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Abstract—Mixed-Criticality (MC) systems have been widely
studied in the past decade, majorly due to their potential to
consolidate applications with different criticality levels onto the
same platform. In the original design proposed by Vestal, a target
probability of failure per hour specified by certification require-
ments is assigned to each criticality level. These requirements
have been mainly conceived for hardware faults. Software fault
tolerance techniques are available to mitigate hardware faults,
but their adaptation to real-time systems is challenging due to
the introduced overhead. This paper proposes an extension to the
traditional MC scheduling theory to implement fault tolerance
strategies against transient faults, with the goal of complying with
both failure and timing requirements. In particular, we introduce
the dropping relationships that generalize the concept of criti-
cality and allow, on the one hand, to improve the schedulability
analysis, on the other, to control the dependency between tasks
satisfying the certification requirements. The simulation study
shows a schedulability ratio improvement of 20-30% compared
to classical scheduling while maintaining compliance with failure
requirements.

Index Terms—Real-Time, Mixed-Criticality, Fault-Tolerance,
SIHFT.

I. Introduction

The resilience to faults is an essential property of most
safety-critical systems. Hardware is inevitably subject to both
transient and permanent faults; their probability can be re-
duced by appropriate manufacturing processes, but not zeroed.
Unfortunately, chip miniaturization causes modern architec-
tures to be more susceptible to transient faults. It has been
observed [1] that in modern memories, the probability of
experiencing a transient fault is in the order of 10−5 per
hour. The problem is amplified when considering aerospace
applications, because the atmospheric and magnetic shields
of the Earth have a reduced effect at high altitudes. This is
especially concerning for reconfigurable architectures: recent
studies [2], [3] showed how FPGA devices could exhibit a
fault rate larger than 10−2/h in the space environment.

According to the IEEE glossary [4], a fault is a defect in the
functioning of a hardware device or component. In the case
of transient faults, they are usually modeled as Single Event
Upsets (SEUs), i.e., bit-flips occurring in memory regions
(including CPU registers). The error is the effect caused by the
presence of faults to some computation, e.g., a miscalculated
value. The error can, in turn, cause the failure, i.e., the inability

of the system to perform the required function according to
the original requirements. Fault tolerance techniques can be
implemented both at the hardware and software levels. Hard-
ware solutions are traditionally used in safety-critical systems,
and many state-of-the-art techniques exist. However, they are
usually expensive in terms not only of financial costs but also
of energy, space, and weight of the final system [5]. For this
reason, software mechanisms are attractive to implement the
necessary fault tolerance strategies. They are usually called
with the umbrella term Software-Implemented Hardware Fault
Tolerance (SIHFT). The mainly used SIHFT approaches are:
(1) the re-execution of a failed task, (2) checkpoint/restore
mechanisms, (3) the execution of recovery blocks, and (4) the
task replication. All of these software techniques introduce,
however, challenges for hard real-time systems, where the
timing requirements must be satisfied.

A. Overview of Standards

We contextualize this paper in the avionics and automotive
domains. The standard ecosystems describe processes and
methods for performing and validating the safety assessment
for certification. In particular, for avionics, the AC 25.1309-
1/AMC 25.1309 establishes the principle that the more severe
the hazard resulting from a system or equipment failure, the
less likely that failure must be. The safety assessment is de-
fined in the ARP-4761 for the system level, while the analysis
of failure effects at equipment level is recognized in DO-
254 for hardware items and in DO-178C for software items.
The aircraft system functions are systematically analyzed for
failure conditions, and each failure condition is assigned a
hazard classification, called Design Assurance Level (DAL),
with associated maximum allowable failure probability per
flight hour: 10−9 for DAL A (Catastrophic), 10−7 for DAL
B (Hazardous), 10−5 for DAL C (Major), 10−3 for DAL D
(Minor), and no probability associated for DAL E (No Safety).
Similarly, in the automotive domain, the ISO 26262 and
IEC 61508 define a similar classification named Automotive
Safety Integrity Levels (ASIL). However, the failure require-
ments defined by the standards are for hardware failures, while
software failures are considered only as systematic (i.e., bugs
and defects), therefore only qualitative assessments of failure
conditions are possible. This concept limits the applicability
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TABLE I
Example of a task set, where Ti is the period, Di is the deadline, Ci is the

WCET, and preqi is the required failure rate.

Task Ti = Di Ci DAL preqi
τ1 50 10 A 10−9/h
τ2 1000 75 A 10−9/h
τ3 250 50 B 10−7/h
τ4 100 25 D 10−3/h

of some scheduling algorithms and software fault tolerance
techniques, as described in the subsequent paragraphs.

B. Mixed-Criticality and Its Compliance with Standards

In the last decade, Mixed-Criticality (MC) systems emerged
to improve the scheduling capacity of real-time systems. The
Worst-Case Execution Time (WCET) estimations in mod-
ern architectures are often overly pessimistic, making the
schedulability of hard real-time systems with limited resources
challenging. To overcome this problem, in 2007, Vestal [6]
proposed the MC model, where each task is assigned a critical-
ity level that conceptually corresponds to the aforementioned
DALs. The criticality levels are interpreted as the levels of
assurance of the WCET estimation. One or more WCET
values estimated at different levels of assurance is assigned
to each task, depending on the criticality level. For instance,
according to the DAL characterization, the Vestal’s model
assigns five different WCET estimations to a task belonging
to DAL A, from the most pessimistic, but safe, to the less pes-
simistic, but possibly unsafe. When a task overruns one of its
WCET estimations, a mode switch occurs. To deal with mode
switches, traditional methods drop tasks of lower criticality
than the WCET criticality of the task that overran. However,
several discussions emerged recently on this strategy [7]–[9],
which is considered far from the industry perspective. In fact,
dropping tasks during mode-switch creates a “dependency”
between the tasks, i.e., the functional correctness of a job
of the task does not depend on the job itself, but it is
influenced by the execution of other tasks. This is a violation
of the independence property of safety-critical systems. For
example, IEC61508 states: “It shall be demonstrated either
(1) that independence is achieved by both in the spatial and
temporal domains, or (2) that any violation of independence
is controlled.” Similar requirements can be found in the other
standards mentioned above. Traditional MC approaches that
drop tasks do not comply with the standards because the
introduced dependence among the tasks makes condition (1)
false, and the unpredictability of mode switches makes also
condition (2) false.

To solve this issue, we propose to satisfy the condition (2)
of IEC61508-3, by “controlling” the dependence violation. In
particular, we show how to perform a joint scheduling and
failure analysis, able to obtain quantitative data on the effects
of dropping jobs due to the WCET overruns of other tasks,
which is, in turn, caused by the triggering of fault tolerance
mechanisms.

