs) using three IMU sensors on the thigh, shank, and
foot under several representative walking conditions in daily liv-
ing, such as treadmill, level-ground, stair, and ramp with different
walking speeds. This is the first study that implements both joint
moments and GRFs in multiple walking conditions using IMU
sensors via deep learning. Our deep learning model is versatile and
accurate for identifying human kinetics across diverse subjects
and walking conditions and our model outperforms state-of-the-art
deep learning model for kinetics estimation by a large margin.

Index Terms— Kinetics Estimation; Wearable IMU
Sensor; Joint Moment; Ground Reaction Force; Deep
Learning; Machine Learning

I. INTRODUCTION

Estimation of human kinetics, specifically ground reaction
forces (GRFs) and joint moments, play an important role in
providing insights and fundamental information in clinical de-
cisions and controls of exoskeleton devices. For example, joint
moments can be used to understand the impact of different
joint arthritis in walking [1]–[5] and to provide assistive torque
to the powered exoskeleton to minimize muscle efforts [6].
GRFs have also been used for the evaluation of pathological
gait patterns [7], [8] or for analyzing the gait of amputees
[9]–[12].

Traditionally, joint moments are calculated using infrared
based motion capture cameras and ground reaction forceplates.
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Collected joint kinematics from motion capture cameras and
GRFs from the floor embedded forceplates are then imple-
mented to computational musculoskeletal modeling softwares
such as OpenSim [13], Visual3D (C-Motion, MD), Nexus
(Vicon, UK), or Anybody (Anybody Technology, Denmark) to
calculate joint moment. Although using experimental data and
musculoskeletal modeling software can provide reliable joint
moment data, this method requires extensive manual post data
processing of motion and GRF data to employ musculoskeletal
modeling softwares, hindering prompt evaluations. In addition
to this, there are major technical hurdles when collecting
human kinetics in different walking conditions outside the lab-
oratory such as walking on ramps and stairs due to the specific
bulky and heavy equipment setups along with expertise. Thus,
this method poses constraints on estimation outside the lab,
especially in different walking environments that are mostly
encountered in daily living.

To overcome these limitations imposed by traditional kinet-
ics estimation methods, there is a trend in adapting wearable
sensors with computational human dyanmic models [14]–
[24], neuromusculoskeletal models [23], [25], or wearable
forceplates [19]–[22]. However, wearable sensors along with
human dynamic models or neuromusculoskeletal model based
kinetics estimation requires a large number of sensors (e.g.,
7 IMUs in [15], 17 IMUs in [17], and 15 IMUs in [18]).
Wearable electromyography (EMG) sensors on specific muscle
groups can also be used with neuromusculoskeletal modeling
to calculate joint moment [23], [25]. However, EMG signals
are sensitive to skin impedance and the location of muscle
belly, making it challenging to acquire consistent and repeat-
able signals. Also, EMG signals are prone to additional noise
due to the motion artifacts and electrical fields in environ-
ment. Thus, neuromusculoskeletal model based estimation of
kinetics with wearable sensors and EMG sensors are subjected
to multiple limitations including a large number of sensors,
subject specific anthropometric information, and variability of
EMG signals. Moreover, all of these studies are limited to
the level-ground condition, which imposes the applicability
to different walking conditions such as stairs and ramps that
are commonly found in daily living. There is also widespread
research to get GRFs data with portable forceplates. GRFs
can be calculated by using a strain gauge transducer [26]–
[28], piezoelectric sensors [29]–[31], and fiber-optic force
sensors [32], [33]. However, these sensors are vulnerable
to hysteresis, sensitive to temperature, and constrained by
force ranges and deformation of the sensors’ materials [19].
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Wearable GRF plates are also heavy and stiff, which hinders
the wearer’s control of natural dynamic tasks. Moreover, these
shoe-embedded force plates needs to be custom fabricated to
fit into a specific subject’s foot size and shape.

Recently, researchers are focusing on acquiring kinetics
parameters through data-driven method [34]–[43], [43]–[46].
However, these studies are still relying on a large number
of sensors [35], reversely acquired simulated IMU data from
the retrospective motion capture data [34], [37], and highly
repetitive treadmill/level-ground walking [36]–[43], [43]–[46].
Since experimentally collected IMU data contains noise in-
duced from multi-frequncy vibration during the impact of
the limb on the ground, the simulated IMU data that was
acquired from retrospectively captured motion capture data
may not provide a reliable kinetics estimation during real
application. All these limitations are further aggravated by
utilizing conventional deep learning models such as Tempo-
ral Convolutional Networks (TCN) [47], Feedforward Neural
Network (FNN), and Long Short Term Memory (LSTM) [48]
for kinetics estimation.

To address the limitations imposed by musculoskeletal or
biomechanical modeling, shoe-embedded force plates, simu-
lated IMU data, multi-modal sensor systems, a large number
of wearable sensors, conventional deep learning model, proper
validation method (leave-subject-out), and estimation of the
simple repetitive level-ground / treadmill motion, we aim to
predict the joint moment of the hip, knee, and ankle in the
sagittal plane and 3D GRFs (anterior-posterior, vertical, and
medio-lateral) using 3 IMU sensors on the foot, shank, and
thigh using a novel deep learning model Kinetics-FM-DLR-
Ensemble-Net in multiple walking environments and speeds.
To the best of our knowledge, this is the first study that
implements both fundamental kinetics parameters– 3D GRFs
and lower extremity joint moments estimation in multiple
walking condition using IMU sensors via deep learning. Our
contribution is six-folds: (i) proposing an end-to-end trained
model Kinetics-Net leveraging different deep learning layers
to increase human kinetics prediction performance; (ii) pre-
senting a FM to integrate output from three primary models in
Kinetics-Net, creating Kinetics-FM-Net to further improve hu-
man kinetics prediction performance; (iii) introducing a novel
technique to utilize two loss functions, which outperforms
conventional loss design in deep learning models; (iv) further
utilizing an existing ensemble technique, bagging to improve
human kinetics prediction accuracy; (v) conducting extensive
evaluation with ablation studies to show the effectiveness of
our deep learning model; (vi) conducting experimental com-
parison with the state-of-the art deep learning model for human
kinetics estimation, and our proposed method outperforms
these models by a large margin.

The rest of this paper is organized as follows: Section II
discusses the related work for IMU based kinetics estimation
using musculoskeletal modeling and data driven methods. The
problem statement and the detailed structure of Kinetics-FM-
DLR-Ensemble-Net are discussed in Section III. Section IV
describes the protocol of the dataset, dataset pre-processing,
validation method, and implementation details of the deep
learning model. Section V demonstrates the results. In Section

VI, implications of these results, limitations and future works
are discussed. We conclude our paper in Section VI.

II. RELATED WORK

In this section, we will discuss related work to estimate
kinetics using IMU sensors with musculoskeletal modeling
or machine learning methods. First, we will discuss IMU
and model based kinetics estimation methods. Later, we will
discuss data driven methods for kinetics estimation and their
limitations.

