
Reserving Processors by Precise Scheduling of
Mixed-Criticality Tasks

Tianning She
Texas State University
t s374@txstate.edu

Zhishan Guo
University of Central Florida

zsguo@ucf.edu

Qijun Gu
Texas State University

qijun@txstate.edu

Kecheng Yang
Texas State University

yangk@txstate.edu

Abstract—Mixed-criticality (MC) scheduling has been pro-
posed to mitigate the pessimism in real-time schedulability
analysis that must provide guarantees for the worst case. In
most existing work on MC scheduling, low-critical tasks are
either dropped or degraded at the criticality mode switch in
order to preserve the temporal guarantees for high-critical tasks.
Recently, a different direction, called precise MC scheduling, has
been investigated. In precise MC scheduling, no low-critical task
should be dropped or degraded; instead, the platform processing
capacity is augmented at mode switch to accommodate the
additional workload by high-critical tasks. In contrast to prior
work on this topic with respect to varying processor speed, this
work investigates the precise scheduling problem of MC tasks
when the number of available processors may vary at the mode
switch. To address this new problem, we propose two alternative
algorithms by adapting virtual-deadline-based EDF and by fluid
scheduling, respectively, and provide a sufficient schedulability
test for each. We also conduct schedulability experiments with
randomly generated task sets to demonstrate the effectiveness of
the proposed algorithms and the benefits of the new scheduling
model.

Index Terms—mixed-criticality tasks, precise scheduling, re-
serving processors, virtual deadlines, fluid scheduling.

I. INTRODUCTION

To mitigate the pessimism in real-time schedulability anal-

ysis that must provide guarantees for the worst case, mixed-

criticality (MC) scheduling has been proposed, featured by

modeling a single system parameter with multiple estimates.

In particular, two estimates on the worst-case execution time

(WCET) of a task are the most commonly studied in the

literature, where two system modes are defined depending on

which of the two estimates are respected.

A significant body of existing research on MC scheduling

was conducted in the direction that low-critical tasks are

sacrificed during execution, completely or partially, in the

worst case in order to provide the real-time guarantees to

high-critical tasks. However, Ernst and Di Natale suggested

that dropping or degrading service, even if for low-critical

(rather than non-critical) tasks, may be infeasible or prob-

lematic for some applications [10]. Thus, the precise MC

scheduling has been proposed [6], where even low-critical

tasks are guaranteed full service. In precise MC scheduling, the

system mode switch concerns degrading the active processors

This work is supported in part by NSF grant CNS-1850851, a start-up
grant from the University of Central Florida, and start-up and REP grants
from Texas State University.

in typical scenarios for energy conservation while enabling

the full capability of the underlying platform to preserve the

real-time guarantees in the worst-case scenarios.

Energy efficiency is essential, especially for embedded

systems, which often rely on unreliable energy sources such as

batteries or energy harvesting devices. To improve energy ef-

ficiency, many modern processors are equipped with a feature,

called dynamic voltage and frequency scaling (DVFS), which

enables dynamic adjustment of processor voltage and fre-

quency, i.e., the speed of processors may vary during runtime.

However, DVFS has a major limitation: it is not effective in

reducing static/leakage power consumption, which may elevate

to 50% or more of the overall power consumption [12]. By

contrast, dynamic power management (DPM) and deep sleep

modes can lead to significant energy conservation resulted

from the power-down of a number of system components—

not only the cores but also their associated caches, translation

look-aside buffers, etc. Similar to DVFS yielding varying-

speed processors, DPM and deep sleep modes may cause the

number of active processors to vary as well.

In this paper, we consider a new precise MC scheduling

problem inspired by DPM and deep sleep modes. We interpret

the two WCET estimates of an MC task as a typical-case

and a worst-case upper bounds on its execution time. While

the worst-case bound shall never be exceeded, whether the

actual execution time during runtime will respect the typical-

case bound or not is unknown prior to runtime. If all actual

execution times are indeed within their typical-case bounds,

then the tasks are executed only on a subset of the processors,

leaving other processors inactive and in the deep sleep mode

by DPM. Once it is observed that any actual execution time

exceeds its typical-case bound, all processors should be imme-

diately activated to ensure that all deadlines are still met. As

suggested by its name, the typical-case upper bound should be

respected in most of the time and the worst-case mode should

be a rare event. Therefore, the proposed precise scheduling

of MC tasks could significantly reduce the system energy

consumption while preserving the real-time guarantees for all

tasks even in the worst case.

