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Abstract—Mixing workloads with multiple criticality levels
raises challenges both in timing analysis and schedulability
analysis. The timing models have to characterize the different
behaviors that real-time tasks can experience under the various
criticality modes. Instead, the schedulability analysis has to
combine every task and task interactions providing several guar-
antees, depending on the criticality level demanded at runtime.
With this work, at first we propose representations to model
every possible system criticality mode as a combination of task
criticality modes. A set of bounding functions is obtained, a
bound for each mode combination thus corresponding to a system
criticality level. Secondly, we develop the schedulability analysis
that applies such sets and derives schedulability conditions with
mixed criticalities. The tasks are scheduled with fixed priority
and earlies deadline first, and various levels of schedulability
are defined from the mode combinations. Finally, we make use
of the sensitivity analysis to evaluate the impact that multi
mode task behaviors have on schedulability. Trade-offs between
schedulability, criticality levels and resource availability are
explored. A mixed critical real-time system case study validates
the framework proposed.

I. INTRODUCTION

An increasingly important trend in developing real-time

systems is the integration of applications with different levels

of criticality. The criticality designs the level of assurance

needed for a system element against failure e.g., standards

ISO 26262, DO 178C, and IEC 61508.

A Mixed Criticality (MC) real-time system is one that

has two or more distinct criticality levels e.g., safety critical,

mission critical, and/or low-critical. Such systems are defined

to execute in a number of criticality modes, each mode

specifying execution conditions and system criticalities. All

the possible modes have to be characterized and analyzed in

order to guarantee the predictability of the system. Please refer

to [15] for a good overview of the MC problems for real-time

systems.

Safety critical applications have to account for the worst-

case behaviors that can possibly happen. The ’best’ model-

ing of task parameters has to assure the coverage of any

of the execution conditions, including the worst-cases [30],

[18]. Mission critical or low critical applications rely on less

constrained/demanding models and the guarantees on them are

not as strict as those for safety critical applications [30], [18].

With respect to schedulability, the MC problem consists

of multiple correctness criteria: timing constraints of safety

critical tasks are guaranteed first, and then less critical tasks are

eventually accommodated in the scheduling. Todays research

on MC schedulability relies on mode changes in order to

provide different assurance levels to the possible execution

conditions [19]. Mode changes can be triggered by execution

length, processor speed [5], [22], [21], [4], task release pat-

terns [3], and the combination of those [23]. The resource is

utilized in the manner such that all tasks are allowed to execute

under low-critical modes in a more fairly manner, while

priorities will be given to more critical tasks in a dedicated

manner upon a mode switch. Such mode based correctness

definition is welcomed by the industry, yet providing many

research challenges [2].

We believe that some of the challenges to MC modeling and

MC schedulability analysis can be addressed with sensitivity

analysis. The sensitivity analysis applies to task models, and

it studies the impact that task parameters have on system

schedulability [27], [12]. The goal of this work is to effectively

make use of sensitivity analysis for MC problems in order to

study the costs for guaranteeing certain criticality levels at

runtime.

Contribution: With this paper, we apply sensitivity analysis

to models and schedulability analysis with MC. The MC task

modeling is laid out with multiple bounding functions such as

resource bound functions and workloads. Those functions are

defined in order to bound task behaviors under the possible

execution modes that can happen at runtime. Each bound

represents a criticality level as well as an execution mode

for the task set. The set of bounding functions is applied

to develop the schedulability conditions with MC. Different

levels of schedulability are defined from the possible criticality

levels for fixed priority and earliest deadline first scheduling.

Finally, the sensitivity analysis applies to evaluate the impact

that MC task behaviors have on schedulability. Trade-offs be-

tween schedulability, criticality levels and resource availability

are explored.

Organization of the paper: Section II presents real-time

models that make use of bounding functions to characterize

both resource requests and resource provisioning. Section III

illustrates how we instantiate real-time modeling into MC

modeling. Mode combinations are defined according to the

scheduling policies applied and result into multiple possible

bounds for the whole application. Section IV provides detailed

notion of scheduling with MC, and the sensitivity analysis we

develop to study the effects of criticality levels on schedula-

bility and resource usage. Section V validates the modeling

and analysis framework we propose with a test case of a
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realistic real-time application. Section VI concludes the work

and points out future research directions.

A. Related work

MC systems are typically defined to execute in a number of

criticality modes. According to Vestal’s definition [30], mode

switch can be defined as follows: if any task attempts to

execute for a longer time or more frequently like in case of

faults, then a mode change occurs imposing high-criticality

behavior to the tasks and the system [7], [16]. Under classic

MC model, all low-critical tasks could be dropped from the

system upon a mode switch, which may be a result of one

single high-criticality task overrunning for 1 ms, or a 1 ms

speed drop of one of the many processors. Obviously huge

pessimism is involved under such modeling, even with the

recent developments in providing multiple assurance levels

to the possible execution conditions [19], [10], [8], [9]. We

hereby apply real-time calculus basics [29] to derive bounds

to resource request and resource provisioning in the interval

domain. Those models have to be adapted to the MC problem

for multiple bounding curves and different execution condi-

tions. The resource usage can be further improved allowing

MC application sharing computation without jeopardizing high

criticality tasks.

The industry perspective to the MC problem focuses more

on partitioning and separating applications by their criticality

level. Safety critical applications would be timely and/or

spacey separated from mission critical applications, [18]. Both

models and schedulability are guaranteed within the partition

which allow for compositional approaches especially handy

with application qualification. Our work aims at studying all

mode configurations which are possible at runtime with and

without partitioning. We do not propose an alternative MC

scheduling algorithm. It seems to us that this could be a way

to close the gap between academic and industrial perspective

to MC problems.