Yang et al. [15] used seven IMU sensors to estimate GRFs
and moments during walking with a three-dimensional analyt-
ical model. Karatsidis et al. [17] also estimated GRFs during
walking using kinematic data from 17 IMU sensors with a
biomechanical model. They have also predicted joint moments
along with GRFs with 17 IMU sensors with a musculoskeletal
model based inverse dynamics method for three level-ground
walking speeds. Aurbach et al. [18] used a musculoskeletal
model to compute GRFs using the kinematics data from 15
IMU sensors during level-ground gait. All these methods are
using a large number of wearable sensors for the estimation
of kinetics.

Due to the limitation imposed by musculoskeletal model
based kinetics estimation or shoe-embedded forceplate, re-
searchers are focusing on estimating GRFs [43], [45], [46],
[49] and joint moments [34]–[41], [43], [44] using data-
driven method with IMU sensors. Dorschky et al. [44] used 4
IMU sensors to estimate hip, knee, and ankle joint moments,
anterior-posterior GRF, and vertical GRF in the level-ground
and treadmill walking and running utilizing a 2D Convolu-
tional Neural Network (CNN) based deep learning model with
the data augmentation techniques with musculoskeletal model
simulation. Their approach is limited to the highly repeated
level-ground or treadmill walking condition only. Leporace et
al. [45] used a single accelerometer on the shank to predict
the 3D GRFs during walking using a Multilayer Perceptron
(MLP). However, the model was trained on limited samples
(only 4 gait cycles per participant), and data was collected in
level-ground walking condition only. Guo et al. [46] used only
acceleration data from a single waist-mounted IMU sensor to
predict the vertical GRF in self-selected walking speeds in
outdoor level-ground settings using Orthogonal Forward Re-
gression (OFR) algorithm . All these studies are implemented
in simple repetitive motion such as level-ground or treadmill
walking and the use of conventional machine learning models.

To utilize dataset without the presence of experimentally
collected IMU sensors with motion capture and GRF data,
Mundt et al. [37] placed virtual IMU sensors on the retrospec-
tively collected walking model to predict hip, knee, and ankle
joint moments using feedforward and LSTM based model.
Molinaro et al. [34] also used a musculoskeleletal model to
generate virtual IMU sensor signals on the trunk and thigh to
estimate hip joint moment using TCN [47]. As these studies
are implemented using virtual IMU data, it is unclear how
reliable the outcome of their methods on real IMU application
with noise introduced from skin surface movements.

To verify which deep learning model has better estimates
on joint moments, there was a comparison between cur-
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rent deep learning methods, LSTM, MLP, and pre-trained
convolutional neural network [40]. This study showed MLP
has better performance in joint moment prediction compared
with other models and LSTM would be considered for real-
time estimation. More recently, Camargo et al. [35] estimated
hip, knee, and ankle joint moments in multiple locomotion
modes (treadmill, stair, ramp) using extracted features from
the cluster of electrogoniometer, EMG, and IMU sensors’
data, performed feature selection, and then used the selected
feature as input into the Artificial Neural Network (ANN) and
XGBoost. However, the total number of 18 sensors and the
training set that established from a single subject make doubt
on practicality in real-world deployment and reproducibilty
with unseen human subjects. In addition to this, they used
handcrafted feature engineering, which adds complexity into
their proposed method. To reduce the sensor count, Lim et
al. [36] proposed a single sacrum mounted IMU to predict
joint moments and GRFs with extracted features (acceleration,
velocity, displacement, and time) as the input to ANN, but they
are still limited to using conventional deep learning models and
predicting treadmill walking condition.

Most of these studies are implemented for simple repetitive
motion in level-ground and/or treadmill, simulated IMU data,
and multi-modal sensors system, and they are limited to a
specific kinetics component, either joint moment or GRFs.
These limitations are compounded further with the use of
conventional deep learning models such as LSTM, CNN, TCN,
and ANN, which limit more accurate multi-variable human
kinetics estimations. To address the limitations imposed by
these discussed works, we propose a novel deep learning
method to estimate kinetics during gait using 3 IMU sensors
in multiple walking conditions.

III. PROPOSED APPROACH

A. Problem Statement
This paper estimates three dimensional GRFs and sagittal

plane hip, knee, and ankle joint moment using 3 IMU sensors
on thigh, shank, and foot via a novel deep learning model
Kinetics-FM-DLR-Ensmeble-Net. If we have an IMU data
of I∆T =[I1,I2,..........,I∆T ] ∈ R∆T×DIMU×N for a specific
window length of ∆T , then the prediction from our model is
K∆T =[K1,K2,..........,K∆T ] ∈ R∆T×DK . Here, ∆T represents
the window length of data that will be input to the model, N
is the number of IMU sensors, DIMU is the dimension of
IMU sensors, and Dk is the dimension of total kinetics pa-
rameters (anterior-posterior GRF, vertical GRF, medial-lateral
GRF, sagittal plane hip, knee, and ankle joint moment). In
this problem, we use DIMU=6, N = 3, ∆T=100, Dk=6.
Mathematically, I∆T → K∆T

B. Kinetics-FM-DLR-Ensemble-Net
Kinetics-FM-DLR-Ensemble-Net is built mainly with the

model Kinetics-FM-DLR-Net (Fig. 2). We implement bag-
ging [50] techniques using Kinetics-FM-DLR-Net to cre-
ate Kinetics-FM-DLR-Ensemble-Net, which is our final pro-
posed model. Kinetics-FM-DLR-Net mainly consists of two
Kinetics-FM-Nets (Fig. 2), where each model will be trained

Fig. 1. Fundamental Blocks of Kinetics-FM-DLR-Ensemble-Net

using two different loss functions and combined using a novel
technique, Double Loss Regression (DLR). Kinetics-FM-Net
is built with Kinetics-Net and a FM. We build Kinetics-Net
using different deep learning layers–GRU, Conv1D, Conv2D,
and fully connected dense layers. All the components of
Kinetics-FM-DLR-Ensemble-Net will be described in this
section.

1) Kinetics-Net: Kinetics-Net mainly consists of three
primary models– GRU-Net, GRU-Conv1D-Net, and GRU-
Conv2D-Net. Predictions from these three models will be
different because of the difference in architecture. The com-
bination of these primary models may increase prediction
performance. Typically, three models are trained separately,
then combined with late fusion by taking the average to get the
final prediction. However, this approach can cause complexity
due to the separate training process of multiple primary models
along with late fusion of the prediction. To address this issue,
we train all the three primary models simultaneously along
with the final prediction from the combined model to create
an end-to-end trained kinetics-Net. We minimize the loss
function for four output values of Kinetics-Net, which results
in good predictive performance of the final model Kinetics-
Net. If the predictions from GRU-Net, GRU-Conv2D-Net, and
GRU-Conv1D-Net are KOutput−1

∆T , KOutput−2
∆T , and KOutput−3

∆T

respectively, then output from Kinetics-Net

KOutput
∆T =

1

3
(KOutput−1

∆T + KOutput−2
∆T + KOutput−3

∆T ) (1)

a) Primary Models:
• GRU-Net. GRU-Net consists of an input layer followed

by a Batch Normalization (BN) layer, a GRU block, a
flatten layer, and an output layer. The BN layer is applied
after the input signal to address heterogeneity of the
source data [51]. After BN, a GRU block is added, and
then output from the GRU block is flattened to add with
the output layer.