C. A Motivational Example

To give an insight of the proposed approach, we begin with
a motivational example based on the small task set presented
in Table I. Tasks τ1 and τ2 belong to the highest level DAL A,
τ3 to the DAL B, and τ4 to DAL D, according to the safety
integrity levels of DO-178C and DO-254. According to the
failure rate, we can consider τ1 and τ2 as HI-criticality, τ3 as
MI-criticality, and τ4 as LO-criticality. However, this example
shows the limit of the majority of MC approaches: we cannot
drop the MI-criticality task τ3, because of a mode switch
caused by the overrun of the MI-criticality WCET of one of
the HI-criticality tasks. Indeed, the task τ3 still provides an es-
sential and inalienable feature with a well-defined requirement
of failure rate. For example, if τ1 overruns its MI-criticality
WCET with a rate p = 10−5/h, then this triggers the drop of τ3
with a rate of at least 10−5/h, violating, in this way, τ3’s failure
requirement. By allowing other tasks to trigger the drop of τ3,
we are creating a dependence between tasks and violating the
requirement of the previously mentioned standards. Moreover,
we cannot control the probability that a mode switch occurs,
because p is usually unknown1. Realistic MC task sets may
be composed of over 200 different tasks [11], exacerbating the
problem.

The task set has an utilization of U = 0.725 < 1, thus it
is schedulable on a single processor – e.g., with the Earliest
Deadline First (EDF) scheduler. However, let us consider that
the system suffers from independent transient faults with a
fault rate of 10−4/h. With such a value, failure requirements
of τ1, τ2, and τ3 could not be met2. One possible solution
is to budget for re-executing a failed job, thus decreasing the
failure rate to 10−8/h (because two faults have to happen).
This is sufficient for τ3 but not for τ1 and τ2. Thus, for
these two tasks we need to re-execute a failed job 3 times
(if necessary) in order to meet the failure rate requirements
(becoming 10−12/h). Unfortunately, allocating time to execute
all the re-execution jobs implies an utilization U = 1.475 that
is not schedulable on a uni-processor. A possible solution to
this problem is to drop the task τ4 if a fault occurs in τ1, τ2,
or τ3. In this case, even if the re-execution job is introduced,
the task set remains schedulable. This, at first glance, is a
violation of the task-independence requirement. Nevertheless,
contrarily to the traditional MC problem, the probability of
mode-switch is known. In fact, even if the failure rate of τ4 is
no longer 10−4/h but it also includes the effect of other tasks
– becoming 1 − (1 − 10−4)4 ≈ 3 · 10−4/h –, it still meets the
failure rate requirement of τ4. Similarly, to allocate the 2nd

re-execution of τ1 and τ2, τ3 can be dropped, still meeting its
failure requirement: 10−7/h.

Unlike traditional MC, where the probability of exceeding
WCET thresholds is unknown and the resulting dependence
uncontrolled, we can mathematically bound the failure rate

1Probabilistic-WCET analyses can estimate p, but their safe use in the
critical systems is currently disputed and yet to be formally demonstrated [10].

2For the sake of this example, the computation of fault/failure rates are
simplified for brevity and clarity purposes. How to derive the exact values is
described later in the manuscript.
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caused by mode switches, provided that a careful calculation is
done. In the previous example, the failure rate of τ4 including
other task effects is 3 · 10−4/h, satisfying the DAL D re-
quirement. As previously mentioned in Section I-B, IEC61508
requires that any violation of independence must be controlled.
The standard does not precisely specify what “controlled”
means. We believe that a mathematically computed failure rate
upper-bounding the requirement is sufficient to adhere to the
“controlled” condition. The availability of a safe bound allows
us to go beyond the non-quantifiability of software failure rates
specified by the standards.

D. Contribution

In this work, we propose a generalization of the tradi-
tional MC setup with the so-called Dropping Relations (DRs).
Theoretical tools to compute the fault/failure rate and verify
the requirements in presence of the DRs are developed and
presented. The use of DRs allows us to improve the schedula-
bility with respect to hard real-time constraints in presence of
SIHFT algorithms for transient faults occurring in memories
or CPU cores. This paper advances the current MC theory
by pursuing the following goals: 1) generalize the concept of
system modes with the DRs; 2) improve the schedulability
of real-time tasks when fault tolerance tasks are introduced
(in particular, with the re-execution mechanism); 3) guarantee
the “controlled dependency” requirement of the standards even
if task dropping occurs. Besides the theoretical achievement,
we performed an experimental simulation to quantify the
improvement with respect to traditional techniques.

II. Model and Assumptions

A. Task and Failure Model

The set of tasks is identified by Γ = {τ1, τ2, ..., τn}. Each
task is modeled by the following tuple:

τi = (Ci,Di,Ti, preqi )

where Ci is the WCET, Di is the deadline, Ti is the period
or inter-arrival time, preqi is the required maximum task
failure rate coming from the safety requirement analysis. All
deadlines are assumed to be constrained (Di ≤ Ti).

The fault tolerance mechanism we consider in this work
is the re-execution mechanism: if a fault is detected during a
job execution, the same computation is restarted. We model
this behavior as a set of extra tasks activated on-demand. The
stricter the failure requirement needed, the higher the number
of re-execution tasks that are potentially activable. We define
∆ as the set of all tasks including the re-execution tasks: ∆ =

{τ1(0), τ1(1), ..., τ2(0), ..., τn(Nre-execn )} where τi(k) represents the k-
th re-execution of task τi, or, if k = 0, the primary execution
of τi. For example, τ1(0) is the “normal” execution of task τ1,
τ1(1) is the task spawning the first re-execution job, etc. The
re-execution tasks τi(k) are intrinsically sporadic, because the
jobs of τi(k) for k > 0 are activated only if the corresponding
job for task k−1, i.e., τi(k−1), suffered a fault. The total number
of re-execution tasks Nre-execi is computed per-task depending
on its failure requirement. Further details of the computation

of Nre-execi are described later in the manuscript (Eq. (7)). All
the re-execution tasks share the same WCET value Ci being
exactly the same workload. In order to guarantee the temporal
correctness, the jobs of re-execution tasks τi(k) have the same
absolute deadlines of the jobs of τi(0).
Task failure model. A job of a task is considered to have a
failure when it does not produce the correct results according
to its specification. In real-time systems, the results’ correct-
ness is defined in both logical and temporal senses. Faults
can affect both: for example, an SEU can cause an error
that changes the result value, possibly violating the logical
correctness, or increasing the counter variable of a loop,
possibly violating the temporal correctness. The fault detection
is possible via any state-of-the-art techniques (e.g., acceptance
tests, watchdog, or control-flow-graph signatures — see [12]
for a comprehensive survey). The choice of a particular fault-
detection algorithm does not affect the discussions in this
work. Any overhead caused by fault detection is considered
as part of the WCET Ci. No perfect fault-detection algorithm
can be built, but we assume their failure probability as already
included in the overall system failure analysis. Similarly, the
re-execution mechanism cannot resolve all the possible errors
caused by transient faults. For instance, an SEU occurring in
the memory region of the state or input data persisting across
job execution cannot be fixed with re-executing the job. We
assume the failure probability of such situations as already
included in the overall system failure analysis or their tolerance
provided by other mechanisms, which overhead is included
in the WCETs of the tasks. Standards already consider the
imperfection of the fault detection and recovery algorithms:
ISO 26262, for instance, defines the level of coverage of each
detection/recovery mechanism, which must meet well-defined
requirements.

When the output of a job is not correctly produced, either
in logical or timing sense, the task is immediately considered
to have a failure. More precisely,

Definition 1 (Task failure). A task τi is considered to have
a failure – and by extension the whole system in case τi is
critical, i.e., preqi < 1 – if any job of task τi(Nre-execi ) is activated
but failed to produce a correct result by the absolute deadline
of the corresponding job of the original task τi(0).