Traditional sensitivity analysis applies to real-time systems

in order to study the impact that task parameters have on

schedulability. It translates into abstract representations such as

the (α,∆)-space [27], and the C-space [12], [25], [20] where

to map parameter values into schedulability conditions. Effec-

tive sensitivity analysis has yet to be built for MC problems.

We hereby focus on the (α,∆)-space to model schedulability

conditions with MC and to which apply sensitivity analysis. In

particular, the sensitivity analysis is hereby used for evaluating

the different possible mode configurations, and to quantify the

cost of changing the computational resource or schedulability

conditions.

II. COMPUTATIONAL MODELS

A real-time task τi consists of a sequence of recurring jobs,

each to be executed before a given deadline. In the periodic

case, it is τi = (Ti, Di, Ci), with Ti as the period, Di as

the deadline (it is assumed Di ≤ Ti), and Ci as the worst-

case execution time (WCET). Tasks are grouped into task sets

Γ = {τ1, . . . , τn}, equivalently real-time applications.

t

t

resource
rbf

dbf

(a) Task τi execution with rbf

and dbf

t

t

resource
sbf

lsbf

(b) Periodic server sbf with its
linear approximation lsbf

Fig. 1: Resource, demand and supply bound functions.

Any executing task can be seen as a trace of events [13] with

the cumulative function R(t) to define the amount of compu-

tation resource requested by the task within [0, t]. For τi acti-
vated at time t = 0, its resource bound function (rbf) rbfi(t)

in any interval [0, t] is: rbfi(t)
def
= max

{

0,
(⌈

t
Ti

⌉

· Ci

)}

.

rbfi(t) upper bounds any resource request Ri such that

Ri(t) ≤ rbfi(t) for all t. An example of rbf is represented

in Figure 1(a) where the rbf is linked to task arrivals and

immediate executions.

The computational resource is provided by reservation

mechanisms, also known as servers. Although with different

peculiarities, a lot of servers can be modeled as periodic

servers which guarantee to provide Q (server capacity) units

of time/resource in each period P (server period) [1]. With

S(t) the amount of resource made available up to time t by

server S, the resource provisioning can be lower bounded

in [0, t] with the supply bound function sbf. sbfS(t) is the

minimum amount of time (computational resource) provided

by S in any interval [0, t] of length t ≥ 0: sbfS(t)
def
=

mint0≥t

∫ t0+t

t0
S(x)dx [26], [28]. The bounded-delay func-

tion lsbf is the linear approximation that lower bounds sbf in

[0, t], ∀t lsbfS(t) ≤ sbfS(t); lsbf(t)
def
= max{0, α(∆)}.

α
def
= limt→∞

sbf(t)
t is the resource provisioning rate, and

∆
def
= inf{q | α(t−q) ≤ sbf(t) ∀t} is the longest interval with

no resource provisioning [26], [28]. Figure 1(b) illustrates that

and compares sbf with its linear approximation lsbf.

From lsbf, it is possible to define an (α,∆)-space where

to represent resource provisioning as well as resource re-

quests [27]. An application Γ can be mapped into the (α,∆)-
space with its feasibility region ΦΓ. ΦΓ depends on the

scheduling policy applied, and collects all the service supply

pairs (α,∆) that guarantee the schedulability of Γ.

A. Real-time schedule

Two common preemptive scheduling policies are the Fixed

Priority (FP) and the Earliest Deadline First (EDF) [11], [6].

In this work we apply both.

The FP schedulability is guaranteed if each task in Γ, with
static priority ordering, has enough resource to execute within

its deadline. A task set Γ executing within a server S can be

guaranteed under FP iff: ∀ i ∃ t ∈ SchedP : wbfi(t) ≤
sbfS(t). The tasks are ordered by priority, from higher to lower

priority, where hp(i) = {τ1, τ2, . . . , τi} denotes the sub-set of

all tasks with a priority higher than or equal to τi; SchedP

defines the set of time instances where FP schedulability has

to be verified [11], [14]. The level-i workload wbfi is the
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resource request from τi and it includes all the contributions

of all higher priority tasks than τi: wbfi(t)
def
=

∑hp(i)
1 rbfk.

The feasibility region ΦΓ in the (α,∆)-space for Γ is

defined from the FP schedulability condition and the definition

of lsbf. Thus, ∀i ∃t ∈ SchedPi : wbfi(t) ≤ α(t − ∆)

means that ∀i it exists a t such that ∆ ≤ t − wbfi(t)
α .

For all i, ∆ ≤ maxt∈SchedPi

{

t− wbfi(t)
α

}

, and ∆ ≤

mini maxt∈SchedPi

{

t− wbfi(t)
α

}

.

The EDF schedulability is guaranteed if the computational

resource that Γ requires to execute is less than or equal to the

available computational resource. A task set Γ within a server

S can be guaranteed iff: ∀t dbfΓ(t) ≤ sbfS(t). In particular,

the set of time instances where to check EDF schedulability

can be reduced to the set D of deadlines within the task set

hyperperiod [6]. The demand bound function dbfi of τi is

the resource requested by τi to fully execute by its deadline:

dbfi(t)
def
= rbfi(t −Di). It is the minimum possible resource

request in order to execute the task by its deadline. dbfΓ is the

resource demand of the whole task set Γ: dbfΓ
def
=

∑

Γ dbfi.