• GRU-Conv2D-Net. In GRU-Conv2D-Net, we have two
branches using the features from the flatten layer of GRU-
Net and Conv2D-Net. For the second branch, we use a
Conv2D block followed by a FC block. The output from
the fully connected block is flattened and then concate-
nated with the features from the flatten layer of GRU-
Net. The concatenated features are then connected to
the Output-2 layer to make the prediction. The rationale
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Fig. 2. Entire structure of Kinetics-FM-DLR-Net

for using two branches is to improve the prediction by
integrating more diversified features from different types
of deep learning layers.

• GRU-Conv1D-Net. In GRU-Conv1D-Net, we follow the
same architecture as GRU-Conv2D-Net, but only replace
the Conv2D block with Conv1D block.
b) Fundamental Blocks: All the fundamental blocks to

create primary models are provided in this section:
• GRU Block. GRU block uses two GRU layers. A dropout

layer is added after the GRU layer to avoid overfitting
during the training of the model.

• Conv2D Block. In Conv2D block, a conv2D layer is
used followed by a BN layer. BN layer helps to reduce
internal co-variance shift. Then, a max-pooling2D layer
is applied to reduce the feature space, which helps reduce
the model’s complexity and select dominant features.
A conv2D, batch normalization, and max-pooling layer
create the main unit of the Conv2D block. Four such
units are added sequentially to create the Conv2D block.

• Conv1D Block. In Conv1D block, a conv1D layer is used
followed by a BN layer. Then, a max-pooling1D layer is
applied. A conv1D, BN, and max-pooling layer create
the main unit of the Conv1D block. Four such units are
added sequentially to create the Conv1D block.

2) Fusion Module (FM): In Kinetics-Net, we initially take
the simple average of the output from three primary models.
However, this may not ensure optimal performance from
three models as we assign equal weights to all the mod-
els. Since the performance of each model will be different,
proper weight needs to be assigned to ensure best perfor-

mance gain from these three models. To do this, we de-
sign a FM creating Kinetics-FM-Net using two fully con-
nected layers. Suppose Output-1, Output-2, Output-3 (Fig.
2) from GRU-Net, GRU-Conv2D-Net, GRU-Conv1D-Net
are KGRU−Net

∆T ∈ R∆T×DK , KGRU−Conv2D−Net
∆T ∈ R∆T×DK ,

KGRU−Conv1D−Net
∆T ∈ R∆T×DK respectively. These three

outputs are passed to two Fully Connected (FC) layers.
All the FC layers are dense layers, where rectified lin-
ear unit activation is applied between the first two lay-
ers and a sigmoid activation is in the last layer to en-
force the output between 0 to 1. If output of each pri-
mary model after passing through the the dense layers
are FC(KGRU−Net

∆T )∈ R∆T×DK , FC(KGRU−Conv2D−Net
∆T )∈

R∆T×DK , and FC(KGRU−Conv1D−Net
∆T )∈ R∆T×DK respec-

tively, then output of the FM will be

KOutput
∆T = FC(KGRU−Net

∆T )�KGRU−Net
∆T +

FC(KGRU−Conv2D−Net
∆T )�KGRU−Conv2D−Net

∆T +

FC(KGRU−Conv1D−Net
∆T )�KGRU−Conv1D−Net

∆T

(2)

3) Double Loss Regression (DLR): Previously for kinetics
estimation, the deep learning model was trained using Mean
Squared Error (MSE) and Root Mean Squared Error (RMSE)
as the loss function [41], [44]. While measuring the perfor-
mance, both Normalized RMSE(NRMSE)– proportional to
RMSE and Pearson Correlation Coefficient (PCC) were used
[42]. Typically, when multiple loss functions are available,
a single loss function is derived using the weighted sum of
those loss functions. This approach of combining multiple
loss functions (RMSE and PCC for our case) may not ensure
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proper performance for kinetics estimation as the optimizer
is minimizing the combined loss without understanding the
proper relation between these loss functions. To use dif-
ferent loss function properly, we devise a novel strategy
that employs two Kinetics-FM-Nets (Kinetics-FM-Net-RMSE,
Kinetics-FM-Net-PCC), which are trained with two loss func-
tions (RMSE and PCC) separately (Figure 2). In Kinetics-FM-
Net-RMSE, the optimizer will try to minimize RMSE between
ground truth and prediction, whereas in Kinetics-FM-Net-
PCC, the optimizer will maximize the PCC between ground
truth and prediction. As a result, from Kinetics-FM-Net-PCC,
we will have predictions with similar profiles of joint moments
and GRFs with ground truth but different baseline and range.
In Figure 3, we show a plot of a gait cycle for different kinetics
components when RMSE and PCC loss are used to train the
model.

As the Kinetics-FM-Net-PCC is mainly focused on increas-
ing PCC, this will have a higher PCC than the Kinetics-FM-
Net-RMSE. To maintain that high PCC while acquiring actual
baseline and range of the graph, we need the actual baseline
and range of the prediction. To do this, we acquire baseline and
range information from the prediction of Kinetics-FM-Net-
RMSE by minimizing the offset between ground truth and pre-
diction. Then, we use the results from Kinetics-FM-Net-RMSE
to correct gain and offset of the Kinetics-FM-Net-PCC results
while preserving the PCC obtained from the model. If the
prediction from Kinetics-FM-Net-PCC is KPCC

∆T ∈ R∆T×DK ,
gain and the offset correction are B0=[B00,B01,..........,B0Dk

]
∈ RDK ,B1=[B10,B11,..........,B1Dk

] ∈ RDK respectively, then
the corrected prediction from Kinetics-FM-Net-PCC can be
considered as the element wise multiplication of gain and
addition of offset corrected matrix.

KRMSE
∆T = B0 � KPCC

∆T + B1 (3)

In Equation 3, KRMSE
∆T ∈ R∆T×DK is the prediction from

Kinetics-FM-Net-RMSE as it has closely similar range and
offset of the ground truth. As we can estimate KRMSE

∆T

and KPCC
∆T from the two Kinetics-FM-Net models, we can

calculate the coefficient matrix of B0,B1 using DK number
of linear regression for each component. After calculating the
gain and offset correction matrix of B0,B1, the final prediction
after gain and offset correction:

KRMSE
∆T,Pred = B0 � KPCC

∆T + B1 (4)

In Figure 3, we demonstrate the qualitative and quantitative
impact on our DLR loss design for performance improvement.

4) Ensemble (Bagging): Finally, we apply bagging on
Kinetics-FM-DLR-Net to create Kinetics-FM-DLR-Ensemble-
Net. At first, from the training dataset, we create bootstrap
samples (random sampling with replacement) from our train-
ing dataset. Suppose, we create K number of bootstrap samples
from the whole training dataset. Each bootstrap sample will
be used to train Kinetics-FM-DLR-Net. The output from each
Kinetics-FM-DLR-Net will be KBag

∆T,1, KBag
∆T,K , ...., KBag

∆T,2.
Then, the final output of Kinetics-FM-DLR-Ensemble-Net:

KEnsemble
∆T,Pred =

1

K

K∑
k=1

KBag
∆T,k (5)

TABLE I
HYPERPARAMETERS OF DIFFERENT LAYERS. VALUE OF DROPOUT IN

THE BRACKET ARE FOR THE MODEL TRAINED WITH PCC AS LOSS

FUNCTION.