Related Work. Since it was introduced by Vestal [19], MC

tasks and their scheduling have attracted a huge amount of in-

terest in the real-time systems research community. (Please see

[8] for a comprehensive survey on this topic.) Initially, most

works were directed to scenarios where all low-critical tasks

103

2021 IEEE 27th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)

978-1-6654-4188-9/21/$31.00 ©2021 IEEE
DOI 10.1109/RTCSA52859.2021.00020

20
21

 IE
EE

 2
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
m

be
dd

ed
 a

nd
 R

ea
l-T

im
e

C
om

pu
tin

g
Sy

st
em

s a
nd

 A
pp

lic
at

io
ns

 (R
TC

SA
) |

 9
78

-1
-6

65
4-

41
88

-9
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
R

TC
SA

52
85

9.
20

21
.0

00
20

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:02 UTC from IEEE Xplore. Restrictions apply.

are completely dropped if any high-critical task behaves its

worst case. More recently, this over-sacrificing was criticized,

and gradual degradation of low-critical tasks was investigated.

To provide degraded service, the imprecise MC model [7] was

proposed, where the execution of low-critical tasks is reduced

but not dropped even in the worst case. Several subsequent

works [4, 7, 11, 13, 14, 17] explored various definitions of this

execution reduction. To eliminate such reduction, the problem

of precise MC scheduling was proposed and investigated on

varying-speed uniprocessors [6, 20] and multiprocessors [18].

Contributions. In this paper, we extend the research on

precise scheduling of MC tasks to another dimension. In

contrast to prior work that focused on varying the speed

of all processors simultaneously, we investigate an alterna-

tive approach where the number of active processors may

vary in different modes. We formalize the system model

and define an MCrp-schedulability problem. To address this

problem, we propose two algorithms that are based on virtual

deadlines and fluid scheduling, respectively, For each algo-

rithm, we derive a sufficient schedulability test to validate the

MCrp-schedulability of the system prior to runtime. To our

knowledge, this is the first work on precise scheduling of MC

tasks for reserving processors. Furthermore, our schedulability

experiments demonstrate the merits of this work over prior

related work on varying-speed processors.

Organization. In the rest of this paper, we introduce our

system model and problem statement (Sec. II), present two

new algorithms based on virtual deadlines (Sec. III) and fluid

scheduling (Sec. IV), respectively, as well as their schedulabil-

ity tests, evaluate the proposed model and algorithms (Sec. V),

and conclude (Sec. VI).

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the scheduling of a set of n implicit-deadline

sporadic MC tasks τ = {τ1, τ2, · · · , τn}. Each task τi is

invoked recurrently with a minimum separation of Ti time

units, where each invocation is called a job of τi and Ti is

called the period of τi. We also restrict our attention to implicit

deadlines. In other words, Ti is also the relative deadline for

each task τi, and every job of τi has an absolute deadline

Ti time units after its release. The worst-case execution time

(WCET) of each task τi is estimated a two criticality levels: a

low-criticality (L-) estimate CL
i and a high-criticality (H-) es-

timate CH
i , where it is assumed that ∀i, 0 < CL

i ≤ CH
i ≤ Ti.

Furthermore, if CL
i = CH

i for task τi so that τi cannot trigger

a mode switch as to be described next, then we say τi is

a LO-task; by contrast, if CL
i < CH

i for task τi so that τi
could trigger a mode switch as to be described next, then we

say τi is a HI-task. We denote the set of LO-tasks (HI-tasks,

respectively) by TLO (THI, respectively). We also refer to a

job of a LO-task (HI-task, respectively) as LO-job (HI-job,

respectively) for short.