The feasibility region ΦΓ for Γ is defined from the EDF

schedulability condition and lsbf. ∀ t ∈ D : dbf(t) ≤ α ·

(t − ∆) means that ∀ t ∈ D : ∆ ≤ t − dbf(t)
α , and

∆ ≤ mint∈D

{

t− dbf(t)
α

}

.

III. BOUNDING WITH MIXED CRITICALITY

In MC real-time systems, task parameters such as WCETs

depend on criticality levels. Safety critical applications have

to be assured against any possible execution condition, faults

included. A way to do that is to consider WCETs large

enough to account for such conditions. Instead, if the task is

mission critical or non-critical, its WCET requirement would

be smaller as the task demands less in terms of resource

and assurance [30], [24], [17]. We restrict our modeling and

analysis to two criticality levels: the high criticality HI and the

low criticality LO. Nonetheless, our reasoning can generalize

to any criticality level.

HI-criticality tasks, i.e. safety critical, can have two execu-

tion modes, HI-criticality mode represented with Ci(HI), and
LO-criticality mode represented with Ci(LO). Ci(HI) models

the HI-criticality behavior of the task τi (most critical), thus

the worst possible conditions it can suffer [24]. Ci(LO) models

the LO-criticality conditions for τi. It does not assure against

faults, at least it does not against all of them [24] – worst-cases

are not included. It has to be Ci(HI) ≥ Ci(LO) [30].
The model of a HI-criticality task is:

τi = ([Ci(LO), Ci(HI)], Ti, Di, χi). (1)

For it, there exist two resource request rbf , depending on the

criticality mode active: rbfHI

HI,i = max
{

0,
(⌈

t
Ti

⌉

· Ci(HI)
)}

which models the resource request in HI-criticality mode,

and rbf
LO

HI,i = max
{

0,
(⌈

t
Ti

⌉

· Ci(LO)
)}

which models the

resource request in LO-criticality mode. χi indicates the the

task actual (at runtime) criticality mode, χi ∈ {HI, LO}.

LO-criticality tasks are tasks that can only execute under

LO-criticality mode. C(LO)i is sufficient to model the task

behavior. The LO-criticality task model is:

τi = (Ci(LO), Ti, Di), (2)

with only the LO-criticality mode possible, and rbfLO,i =

max
{

0,
(⌈

t
Ti

⌉

· C(LO)i

)}

models the resource request of the

LO-criticality task τi.

The MC real-time application Γ composes of a HI-criticality

part ΓHI which includes all and only the HI-criticality tasks,

and a LO-criticality part ΓLO which includes all and only the

LO-criticality tasks; Γ = ΓHI ∪ ΓLO .

At runtime, there exist different possible combinations of

tasks executing in their criticality modes. For example, there

could exist combinations of only HI-criticality tasks executing

in HI-criticality mode. There could also exist combinations

where some HI-criticality tasks execute in HI-criticality mode,

others executes in LO-criticality mode, and LO-criticality tasks

executes as well. It is also possible to have all the HI-criticality

task executing in LO-criticality mode together with some or all

LO-criticality tasks. Each combination k is a scheduling that

can happen at runtime, and has a criticality level associated χk

resulting from the combination of the criticality mode applied

in the scheduling/combination.

The system criticality level χ describes the combination

of tasks and task modes at runtime, χ ∈ {χ1, χ2, . . .}. The
purpose of this work is to model all the possible combinations,

and apply them into schedulability analysis.

A. Bounding resource request

From the MC task modeling, Equation (1) and Equation (2),

we define multiple bounds to the task set resource request.

They represent execution conditions as combination of tasks

and task modes that can happen at runtime.

i) rbf
HI

HI - is the resource request from all and only the

HI-criticality tasks being in HI-criticality mode: rbf
HI

HI =
∑

∀τi∈ΓHI
rbf

HI

HI,i;

ii) rbf
HI,LO,j
HI - is the resource request from all the HI-

criticality tasks in HI-criticality mode which are combined

with LO-criticality tasks: rbf
HI,LO,j
HI =

∑

∀τi∈ΓHI
rbf

HI

HI,i +
∑

some τk∈ΓLO
rbfLO,k. rbf

HI,LO

HI = {rbfHI,LO,j
HI } is the set of

those rbfs with index j specifying which LO-criticality tasks

are added to the HI-criticality ones;

iii) rbf
HI−LO,r
HI - is the resource request where some HI-

criticality tasks in HI-criticality mode, the rest in LO-

criticality mode, in combination with LO-criticality tasks:

rbf
HI,LO,r
HI =

∑

some τi∈ΓHI
rbf

HI

HI,i +
∑

rest τj∈ΓHI
rbf

LO

HI,j +
∑

some τk∈ΓLO
rbfLO,k The whole set of combinations is

rbf
HI−LO

HI = {rbfHI−LO,r
HI } with r the index to the combinations

specifying which LO-criticality tasks are applied and which

HI-criticality tasks are in HI-criticality mode;

iv) rbf
LO,k
HI - is the resource request where all the HI-

criticality tasks are in LO-criticality mode and the combina-

tion with LO-criticality tasks: rbfLO,kHI =
∑

∀τi∈ΓHI
rbf

HI

HI,i +
∑

some τk∈ΓLO
rbfLO,k. rbf

LO

HI = {rbfLO,kHI } is the set of such
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combinations, with k the index to represent which LO-

criticality tasks are added;

rbfLO - is the resource request from only LO-criticality tasks:

rbfLO =
∑

∀τi∈ΓLO
rbfLO,i.