Unit GRU-Net
GRU-

Conv2D
-Net

GRU-
Conv1D

-Net

Fusion
Module

GRU-1 Unit: 512 Unit: 512 Unit: 512 NA
Dropout:
0.1 (0.5)

Dropout:
0.1 (0.5)

Dropout:
0.1 (0.5)

GRU-2 Unit: 256 Unit: 256 Unit: 256 NA
Dropout:
0.1 (0.5)

Dropout:
0.1 (0.5)

Dropout:
0.1 (0.5)

Conv- Filter: 256 Filter: 256
olutional-1 NA Kernel: 5X3 Kernel: 3 NA

Pool: 2X2 Pool: 2
Conv- Filter: 256 Filter: 256

olutional-2 NA Kernel: 5X3 Kernel: 3 NA
Pool: 2X2 Pool: 2

Conv- Filter: 512 Filter: 512
olutional-3 NA Kernel: 5X3 Kernel: 3 NA

Pool: 2X2 Pool: 2
Conv- Filter: 512 Filter: 512

olutional-4 NA Kernel: 5X3 Kernel: 3 NA
Pool: 2X1 Pool: 2

FC-1 NA Units: 64 Units: 64 Units: 128
Dropout:

0.25
Dropout:

0.25
Dropout:
NA (0.4)

FC-2 NA Units: 32 Units: 32 Units: 6
Dropout:

0.25
Dropout:

0.25
Dropout:
NA (0.4)

IV. EXPERIMENTS

A. Dataset Description

This paper uses a publicly available dataset [52] to build
Kinetics-FM-DLR-Ensemble-Net for the joint moment and
GRFs estimation. We will briefly discuss the protocol of data
collection in this subsection. This dataset is comprised with
four locomotion modes, i.e., treadmill walking, level-ground
walking, ramp ascent/descent, and stair ascent/descent. Tread-
mill walking was collected for 28 different speeds ranging
from 0.5 to 1.85 m/s in 0.05 m/s increments across seven
trials (four speeds per trial). Level-ground walking data was
collected for 30 circuits–5 clockwise and 5 counterclockwise
for each speed, which includes both straight walking and
turning with self-selected slow, normal, and fast speed. In
stair walking, the subject was walking on a six-step stair-case
with four different stair heights. All the subjects completed a
total of 40 trials with a set of five trials starting with their
instrumented leg. Four IMU sensors (thigh, shank, and foot),
three electronic goniometers (hip, knee, and ankle joint), and
11 EMG sensors were attached on the instrumented leg. A
set of five trials starting with their non-instrumented leg for
each stair height (4in, 5in, 6in, and 7in). Sixty ramp trials
were performed with six different inclination angle (5.2°, 7.8°,
9.2°, 11°, 12.4°, and 18°) and five for each starting leg on six



6 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2021

Fig. 3. A sample of joint moments and 3D GRFs in a single gait cycle to demonstrate how DLR improves the performance from RMSE and PCC
loss function of deep learning model. Blue lines represent experimentally collected and calculated normalized joint moments and GRFs, and red
lines present estimated results using the deep learning model.

inclination. Other detailed information of the protocol of the
experiment is described in [52].

B. Dataset Pre-processing
Twenty subjects’ data (8 female, age: 21.7 ± 3.65 years,

height: 1.70 ± 0.07 m, weight: 68.21 ± 11.52 Kg) are used
for model training, discarding two subjects (AB06, AB20)
because of the absence of GRFs for level-ground condition
(AB20) and IMU data mismatch (AB06) comparing to rest of
the subjects. IMU data and marker trajectory data from the
motion capture system were collected at 200 Hz. GRFs data
were measured at 1000 Hz, then they are re-sampled to 200
Hz to synchronize with IMU and motion capture data. Joint
moment is calculated using Opensim [13] inverse dynamics
tool with motion capture and GRFs data. For level-ground,
stair, and ramp walking, IMUs, joint moments, and GRFs data
are segmented for a full gait cycle based on the availability of
GRFs from the installed force plates on the instrumented right
leg. On the other hand, data segmentation is not performed
for the treadmill walking as GRFs are present for all the gait
cycle. We normalize joint moment data with body weight and
height of the participants. We also normalize GRF data with
body weight of the participants. IMU data are collected from
the foot, shank, thigh, and torso. IMU data from the foot,
shank, and thigh are taken to build the deep learning model
while discarding torso data, as we are primarily focused on
predicting lower body joint kinetics. We provide details of
segmentation of forceplate for level-ground, ramp, and stair
condition in the supplementary materials.

C. Implementation Details
We train all of our models in Keras with a TITAN Xp

GPU (NVIDIA, CA). The Kinetics-FM-DLR-Ensemble-Net is
trained with a run time of 20 hours (2 hours per bootstrap

sample). Adam [53] is used as the optimizer, and all the
models are run for 40 epochs with a batch size of 64. We
mainly use two loss functions, i.e. LRMSE , LPCC for
training. Joint Loss (LJL) is derived using these two loss
functions with the following equation.

LJL = LRMSE + W × LPCC (6)

In Table I, we present all the hyperparameters of different
layers of Kinetics-FM-DLR-Ensemble-Net.

D. Evaluation Procedures
Leave-one-subject out cross validation is implemented to

assess the performance of the all the models. Excluding
test subject from training data ensures proper validation as
including test subject data in the training set can yield better
model performance as the model can understand the relation
between IMU and kinetics for that specific subject. For the
performance measurement, we use two metrics, Normalized
RMSE (NRMSE) and PCC. To get NRMSE, we normalize
RMSE by the range (difference between maximum and min-
imum value) of corresponding experimentally measured GRF
and directly calculated joint moments.

V. RESULTS

In this section, we will present the results of model ablation,
FM, and Double Loss Regression (DLR). We will also provide
results for varying numbers of bootstrap samples and param-
eter sweeps of W of Equation 6. Additionally, we will also
show the result comparison of our proposed model with the
state-of-the-art deep learning algorithm for kinetics estimation.

A. Model Ablation
In Table II, we show the ablation study on our model and

report the NRMSE and PCC values for kinetics estimation
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TABLE II
MEAN AND STANDARD DEVIATION OF NRMSE AND PCC VALUES OF JOINT MOMENTS AND 3D GRFS FOR DIFFERENT MODELS IN ENTIRE WALKING

CONDITIONS. BOLD NUMBERS REPRESENT THE RESULT OF KINETICS-FM-NET THAT HAS THE BEST PERFORMANCE IN NRMSE AND PCC.