Reserving processors and mode switch. We consider a mul-

tiprocessor platform consisting of MH identical processors,

each of which has a normalized speed 1.0. In the runtime, if

the L-estimates are respected, i.e., all jobs are finished within

their L-WCETs, then we say the system is in L-mode; if

the L-estimates are exceeded, i.e., some jobs need to execute

beyond their L-WCETs and up to their H-WCETs, then we

say the system is in H-mode. Note that the H-estimates are

assumed to be always respected. In other words, any job

that has cumulatively executed for its H-WCET, i.e., CH
i , yet

still not completed, is considered as erroneous and would be

terminated. That is, only HI-tasks, for which CL
i < CH

i , could

trigger a mode switch. The system begins with L-mode and

the amount of execution completed for each job is being moni-

tored during runtime. If any job has cumulatively executed for

its L-WCET, i.e., CL
i , but still requires further execution, then

the system is immediately notified and switched to H-mode.

The system can recover to L-mode once all processors become

idle. We require that only ML < MH processors are used to

actively execute tasks in τ in L-mode, while the remaining

MΔ = (MH − ML) processors are reserved. Nonetheless,

once the system is switched to H-mode, all MH processors

are devoted to execute tasks in τ .
Note that, in contrast to the majority of existing works on

MC scheduling, no task is entirely or partially dropped upon

a mode switch, and every job must meet its absolute deadline

in any system mode. The difference between the two WCET

estimates upon mode switch, i.e., CH
i − CL

i , is compensated

by the additional MΔ active processors.
In this paper, we assume that the preemption and migration

overheads, e.g., due to memory interference, are negligible. Or,

equivalently, we assume these overheads are pessimistically

taken into account in the WCET estimates.
We denote the utilization of a task τi in L- and H-modes,

respectively, by

uL
i =

CL
i

Ti
and uH

i =
CH

i

Ti
.

Since CL
i = CH

i holds for every LO-task, it also holds uL
i =

uH
i for such task. We further denote the total utilization of the

set of LO-tasks and the set of HI-tasks in L- and H-modes,

respectively, by

ULO =
∑

τi∈TLO

uL
i =

∑
τi∈TLO

uH
i ,

UL
HI =

∑
τi∈THI

uL
i , and UH

HI =
∑

τi∈THI

uH
i .

We also define ûL
HI = max

τi∈THI

{
uL
i

}
and ûH

HI = max
τi∈THI

{
uH
i

}
.

Problem Statement. We address the problem of scheduling

the MC tasks on MH unit-speed processors to meet all

deadlines in all scenarios with the potential of reserving MΔ

processors, where MΔ = MH −ML > 0. We say the system

is MCrp-schedulable if all deadlines are guaranteed to be met

and the following constraints are respected.

• Tasks in τ only execute on ML processors if all jobs

finish within CL
i time units;

• Tasks in τ may execute on all the MH processors if a

any job (of a HI-task) executes for more than CL
i time

units (yet finishes within CH
i time units of execution).

104

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:02 UTC from IEEE Xplore. Restrictions apply.

III. SCHEDULING BY VIRTUAL DEADLINES

In this section, we present a new algorithm to address the

problem considered in this paper by leveraging an existing

non-MC scheduler fpEDF and the MC scheduling technique

of setting virtual deadlines.

A. Algorithm fpEDF and EDF-VD.

For scheduling ordinary non-MC periodic tasks with im-

plicit deadlines, Baruah [1] developed fpEDF (“fp” stands for

fixed-priority), which is also applicable to non-MC sporadic
tasks with implicit deadline. Under fpEDF, high-utilization
tasks for which the utilization exceeds 0.5 are statically

prioritized, and the remaining tasks are scheduled according

to global earliest-deadline-first (EDF). Assuming m identical

unit-speed processors, a utilization-based sufficient schedula-

bility test for fpEDF is as follows.

Theorem 1 (adapted from Theorem 4 in [1]). Let U denote

the total utilization of an implicit-deadline sporadic task set, in

which the utilization of task τi is denoted by ui. This task set is

schedulable by fpEDF on m identical unit-speed processors if

∀i, ui ≤ 1.0 and U ≤ m+ 1

2
.

