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Abstract—Capacity augmentation bound is a widely used
quantitative metric in theoretical studies of schedulability anal-
ysis for directed acyclic graph (DAG) parallel real-time tasks,
which not only quantifies the suboptimality of the scheduling
algorithms, but also serves as a simple linear-time schedulabil-
ity test. Earlier studies on capacity augmentation bounds of the
sporadic DAG task model were either restricted to a single DAG
task or a set of tasks with implicit deadlines. In this paper, we
consider parallel tasks with constrained deadlines under global
earliest deadline first policy. We first show that it is impossible to
obtain a constant bound for our problem setting, and derive both
lower and upper bounds of the capacity augmentation bound as
a function with respect to the maximum ratio of task period to
deadline. Our upper bound is at most 1.47 times larger than
the optimal one. We conduct experiments to compare the accep-
tance ratio of our capacity augmentation bound with the existing
schedulability test also having linear-time complexity. The results
show that our capacity augmentation bound significantly outper-
forms the existing linear-time schedulability test under different
parameter settings.

Index Terms—Capacity augmentation bound, directed acyclic
graph (DAG), global earliest deadline first (GEDF), parallel tasks,
real-time scheduling, schedulability analysis.
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I. INTRODUCTION

DURING the last two decades, multicores are more and
more widely used in real-time systems to meet the

rapidly increasing requirements in high performance comput-
ing and lowering the power consumption. To fully utilize
the computational capacity of multicore processors, not only
intertask parallelisim, but also intratask parallelisim need to
be explored in the design and analysis of modern systems,
where individual tasks are parallel programs and can poten-
tially utilize more than one core at the same time during their
executions. Parallel tasks are commonly supported by nowa-
days parallel programming languages, such as Cilk family [1],
OpenMP [2], [3], and Intel’s Thread Building Blocks [4]. The
primitives in these languages and libraries, such as parallel
for-loops, omp task and fork/join or spawn/sync, results in
intratask parallelism structures that can be well represented via
graph-based task models. In the past few years, the real-time-
systems community has paid much attention to graph-based
(parallel) task models, such as fork-join tasks [5], [6], syn-
chronous tasks [7]–[11], and directed acyclic graph (DAG)
tasks [12]–[25].

In this paper, we consider the general parallel tasks modeled
as DAGs, where each vertex represents a sequence of instruc-
tions and each edge represents the interdependency constraints
among the vertices. Real-time scheduling algorithms for DAG
tasks can be classified into three paradigms: 1) decomposition-
based scheduling [15], [17], [20], [22]; 2) global scheduling
(without decomposition) [13], [16], [23]; and 3) federated
scheduling [18], [26]–[29]. Decomposition-based scheduling
first decomposes each DAG task into a set of sequential sub-
tasks and assigns them intermediate release time and deadlines,
and then schedules these sequential subtasks using a traditional
multiprocessor scheduling policy for sequential tasks. In fed-
erated scheduling, the scheduler maintains a set of dedicated
cores for each high-utilization task with utilization >1, and
forces the remaining low-utilization task (with utilization ≤1)
to be sequentially executed by the remaining (shared) cores.

This paper focuses on global scheduling, in particular,
global earliest deadline first (GEDF) scheduling. Many exist-
ing systems, for example, Linux [30] and LITMUS [31] have
provided efficient and scalable implementations of GEDF for
sequential tasks, which suggests a potentially easy imple-
mentation for parallel tasks. However, schedulability anal-
ysis of GEDF for DAG tasks is a challenging problem.
Theoretical work on real-time scheduling and schedulabil-
ity analysis of real-time parallel tasks uses two quantitative
metrics.
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Fig. 1. Capacity bound as a function of β, and the red line represents the
lower bound of capacity augmentation.