Model NRMSE PCC
RMSE JL DLR RMSE JL DLR

GRU-Net 4.84 ± 1.00 4.80 ± 1.12 4.57 ± 0.85 0.905 ± 0.036 0.904 ± 0.045 0.918 ± 0.028
Conv2D-Net 5.46 ± 0.99 5.45 ± 0.96 5.20 ± 0.91 0.867 ± 0.027 0.866 ± 0.040 0.890 ± 0.027
Conv1D-Net 5.38 ± 0.88 5.34 ± 0.87 5.19 ± 0.81 0.868 ± 0.026 0.872 ± 0.026 0.890 ± 0.026

GRU-Conv2D-Net 4.71 ± 0.91 4.74 ± 0.94 4.45 ± 0.83 0.907 ± 0.035 0.906 ± 0.033 0.920 ± 0.032
GRU-Conv1D-Net 4.79 ± 0.98 4.79 ± 0.93 4.39 ± 0.83 0.904 ± 0.040 0.907 ± 0.033 0.922 ± 0.029

Conv2D-Conv1D-Net 5.16 ± 0.75 4.89 ± 1.24 4.88 ± 0.79 0.884 ± 0.027 0.902 ± 0.047 0.906 ± 0.027
Kinetics-Sub-Net-1 4.60 ± 0.93 4.64 ± 1.13 4.44 ± 0.88 0.913 ± 0.035 0.913 ± 0.038 0.922 ± 0.030
Kinetics-Sub-Net-2 4.60 ± 0.90 4.51 ± 0.89 4.38 ± 0.86 0.913 ± 0.032 0.917 ± 0.032 0.923 ± 0.029
Kinetics-Sub-Net-3 4.59 ± 1.00 4.56 ± 0.93 4.28 ± 0.84 0.912 ± 0.036 0.915 ± 0.031 0.925 ± 0.029

Kinetics-Net 4.56 ± 0.93 4.52 ± 0.98 4.31 ± 0.88 0.915 ± 0.034 0.916 ± 0.034 0.926 ± 0.030
Kinetics-FM-Net 4.38 ± 0.83 4.37 ± 0.83 4.21 ± 0.86 0.920 ± 0.030 0.921 ± 0.030 0.928 ± 0.028

TABLE III
MEAN AND STANDARD DEVIATION OF NRMSE AND PCC VALUES OF JOINT MOMENTS AND 3D GRFS OF DIFFERENT WALKING ENVIRONMENTS

FOR FINAL PROPOSED MODEL, KINETICS-FM-DLR-ENSEMBLE-NET.

Metrics Scene Hip
Moment

Knee
Moment

Ankle
Moment

Medio-
lateral
GRF

Vertical
GRF

Anterior-
posterior

GRF
Mean

NRMSE Treadmill 5.31 ± 1.44 6.24 ± 1.77 6.00 ± 2.75 8.14 ± 3.55 5.36 ± 3.20 3.42 ± 1.05 5.74 ± 1.53
Level-ground 9.16 ± 3.54 9.45 ± 3.00 9.23 ± 3.48 8.85 ± 1.77 7.40 ± 6.45 6.18 ± 3.87 8.38 ± 2.71

Ramp 6.31 ± 1.61 5.37 ± 2.30 4.94 ± 2.64 8.32 ± 1.74 4.60 ± 2.80 3.99 ± 1.03 5.59 ± 1.16
Stair 8.44 ± 2.52 7.49 ± 2.18 7.68 ± 2.18 8.16 ± 1.56 4.51 ± 2.24 4.64 ± 0.87 6.82 ± 1.20

PCC Treadmill 0.948 ± 0.031 0.915 ± 0.041 0.966 ± 0.037 0.913 ± 0.045 0.976 ± 0.037 0.962 ± 0.031 0.947 ± 0.032
Level-ground 0.764 ± 0.187 0.710 ± 0.207 0.869 ± 0.123 0.833 ± 0.101 0.957 ± 0.087 0.883 ± 0.177 0.836 ± 0.113

Ramp 0.893 ± 0.058 0.908 ± 0.060 0.929 ± 0.062 0.847 ± 0.066 0.978 ± 0.043 0.951 ± 0.040 0.918 ± 0.043
Stair 0.867 ± 0.076 0.926 ± 0.049 0.944 ± 0.041 0.885 ± 0.042 0.983 ± 0.024 0.926 ± 0.030 0.922 ± 0.032

TABLE IV
EFFECT OF VARYING NUMBER OF BOOTSTRAP SAMPLE ON THE MEAN AND STANDARD DEVIATION OF NRMSE FOR KINETICS ESTIMATION IN

ENTIRE WALKING CONDITIONS. BOLD NUMBERS REPRESENT THE BEST PERFORMANCE IN EACH JOINT MOMENT AND GRF.

No Hip
Moment

Knee
Moment

Ankle
Moment

Medio-
lateral
GRF

Vertical
GRF

Anterior-
posterior

GRF
Mean

1 4.75 ± 1.34 4.47 ± 1.83 4.21 ± 2.32 4.36 ± 1.26 5.07 ± 2.32 3.50 ± 0.71 4.39 ±0.88
2 4.58 ± 1.24 4.28 ± 1.69 4.05 ± 2.16 4.26 ± 1.30 4.97 ± 2.34 3.42 ± 0.72 4.26 ± 0.87
3 4.56 ± 1.23 4.29 ± 1.71 4.01 ± 2.17 4.26 ± 1.38 4.92 ± 2.37 3.39 ± 0.71 4.24 ± 0.89
4 4.51 ± 1.24 4.20 ± 1.60 3.98 ± 2.13 4.22 ± 1.37 4.88 ± 2.35 3.39 ± 0.71 4.20 ± 0.87
5 4.49 ± 1.24 4.19 ± 1.60 3.97 ± 2.14 4.19 ± 1.38 4.87 ± 2.31 3.37 ± 0.71 4.18 ± 0.88
6 4.48 ± 1.23 4.20 ± 1.60 3.93 ± 2.12 4.17 ± 1.35 4.86 ± 2.31 3.37 ± 0.71 4.17 ± 0.87
7 4.48 ± 1.24 4.15 ± 1.56 3.93 ± 2.12 4.18 ± 1.35 4.86 ± 2.31 3.36 ± 0.71 4.16 ± 0.87
8 4.46 ± 1.23 4.14 ± 1.55 3.92 ± 2.10 4.16 ± 1.33 4.85 ± 2.31 3.35 ± 0.71 4.15 ± 0.86
9 4.45 ± 1.22 4.13 ± 1.52 3.91 ± 2.10 4.14 ± 1.31 4.85 ± 2.31 3.35 ± 0.71 4.14 ± 0.86
10 4.45 ± 1.21 4.11 ± 1.51 3.90 ± 2.08 4.14 ± 1.32 4.85 ± 2.31 3.34 ± 0.71 4.13 ± 0.86

with different loss designs. As different layers are added to
the model, the performance of estimation of both GRFs and
joint moments are improved.

B. Fusion Module (FM)
Our designed fusion model that assigns proper weight to the

prediction of primary models (GRU-Net, GRU-Conv2D-Net,
and GRU-Conv1D-Net) increases joint moments and GRFs
prediction in all walking conditions. Table II demonstrates
that integrating the FM in Kinetics-Net decreases the mean
NRMSE from 4.56, 4.52, 4.31 to 4.38, 4.37, 4.21 and increases
mean PCC from 0.915, 0.916, 0.926 to 0.920, 0.921, 0.928 for
RMSE, PCC, and DLR loss design respectively.

C. Double Loss Regression (DLR)
We find that our proposed DLR has the superiority in

performance over RMSE and JL design for all the models
(Table II). Although we initially design DLR to increase PCC
of kinetics prediction, we have ’Double Reward’ with DLR
as it improves both NRMSE and PCC. More specifically,
mean NRMSE decreases from 4.38 (RMSE), 4.37 (JL) to 4.21
(DLR) and mean PCC increases from 0.920 (RMSE), 0.921
(JL) to 0.928 (DLR) for Kinetics-FM-Net.