On the other hand, EDF-VD (“VD” stands for virtual dead-

lines) was proposed to address the MC scheduling problem

on a single processor and all LO-tasks are dropped upon the

mode switch [2, 3]. Under EDF-VD, virtual deadlines are

set to promote the execution of HI-tasks in L-mode and to

leave slack for the potential extra workload at a mode switch

from L to H. A common scaling factor (a constant less than

1.0) is used to determine the virtual deadlines for all HI-tasks.

For LO-critical tasks, their virtual deadlines are set identical

to their actual deadlines. Then, tasks are scheduled by EDF
according to their virtual deadlines in the L-mode and HI-tasks

are scheduled by EDF according to their actual deadlines once

the system is switched to the H-mode.

B. Algorithm fpEDF-VD-rp

Combining fpEDF and EDF-VD, we propose algorithm

fpEDF-VD-rp (“rp” stands for reserving processors) to ad-

dress the new precise MC scheduling problem in this paper.

fpEDF-VD-rp has two phases: a pre-processing phase and a

runtime phase.

In the pre-processing phase, a scaling factor x ∈ (0, 1) is

calculated by Eq. (1). The relative virtual deadline of each HI-

task τi is set as x ·Ti, i.e., every HI-job has a virtual deadline

x · Ti time units after its release. Furthermore, the number of

processors dedicated to LO-tasks mLO is calculated by Eq. (2).

x = max

{
ûL

HI,
2UL

HI

ML −mLO + 1

}
(1)

mLO =

{
�ULO�, if ULO ≤ 1

�2ULO − 1�, if ULO > 1
(2)

If mLO < ML and

max

{
ûL

HI,
2UL

HI

ML−mLO+1

}

+max

{
ûH

HI ,
2UH

HI

MH−mLO+1

}
≤ 1, (3)

then the pre-processing phase returns SUCCESS and enter

the runtime phase; otherwise, it returns FAILURE. Please note

that, by Eq. (1) and Eq. (3), it is clear that 0 < x < 1 when

fpEDF-VD-rp returns SUCCESS.
In the runtime phase, LO-tasks are scheduled in a mode-

oblivious manner. The set of all LO-tasks is scheduled on mLO

dedicated processors by fpEDF regardless the mode. Please

note that fpEDF reduces to regular uniprocessor EDF when

applied on a single processor [1]. By contrast, in L-mode, HI-

tasks are scheduled as a set of tasks
⋃

τi∈THI

{(
x · Ti, C

L
i

)}
being scheduled by fpEDF on mL

HI dedicated processors,

where

mL
HI = ML −mLO;

upon a mode switch to H-mode, HI-tasks are re-scheduled as

a set of tasks
⋃

τi∈THI

{(
(1− x) · Ti, C

H
i

)}
being scheduled

by fpEDF on mH
HI dedicated processors, where

mH
HI = MH −mLO.

Note that we use a pair (T,C) to denote an ordinary (non-MC)

implicit-deadline sporadic task with period T and WCET C.

C. Schedulability Test
We next derive and prove the schedulability test in detail.

Lemma 1. All deadlines of LO-tasks are met under fpEDF-
VD-rp scheduling if mLO < ML < MH .

Proof. Under fpEDF-VD-rp scheduling, LO-tasks are sched-

uled by fpEDF on mLO dedicated processors and are not

impacted by mode switch. By Eq. (2), it is clear that ULO ≤
(mLO+1)/2. Furthermore, ∀i, ui ≤ 1 must hold in any feasible

system. Therefore, by Thm. 1, the lemma follows, given that

mLO < ML < MH ensures that indeed mLO processors

can devote to LO-tasks while leaving some processors for HI-

tasks.

Lemma 2. All virtual deadlines of HI-tasks are met in L-mode

under fpEDF-VD-rp scheduling, if mLO < ML < MH and

x ≥ max

{
ûL

HI,
2UL

HI

ML −mLO + 1

}
Proof. In L-mode, HI-tasks are scheduled as a set of ordinary

sporadic tasks
⋃

τi∈THI

{(
x · Ti, C

L
i

)}
by fpEDF on mL

HI

processors. Therefore, by Thm. 1, the deadlines of these

ordinary sporadic tasks, i.e., the virtual deadlines of HI-tasks,

are met if∑
τi∈THI

CL
i

x · Ti
≤ mL

HI + 1

2
⇔ UL

HI

x
≤ ML −mLO + 1

2

⇔ x ≥ 2UL
HI

ML −mLO + 1
,

105

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:02 UTC from IEEE Xplore. Restrictions apply.

and ∀τi ∈ THI,
CL

i

x · Ti
≤ 1⇔ ûL

HI

x
≤ 1

⇔ x ≥ ûL
HI.