This definition implicitly means that the previous jobs of
all the tasks τi(k) with k < Nre-execi have failed. In fact, if
any job of the task τi(k) does not fail, the job of the task
τi(k+1) would have never been activated and, therefore, not
even τi(Nre-execi ). This definition is an obvious consequence of
the classical definition of hard real-time systems: no deadline
misses are tolerated and, consequently, the interest from the
failure standpoint is related solely to the first failure, i.e., the
dangerous failure as called in safety engineering.

B. System Model

The system is identified by a set of resources R =

{R1,R2, ...,RmR } assignable to tasks. Each resource can be
either a CPU core or a memory. The resource manager or
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the scheduling policy assigns to each task one or more re-
sources in R. We then define the resource assignment function
r : ∆×R → [0; 1] as follows: r(τ,R) = 1 if the task is assigned
to the resource, r(τ,R) = 0 if the task is not assigned to the
resource, and a value in the interval (0, 1) ∈ Q if the task
partially uses the resource. The latter case refers to memories,
which are space-assigned, and not CPU cores, which are,
instead, time-assigned. Please note that, in this notation, there
is no concept of how much time a task uses a resource—it will
be introduced later in Section III-B. The resource assignment
function r(·) for CPU cores, is either 0 or 1; this is because,
at a given time instant, the resource can be only used by one
task. Each task is also considered single-thread, so there is
only one computing unit assigned to each task. Even if multi-
threaded applications are not the subject of this work, they
can be represented as multiple tasks, provided that an analysis
of the dependency for both timing and failure standpoints is
performed.

In order to properly formulate the subsequent analysis and
in common with almost all of the state-of-the-art works, we
assume the Operating System (OS), or at least the scheduling
and fault detection algorithms, as non-affectable by faults. This
assumption can be implemented in a real system in different
manners, e.g., redundancy in the OS routines, specialized
hardware implementations [13], [14], or by considering their
failure probability in the safety analysis.

C. Fault Model

In this paper, we restrict the discussion on transient faults,
while the analysis of permanent faults and fault bursts [15] is
left as future work. The probability of observing a transient
fault within a given duration F is often referenced as the fault
rate. The fault rate is typically expressed per-hour, i.e., F =

1 h. Each resource is characterized by a different fault rate
λi, computed by using estimation methods developed since
decades ago [16]. This value refers to the whole resource: it
represents the probability of observing a fault in the timeframe
F in any component of the resource Ri. For example, if Ri is
a memory, then λi refers to the probability of observing a
fault in any memory location of Ri in F. The probability of
observing a hardware fault in a given time instant is considered
independent and identically distributed (iid). This assumption
is realistic and widely adopted in industrial contexts [17]. In
the case of a resource having different sub-components with
different fault rates, this model considers them as separated
resources.

Table II summarizes the introduced notations.

D. The Analysis Flow

In order to fulfill both temporal and failure requirements
in an integrated manner, the proposed offline analysis is
composed of a mix of failure and schedulability analyses. In
particular, the following steps, also depicted in Figure 1, are
performed:

1) Preliminary failure analysis: the failure rate of tasks is
computed, and the maximum number of re-execution

TABLE II
Summary of key notations.

Symbol Description
Γ All tasks w/o re-execution tasks
∆ All tasks w/ re-execution tasks
τi( j) The j-th re-execution task of the i-th task

Nre-execi Number of max re-execution tasks
Ri ∈ R A computing resource
λi Fault rate associated to i-th resource

r(·, ·) Resource assignment function
preqi Max failure rate (requirement)

Preliminary
Failure

Analysis

Taskset 
Taskset Schedulable? SUCCESS

Job Dropping
Relations BuilderSchedulable?Compliant?SUCCESS

FAIL

Y

N
NN

YY

Fig. 1. The high-level flowchart of the integrated analyses.

tasks to admit to scheduling is selected according to the
failure requirements.

2) If the resulting task set ∆ is trivially schedulable (e.g.,
by EDF), then the process successfully terminates.

3) If not, a joint scheduling and failure analysis is per-
formed to find a set of DRs, as subsequently defined in
Section IV-A, to improve its schedulability.

4) The two analyses are performed again to ensure that
requirements are still valid even after the introduction of
the DRs: they improve the schedulability, but they can
negatively affect the fulfillment of failure requirements.

III. Failure analysis

The failure analysis aims to compute the probability of a
transient fault to occur for a single job and derive the minimum
number of re-execution tasks necessary to comply with the
failure rate requirements.

A. Probability of An Event for A Given Time Frame

In probability, the outcome of a sequence of trials is
expressed as a sequence of random variables E1, E2, ..., En.
In our problem, the random variables represent the absence
“0” or the presence “1” of a fault at a given time point. The
statistical process generating a sequence of Boolean variables
is the Bernoulli process. Since we consider the time as a
discrete variable (because at the finest scale it corresponds to
the clock cycles), their statistical law is a binomial distribution:

P(E = k) =

(
n
k

)
pk(1 − p)n−k (1)

that corresponds to the probability of observing k faults in
a sequence of n trials, i.e., E =

∑n
i Ei and p = P(Ei = 1).

According to our failure model described in Section II, we
are interested in the probability of observing at least one fault:
P(E > 0). We derive this probability from its complementary
P(E > 0) = 1 − P(E = 0):
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P(E > 0) = 1 −
∏

n

(1 − p) = 1 − (1 − p)n (2)

For the sake of completeness, it should be noted that for
large n and small p, this probability converges to the Poisson
distribution with k = 0, i.e., P(E > 0) → 1 − e−np. This
property is frequently used in safety analyses [17] and it is
called Homogeneous Poisson Process (HPP) hypothesis.

By exploiting the formulas of the previous paragraph, it
is possible to change the time frame of a given probability
of failure. For example, if the requirement failure rate is
expressed per-hour, it is possible to divide, thanks to the iid
hypothesis, this time frame per-minute by setting n = 60 and
by computing the inverse of Eq. (2).

B. Probability of a Fault to Occur for a Given Job

From the fault rate λi of the resource Ri expressed in the
time frame F, we scale the λi to become the probability of
a fault to occur in one time instant, defined as the time unit
used in the task model. The time unit is often expressed as
the number of clock cycles. Let f −1 be the period of the clock
cycles, then we can compute how many clock cycles are in F:
k = F

f −1 . Having this number, for each resource Ri, we compute
the fault probability at any time instant by inverting Eq. (2):

λ′i = 1 − (1 − λi)
1
k . (3)

To compute the probability that a fault affects a job, we have
to consider the resources it uses (and in which percentage, i.e.,
the r(τi,Rk) value) and the exposure time, i.e., the time interval
in which a fault occurring in the resource can affect the job
execution. The probability that a fault affects a job of the task
τi is:

pFi = 1 −
∏
∀k:Rk∈R

(1 − r(τi,Rk)λ′k)εi,k (4)

where εi,k is the exposure time of the task τi for the resource
Rk over its period Ti.