D. Bagging (Ensemble)
Kinetics-FM-DLR-Ensemble-Net that is created from

Kinetics-FM-DLR-Net with application of bagging techniques
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TABLE V
EFFECT OF VARYING NUMBER OF BOOTSTRAP SAMPLE ON THE MEAN AND STANDARD DEVIATION OF PCC FOR KINETICS ESTIMATION IN ENTIRE

WALKING CONDITIONS. BOLD NUMBERS REPRESENT THE BEST PERFORMANCE IN EACH JOINT MOMENT AND GRF WITH 10 BOOTSTRAP SAMPLE.

No Hip
Moment

Knee
Moment

Ankle
Moment

Medio-
lateral
GRF

Vertical
GRF

Anterior-
posterior

GRF
Mean

1 0.907 ± 0.033 0.896 ± 0.041 0.944 ± 0.035 0.882 ± 0.039 0.975 ± 0.030 0.950 ± 0.027 0.926 ± 0.028
2 0.911 ± 0.036 0.902 ± 0.042 0.946 ± 0.035 0.885 ± 0.039 0.975 ± 0.030 0.952 ± 0.027 0.928 ± 0.028
3 0.912 ± 0.036 0.904 ± 0.042 0.947 ± 0.035 0.887 ± 0.038 0.976 ± 0.030 0.953 ± 0.027 0.929 ± 0.028
4 0.913 ± 0.036 0.905 ± 0.040 0.947 ± 0.034 0.888 ± 0.037 0.976 ± 0.029 0.953 ± 0.027 0.930 ± 0.028
5 0.912 ± 0.037 0.905 ± 0.041 0.947 ± 0.034 0.889 ± 0.038 0.976 ± 0.029 0.953 ± 0.027 0.931 ± 0.028
6 0.912 ± 0.037 0.905 ± 0.041 0.947 ± 0.034 0.890 ± 0.038 0.976 ± 0.029 0.953 ± 0.027 0.931 ± 0.027
7 0.912 ± 0.036 0.906 ± 0.041 0.948 ± 0.034 0.890 ± 0.037 0.976 ± 0.029 0.953 ± 0.027 0.931 ± 0.027
8 0.912 ± 0.036 0.906 ± 0.041 0.948 ± 0.034 0.890 ± 0.038 0.976 ± 0.029 0.953 ± 0.027 0.931 ± 0.027
9 0.913 ± 0.036 0.906 ± 0.041 0.948 ± 0.034 0.890 ± 0.038 0.976 ± 0.029 0.953 ± 0.027 0.931 ± 0.027

10 0.913 ± 0.036 0.906 ± 0.041 0.948 ± 0.034 0.890 ± 0.038 0.976 ± 0.029 0.953 ± 0.027 0.931 ± 0.027

reduces mean NRMSE from 4.21 to 4.13 and increases mean
PCC from 0.928 to 0.931 compared with Kinetics-FM-DLR-
Net. Table IV, V, demonstrates the performance of adding
different numbers of bagging samples to the Kinetics-FM-
DLR-Net. After adding five bootstrap samples, results almost
get saturated for both NRMSE and PCC. We have little
improvement in NRMSE (0.01 increase after each bootstrap
sample) over the next five bootstrap samples. Since adding
more bootstrap samples will increase computational complex-
ity, we avoid adding more bootstrap samples and stop our
experiment at ten.

E. Parameter Sweep (W)
Typically, when we combine two loss function to create joint

loss, weight of the loss is varied to ensure best performance
gain. In Table II, we only show the results of JL with W = 1
(Equation 6), which may not give the best performance from
the JL. To demonstrate how varying W impacts performance
compared with our DLR loss design, we change the W in
LJL (Equation 6) from 1 to 10 and summarize the results in
Table VI,VII. The rationale of choosing W from 1 to 10 is
to make the actual LPCC to be one-third to three times of
LRMSE to have proper weight on both LRMSE and LPCC to
ensure valid comparison for joint loss. The effect of varying
W in LJL (Equation 6) did not provide distinct performance
improvement. This result further demonstrates our superiority
of loss design over LJL.

F. Comparison with State-Of-The-Art
In Table VIII, we show the comparison of our results with

state-of-the-art deep learning algorithm for kinetics estimation.
All these architectures that are used in these studies are
optimized based on this dataset to ensure better performance
and valid comparison. Here, FFN network uses raw IMU data
as inputs. We extract 17 Handcrafted Features (HF) for each
of the 18 components of IMU signals (total=306) and used
those features as input to the FFN model (FFN-HF). Detailed
architecture of all the models and feature extraction process
are provided in the supplementary materials.

Table III shows the prediction outcomes of Kinetics-FM-
DLR-Ensemble-Net in each walking condition. As an example,

we plotted one gait cycle of each kinetics component repre-
sentative of all walking conditions to demonstrate a sample
qualitative comparison of ground truth and prediction from
the model.

VI. DISCUSSION

This paper estimates sagittal plane hip, knee, and ankle
joint moments as well as anterior-posterior, vertical, and
medial-lateral GRFs in treadmill, level-ground, stairs, and
ramp walking conditions using three IMU sensors on the
thigh, shank, and foot using our Kinetics-FM-DLR-Ensemble-
Net. This is the first study that implemented both GRFs and
joint moments estimation on multiple walking conditions and
speeds using IMU sensors via deep learning. We apply our
algorithm to a comprehensive dataset with a large number
of subjects, multiple walking environments, multiple walking
speeds, multi variable ramp angles, and stair heights. We also
perform validation of our model on an unseen subject (leave-
one-subject out cross validation), which also makes sure that
our model is not just memorizing a specific subject’s IMU
and kinetics relation. This extensive training set, generalized
and versatile capacity of our novel algorithm, as well as
rigorous validations will enable the most accurate estimates
of joint moments and GRFs for new testing subjects in any
walking speeds and various walking conditions compared with
the other state-of-the-art deep learning algorithms for kinetics
estimation. In addition to this, as we establish and evaluate
our model on the public dataset, other researchers can easily
validate our model with their algorithm and also have the
potential to improve our contribution in this field further.

By leveraging different conventional deep learning layers,
(i.e., 1D, 2D convolutional, GRU, and dense layers) this
paper proposes an end-to-end model Kinetics-Net. In Table
II, we demonstrate extensive model ablation with different
loss function designs to validate the use of different layers
in our model. Firstly, we build three simple models GRU-
Net, Conv1D-Net, and Conv2D-Net by utilizing convolutional,
GRU, and dense layers. Then, we concatenate features of two
models from the combination of these three models to build
GRU-Conv2D-Net, GRU-Conv1D-Net, and Conv2D-Conv1D-
Net. From the results, we have an improvement in kinetics
estimation performance when a combination of features of
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TABLE VI
MEAN AND STANDARD DEVIATION OF ENTIRE WALKING NRMSE RESULTS FOR PARAMETER SWEEP (W ) OF LJL FOR KINETICS-FM-DLR-NET IN

ENTIRE WALKING CONDITIONS. BOLD NUMBERS REPRESENT THE BEST PERFORMANCE IN EACH JOINT MOMENT AND GRF.