The resource requests of all the combinations between tasks

and task modes can be grouped as:

rbf
def
= {rbfHI

HI, rbf
HI,LO

HI , rbf
HI−LO

HI , rbf
LO

HI , rbfLO}. (3)

To each resource request there is a system criticality level χk

associated, χk ∈ χ.

B. MC Bounding for FP and EDF

With the MC model there exist a set of level-i workload

bounds, each obtained with the combination of HI- and LO-

criticality tasks in their respective modes. Only the tasks higher

priority than τi are combined for the level-i workload, and χk
i

is the criticality level associated of the level-i workloads com-

bination. There exist: i) wbfHI

HI,i - only the HI-criticality tasks

all in HI-criticality mode. To it, there is χHI
HI,i = HI representing

its criticality level; ii) wbf
HI,LO

HI,i - the HI-criticality tasks all

in HI-criticality mode combined with LO-criticality tasks. To

each wbf
HI,LO,k
HI,i ∈ wbf

HI,LO

HI,i , χ
HI,LO,k
HI,i represents its criticality

level; iii) wbf
HI−LO

HI,i - some of the HI-criticality tasks in HI-

criticality mode (the rest is in LO-criticality mode) combined

with LO-criticality tasks. To each wbf
HI−LO,j
HI,i ∈ wbf

HI−LO

HI,i ,

χ
HI−LO,j
HI,i represents its criticality level; iv) wbf

LO

HI,i - all the

HI-criticality tasks in LO-criticality mode combined with LO-

criticality modes. To each wbf
LO,r
HI,i ∈ wbf

LO

HI,i, χ
LO,r
HI,i represents

its criticality level; v) wbfLO,i - only LO-criticality tasks. To

it, there is χLO,i = LO representing its criticality level.

All the combination of the level-i workload are grouped as:

wbfHI,i
def
= {wbfHI

HI,i,wbf
HI,LO

HI,i ,wbf
HI−LO

HI,i ,wbf
LO

HI,i,wbfLO,i}, (4)

with the criticality levels for the level-i as:

χi
def
= {χHI

HI,i, χ
HI,LO
HI,i , χHI−LO

HI,i , χLO

HI,i, χLO,i}. (5)

The bounds in Equation (4) can be ordered in increasing order,

wbf
j ≤ wbf

j+1; the set χi from Equation (5) is ordered

accordingly and such that χ
j
i is for wbf

j
i and χ

j+1
i is for

wbf
j+1
i .

In case of HI− LO, instead of enlisting all the combinations

it is possible to define ’envelope’ bounds depending on the

number of HI-criticality tasks that are in HI-criticality mode

at the same time: wbf
∗HI−LO,k
HI,i

def
= maxj{wbf

HI−LO,j
HI,i }. k is the

number of HI-criticality tasks in HI-criticality mode considered

for the combination. wbf
∗HI−LO

HI,i collects all those envelopes,

for all k, and can be applied into wbf instead of wbf
HI−LO

HI,i .

This would reduce the number of possible combinations

and criticality levels, in turn reducing the complexity of the

modeling.

Under EDF, the different combinations are represented with

dbfs. There exist: i) dbf
HI

HI - only the HI-criticality tasks all

in HI-criticality mode; χHI
HI,i = HI represents its criticality

level; ii) dbf
HI,LO

HI - the HI-criticality tasks all in HI-criticality

∆

resource

wbf
LO,r

HI,i

wbf
LO,t

HI,i

wbf
HI,k
HI,i

wbf
LO,s

HI,isbf

Fig. 2: level-i wbfs from MC executions under FP. Some

wbfis compared with the resource provisioning sbf.

∆

resource

dbf
LO,m

HI

dbf
LO,n

HI

dbf
HI,j
HI

dbf
LO,v

HIsbf

Fig. 3: dbfs from MC executions under EDF. Some dbfs

compared with the resource provisioning sbf.

mode combined with LO-criticality tasks. To each dbf
HI,LO,k
HI ∈

dbf
HI,LO

HI , χ
HI,LO,k
HI associated to, is its criticality level; iii)

dbf
HI−LO

HI - some of the HI-criticality tasks in HI-criticality

mode (the rest is in LO-criticality mode) combined with LO-

criticality tasks. To each dbf
HI−LO,j
HI ∈ dbf

HI−LO

HI , χ
HI−LO,j
HI is

its criticality level; iv) dbf
LO

HI - all the HI-criticality tasks in

LO-criticality mode combined with LO-criticality modes. To

each dbf
LO,r
HI ∈ dbf

LO

HI , χ
LO,r
HI is its criticality level; v) dbfLO -

only LO-criticality tasks; χLO,i = LO representing its criticality

level. The set of all those dbfs is:

dbfHI

def
= {dbfHI

HI, dbf
HI

HI, dbf
HI−LO

HI , dbf
LO

HI , dbfLO}, (6)

and the set of criticality levels is:

χ
def
= {χHI

HI, χ
HI,LO
HI , χHI−LO

HI , χLO

HI , χLO}. (7)

The bounds in Equation (6) can be ordered in increasing

order, dbf
i ≤ dbf

i+1
; the set χ from Equation (7) is ordered

accordingly and such that χj is for dbf
j and χj+1 is for

dbf
j+1.