Note 1. The term λ′k is the probability of a fault to occur in
a given resource Rk at any time instant. Multiplying this term
by r(τi,Rk), we obtain the fault probability for the share the
task τi uses the resource Rk (if > 0). Let us call this value
x = r(τi,Rk)λ′k. Being this term the probability in one time
instant, we find the probability {the fault occurs at time t = 0}
∪ {the fault occurs at time t = 1} ∪ etc. This union of events is
repeated for the whole exposure time εi,k. The fault rate for the
whole job, similar to Eq. (1), becomes: pFi,k = 1−

∏εi,k

t=0(1− x) =

1− (1− x)εi,k . Then, we compute the joint fault rate for all the
resources by applying one more time the union probability
formula: pFi = 1 −

∏
∀k:Rk∈R

(1 − pFi,k). Both steps in which we
applied the union formula are possible because the events are
iid. Replacing the pFi,k and applying simple algebra, we obtain
Eq. (4).

The value εi,k is expressed with a worst-case value depend-
ing on the resource type. For example, for a processor Rk, εi,k is
equal to the WCET Ci, because a task can use the processor
for at most Ci time units. A memory area active from the
start to the end of the job is exposed in the worst-case for

Ci + Ii time units, where Ii is the maximum interferences from
higher-priority tasks (preemption time). In first approximation,
εi,k = Ti is a valid, but pessimistic, value for any resource
under constrained deadline assumption. Indeed, εi,k cannot be
larger than Ti, because it would be larger than Di and therefore
non-schedulable.

Example 1. Let τ1 be a task that uses one core (R1) and two
memory address spaces in two memory nodes (R2) and (R3).
Each memory is used by the task at the 20% of the whole size,
consequently: r(τ1,R1) = 1, r(τ1,R2) = 0.2, r(τ1,R3) = 0.2. Its
WCET and period are C1 = 1 000 and T1 = 10 000 (clock
cycles). The fault rates are λR1 = 10−9/h, λR2 = 10−8/h, λR3 =

10−8/h. Computing the scaled probability of failure at any time
instant (by assuming f = 100MHz), we obtain with Eq. (3):
λ′R1
≈ 4 · 10−15, λR2 ≈ 4 · 10−14, λR3 ≈ 4 · 10−14. Then, assuming

ε1,1 = C1, ε1,2 = T1, ε1,3 = T1, we get the following job failure
rate thanks to Eq. (4): pFi ≈ 2 · 10−10/h. �

C. From the Safety Requirement to the Job Failure Bound

The safety requirement of each task preqi is often expressed
as PFH (average frequency of dangerous failure3) or PFD
(Probability of Failure on Demand) [17]. The PFH is used for
components that provide the safety operations in continuous
mode, while PFD is related to on-demand functions. In the
continuous case, a fault immediately triggers a hazardous
event, while the on-demand case requires both the fault and the
activation of the function (demand) to occur simultaneously.
The book of Rausand et al. [17] explains in details the PFD and
PFH concepts. These requirements can be mapped to the real-
time model by categorizing the tasks respectively in periodic
and sporadic ones.

According to the task and failure models of Section II-A,
we define the following system property:

Definition 2 (Compliant task set). A task set ∆ is said to be
compliant with respect to the failure requirements (shorten,
compliant) if the following condition holds for all tasks:

pJi ≤ preqi ∀τi

where pJi is the total failure rate of a single job of the i-th task
and preqi is the given maximum failure rate for the i-th task
(requirement). �

If no fault tolerance mechanisms are available (i.e., ∆ = Γ),
the value of pJi is the same of the single job failure rate:
pJi = pFi . The PFH is frequently expressed as per-hour, while
the PFD requirement is, instead, expressed as the probability
of failure when a demand (i.e., a job spawn in sporadic task
model) occurs: PFD already represents the value preqi , while
PFH must be shifted to the WCET timescale in a similar way
we did for the pFi . Let F be the PFH time frame, then Nacti =⌈
F

Ti

⌉
is the number of jobs of τi(0) activated in the time frame

F. By inverting Eq. (2), we obtain:

3The acronym refers to the original name “Probability of Failure per Hour”
of the IEC 61508 standard, later changed in the subsequent version of the
standard to reflect any F value.
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preqi = 1 − (1 − PFH)
1/Nacti (5)

It may happen that the failure rate of a given job execution
pFi is larger than the requirement preqi . This is the reason for
the necessity of fault tolerance algorithms. When they are
correctly applied, the total failure rate of a task (pJi ) decreases
depending on the type of the algorithm. For the re-execution
paradigm, this rate can be computed from the number of re-
execution tasks Nre-execi :

pJi =
(
pFi

)Nre-execi (6)

When a job is detected as failed, the job is restarted if
Nre-execi ≥ 1. If the re-started job fails, then the job is restarted
again if Nre-execi ≥ 2, and so on for a maximum of Nre-execi
times. The minimum number of re-execution necessary to meet
the requirements is:

Nre-execi = max
(
0,

⌈
logpFi

(
preqi

)⌉
− 1

)
(7)

The maximization is necessary because if the task is non-
critical, i.e., preqi = 1, then the second term is negative
and Nre-execi would not be meaningful. This parameter and
the consequent new task set ∆ represent the output of the
preliminary failure analysis.

Example 2. Considering the task of Example 1 having a
period of T1 = 10 000 clock cycles and a required PFH =

10−9/h, the number of job in F is Nacti = 36 · 106 and
the requirement per job is consequently: preqi = 1 − (1 −
10−9)1/36 · 106

≈ 2.7 · 10−17. Since pFi ≈ 2 · 10−10 > preqi , re-
execution tasks are mandatory and their minimum number is:
Nre-execi = d1.71e−1 = 1. With one re-execution task, the total
task failure rate becomes: pFi ≈ 4 · 10−20 < preqi . �

D. Extension to the k-out-of-n case

Even if not directly exploited in this work, it is worth to cite
the k-out-of-n failure model and how it can be integrated with
the proposed analysis. This approach is part of the weakly hard
real-time computing [18] and its characteristic is to tolerate the
deadline miss of k-out-of-n jobs. This failure model is opposed
to the dangerous failure model presented in Section II-A and is
more linked to the availability concept of safety-engineering
rather than reliability (see, for instance, the recent work by
Zhou et al. [19] on the availability of real-time systems). The
probability of a task to be considered failed – Eq. (6) – when
k-out-of-n job failures are tolerated is:

pJ(k-out-of-n)
i = 1 −

n∏
s=k+1

(1 − pJi )
n!

(n−s)!s! (8)

This probability has been derived similarly to the proof of
Eq. (4), by considering that n!

(n−s)!s! is the number of failure sit-
uations (from the formula of combination of events). To verify
the failure requirement, we can use the obtained probability
pJ(k-out-of-n)

i , instead of pJi , in the condition of Definition 2.

IV. Scheduling Analysis and Dropping Relations

Our approach does not limit the choice of the scheduler and
the related scheduling analysis. The scheduling algorithm does
not necessarily need to be fault-aware. The task set ∆ can, in
fact, be considered as a normal task set in which tasks τi(k),
with k > 0, are sporadic tasks. Consequently, any algorithm,
including EDF, can be used for scheduling. Independently
from the choice of the scheduling test, even if the original
task set Γ is schedulable, the task set ∆ may result non-
schedulable due to the addition of re-execution tasks needed
to meet the failure requirements. However, we can exploit
additional information to improve the analysis, for instance,
the fact that τi(k) can be activated only if τi(k−1) was activated
and this event is unlikely to occur. Hence, to improve the
schedulability, we propose the following MC generalization.