W Hip
Moment

Knee
Moment

Ankle
Moment

Medio-
lateral
GRF

Vertical
GRF

Anterior-
posterior

GRF
Mean

1 4.78 ± 1.15 4.30 ± 1.28 4.15 ± 2.29 4.66 ± 1.56 4.98 ± 2.37 3.33 ± 0.66 4.37 ± 0.83
2 4.75 ± 1.25 4.25 ± 1.22 4.33 ± 2.29 4.59 ± 1.50 4.98 ± 2.36 3.28 ± 0.68 4.36 ± 0.82
3 4.62 ± 1.28 4.28 ± 1.20 4.29 ± 2.24 4.69 ± 1.50 4.91 ± 2.38 3.28 ± 0.71 4.34 ± 0.85
4 4.74 ± 1.29 4.33 ± 1.27 4.26 ± 2.11 4.68 ± 1.53 4.92 ± 2.42 3.25 ± 0.68 4.36 ± 0.83
5 4.67 ± 1.37 4.32 ± 1.20 4.26 ± 2.14 4.54 ± 1.41 4.86 ± 2.30 3.23 ± 0.64 4.31 ± 0.82
6 4.73 ± 1.29 4.33 ± 1.22 4.29 ± 2.23 4.63 ± 1.50 4.91 ± 2.33 3.27 ± 0.71 4.36 ± 0.82
7 4.80 ± 1.16 4.39 ± 1.19 4.20 ± 2.32 4.65 ± 1.69 5.05 ± 2.36 3.31 ± 0.67 4.40 ± 0.85
8 4.82 ± 1.23 4.43 ± 1.29 4.16 ± 2.21 4.44 ± 1.27 4.98 ± 2.22 3.30 ± 0 .66 4.35 ± 0.78
9 4.83 ± 1.23 4.47 ± 1.23 4.13 ± 2.23 4.54 ± 1.41 4.92 ± 2.21 3.30 ± 0.68 4.37 ± 0.80

10 4.86 ± 1.30 4.37 ± 1.17 4.14 ± 2.12 4.60 ± 1.46 4.89 ± 2.19 3.31 ± 0.68 4.36 ± 0.79

TABLE VII
MEAN AND STANDARD DEVIATION OF ENTIRE WALKING PCC RESULTS FOR PARAMETER SWEEP (W ) OF LJL FOR KINETICS-FM-DLR-NET IN

ENTIRE WALKING CONDITIONS. BOLD NUMBERS REPRESENT THE BEST PERFORMANCE IN EACH JOINT MOMENT AND GRF.

W Hip
Moment

Knee
Moment

Ankle
Moment

Medio-
lateral
GRF

Vertical
GRF

Anterior-
posterior

GRF
Mean

1 0.902 ± 0.030 0.891 ± 0.042 0.941 ± 0.039 0.866 ± 0.050 0.975 ± 0.029 0.952 ± 0.027 0.921 ± 0.030
2 0.901 ± 0.028 0.892 ± 0.042 0.943 ± 0.037 0.861 ± 0.083 0.975 ± 0.029 0.953 ± 0.027 0.921 ± 0.031
3 0.904 ± 0.030 0.890 ± 0.041 0.942 ± 0.038 0.850 ± 0.112 0.975 ± 0.030 0.952 ± 0.028 0.919 ± 0.035
4 0.901 ± 0.029 0.891 ± 0.041 0.943 ± 0.036 0.868 ± 0.052 0.975 ± 0.030 0.953 ± 0.027 0.922 ± 0.029
5 0.892 ± 0.055 0.877 ± 0.078 0.941 ± 0.038 0.873 ± 0.047 0.976 ± 0.029 0.952 ± 0.027 0.918 ± 0.037
6 0.901 ± 0.028 0.887 ± 0.043 0.941 ± 0.039 0.871 ± 0.049 0.975 ± 0.029 0.952 ± 0.028 0.921 ± 0.030
7 0.897 ± 0.033 0.888 ± 0.042 0.941 ± 0.037 0.863 ± 0.062 0.975 ± 0.030 0.953 ± 0.027 0.920 ± 0.030
8 0.901 ± 0.030 0.886 ± 0.043 0.941 ± 0.034 0.874 ± 0.040 0.976 ± 0.028 0.952 ± 0.026 0.922 ± 0.026
9 0.899 ± 0.036 0.884 ± 0.051 0.940 ± 0.037 0.845 ± 0.119 0.974 ± 0.030 0.952 ± 0.028 0.916 ± 0.038

10 0.898 ± 0.030 0.887 ± 0.048 0.940 ± 0.039 0.867 ± 0.048 0.976 ± 0.028 0.952 ± 0.027 0.920 ± 0.028

TABLE VIII
COMPARISON OF THE KINETICS ESTIMATION PERFORMANCE OF OUR ALGORITHM WITH STATE-OF-THE-ART DEEP LEARNING METHOD OF KINETICS

ESTIMATION. OUR KINETICS-FM-NET SHOWS THE BEST PREDICTION ACCURACY IN NRMSE AND PCC COMPARED WITH THE OTHER

STATE-OF-ART DEEP LEARNING MODELS.

Metric Models Hip
Moment

Knee
Moment

Ankle
Moment

Medio-
Lateral

GRF

Vertical
GRF

Anterior-
posterior

GRF
Mean

FFN (HF) [35] 5.71 ± 1.37 5.97 ± 1.74 5.16 ± 2.66 5.08 ± 1.26 6.63 ± 2.15 4.13 ± 0.59 5.45 ± 0.85
TCN [34] 5.48 ± 1.25 5.05 ± 1.48 5.01 ± 2.82 4.92 ± 1.81 5.64 ± 2.26 3.70 ± 0.64 4.97 ± 0.91

NRMSE FFN [45], [37] 5.48 ± 1.49 5.49 ± 2.04 4.71 ± 2.50 5.19 ± 1.89 6.06 ± 2.43 3.90 ± 0.81 5.14 ± 1.19
LSTM [37], [40] 5.29 ± 1.24 4.66 ± 1.58 4.77 ± 2.81 4.69 ± 1.39 5.23 ± 2.25 3.57 ± 0.68 4.70 ± 0.91

Conv2D [44] 6.11 ± 1.46 6.32 ± 1.85 5.42 ± 3.05 5.11 ± 1.43 5.77 ± 2.27 4.05 ± 0.57 5.46 ± 0.99
Ours 4.45 ± 1.21 4.11 ± 1.51 3.90 ± 2.08 4.14 ± 1.32 4.85 ± 2.31 3.34 ± 0.71 4.13 ± 0.86

FFN (HF) [35] 0.847 ± 0.036 0.778 ± 0.050 0.912 ± 0.039 0.819 ± 0.042 0.959 ± 0.033 0.923 ± 0.028 0.873 ± 0.027
TCN [34] 0.866 ± 0.030 0.847 ± 0.041 0.924 ± 0.038 0.840 ± 0.046 0.972 ± 0.030 0.943 ± 0.026 0.899 ± 0.027