Within the HI− LO case, there can be defined bounds such

that: dbf∗HI−LO,k def
= maxj{dbf

HI−LO,j}. k the number of HI-

criticality tasks in HI-criticality mode; dbf
∗HI−LO

HI collects them

all and can be applied into dbf instead of dbf
HI−LO

HI . This allows

reducing the number of possible combinations and criticality

levels, in turn reducing the complexity of the modeling.

Figure 2 illustrates an example of some level-i bounds

wbfi ∈ wbf, while Figure 3 is an example of some demand

bounds dbf ∈ dbf from different task mode combinations.

For each bound there is associated a criticality level. In the

figures there are represented few bounds (3 LO and a HI)

which can be compared among them and with the available

resource sbf. It is: wbf
HI,r
LO,i ≤ wbf

HI,t
LO,i ≤ wbf

HI,k
HI,i ≤ wbf

LO,s
HI,i

and dbf
HI,m
LO ≤ dbf

HI,n
LO ≤ dbf

HI,j
HI ≤ dbf

LO,v
HI .

IV. SCHEDULING WITH MIXED CRITICALITY

We propose two schedulability analyses based on FP and

EDF that apply MC tasks Equation (1) and Equation (2).

They are off-line analyses which account for all the criticality

mode combinations that can happen at runtime. They embeds

criticality levels into schedulability conditions.
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These analyses focus on finding which are the criticality

levels (criticality mode combinations) that can be assured

schedulable. They also allow for evaluating the resource ap-

plied to execute ΓHI, and thus the remaining resource is left to

execute ΓLO without harming HI-criticality tasks’ executions.

A. FP and EDF scheduling with mixed criticality

To guarantee schedulability, the resource provisioning sbf

is compared with resource requests (workloads) in case of FP,

or with the resource demand in case for EDF. Figure 2 and

Figure 3 illustrate the comparison between bounds and some

available sbf. The way to compare depends on the scheduling

policy.

Theorem 1 (FP schedulability with MC): Considering

a mixed criticality task set Γ = {τ1, τ2, . . . , τn} of n

tasks ordered with decreasing priority, i.e., τ1 is assigned

the highest priority whereas τn is assigned the lowest

priority. Γ composes of HI-criticality tasks ΓHI defined

as in Equation (1), and LO-criticality tasks ΓLO defined

as in Equation (2). ∀τi ∈ Γ, hp(i) = {τj , τk, . . . , τi} is

the set of tasks with priority higher or equal to τi; tasks

in hp(i) belongs to ΓHI and ΓLO . The level-i workloads

are: wbfi = {wbfHI

HI,i,wbf
HI,LO

HI,i ,wbf
HI−LO

HI,i ,wbf
LO

HI,i,wbfLO,i},
according to Equation (4), and χi defines the set of criticality

levels for the level-i workloads Equation (5). Γ is FP

schedulable under resource provisioning sbf with system

criticality level χ = mini{χi}, χi being the level-i criticality

level in χi, if for all i ∈ {1, 2, . . . , n} ∃t0 ∈ schedPi such

that:

wbf
χi

i (t0) ≤ sbf(t0); (8)

schedPi is the set of deadlines of all τj ∈ hp(i).
Proof: The schedulability of each task τi in Γ is guaran-

teed with the largest level-i workload which is smaller than

sbf [11]; χi corresponding to the largest schedulable level-

i, is the schedulability criticality level for τi. The task set is

schedulable if all tasks are schedulable, and the criticality level

is the minimum among the schedulable criticality levels that

satisfy all the conditions, χ = mini{χi}.
Equation (8) in Theorem 1 defines the FP schedulability

conditions which apply MC models. It proposes different

degree of schedulability for MC tasks.

Theorem 2 (EDF schedulability with MC): Considering a

mixed criticality task set Γ = {τ1, τ2, . . . , τn} with HI-

criticality tasks ΓHI defined as in Equation (1) and LO-

criticality tasks ΓLO defined as in Equation (2), Γ = ΓHI∪ΓLO .

For Γ, the ordered demand bound functions are dbf =
{dbfHI

HI, dbf
HI,LO

HI , dbf
HI−LO

HI , dbf
LO

HI , dbfLO), Equation (6), with χ

defining the ordered set of levels of criticality Equation (7).

Γ is EDF schedulable under resource provisioning sbf with

system criticality level χ if ∀t0 ∈ D:

dbf
χ(t0) ≤ sbf(t0); (9)

χ ∈ χ and dbf
χ ∈ dbfHI .

Proof: For Γ, with HI-criticality tasks combined with LO-

criticality tasks, the largest demand bound function dbf
χ
HI ∈

dbf which is smaller than sbf assures schedulability for the

tasks combination that it represents, [6]. χ describes the criti-

cality level of the application up to which, EDF schedulability

is guaranteed.

Equation (9) in Theorem 2 defines EDF schedulability condi-

tions which apply the MC models. It proposes different degree

of schedulability for MC tasks.

B. Feasibility regions with mixed criticality

The FP scheduling condition parametrized with χi, Equa-

tion (8), translates into comparing feasibility regions and

points within the (α,∆)-space. A feasibility region Φχi is

defined such that: ∆ ≤ minimaxt∈SchedPi

{

t−
wbf

χj

i
(t)

α

}

. It

has associated the criticality level χi such that all the wbfi, for

all i applied, are from the same criticality level χi, Theorem 1.

For EDF it is the same with the scheduling condition in

Equation (9). A feasibility region Φχ is defined such that:

∆ ≤ mint∈D

{

t− dbf
χ(t)
α

}

, and is parametrized with χ.