Thus, the lemma follows.

Lemma 3. All actual deadlines of HI-tasks are met in H-mode

under fpEDF-VD-rp scheduling, if mLO < ML < MH and

0 < x ≤ 1−max

{
ûH

HI ,
2UH

HI

MH −mLO + 1

}

Proof. In H-mode, HI-tasks are scheduled as a set of ordinary

sporadic tasks
⋃

τi∈THI

{(
(1 − x) · Ti, C

H
i

)}
by fpEDF on

mH
HI processors. Therefore, by Thm. 1, the actual deadlines of

HI-tasks are met if∑
τi∈THI

CH
i

(1− x) · Ti
≤ mH

HI + 1

2
⇔ UH

HI

1− x
≤ MH −mLO + 1

2

⇔ 1− x ≥ 2UH
HI

MH −mLO + 1

⇔ x ≤ 1− 2UH
HI

MH −mLO + 1
,

and ∀τi ∈ THI,
CH

i

(1− x) · Ti
≤ 1⇔ ûH

HI

1− x
≤ 1

⇔ x ≤ 1− ûH
HI .

Thus, the lemma follows.

Theorem 2. The system is MCrp-schedulable by fpEDF-VD-
rp if mLO < ML and Eq. (3) holds.

Proof. This theorem follows directly from the above three

lemmas, noting that x is defined by Eq. (1) which implies

x > 0 and then Eq. (3) implies x < 1. That is, meeting virtual

deadlines implies meeting their corresponding actual deadlines

as well. Please also note that mLO can be easily calculated by

Eq. (2) for a given task system.

IV. FLUID SCHEDULING

In this section, we focus on an alternative approach, called

the dual-rate fluid scheduling,1 where each task τi is assigned

a constant execution rate in each mode, denoted by θLi and

θHi in L- and H-modes, respectively. Under fluid scheduling,

all tasks conceptually progress simultaneously by “fractions”

of a processor at their constant executing rates (per mode,

in our particular context). Such simultaneous progression can

be implemented by slicing the timeline to smaller pieces or

by certain fairness based scheduling algorithms (e.g., DP-
Fair [16]), which has been adapted to implement fluid schedul-

ing for MC tasks [15].

1The conventional fluid scheduling assumes a single constant rate for each
task, whereas two rates, i.e., one rate change for each task, have been proposed
and considered in the context of MC scheduling [5, 15]. Fluid scheduling with
no restriction on the number of rate changes can be too general to tackle. For
example, any actual schedule can be viewed as a fluid schedule where the
rate for each task switches between 0 and 1.0.

Fig. 1. An illustration of the relationship between fluid execution rates and
cumulative execution over time of a task in MCF framework.

Specifically, for each LO-task, an execution speed of θi ≥ ui

would be sufficient in both modes. By contrast, for a HI-task,

it would need a speed larger than its L-mode utilization (to

create sufficient gap after the mode switch to accommodate

the additional execution requirement) and an even larger speed

after the mode switch. Such a relationship is demonstrated in

Fig. 1, where the blue line depicts the scenario for LO-tasks

and the red line illustrates a representative scenario for HI-

tasks.

A. Algorithm MCF-FR-rp

Leveraging the technique of dual-rate fluid scheduling, we

propose a new algorithm, called MCF-FR-rp (“MCF” stands

for mixed-criticality fluid scheduling, “FR” stands for fixed

ratio, and “rp” stands for reserving processors), to address the

problem considered in this paper. MCF-FR-rp consists of two

steps, which are described as follows.