A. Dropping Relations

Definition 3 (Dropping Relation (DR)). The Dropping Rela-
tion (DR) of a task τi(k) ∈ ∆, for k > 0, is defined as:

τi(k)
d
 {τa(b), τc(d), ...} s.t. τa(b) ∈ ∆

A task may or may not have a defined DR. �

This relation states which tasks to drop ({τa(b), τc(d), ...})
when the re-execution task τi(k) is activated. The time instant
at which the effects of the DR ceases after a fault occurrence
depends on the adopted scheduling algorithm (similarly to the
problem of when switch back a traditional MC system to a
lower criticality mode). As a first approximation and if the
scheduler is work-conservative, we can consider that the DR
ceases its effect at the end of the hyperperiod or at the first
idle time. This choice does not impact the failure requirements
because, for the dangerous failure model, only the first failure
is relevant.

Example 3. Let ∆ = {τ1(0), τ1(1), τ2(0), τ2(1), τ3(0), τ4(0)}. The
following DR for task τ1(1):

τ1(1)
d
 {τ2(1), τ3(0)}

means that if the first re-execution task of τ1 (i.e., τ1(1)) is
triggered (because of the fault of τ1(0)), then the re-execution
task τ2(1) is dropped, or never activated, and the task τ3(0) is
dropped, or never activated. �

A DR τi(k)
d
 {τa(b), τc(d), ...} is said to be correct if the

following condition holds: @ j : τi( j) ∈ {τa(b), τc(d), ...}. This
condition requires that a DR does not exist from a task to
itself: it has no sense that a task causes the drop of a re-
execution task of itself.

B. Effects on the Scheduling Analysis

The effects of the DRs on the schedulability analysis depend
on the analysis itself. We can expect that the introduction
of DRs improves the task set schedulability. For example,
in single-core scheduling, DRs reduce the system utilization
after the occurrence of a fault, increasing the schedulability.
If the scheduling test is based on utilization, the utilization
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improvement of a DR is the sum of utilization improvement
for each dropped task in the DR.

It is important to remark that all the probabilities considered
in this work do not affect the correctness of the scheduling
analysis. They are used to model the fault rate, verify the fail-
ure requirements and configure the fault tolerance algorithms.
The schedulability test runs on statically computed WCET,
making the proposed approach in any case safe for the timing
correctness standpoint.

C. Effects on the Failure Analysis

The introduction of DRs adds a dependency among the tasks
and, in particular, on their failure rate. The iid assumption
makes the computation of the additional failure rate of a job
of τi(k) due to a DR possible:

pF’i(k) = 1 − (1 − pFi )
∏

( j,m)∈D(i,k)

(
1 − pFj

)
(9)

where D(i, k) = {(a, b) : ∃Aτa(b)
d
 A∧τi(k) ∈ A}. This formula

comes from the union of the independent events of observing
the natural failure of a job of τi(k) or observing the failure of
a job of τi(k) due to the activation of τ j(m) according to the
defined DRs.

For each task, once computed the failure rate increment, we
must re-verify the condition of Definition 2, i.e., that the task
dependence is controlled and task failure rate remains within
limits. In particular, Eq. (6) becomes pJ’i =

∏Nre-execi
k=1 pF’i(k) and

the condition of Definition 2 must still hold: pJ’i ≤ preqi .

V. Computation of Dropping Relations

To build the DRs, we propose two approaches: one inspired
by traditional MC categorization of tasks, and the other a novel
tree-exploration based approach.

A. Mapping to the Traditional Mixed-Criticality Setup

In the traditional MC setup, a criticality level Li ∈ {1, ..., nL}

is assigned to each task (assuming smaller values of Li indi-
cates lower criticality). In the original MC paper by Vestal [6],
this value is derived from the safety requirements of the task:
Instead of having one single WCET value, the tasks have
several WCETs depending on their own criticality level. This
is usually expressed by making Ci a vector C̄i of dimension
Li, with the condition that C̄i( j) ≥ C̄i(k) for any j > k. Most
of the papers in the literature based on the Vestal model uses
the mode switch concept: when a task with criticality level l
overruns its C̄i(k), with k < l, the system is said to switch to
the higher criticality mode k+1. When a system is in criticality
mode k, then all tasks of lower criticalities (Li < k) are either
dropped or scheduled with a best-effort policy.

We map the traditional MC to our approach as follows:
• We order the tasks according to their Nre-execi and

we assign a criticality level for each value, i.e., Li =

Nre-execi + 1.
• A task with Li criticality level is considered to tolerate a

minimum of Li − 1 faults: Each criticality level of a task
τi represents the re-execution of the previous criticality

level, guaranteeing a total of Li − 1 re-execution of the
original workload of τi. The WCET vector C̄i( j) is inter-
preted as the following: C̄i(1) = Ci, C̄i(2) = Ci + Ci(1),
etc. The re-execution tasks have the same WCET of the
original task, thus: C̄i( j) = j ·Ci.

• We then create the following DRs according to the
aforementioned MC system mode behaviour:

τi( j)
d
 {τa(b), ...}∀a, b : La < j ≤ Li. (10)

Informally, we drop any task of lower criticality than the
current system mode criticality.

Accordingly, Eq. (9) is modified as follow:

pF’i(k) = 1 − (1 − pFi )
∏

j:L j<Li

(
1 − pFj

)Nre-execj . (11)

Differently from the traditional use of MC, in our case,
a mode switch happens after the occurrence of a hardware
real fault, thus the probability of the mode switch and the
dropping of jobs is known. The MC approach has, however,
the drawback that it drops more jobs than necessary, as
later showed in the experimental results. This may impact
the feasibility of lower criticality tasks to meet their failure
requirement.

B. A Tree Exploration-Based Solution

To construct a more efficient solution than MC-mapping, we
introduce a tree-based solution to the DRs creation problem.
As the MC method, the tree exploration takes place offline and
the created DRs are then enforced online by the scheduler.

The set of DRs can be represented with a tree T , e.g.,
the one depicted in Figure 2. This representation helps us in
describing the DRs generation algorithm based on a coupled
scheduling and failure analysis. Each node represents the set
of the dropped tasks after the detection, at run-time, of faults.
This concept is a generalization of the traditional system mode
of MC systems. The root node corresponds to the normal
execution when no faults have occurred, and all the tasks in Γ

are scheduled. When a fault is detected, the system switches
to another node following the edge corresponding to the newly
activated task (i.e., the re-execution task of the failed task). The
content of this node is the set of dropped tasks according to the
triggered DR. If another re-execution task must be activated –
i.e., another fault occurs – the system switches to a new node
with a larger number of dropped tasks.
Formal definition. Let T be a tree composed of V =

{v0, v1, v2, ..., vn} nodes and E = {e1, e2, ..., en} edges, where
each edge is defined as a pair of nodes ek = (vi, v j). A
path of a tree is defined as a sequence of connected and
distinct nodes and edges. In this paper, we identify with
P(vx) = (ea, eb, ..., em) = ((v0, va), (vb, vc), ..., (vw, vx)) the path
having the first node as the root node (v0) and the last node
in the edge em is vx. From the definition of tree and path,
it is possible to state that P(vx) is unique. To each node is
assigned a label δ(vi) ⊂ ∆ and to each edge is assigned a
label δ(ei) ∈ ∆. The label of the root node v0 is always
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Fig. 2. An example of DR tree. When no fault occurred, all the tasks are
admitted to scheduling (node ∅). If, for instance, the task τ1 fails, it activates
the task τ1(1) and the tasks τ2(1) and τ3(0) are consequently dropped.