To both FP and EDF, there exist a set Φ of feasibility

regions for the possible criticality levels resulting from the

mode combinations – one set per scheduling policy. It is:

Φ
def
= {ΦHI

HI,Φ
HI,LO

HI ,Φ
HI−LO

HI ,Φ
LO

HI ,ΦLO}, (10)

with the criticality level associated:

χ
def
= {χHI

HI, χ
HI,LO
HI , χHI−LO

HI , χLO

HI , χLO}. (11)

Φ can be made of envelope bounds, with Φ
∗HI−LO

HI instead

of Φ
HI−LO

HI . The feasibility regions in Equation (10) can be

ordered in increasing order (from the small region to the

larger), with the consequent ordering of the criticality levels

in Equation (11).
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Fig. 4: FP feasibility regions for an example application Γ.

Figure 4 details some feasibility regions for FP scheduling

with mixed criticality. Here it is possible comparing regions

between them (ordering between regions Φk ≤ Φj), and

compare each region with the available resource sbf (sbf is

inside Φj thus χj is guaranteed). LO-criticality conditions

(LO) are more prone to schedulability since they require less

computational resource – larger feasibility region. The more

HI-criticality tasks are scheduled in HI-criticality mode or

the more LO-criticality tasks are scheduled together with HI-

criticality tasks, the larger is the resource required to schedule

– smaller feasibility regions.
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C. Sensitivity analysis with mixed criticality

We intend to use sensitivity analysis to investigate mul-

tiple elements which can impact the design of MC real-

time systems. In particular, we apply sensitivity analysis with

schedulability conditions parametrized with criticality levels,

Theorem 1 and Theorem 2. Our proposal is illustrated with

three questions.

Q1) Which is the criticality level that can be assured with the

available resource provisioning? This is a critical question for

MC scheduling as it focuses on how enhancing computational

resource usage by scheduling both HI-criticality and LO-

criticality tasks together. With the (α,∆)-space representation,
the sensitivity analysis answers Q1 finding the combinations

that can be scheduled for a given resource. Considering the

(k,m) formalization, k LO-criticality tasks out of m total task

executing, Q1 becomes seeking how many LO-criticality tasks

can be executed together with m− k HI-criticality task in HI-

criticality modes. k is the parameter to be studied in order to

find the largest value that can be guaranteed with the available

resource. With the MC modeling proposed in combination

with the (α,∆) representation, this can be solved seeking for

the largest feasibility region that include the sbf given. It is

exploring an index in Φ seeking for regions.

Q2) What is the cost to guarantee schedulable a certain

criticality level? The cost being in terms of computational

resource. The sensitivity analysis can be used to define what is

the resource change necessary to guarantee the schedulability

up to a specific criticality level. This is very helpful in

defining and evaluating trade-offs between resource and crit-

icality/schedulability. The Euclidean distance dist(sbf2, sbf1)
between two points in the (α,∆)-space, defined as:

dist(sbf2, sbf1)
def
= (δα = α2 − α1, δ∆ = ∆2 −∆1), (12)

quantifies the distance between two resource provisioning

sbf2−sbf1 = (α2−α1,∆2−∆1). The cost here is the resource
provisioning change necessary to move from sbf1 to sbf2. To

note that in order to increase the resource provisioning, α has

to increase and∆ has to decrease. There exist also the distance

between a point and a feasibility region, dist(sbf1,Φ
j). We

define it as:

dist(Φj , sbfk)
def
= (±≥0/<0min|δα|,±≥0/<0min|δ∆|). (13)

Metric (13) quantifies the resource change to guarantee

schedulable the configuration represented by Φj . With all

positive δs, the sign of the minimum between the absolute

values | · | is +; with all negative δs, the sign is −. αs and ∆s

for Φj are taken from the region border, and the min is for

the δs between sbf
k and all those points.

Q3)What is the cost to change a system criticality mode?With

this, we intend the possibility in the (α,∆)-space to quantify

the computational resource difference between two criticality

levels. The sensitivity analysis quantifies that difference as

distance between the two regions which is defined as:

dist(Φk,Φj)
def
= (±≥0/<0min|δα|,±≥0/<0min|δ∆|). (14)

Metric (14) is applied at iso-parameter, which means com-

puting the δ∆ with the same α, and δα with the same ∆.

With all positive δs, the sign of the minimum between the

absolute values | · | is +; with all negative δs, the sign is

−; with both negative and positive δs, the the min is 0 as

the intersection between the regions. The αs and the ∆s are

taken from the regions border. Metric (13) and Metric (14)

are computed differently to signal the resource difference that

exist between the two cases.

Figure 4 is an example of sensitivity analysis for evaluating

the resource necessary to guarantee schedulability – Q1 and

Q2 with Metric (12) and Metric (13). There are 6 regions

grouped in 4 different classes: LO for only LO-criticality

modes combined, HI for only HI-criticality modes combined,

HI − LO for some HI-criticality tasks in HI-criticality modes

combined with some LO-criticality tasks, HI, LO for all HI-

criticality tasks in HI-criticality mode combined with LO-

criticality tasks. There are three cases which define three

resource provisioning changes from an initial resource sbf1.

With sbf1 available is not possible guarantee any of the

schedulability level represented, since sbf1 in not included in

any of those feasibility regions.