• A system-wide parameter λ and per-task parameters θi
for each HI-task τi are calculated by:

λ = max

{
UL

HI

MH−ULO−UH
HI +UL

HI

,

max
τi∈THI

{
uL
i

1 + uL
i − uH

i

}}
; (4)

∀τi ∈ THI, θi =
uL
i

λ
+ uH

i − uL
i . (5)

• If

λ ≤ ML − ULO − UL
HI

UH
HI − UL

HI

, (6)

then each HI-task τi is assigned fluid execution rate

θLi = λ · θi in L-mode and a fluid execution rate

θHi = θi in H-mode, whereas each LO-task τk is

assigned a fluid execution rate θLk = θHk = uL
k in

both modes,

and return SUCCESS;

Else return FAILURE.

Noting that ULO + UH
HI ≤ MH and ∀i, uH

i ≤ 1 must hold for

any feasible system, it is clear that Eq. (4) implies 0 < λ ≤ 1.

106

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:02 UTC from IEEE Xplore. Restrictions apply.

B. Schedulability Test

We first show that the fluid execution rates assigned by

MCF-FR-rp, if they can indeed be satisfied by the underlying

platform, are sufficient to ensure all deadline to be met.

Lemma 4. If the fluid execution rates assigned by MCF-FR-rp
are feasible, then all deadlines must be met.

Proof. Since θLk = θHk = uL
k is assigned for each LO-task τk,

it is clear that all deadline of LO-tasks are met.

For a HI-task τi, by Eq. (5), θLi = λθi ≥ uL
i because uH

i ≥
uL
i , and θHi = θi ≥ uH

i because 0 < λ ≤ 1. Therefore, HI-

jobs executing entirely in either L- or H-mode must meet their

deadlines.

Thus, in the rest of the proof, we only need to focus on the

HI-jobs that are released before the mode switch and with a

deadline after the mode switch. We consider such a job J of

τi and let t denote its release time. If mode switch happens

after time t+
CL

i

θL
i

, then J must have finished by time t+
CL

i

θL
i

and therefore meets its deadline; otherwise, J should have

triggered the mode switch at time t+
CL

i

θL
i

. On the other hand,

because θLi ≤ θHi , the later the mode switch, the later J
completes its execution, when J needs to execute for more

than CL
i (and up to CH

i). Therefore, the worst case for J is

when the mode switch happens exactly at time t+
CL

i

θL
i

. In this

case, J still must finish by

t+
CL

i

θLi
+

CH
i − CL

i

θHi
= t+

CL
i

λθi
+

CH
i − CL

i

θi

=t+

(
CL

i

λ
+ CH

i − CL
i

)
1

θi
= t+

(
uL
i

λ
+ uH

i − uL
i

)
Ti

θi

=t+ θi ·
Ti

θi
= t+ Ti,

which is the deadline of J . So, this completes the proof and

the lemma follows.

We next show that the fluid execution rates assigned by

MCF-FR-rp are indeed feasible.

Lemma 5. It holds that ∀i, θLi ≤ 1 ∧ θHi ≤ 1.

Proof. This is trivially true for LO-tasks. For a HI-task τi, by

Eq. (4) we have λ ≥ uL
i

1+uL
i −uH

i
, and therefore by Eq. (5) we

have

θHi ≤ uL
i

uL
i

1+uL
i −uH

i

+ uH
i − uL

i = 1.

Furthermore, due to 0 < λ ≤ 1, we then have θLi = λθi =
λθHi ≤ 1, and the lemma follows.

Lemma 6. It holds that
∑

i θ
H
i ≤MH .

Proof. By Eq. (4), we have λ ≥ UL
HI

MH−ULO−UH
HI
+UL

HI

.

Therefore,
∑
i

θHi =
∑

τi∈THI

θHi +
∑

τi∈TLO

θHi

=
∑

τi∈THI

(
uL
i

λ
+ uH

i − uL
i

)
+

∑
τi∈TLO

ui

=
UL

HI

λ
+ UH

HI − UL
HI + ULO

≤ UL
HI

UL
HI

MH−ULO−UH
HI
+UL

HI

+ UH
HI − UL

HI + ULO

=MH .

The lemma follows.

Lemma 7. If Eq. (6) is true, then
∑

i θ
L
i ≤ML holds.