δ(v0) = ∅. The label of each node is a superset of the parent
node: δ(v j) ⊇ δ(vi), (vi, v j) ∈ E. An edge ek = (vi, v j) with label
δ(ei) = τa(b) exists in the tree if the following conditions hold:

1) the DR τa(b)
d
 τa′(b′), τa′′(b′′), ... exists;

2) τa(b) < δ(vi) (the task has not been already dropped);
3) τa(b) < {δ(ei) : ei ∈ P(vi)} (the re-execution task has not

been already activated).

The node v j is labelled with δ(v j) = δ(vi)∪{τa′(b′)}∪ {τa′′(b′′)}∪

· · · . If the DR does not exist but the second and third
conditions hold, the new edge is added with δ(v j) = δ(vi)
(in this case a fault does not trigger a DR).

Example 4. The tree in Figure 2 corresponds to the following
DRs:
τ1(1)

d
 τ2(1), τ3(0); τ1(2)

d
 τ2(1), τ3(0), τ2(0); τ2(1)

d
 τ4(0).

The system starts in the root node configuration, i.e., no tasks
are dropped. Then, if a fault is detected in τ1(0) or τ2(0), the
system switches to one of the node at the first level below
the root. For instance, if a fault is detected in τ1(0), τ1(1) is
activated and τ1(1) and τ3(0) dropped. �

Schedulability. The tree representation is convenient because
it is easy to prove schedulability by exploiting pre-existing
MC schedulability tests and, in particular, EDF-VD(k) [20].
This is possible thanks to the following lemma:

Lemma 1. The task set ∆ is schedulable according to the
dropping mechanism imposed by the DRs if both the following
conditions are satisfied:

1) ∀vl, such that vl is a leaf node (i.e., @vi : (vl, vi) ∈ E),
P(vl) is schedulable according to the MC scheduling test
for EDF-VD(k).

2) ∃x (scaling parameter of the schedulability test) identical
for all P(vl) satisfying [20, Eq. (6)] and [20, Eq. (7)]
∀P(vl).

Intuitive explanation. Each root-to-leaf path represents a
chain of events that may occur at run-time. According to the
tree definition, no other possible chains of events exist other
than the set of all paths. Initially, the system is in the root node
and all tasks are admitted to be scheduled according to the
virtual deadlines computed with the scaling parameter x. Then,
if a fault occurs, there is a transition to a node of the next level
and, consequently, some tasks are dropped. The failed task
requires its re-execution, i.e., its WCET is incremented. This is
the same task model of the MC model, thus the schedulability
of the single path can be checked with the EDF-VD(k) test by
setting a criticality level for each node. �

Proof. The following proof is split in three parts: (1) the
conversion to the EDF-VD model; (2) schedulability of the
single path; and (3) schedulability of the whole tree.
(1) We convert each path P(vx) = (ea, eb, ..., em) to a MC
problem as follows. To each task τi we assign the following
criticality level:

Li = 1 +

m∑
j=1

1(τi(0) < δ(vk) : (·, vk) ∈ e j) (12)

and the following WCET vector:

C̄i(k) =

Ci if k = 1
C̄i(k − 1) + Ci1(∃ j : τi( j) = δ(ek−1)) if 1 < k ≤ Li

(13)
where 1(·) is the indicator function4. The relation with the
model notation of [20, §2] is: χi B Li, ci(k) B C̄i(k). The
MC model generated from the path complies with the model
conditions: C̄i(k) ≥ C̄i(k − 1), and k ≤ Li. The MC model
requires a task τi(k) to be scheduled if the current system mode
is lower of equal to the criticality of the task, otherwise it
may be dropped. Eq. (12) guarantees this behavior: a task is
activable if not present in δ(vk), and this is occurs until the
node in which it is dropped.
(2) Because each path is an MC problem, we apply the
EDF-VD(k) schedulability test to verify the schedulability of
each path. This sufficient test consists of checking whether a
scaling parameter x exists which satisfies [20, Eq. (6)] and
[20, Eq. (7)].
(3) Because any of the paths may happen at run-time, all the
paths must be schedulable. However, the tasks are scheduled
according to the virtual deadlines of EDF-VD(k) computed
with the scaling parameter x. A non-clairvoyant does not know
which path is selected at run-time, and, consequently, which
x to use for computing the virtual deadlines guaranteeing the
correctness of the specific MC problem instance. Therefore a
common value x must exist for all the possible paths: When a
fault occurs, the specific MC instance is considered (given by
the new node of the path), and EDF-VD(k) correctly schedules

41(·) = { 1 if the condition · is true, 0 otherwise }.
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Algorithm 1 Algorithm for the DR tree building.
1: function BuildNode(P, τi( j), A)
2: (newN, newP) ← create node(P, τi( j))
3: newA ← A − {τi( j)}

4: if schedulable(newP) then
5: return NextLevel(newP, newA)
6: else
7: FD ← SearchCompliantDroppings(newP, newA)
8: for all fd ∈ FD do
9: set node content(newN, f d)

10: if schedulable(newP) then
11: if NextLevel(newP, newA−{fd}) then
12: return SUCCESS
13: return FAILED

14: function NextLevel(P, A)
15: if A == ∅ then
16: return SUCCESS
17: for all τi( j) ∈ A do
18: if τi( j−1) < A then
19: if not BuildNode(P, τi( j), A) then
20: return FAILED
21: return SUCCESS

it because the instance has been proved as schedulable and a
value x satisfying [20, Eq. (6)] and [20, Eq. (7)] was used. �

Offline Algorithm. We use Algorithm 1 to build the tree. The
algorithm starts from the root node (which has an empty label
by definition) by calling NextLevel(∅,∆ \ Γ) and proceed-
ing with a recursive strategy: NextLevel calls BuildNode
(Line 19) for each possible activable re-execution task. The
condition at Line 18 is necessary because the task τi( j) is not
activable if A still contains the task τi( j−1) (it will become
activable in the subsequent recursion). This loop verifies
that every possible path generating from the current node
is both compliant and schedulable (in this case BuildNode
would always return SUCCESS). BuildNode adds a new node
and the related edge (Line 2) verifying if the new path is
schedulable or not (condition at Line 4). If it is, no task
dropping is necessary and we can proceed to the next level
(Line 5), otherwise, we need to find a compliant set of tasks to
drop. This is done by function SearchCompliantDroppings
(Line 7), which explores the power set of the activable tasks to
find the compliant dropping sets. Then, BuildNode recursively
verifies that the next levels are schedulable and compliant, and
accordingly returns SUCCESS or FAILED (Lines 13–12).
Complexity. To compute the time complexity of the algorithm
we proceed as follows. The tree has the maximum number of
nodes when all the paths are schedulable without any drop. In
this case, the number of nodes in the tree is O(nm) where n
is the cardinality of Γ and m is the cardinality of ∆. For each
node, we run the schedulability test (Line 4). The EDF-VD(k)
test for multi-critical levels has O(n2