1) Resource Augmentation Bound (also called speedup fac-
tor) is a comparative metric with respect to some other
(optimal) scheduler. A scheduler S provides a resource
augmentation bound of ρ if it can successfully schedule
any task set τ on m cores of speed ρ as long as the com-
pared scheduler can schedule τ on m cores of speed 1.
A resource augmentation bound shows how close the
performance of a scheduler is to the compared one, but
it cannot be directly used as a schedulability test.

2) Capacity Augmentation Bound is an absolute metric that
can be directly used for schedulability test. A sched-
uler S has a capacity augmentation bound of ρ if it can
schedule any task set τ satisfying the following two con-
ditions: a) the total utilization of τ is at most m/ρ and
b) the worst-case critical path length of each task is at
most 1/ρ of its deadline. Capacity augmentation bounds
are stronger than resource augmentation bounds in the
sense that if a scheduler has a capacity augmentation
bound of ρ, it is also guaranteed to have a resource
augmentation bound of ρ. In parallel task scheduling,
a capacity augmentation bound can serve as a simple
linear-time schedulability test that requires no knowl-
edge about the DAG structures except the critical path
length and utilization of each task.

A. Contribution

In this paper, we derive the first capacity augmentation
bound for GEDF scheduling of DAG tasks with constrained
deadlines

ρ = β + 2

√(
β + 1 − 1

m

)(
1 − 1

m

)
(1)

where m is the number of processing cores and β is the max-
imal ratio of task period to deadline (see in Section III for
a more formal definition). When m becomes infinitely large,
the bound approaches β + 2

√
β + 1. Moreover, we also prove

that the capacity augmentation required by GEDF is at least
(β+√

β2 + 4β)/2+1. Fig. 1 shows the figure of this capacity
augmentation bound as a function of β.

There have been many previous works on both types of
bounds for sporadic parallel tasks under different scheduling
algorithms and different deadline constraints (see Section II

for a review). To the best of our knowledge, the capacity aug-
mentation bound for the problem setting considered in this
paper is still open. It is worth mentioning that [13] introduced
a simple schedulability test condition1 having the same time
complexity and requiring the same information as our capac-
ity augmentation bound. However, the test condition in [13]
is more pessimistic than our capacity augmentation bound.
We have conducted experiments to compare the acceptance
ratio of these two tests, and the results show that our capacity
augmentation bound significantly outperforms the test in [13]
under different parameter settings.

The remainder of this paper is organized as follows.
Section II reviews related work. Section III describes the
DAG task model and its runtime model. Section IV for-
mally defines the notation and terminology related to the
global EDF policy. Proofs of capacity augmentation bounds
are presented in Section V. Evaluation result is shown in
Section VI. Section VII gives concluding remarks.

II. RELATED WORK

The prior results on real-time scheduling and schedulability
analysis of real-time parallel tasks can be classified into two
categories: 1) those based on augmentation bound analysis and
2) those based on response time analysis (RTA).

A. Augmentation Bound Analysis

Augmentation bound analysis can be further classified
as two subcatagories: 1) resource augmentation bound and
2) capacity augmentation bound. Based on the resource bound,
one can only propose a (pseudo-)polynomial time schedula-
bility test with a bounded speedup, which cannot be directly
applied on the platform with unit-speed cores. The capacity
bound is the only theoretical quantitative metric that can serve
as a sufficient schedulability test for the tasks on unit-speed
cores. In the following we review previous work on resource
augmentation bounds and capacity augmentation bounds for
sporadic DAG task models with different deadline constraints
(implicit, constrained, or arbitrary) under different scheduling
algorithms (decomposition-based, global, and federated). The
state-of-the-art results are summarized in Table I.

1) Resource Augmentation Bounds:
1) Decomposition-Based Scheduling: For decomposition-

based scheduling, the associated resource augmentation
bounds are indicated by their capacity augmentation
bound results. Hence, we only survey the capacity aug-
mentation bounds for decomposition-based scheduling
in the next section.