PCC FFN [45], [37] 0.861 ± 0.053 0.824 ± 0.110 0.926 ± 0.041 0.815 ± 0.097 0.966 ± 0.035 0.933 ± 0.037 0.888 ± 0.059
LSTM [37], [40] 0.877 ± 0.027 0.868 ± 0.046 0.931 ± 0.034 0.857 ± 0.040 0.974 ± 0.029 0.943 ± 0.027 0.908 ± 0.026

Conv2D [44] 0.821 ± 0.041 0.747 ± 0.070 0.911 ± 0.037 0.821 ± 0.045 0.970 ± 0.030 0.933 ± 0.026 0.867 ± 0.027
Ours 0.913 ± 0.036 0.906 ± 0.041 0.948 ± 0.034 0.890 ± 0.038 0.976 ± 0.029 0.953 ± 0.027 0.931 ± 0.027

two models is used. This validates our approach of adding
features from two models to improve the prediction. From the
first six models in Table II, we dismiss Conv1D-Net, Conv2D-
Net, and Conv2D-Conv1D-Net for further model development
due to their poor performance. Later, we use GRU-Net, GRU-
Conv2D-Net, and GRU-Conv1D-Net to build three Kinetics-
Sub-Nets using the average prediction of two models from
these three models in an end-to-end manner. We see a further
improvement in results by creating those Sub-Nets. Finally, we
use GRU-Net, GRU-Conv2D-Net, and GRU-Conv1D-Net and

take the average of these three models to create end-to-end
model Kinetics-Net, which outperforms all the previous mod-
els. This validates our approach of adding different layers to
create a more complex model for performance improvement.

Although many studies have applied deep learning al-
gorithms to estimate kinetics [34]–[43], [43]–[46], a direct
comparison of their results with ours cannot be valid due to
the different sensor modalities, number of sensors, walking en-
vironments, and number of subjects. Moreover, those datasets
are not publicly available, which makes it challenging to apply
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Fig. 4. A sample plot for a single gait cycle for different walking condition along with the corresponding NRMSE and PCC of subject AB24.

our algorithm to make the comparisons. To address this issue,
we adopt their machine learning algorithms and applied to the
dataset that we used. However, directly applying their specific
machine learning architecture to this dataset may not be a valid
method, as those models are specifically built for their dataset
and inputs (variable number and multi-modal sensors). For this
reason, we use the same types of layers such as LSTM, TCN,
Conv2D, FFN, etc, and optimize these models for our dataset
for achieving high performance to ensure valid comparison.
In Table VIII, we show the comparison of the performance
of the state-of-the-art deep learning algorithm with ours. Our
algorithm Kinetics-FM-DLR-Ensemble-Net outperforms those
algorithms by a large margin, which proves the effectiveness
of our model over the conventional deep learning method for
kinetics estimation.

Although we provide the most accurate prediction of joint
moments and GRFs with extensive walking conditions, speeds
and number of subjects, there are several limitations on this
study. We use a relatively large number of IMU sensors (three)
to estimate kinetics. However, to ensure practicality and users’
comfort, we need to minimize the number of IMU sensors.
More specifically, if we can implement only shoe-mounted
sensors similar to kinematics estimation in [54], it would
be more helpful to maintain sensors. Since single limb joint
moments and GRFs are affected by contralateral limb during
early stance phase and terminal stance phase, incorporating
IMU information on both limbs would gather more meaningful
knowledge of walking dynamics, and this can improve the
prediction further. Ensemble learning–bagging is added to

improve the prediction. However, it increases the computa-
tional complexity as the model is repeated ten times. If we
want to make a trade-off between accuracy and computation
complexity, we can avoid using bagging techniques in our
model. The different training data set impacts the accuracy.
From the results, level-ground condition has the largest error
compared with the other walking conditions. The main reason
for this is the lack of training data during the level-ground
condition. As we segment the dataset for level-ground, we have
only limited right leg strikes for the walking circuit, which
results in fewer data (4% of the total dataset) compared to
other conditions. A future research direction to improve the
level-ground kinetics prediction may be to augment the level-
ground dataset by repetition and make it roughly equal to other
walking environments.

VII. CONCLUSION

This study proposes a novel deep learning model to estimate
kinetics in multiple walking conditions and speeds. From our
extensive evaluation of our developed model, we justify our
design choices. This accurate estimation will enable tracking
of kinetics parameters outside the lab, removing the limitation
of traditional motion capture cameras and floor-embedded
force plate based kinetics estimation.
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VIII. SUPPLEMENTARY MATERIALS

IX. DATA SEGMENTATION

level-ground. For clockwise level-ground walking, we segment FP2,
Combined, and FP5 forceplate data and for anti-clockwise level-
ground walking, we segment FP5 data.
Stair. For stair trials with starting instrumented leg (right leg), we
segment forceplate data of FP1 and FP5 for right leg. For the trials
starting with non-instrumented leg (left leg), we segment FP2, FP3,
and FP4.
Ramp. For ramp trials with starting non-instrumented leg (left leg),
we segment forceplate data of FP2 and FP4 for right leg. For the trials
starting with instrumented leg (right leg), we segment FP1, FP3, and
FP5.

During the segmentation, we notice that some of the participants
did not successfully step their entire right foot on the forceplates
for all the trials. This incomplete force plate data set cannot derive
complete joint moment calculations and misleading GRFs data. Thus,
we identify these incomplete dataset and manually exclude from our
model training dataset.

X. STATE-OF-THE-ART MODEL DESCRIPTION

FFN (HF). In FFN-HF, we extract 17 features for all the component
of IMU data. We extract those features for the window length of 100
(0.5s). Extracted features are mean, RMS, max, min, mean absolute
value, standard deviation, mean absolute difference, mean difference,
median difference, median absolute difference, interquartile range,
kurtosis, skewness, median, variance, median absolute deviation, and
mean absolute deviation. We extract total 306 features from 3 IMUs.
Then, we use those extracted features as the input to a FFN neural
network with five dense layers. Each layer is followed by a dropout
to avoid overfitting during the training of the model. We flatten the

output of the last dropout layer and connect it to the last layer for
kinetics prediction. The units of the five layers are 1024, 512, 256,
128, and 64. For all the drouput layer, we use a dropout rate of 0.05.
TCN. For TCN, we use a single stacks of residual block with a kernel
size 3, 128 filters in the convolutional layers, dilations of (1, 2, 4,
8, 16), dropout rate of 0.05, and weight normalization. TCN layer is
followed by two dense layers and a dropout layer after each of them.
The units of the dense layer is 64, 32 and dropout rate was 0.1. We
flatten the features from the last dropout layer and connect it to the
prediction layer.
FFN. For FFN, we use raw IMU data as input. Two dense layers with
a dropout after each one was used. The units of the dense layers are
128, 64 respectively. The dropout rate was 0.1 for both dropout layers.
Featurs from the last dropout layer was flattened and connected to
the last prediction layer.
LSTM. We use two bidirectional LSTM with units 128 and 64
respectively. Dropout layer with a dropout rate 0.5 is used after
each bidirectional LSTM. After the dropout layer, two dense layer
each one followed by a dropout was used, flattened and connected
to the prediction layer. The units of the dense layer are 128 and 64
respectively and dropout rate was 0.25 for both dropout layer.
Conv2D. We use the same architecture as Conv2D-Net.
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