L +n) complexity [20] and,
by assuming n >> nL, it becomes O(n). If the tree is complete,
the complexity is O(n ·nm). Otherwise, the condition at Line 4
is false at least one time. The worst-case is when the condition
of Line 4 is always false. Starting from the root, we have n
edges and n new nodes. For each node, we find the compliant

droppings. The set, in the worst-case, has a cardinality of 2m

(power set of ∆), leading to a total worst-case complexity of
O(nm2m). This complexity is exponential, however, we can
apply the following considerations to reduce the number of
explored nodes:
• The complexity does not consider schedulability. Many

tasks are likely required to be dropped in each node, con-
siderably reducing the number of subsequent branches;

• The tree height can theoretically be equal the number of
re-execution tasks, but can be bounded from an engineer-
ing perspective. For example, if we consider a constant
fault rate of pF

i = 10−4/h, after level 4 the event rate is
lower than pF

i = 10−16/h. Being the rate lower than the
DAL A required failure rate, we can prune the tree at this
level. Consequently, being l << m the level at which we
decided to prune, the complexity becomes O(nl2m).

• It is possible to trade the number of sets of possible
dropping tasks of each node with the solution optimality.
Limiting the number of tested dropping tasks reduces
the execution time of the required analysis with the
disadvantage of scarifying a bit of schedulability ratio.

The experiments of the next section resulted certainly afford-
able in a normal workstation: The analysis’s execution time of
a task set of 50 tasks ranges from a few milliseconds to some
minutes, which is acceptable for an offline analysis.
Online Execution. Having the pre-computed DRs, the sched-
uler simply applies the relative DR when a fault occurs and
behaves like a traditional MC scheduler. Therefore, no sig-
nificant additional overhead is expected at run-time compared
to normal mixed-criticality systems. The complexity is in the
worst-case O(m2) (m DRs to check, m tasks in each DR).

VI. Experimental findings

The methodology proposed in the previous sections (both
the MC method of Section V-A and the tree-based method
of Section V-B) improves the schedulability by introducing
the DR mechanism. The tree-based method also implicitly
ensures that the resulting scheduling is compliant with the
failure requirements. In this experimental campaign, we run
simulations to quantify these improvements, show the limits
of traditional approaches, and highlight the benefits of the tree-
based method. We limit the following experiments to a single-
core machine, in order to avoid adding new assumptions and
because of the existence of optimal scheduling algorithms for
single-cores. This limitation actually makes the problem more
challenging because of the need to drop a larger number of
tasks to make space for re-execution tasks. The source code
of the experiments and the resulting datasets are open access
and available online5,6.

A. Simulation Setup

Each simulation scenario is defined by the tuple (n,U, λ),
where n ∈ [1; 50] ⊆ N is the number of tasks, U ∈ [0; 1] ⊆ Q is

5Dataset: https://doi.org/10.5281/zenodo.6202760
6Source code: https://github.com/HEAPLab/mc-fault-simulator
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the total utilization of the system without considering the extra
utilization of the re-execution tasks, and λ is the fault rate per-
hour. For each the tuple (n,U, λ), 1 000 different task sets (100
for the tree) are generated with the following randomization
approach:
• The utilization of each task and, consequently, the ratio

ri = Ci
Ti

is selected by the UUnifast algorithm [21].
• The period Ti of each task is randomly chosen in the

interval [50; 1000] ⊆ N. The Ci is then accordingly
computed with the ratio ri.

• The failure requirement per-hour of each task is randomly
chosen (according to an uniform distribution) among
the values provided by the DO-178C standard for the
criticality levels: {10−3, 10−5, 10−7, 10−9}/h.

The task set ∆, that includes the re-execution tasks, is com-
puted thanks to the equations of Section III, in particular
Eq. (7). We explored three different values for the fault rate:
λ ∈ {10−5, 10−4, 10−3}/h.

B. Experiments

The first set of experiments consists of measuring the
ability to schedule the task sets when all the tasks in ∆

are admitted to run, including the re-execution ones. This
scenario is a traditional real-time scheduling problem, and we,
therefore, selected the optimal EDF algorithm. Because all the
re-execution tasks are admitted, all the schedulable task sets
(i.e., having U ≤ 1) are also compliant, i.e., they also satisfy
the failure requirements – according to Definition 2.

The second set of experiments is to use the traditional MC
approach to build the DRs, as explained in Section V-A. Each
task requires a number of re-execution tasks in the range [0; 2]
in all the considered scenarios. Consequently, the number of
considered criticality levels is three: Li ∈ [1; 3]. In this case,
the introduction of DRs may violate the failure requirements.

Finally, the novel tree exploration of Section V-B is tested.
In this case, the exploration already takes into account the
compliance of the solution: the number of schedulable task
sets corresponds to the number of compliant task sets.

In order to make a fair comparison and to guarantee the
reproducibility of the experiments, we set the pseudo-random
number generator so that all the random task sets and their task
properties are identically generated in all the three scenarios.
We used the uniform distribution for all the random samplings.

C. Results & Discussion

The result of the EDF schedulability test when all the re-
execution tasks are admitted is shown in Figure 3. Since all
task sets are compliant by construction (because all the re-
execution tasks are admitted), Figure 3 shows the percentage
of tasks that are both schedulable and compliant with the fail-
ure requirement. Most all of the task sets remain schedulable
when the original utilization of Γ is lower than 0.3–0.4. The
presence of re-execution tasks compromises, as obvious, the
schedulability bound of U ≤ 1 of EDF. Because of the choice
of the uniform distribution among the failure requirements,

Fig. 3. EDF Schedulability (and compliance) of ∆ task sets. The y-axis is
the percentage of the task sets schedulable for a total of 1000 simulations.
The x-axis refers to the original utilization UΓ, i.e., without the re-execution
tasks, not the utilization of ∆. This plot is not affected by the λ value.

the utilization of ∆ is on average U∆ = 2UΓ and, in fact, at
UΓ = 0.5 only half of the task sets are schedulable.

In the MC case (presented in Section V-A), the EDF-
VD test for multiple criticality levels [20] has been used.
The schedulability improves, as visible in the left column of
Figure 4. The improvement is of about +5% thanks to the DRs
introduced by the MC approach. Unfortunately, there is no
free lunch: introducing DRs inevitably hinders the compliance
with the failure requirements. For each task set, we computed
the failure rate of the tasks according to the DRs, and we
compared it to the required maximum failure rate. The result
is depicted in the other two columns of Figure 4. When the
fault rate is λ = 10−5/h (first row) the MC approach guarantees
the compliance with the failure requirements for all the task
sets. This result deteriorates by increasing the fault rate. For
λ = 10−4/h (second row) the result is still better than the
EDF only for n ≤ 10. As the number of tasks increases, the
number of dropped tasks increases as well, violating the failure
requirement. This is more evident for the last value of the
failure rate, i.e., λ = 10−3/h (third row). In the MC approach,
several task sets are schedulable but not compliant with the
failure requirements. In this case, a standard EDF is preferable
over the MC approach.