2) Federated Strategy: For implicit-deadline DAG tasks,
Li et al. [18] proved a resource augmentation bound
of 2 with respect to hypothetical optimal schedul-
ing algorithms. For constrained-deadline DAG tasks,
Chen [24] showed that any federated scheduling algo-
rithm has a resource augmentation bound of at least
�(min{m, n}) with respect to any optimal scheduling
algorithm, where n is the number of tasks and m is the

1The test in [13] is for arbitrary-deadline DAG tasks, and thus also
applicable to constrained-deadline DAG tasks considered in this paper.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:29:02 UTC from IEEE Xplore.  Restrictions apply. 



2202 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

TABLE I
STATE-OF-THE-ART RESOURCE AUGMENTATION BOUNDS (WITH RESPECT TO OPTIMAL SCHEDULING ALGORITHMS)

AND CAPACITY AUGMENTATION BOUND FOR DAG TASKS (WHEN m IS INFINITELY LARGE)

number of cores. With respect to any optimal federated
scheduling algorithm,2 Baruah proved a speed-up factor
of 3 − (1/m) for constrained deadline DAG tasks [26]
and proved a speed-up factor of 4 − (2/m) for arbitrary
deadline DAG tasks [27].

3) Global Scheduling: For a single recurrent DAG task with
an arbitrary deadline, Baruah et al. [12] proved a bound
of 2 under GEDF. For multiple DAG tasks with arbitrary
deadlines, Li et al. [14] and Bonifaci et al. [13] proved a
bound of 2−(1/m) under GEDF, and Bonifaci et al. [13]
proved a bound of 3 − (1/m) under deadline monotonic
(DM) scheduling. All these bounds are with respect to
an optimal scheduling algorithm.

2) Capacity Augmentation Bounds:
1) Decomposition-Based scheduling: The capacity aug-

mentation bounds for decomposition-based scheduling
are restricted to implicit-deadline DAG tasks. Earlier
work began with synchronous tasks (a special case of
DAG tasks). For a restricted set of synchronous tasks,
Lakshmanan et al. [5] proved a bound of 3.42 using DM
scheduling for decomposed tasks. For more general syn-
chronous tasks, Saifullah et al. [7] proved a bound of
4 for GEDF and 5 for DM scheduling. For DAG tasks,
Saifullah et al. [17] proved a bound of 4 under GEDF
on decomposed tasks, and Jiang et al. [20] refined this
bound to the range of [2−(1/m), 4−(2/m)), depending
on the DAG structure characteristics. For a special class
of DAG task sets, Qamhieh et al. [22] proved a bound
of [(3 + √

5)/2]. This is the best capacity augmentation
bound known for task sets with multiple DAGs.

2) Federated Strategy: For multiple DAGs with implicit
deadlines, Li et al. [18] proved a bound of 2 under
federated scheduling. For mixed-criticality DAGs with
implicit deadlines, Li et al. [29] proved that for high
utilization tasks, the mixed criticality federated schedul-
ing has a capacity augmentation bound of 2 + 2

√
2 and

[(5 + √
5)/2] for dual- and multi-criticality systems,

respectively. Moreover, they also derived a capacity aug-
mentation bound of (11m/[3m − 3]) for dual-criticality
systems with both high- and low-utilization tasks.

3) Global Scheduling: For multiple DAGs with implicit
deadlines, Li et al. [14] proved a bound of 4 − (2/m)

under GEDF, this bound is further improved to [(3 +√
5)/2], which is proved to be tight when the number

2An optimal federated scheduling may not be a good scheduling strategy
compared with an optimal scheduling algorithm.

m of cores is sufficiently large. Moreover, Li et al. [18]
proved a bound of 2 + √

3 under global rate monotonic
scheduling without decomposition.

Moreover, for a single recurrent DAG with arbitrary dead-
line scheduled by GEDF, Baruah et al. [12] proved a bound of
2.5. In summary, prior work on capacity augmentation bounds
is either restricted to a single recurrent DAG task or restricted
to a set of multiple DAG tasks with implicit deadlines.