Change 1: change of sbf1 to sbf2 to guarantee schedulability

of HI, LO, the most demanding case among the represented

ones. dist(sbf2, sbf1) = (δα = 0.985 − 0.4 = 0.585, δ∆ =
0.65 − 3.25 = −2.6), Metric (12). Change 2 iso-∆: change

of sbf1 to LO configuration schedulability by modifying only

α Metric (13), dist(ΦLO , sbf1) = (δα = 0.65 − 0.4 =
0.25, δ∆ = 0). Change 3 iso-α: change of sbf1 to LO

configuration schedulability by modifying only ∆ Metric (13),

dist(ΦLO , sbf1) = (δα = 0, δ∆ = 1.3 − 3.25 = −1.95).
The difference between change 2 and change 3 is in terms of

changing either α’s or ∆’s. Distances where one dimension

is 0 are advantaged, since the resource change necessary is

easier to apply – less constraints.

Figure 4 presents also an example of cost evaluation

with sensitivity analysis, Q3 and Metric (14). From HI to

one HI − LO configuration k, it is: dist(ΦHI,ΦHI−LO,k) =
(0.17,−0.2). It quantifies the resource difference between ΦHI

and ΦHI−LO,k, equivalently the resource increase necessary to

schedule ΦHI−LO,k from a schedulable ΦHI . This translates also

into the resource necessary to add LO-criticality tasks into the

scheduling.

V. EVALUATION

The case study here is to apply our MC modeling, our

schedulability analysis , and our sensitivity analysis.

The MC real-time application Γ considered is a robotic ap-

plication which combines HI-criticality tasks and LO-criticality

tasks. It composes of a total of 14 tasks, 10 HI-criticality

tasks and 4 LO-criticality tasks, which implements the main

functionalities that a robot could have e.g., drivers, slam,

navigation, control. It is inspired by MAUVE project https:

//forge.onera.fr/projects/mauve, to which τ9 and τ10 are added

for two extra safety critical functionalities while LO-criticality

tasks represents functionally important, but non-critical, jobs
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such as image processing. Table I recaps it and the parameters

for each task with the specificity of the MC task model

considered, Equation (1) and Equation (2). Tasks are assumed

with Ti = Di. We note that Γ is made from harmonic tasks,

thus the utilization criteria1 could be applied for schedulability

analysis [13]. Instead, we use Theorem 1 and Theorem 2 in

combination with the (α,∆)-space. The utilization is used

only for consideration on how to partition Γ.

T/∆ C/α
τ1 - ”drivers” (HI-criticality) 50 (5, 10)
τ2 - ”control” (HI-criticality) 100 (4, 8)
τ3 - ”guidance” (HI-criticality) 100 (1, 3)
τ4 - ”laser” (HI-criticality) 200 (5, 10)

τ5 - ”tracking” (HI-criticality) 50 (10, 15)
τ6 - ”camera” (HI-criticality) 200 (1, 3)
τ7 - ”SLAM” (HI-criticality) 50 (10, 20)

τ8 - ”navigation” (HI-criticality) 100 (4, 8)
τ9 - ”crit1” (HI-criticality) 100 (15, 25)
τ10 - ”crit2” (HI-criticality) 100 (15, 20)

τ11 - ”no-crit1” (LO-criticality) 200 15
τ12 - ”no-crit2” (LO-criticality) 200 25
τ13 - ”no-crit3” (LO-criticality) 200 40
τ14 - ”no-crit4” (LO-criticality) 200 20

sbf
1

1
= sbf

1

2
25 0.6

sbf
2

1
= sbf

2

2
12 0.75

sbf
3

1
= sbf

3

2
7 0.9

sbf
4

1
= sbf

4

2
0.3 0.99

TABLE I: Task sets and resource supply.

Resource partitioning. For ΓHI , and the tasks in HI-criticality

mode, it is: U HI
HI =

333
200 . With the tasks in LO-criticality mode,

it is: U LO
HI = 165

200 . For ΓLO it is ULO = 100
200 . The worst-case

total utilization is U HI
HI + ULO = 433

200 , while the best case

total utilization is: U LO
HI + ULO = 265

200 . In order to guarantee

the scheduling of some combinations, at least two resource

partitions would be required, and for each have Uj ≤ 1.
The industry approach to MC would consist of separating tasks

by their criticality levels: HI-criticality tasks separated by LO-

criticality tasks. This would end up into 3 different resource

partitions, two for HI-criticality tasks, since one would not be

enough to guarantee the schedulability being U HI
HI =

333
200 , and

one for LO-criticality tasks ULO = 100
200 . This partitioning choice

is not optimal in terms of resource usage since it has large

waist of computational resource, approximately 167
200 + 100

200 .

Other partitioning solutions could be applied with equiva-

lent guarantees on scheduling both HI- and LO-criticality

tasks. We propose the following based on two partitions

with almost evenly distributed utilizations. Partition P1, is

such that P1 = {τ1, τ2, τ3, τ5, τ10, τ11, τ13} with U HI
1,HI =

162
200 , U LO

1,HI
= 100

200 , and U1,LO = 55
200 . Partition P2, P2 =

{τ4, τ6, τ7, τ8, τ9, τ12, τ14}, with U HI
2,HI = 159

200 , U
LO
2,HI = 84

200 ,

and U2,LO = 45
200 .