Proof. We have∑
i

θLi =
∑

τi∈THI

θLi +
∑

τi∈TLO

θLi

=
∑

τi∈THI

(
uL
i + (uH

i − uL
i)λ

)
+

∑
τi∈TLO

ui

=UL
HI + (UH

HI − UL
HI)λ+ ULO,

and then by Eq. (6),

UL
HI + (UH

HI − UL
HI)λ+ ULO

≤UL
HI + (UH

HI − UL
HI) ·

ML − ULO − UL
HI

UH
HI − UL

HI

+ ULO

=ML.

Thus, the lemma follows.

Theorem 3. The system is MCrp-schedulable by MCF-FR-rp
if Eq. (6) is true where λ is defined by Eq. (4).

Proof. Lem. 5, Lem. 6, and Lem. 7 together imply that the

fluid execution rates assigned by MCF-FR-rp are feasible if

Eq. (6) holds. Therefore, by Lem. 4, this theorem follows.

V. EVALUATION

In this section, we conduct schedulability experiments

to compare this work to prior work [18] on precise MC

scheduling for varying-speed multiprocessors. In [18], all m
processors are active in both L- and H-modes. However, the

m processors must operate at a degraded speed ρ < 1.0 in

L-mode while may run at the full-speed 1.0 in H-mode. In

our experiments, we maintain the setting of MH = m and

ML/MH = ρ so that the total computing capacity of the

platform, no matter in L- or H-mode, is the same for the

two variants of precise MC scheduling. Then, we compare

the schedulability ratios under fpEDF-VD-rp and MCF-FR-
rp in this work to that under fpEDF-VD-vs and MCF-FR-vs2

from [18].

2We add the “vs” suffix to the algorithms in [18] to emphasize that they
are for the varying-speed model and to distinguish them from the algorithms
in this paper.

107

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:02 UTC from IEEE Xplore. Restrictions apply.

(a) ML/MH = ρ = 0.25. (b) ML/MH = ρ = 0.5. (c) ML/MH = ρ = 0.75.

Fig. 2. Schedulability experiment results, where MH = m = 16. Schedulability ratio is defined as the ratio of the number of schedulable task sets by the
respective algorithm and the number of randomly generated task sets for each given H-mode system utilization.

Workload generation. We generate an MC task set by

first generating the H-mode utilization of every task, using

UUniFast-Discard [9] for given H-mode system utilization.

For each task set, we mandate the first task to be a HI-task

to avoid the scenario that all tasks are LO-tasks (which would

be in fact non-MC and the techniques discussed in this paper

should not be applied). For subsequent tasks, each of them

is set to be a HI-task with probability P or a LO-task with

probability (1 − P). If task τi is a HI-task, then its L-mode

utilization uL
i is randomly chosen from [0.2× uH

i , 0.8× uH
i].

By contrast, uL
i must equal to uH

i for any LO-task τi.
Results. In Fig. 2, we report the schedulability results, where

MH = m = 16, P = 0.75, 40 tasks per task set, and

1, 000 task sets generated per given H-mode system utilization.

Moreover, sub-figures (a), (b), and (c) present the results for

which both ML/MH and ρ are 0.25, 0.5, 0.75, respectively.

As seen in the figure, both fpEDF-VD-rp and MCF-FR-rp
outperform their varying-speed counterpart significantly. In

terms of the total number of schedulable task sets (graphically,

the “area” between the plot and the x-axis), fpEDF-VD-rp is

1.36 times of its varying-speed counterpart and MCF-FR-rp
is 1.5 times of its varying-speed counterpart.

VI. CONCLUSION

In this work, we investigated the precise scheduling of MC

tasks for reserving processors in L-mode. We presented two al-

gorithms, called fpEDF-VD-rp and MCF-FR-rp, for this new

scheduling problem and provided a sufficient schedulability

test for each. Our schedulability experiments demonstrated the

effectiveness of the proposed algorithms and the benefits of the

new scheduling model.

REFERENCES

[1] Sanjoy Baruah. Optimal utilization bounds for the fixed-priority
scheduling of periodic task systems on identical multiprocessors. IEEE
Transactions on Computers, 53(6):781–784, 2004.

[2] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li,
Alberto Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie.
The preemptive uniprocessor scheduling of mixed-criticality implicit-
deadline sporadic task systems. In Proceedings of the 24th Euromicro
Conference on Real-Time Systems (ECRTS), pages 145–154, 2012.