B. Response Time Analysis

For synchronous tasks with constrainted deadline,
Chwa et al. [10] proposed an RTA-based analysis for GEDF
scheduling algorithm, and Maia et al. [11] gave the anaylsis
for GFP scheduling algorithm. Axer et al. [6] proposed an
RTA-based analysis for fork-join tasks with arbitary deadline.
Qamhieh et al. [15] gave an RTA-based analysis for GEDF
scheduling of DAG-tasks with constrained deadline and a
study of its sustainability. Parri et al. [32] proposed an RTA-
based test for GEDF and GDM scheduling of DAG-tasks with
arbitrary deadline. Melani et al. [21] proposed an RTA-based
test for GEDF scheduling of conditional DAG-tasks with
constrained deadline.

Most RTA-based methods for multi-DAGs cannot pro-
vide guaranteed augmentation bounds. Moreover, unlike the
capacity bound analysis that can provide a simple linear
time schedulability test requiring no knowledge about DAG’s
internal structure, RTA-based schedulability tests suffer from
the complexity intrinsic in computation, which often have
a (pseudo-)polynomial time complexity, and they require to
explore DAG’s internal structure.

III. MODEL

We consider a sporadic task set τ that consists of n tasks
τ = {τ1, . . . , τn}. Each task τk is associated with a period
Pk and a relative deadline Dk, and its execution has a DAG
structure. The xth subtask of task τk is represented by vertex
vx

k in the DAG. If there is a directed edge from vertex vx
k to

vertex vy
k, then vx

k is vy
k’s predecessor. A subtask cannot start

its execution until the completion of all its predecessors. Each
vertex vx

k has its own worst-case execution time Cx
k.

We assume the tasks have constrained deadlines, i.e., each
task’s relative deadline is no larger than its period, i.e.,
∀k, Dk ≤ Pk. We do not restrict our research on any DAG
of particular types. More specifically, multiple source vertices
and sink vertices are allowed, and the DAG is not necessary to
be fully connected. Fig. 2 gives an example task that contains
six subtasks in the DAG-structure.
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Fig. 2. Example DAG task τk with volume Ck = 11 and critical path length Lk = 8.

We now introduce some useful notations related to a DAG
task.

1) Volume: The sum of the worst-case execution time of
all subtasks of τk is the volume of τk

Ck =
∑

x

Cx
k.

Moreover, we denote by C∑ the total volume of the
whole task system: C∑ = ∑

k Ck.
2) Utilization: We define the utilization uk of a task τk as

uk = Ck

Pk
.

Moreover, the total utilization of the task system is
denoted as U∑ = ∑

k uk.
3) We define the maximum ratio of task period to

deadline as

β = max
k

Pk

Dk
.

4) Critical Path: We use the critical path of τk as the
longest path in τk’s DAG (the length of a path is the
total amount of the worst-case execution time associ-
ated with the vertices along that path). Let Lk be the
critical path length, and obviously, Lk ≤ Ck.

For example, in Fig. 2, the volume of τk is Ck = 11, and
the utilization of τk is uk = 11/9. The critical path (marking
in red) starts from vertex v2

k , goes through v3
k and ends at

vertex v6
k , so the critical path length of the DAG task τk is

Lk = 1 + 2 + 5 = 8.
A task τk releases an infinite number of jobs recurrently, and

the time interval between the release time of any two adjacent
jobs is no less than period Pk. All of the jobs released by
the same task have the same DAG-structure. In particular, the
volumes and the critical path lengths of all jobs generated by
a task τk are the same as those of task τk.