Finally, the results for the tree algorithm of Section V-B
are shown in Figure 5. In this case, the figures represent both
schedulability and compliance, because they are intrinsically
determined during the tree building. It is immediately clear
that the number of task sets that are both schedulable and
compliant is higher than EDF and MC cases. Moreover, the
increasing number of tasks becomes advantageous and not a
disadvantage as the MC case: with the tree model we can
explore more possibilities and find several possible solutions.

To better compare the results, the percentage of task sets
schedulable and compliant in the three cases are summarized
in Table III. The effectiveness of the MC approach is quite
limited, even considering only schedulability. The ≈ 5%
improvement is small – probably due to the large differences
between the WCETs C̄i – and only for λ = 10−5/h the
MC approach results a better choice than standard EDF.
Instead, the tree-based approach is the best in all the scenarios.
Performing a joint scheduling and failure analysis allows us to
control the failure rate. The tree-based approach is effective in

1036

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:29:04 UTC from IEEE Xplore.  Restrictions apply. 



λ
=

10
−

5 /
h

Schedulability Compliance Schedulability+Compliance

∩ =

λ
=

10
−

4 /
h

∩ =

λ
=

10
−

3 /
h

∩ =

Fig. 4. Schedulability and compliance with failure requirements of the MC approach. The x-axis refers to the utilization of Γ (without re-execution tasks),
while the y-axis is the percentage of task-sets ∆ (with re-execution tasks) schedulable and/or compliant.

λ = 10−5/h λ = 10−4/h λ = 10−3/h
Schedulability+Compliance Schedulability+Compliance Schedulability+Compliance

Fig. 5. Schedulability and compliance with failure requirements of the tree-based approach. The x-axis refers to the original utilization of Γ (without
re-execution tasks), while the y-axis is the percentage of task-sets ∆ (with re-execution tasks) both schedulable and compliant.

all the scenarios and is able to schedule a significant amount
of extra task sets compared to the other approaches, while
remaining compliant with the failure requirement.

VII. RelatedWork

The first study on the schedulability analysis that considered
fault-recovery tasks has been proposed in 1994 [22]. From that
point on, several articles proposed schedulability or response-
time analysis with different fault tolerance mechanisms, in-
cluding re-execution [13], [23], checkpoint/restore [24], [25],

recovery blocks [26], [27], and replicas [28], [29]. However,
few existing works considered the MC scenario. Huang et
al. [30] and Pathan et al. [31] converted the fault tolerance
problem into a dual-criticality problem, with re-execution
to recover from faults. LO-criticality tasks are dropped or
degraded when faults occur. Similarly, Lin et al. [32] proposed
an EDF scheduling scheme that guarantees the execution
of HI-criticality tasks and minimizes the dropping of LO-
criticality tasks. Brüggen et al. [33] modeled a system with
normal and abnormal modes. In normal mode, all the tasks
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TABLE III
The overall percentage of schedualability and compliance with failure

requirements of all the analyzed scenarios.

Case λ Schedulable Compliant Schedulable+Compliant
EDF any 48.58% 100% 48.58%

MC
1 · 10−5 53.66% 100% 53.66%
1 · 10−4 53.66% 50.02% 27.30%
1 · 10−3 53.66% 5.15% 2.29%

Tree
1 · 10−5 - - 79.88%
1 · 10−4 - - 74.00%
1 · 10−3 - - 62.66%

meet the deadlines, while, when a fault occurs, the abnormal
mode guarantees the deadlines for HI-criticality tasks only,
while LO-criticality tasks have a bounded worst-case tardiness.
Choi et al. [34] proposed a worst-case analysis based on a
similar re-execution approach on multi-core systems. Guo et
al. [35] studied the schedulability of MC tasks with permitted
failure probability, but the focus was only on timing faults
(deadline misses). Other works exploited MC for replicas [36],
[37], including multi-core setups [38].

All of the previously mentioned works take into account
important yet limited aspects of fault tolerance in the MC
context. None of them considered the fault probability as
caused by both hardware faults and MC droppings due to
the task dependency. As we quantified in Section VI, both
probabilities are non-negligible, making the compliance with
failure requirement of the MC approach very challenging in
real applications.

VIII. Extension to Probabilistic DR

As a future work, we plan to extend our approach to manage
probabilistic-DR defined as follows:

Definition 4 (Probabilistic Dropping Relation (PDR)). The
PDR of a task τi(k) ∈ ∆, for k > 0, is defined as:

τi(k)
d
 A1, A2, ... s.t. Al ∈ P(∆), Al ∩ Am = ∅ ∀l , m

where P(∆) is the power set of ∆, i.e., all possible subsets
of ∆. To each task τa(b) in A1, A2, ... is assigned a probability
αi(k)

a(b). A task may or may not have a defined PDR. �

The probability αi(k)
a(b) represents the probability that the task

τa(b) is dropped if the task τi(k) needs to be re-executed. We
represent this probability by writing it on the top of each task
in Ai.

Example 5. Let ∆ = {τ1(0), τ1(1), τ2(0), τ2(1), τ3(0), τ4(0)}. The
following DR for task τ1(1):

τ1(1)
d
 {

1
τ2(1)}, {

0.4
τ3(0),

0.6
τ4(0)}

means that if the first re-execution task of τ1 (i.e., τ1(1)) is
triggered (because of the fault of τ1(0)), then the re-executed
task τ2(1) is dropped, or never activated, and the task τ3(0) or
τ4(0) is dropped, or never activated, according to the respective
probability of 0.4 and 0.6. �

A probabilistic scheduling analysis can directly exploit the
presence of probabilities on the PDR terms. However, if the

scheduling analysis is deterministic, we have to consider the
worst-case improvement. Nevertheless, the presence of αi(k)

a(b)
is still advantageous in failure analysis, because the term pFj
of Eq. (9) becomes α j(m)

i(k) · p
F
j , improving the compliance with

failure requirements.

IX. Conclusions

The use of software fault tolerance techniques in real-
time systems is challenging due to the need to satisfy both
timing and failure requirements, especially nowadays when
chip miniaturization exacerbates the susceptibility to transient
faults. We proposed a new model and scheduling strategies
to guarantee both requirements. In particular, we derived
a generalization of the MC framework, i.e., the Dropping
Relations, followed by a tree-based algorithm to generate
them. Unlike traditional MC, the violations of task indepen-
dence introduced by the DRs are exactly computed, satisfy-
ing the failure requirements of safety-critical standards. The
experimental results showed how our approach improves the
schedulability by about 20− 30%, while still guaranteeing the
failure requirements.

Future research could investigate several aspects: new al-
gorithms to explore the tree, the extension to the k-out-of-
n case outlined of Section III-D, the probabilistic model of
Section VIII, integrating the effects of power management in
the analysis, the analysis of different types resources subject to
faults (such as disks, power supply, etc.), and the introduction
of permanent faults and fault bursts in the analysis, which may
introduce additional overheads.
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