[3] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Alberto
Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. Mixed-
criticality scheduling of sporadic task systems. In European Symposium
on Algorithms, pages 555–566. Springer, 2011.

[4] Sanjoy Baruah, Alan Burns, and Zhishan Guo. Scheduling mixed-
criticality systems to guarantee some service under all non-erroneous

behaviors. In 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), pages 131–138. IEEE, 2016.

[5] Sanjoy Baruah, Arvind Easwaran, and Zhishan Guo. MC-Fluid: sim-
plified and optimally quantified. In 2015 IEEE Real-Time Systems
Symposium, pages 327–337. IEEE, 2015.

[6] Ashikahmed Bhuiyan, Sai Sruti, Zhishan Guo, and Kecheng Yang.
Precise scheduling of mixed-criticality tasks by varying processor speed.
In Proceedings of the 27th International Conference on Real-Time
Networks and Systems, pages 123–132, 2019.

[7] Alan Burns and Sanjoy Baruah. Towards a more practical model for
mixed criticality systems. In 1st WMC, 2013.

[8] Alan Burns and Robert Davis. Mixed criticality systems-a review. Dept.
of Computer Science, University of York, Tech. Rep, pages 1–81, 2019.

[9] Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the
synthesis of multiprocessor tasksets. In proceedings 1st International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS 2010), pages 6–11, 2010.

[10] Rolf Ernst and Marco Di Natale. Mixed criticality systems—a history
of misconceptions? IEEE Design & Test, 33(5):65–74, 2016.

[11] Zhishan Guo, Kecheng Yang, Sudharsan Vaidhun, Samsil Arefin, Sajal K
Das, and Haoyi Xiong. Uniprocessor mixed-criticality scheduling with
graceful degradation by completion rate. In 2018 IEEE Real-Time
Systems Symposium (RTSS), pages 373–383. IEEE, 2018.

[12] Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and Giorgio C
Buttazzo. Applying real-time interface and calculus for dynamic power
management in hard real-time systems. Real-Time Systems, 47(2):163–
193, 2011.

[13] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar
Thiele. Run and be safe: Mixed-criticality scheduling with temporary
processor speedup. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2015, pages 1329–1334. IEEE, 2015.

[14] Mathieu Jan, Lilia Zaourar, and Maurice Pitel. Maximizing the execution
rate of low criticality tasks in mixed criticality system. 1st WMC, 2013.

[15] Jaewoo Lee, Kieu-My Phan, Xiaozhe Gu, Jiyeon Lee, Arvind Easwaran,
Insik Shin, and Insup Lee. MC-Fluid: Fluid model-based mixed-
criticality scheduling on multiprocessors. In 2014 IEEE Real-Time
Systems Symposium, pages 41–52. IEEE, 2014.

[16] Greg Levin, Shelby Funk, Caitlin Sadowski, Ian Pye, and Scott Brandt.
Dp-fair: A simple model for understanding optimal multiprocessor
scheduling. In 2010 22nd Euromicro Conference on Real-Time Systems,
pages 3–13. IEEE, 2010.

[17] Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor
Stefanov, and Wang Yi. Edf-vd scheduling of mixed-criticality systems
with degraded quality guarantees. In 2016 IEEE Real-Time Systems
Symposium (RTSS), pages 35–46. IEEE, 2016.

[18] Tianning She, Sudharsan Vaidhun, Qijun Gu, Sajal K Das, Zhishan Guo,
and Kecheng Yang. Precise scheduling of mixed-criticality tasks on
varying-speed multiprocessors. In Proceedings of the 29th International
Conference on Real-Time Networks and Systems, 2021.

[19] Steve Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In 28th IEEE International
Real-Time Systems Symposium (RTSS), pages 239–243. IEEE, 2007.

[20] Kecheng Yang, Ashikahmed Bhuiyan, and Zhishan Guo. F2VD: Fluid
rates to virtual deadlines for precise mixed-criticality scheduling on a
varying-speed processor. In 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pages 1–9. IEEE, 2020.

108

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:30:02 UTC from IEEE Xplore. Restrictions apply.