The tasks in P1 are scheduled under EDF, while those in P2 are

scheduled under FP. The resource partitioning can be seen as

partitioned multi-core scheduling. For each partition, we envi-

1The task utilization Ui is the ration between the computation time and
the period, Ui = Ci/Ti. The application utilization U is given as the
summation between task utilizations, U =

∑
i
Ui. The utilization criteria with

harmonic tasks and deadlines equal to the periods, is such that schedulability
is guaranteed iff U ≤ 1 [13].

sion 4 possible resource provisioning: sbf11 = sbf
1
2 = (0.6, 25),

sbf
2
1 = sbf

2
2 = (0.75, 12), sbf

3
1 = sbf

3
2 = 0.9, 7), and

sbf
4
1 = sbf

4
2 = (0.99, 0.3). In Table I the resource provisioning

details are illustrated.

P1 sensitivity analysis. For P1 there are: i) 5 dbfs (and Φs)
from HI, HI, LO, 1 (τ11), HI, LO, 2 (τ13), HI, LO, 3 (τ11 + τ13),

and LO; ii) 95 possible dbfs (and Φs) from HI− LO combina-

tions. 15 are from only one HI-criticality task in HI-criticality

mode, and can be reduced to three dbf
∗HI−LO−1 with the

envelop bounding; 30 are from only two HI-criticality tasks

in HI-criticality mode, and can be reduced to three bounds

dbf
∗HI−LO−2; and so on. Figure 5 represents the set of feasi-

bility regions for P1 compared with the four possible resource

available. The cases LO + LOs represents the bounds with all

HI-criticality tasks in LO-criticality modes combined with LO-

criticality tasks, while onlyLO is for only HI-criticality tasks

in LO-criticality mode. The case with only LO-criticality tasks

scheduled is not depicted.

With sbf
1
1 it is not possible to guarantee any of the criticality

combinations for P1; with sbf
2
1 it is possible to guarantee

onlyLO and LO + LOs with only τ11 added. To note that it

is not possible to guarantee schedulable the combination with

all HI-criticality tasks in HI-criticality mode together with all

LO-criticality tasks, since U HI
1,HI +U1,LO > 1. This is illustrated

in the (α,∆)-space representation with only two feasibility

regions ΦHI,LO
HI and not three.

The costs to change resource provisioning are

dist(sbf21, sbf
1
1) = (0.15,−13), dist(sbf31, sbf

2
1) = (0.3,−18),

dist(sbf41, sbf
3
1) = (0.39,−24.7), dist(sbf31, sbf

2
1 =

(0.15,−5), dist(sbf41, sbf
2
1) = (0.24,−11.7), and

dist(sbf41, sbf
3
1) = (0.09,−6.7). The sensitivity analysis

quantifies all those costs with Metric (12). For example,

while designing the system and deciding to change resource

provisioning in order to guarantee HI, LO cases, sbf31 would

be necessary which make the need for and increase of 0.15
of α and decreasing of 5 of ∆ from an initial sbf11.

As another example of sensitivity analysis for Q2, the

cost for including a second LO-criticality task to all HI-

criticality tasks in LO-criticality mode (LO + LOs) would be:

dist(ΦLO,2
HI ,ΦLO,1

HI ) = (0.17,−11). Instead, including all three

LO-criticality tasks to all HI-criticality tasks in LO-criticality

mode (LO + LOs) it costs dist(ΦLO,3
HI ,ΦLO,1

HI ) = (0.2,−11).
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Fig. 5: (α,∆)-space represen-

tation for P1 under EDF.
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Fig. 6: (α,∆)-space represen-

tation for P2 under FP.

P2 sensitivity analysis. Figure 6 illustrates the feasibility

regions for the different task mode combinations in P2, cases

HI, HI, LO, HI − LO and LO. In particular, for HI − LO there

are represented the regions from wbf
∗HI−LO
HI,i . With sbf

2
1, it
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is possible to schedule the onlyLO case, all the LO + LOs

cases, and some HI − LO cases. The schedulability of all the

criticality levels can be achieved only with sbf4. sbf
2
2 and

sbf
2
3 allow the schedulability of intermediate combinations.

To note that with sbf4 there is also some resource margin for

eventually including new tasks. That margin can be quantified

with dist(sbf42,Φ
HI−LO
HI ) = (−0.7, 16) as resource reduction.

In P2, an example of Metric (14) applied to evaluate the

difference between scheduling HI − LO (four HI-criticality

modes and all the LO-criticality tasks) and scheduling HI− LO

(three HI-criticality modes and all the LO-criticality tasks) is

dist(Φ∗HI−LO,4
HI ,Φ∗HI−LO,3

HI ) = (0.1,−4). In order to schedule

four HI-criticality modes from three HI-criticality, the resource

has to be increased by δα = 0.1 and δ∆ = −4.

VI. CONCLUSION

We have developed MC models with workloads and demand

bound functions that bound criticality mode combinations and

define multiple system criticality levels. The schedulability

analyses we proposed make use of the MC models and apply

them to FP and EDF. In there, the scheduling conditions are

parametrized with the criticality levels: combinations are guar-

anteed to be schedulable or not, depending on the available

computational resource sbf. We also formalized the (α,∆)-
space for the MC problem. In there, MC models and MC

scheduling conditions translate into feasibility regions where

criticality level is guaranteed to be schedulable if the resource

availability sbf belongs to the feasibility region. The sensitivity

analysis is applied to evaluate the MC schedulability condi-

tions, and the costs necessary to guarantee some combinations

and not others. The sensitivity analysis identified trade-offs

between criticality levels and resource provisioning which can

be handy while designing systems.

Future work will focus on improving resource usage and

optimally combining HI-criticality tasks with LO-criticality

tasks. In particular, it will be developed policies to explore

the proposed trade-offs. The policies will be implemented to

define the best resource provisioning changes with respect to

the criticality levels to be assured.
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