Without loss of generality, Jk,a denotes the ath job instance
of task τk, and the xth vertex of Jk,a is represented as vx

k,a. Let
rk,a and dk,a be the absolute release time and absolute deadline
of job Jk,a, respectively. All the vertices of Jk,a are required
to be executed after its release time rk,a and the execution
must be completed on or before its deadline dk,a. The interval
[rk,a, dk,a] is also known as the scheduling window of the job
Jk,a, with a length of Dk = dk,a − rk,a [as demonstrated in
Fig. 3].

Moreover, we say that a job is unfinished if the job has
been released but not completed yet. Any unfinished job must
contain some vertices (subjobs) that are unfinished. To carry

Fig. 3. Scheduling window [rk,a, dk,a] of job Jk,a.

the analysis, here we define the notion of remaining volume
and remaining critical path length for an unfinished job.

1) Remaining Volume: The remaining volume equals the
total volume minus the part of its volume that has
already been executed.

2) Remaining Critical Path Length: The remaining critical
path length is total unfinished workload of the vertices
in the longest path of the DAG.

For example, in the example DAG task shown in Fig. 2, if v1
k

and v2
k are completely executed, and v3

k is partially executed for
1 time unit (out of 2), the remaining volume is 1+1+1+5 = 8,
and the remaining critical path length is 1 + 5 = 6.

A. Runtime Scheduling and Schedulability

The task set is scheduled by GEDF scheduling algorithm
on m identical unit-speed processing cores. Under GEDF, at
each time instant the scheduler selects the highest-priority
ready vertices (at most m) for execution. Vertices of the
same task share the same priority (ties are broken arbitrar-
ily) and a vertex of a task with an earlier absolute deadline
has a higher priority than a vertex of a task with a later
absolute deadline. In particular, vertex-level preemption and
migration are both permitted in GEDF. Without loss of gen-
erality, we assume the task system starts at time 0 (i.e., the
first job of the system is released at time 0). The task set is
schedulable if all jobs released by all tasks in τ meet their
deadlines.

Lemma 1 (Necessary Conditions for Schedulability [14]):
A task set τ is not schedulable (by any scheduler) unless the
following conditions hold.

1) The critical path length of each task τk is less than its
deadline, i.e.,

∀k : Lk ≤ Dk. (2)

2) The total utilization U∑ is smaller than the number of
cores, i.e.,

U∑ ≤ m. (3)

Clearly, if (2) is violated for some task, then its deadline is
doomed to be violated in the worst case, even if it is executed
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(a) (b)

Fig. 4. Two types of jobs that may interfere with Jk,a. (a) Jj,b is a carry-in job of Jk,a. (b) Jj,b is a fall-in job of Jk,a.

exclusively on sufficiently many cores. If (3) is violated, then
in the long term the worst-case workload of the system exceeds
the processing capacity provided by the platform, and thus the
backlog will increase infinitely which leads to deadline misses.

A scheduling algorithm S has a capacity augmentation
bound ρ if any task set τ satisfying the following conditions is
schedulable by S: 1) ∀k : Lk ≤ Dk/ρ and 2) U∑ ≤ m/ρ. The
concept of capacity augmentation bound can be equivalently
stated as follows [14] and [18]:

Definition 1 (Capacity Augmentation Bound for DAG Task
System): A scheduling algorithm S has a capacity augmenta-
tion bound ρ if it can always schedule DAG task set τ on m
cores of speed ρ as long as τ satisfies the above necessary
conditions (2) and (3).

A scheduling algorithm with a smaller ρ is prefer-
able and when ρ = 1 the scheduling algorithm S is
optimal.

B. Overall Analysis Outline

The overall intuition behind the capacity bound analysis is
to derive a sufficient condition, under which every released job
can be successfully scheduled by GEDF on cores with speed ρ.
More precisely, for each job Jk,a under analysis, we derive a
lower bound of the multicore resource that must be utilized
to execute tasks in the scheduling window [rk,a, dk,a] of Jk,a,
and meanwhile, we derive an upper bound of the workload
that must be executed by GEDF during the scheduling win-
dow [rk,a, dk,a] of Jk,a. A sufficient condition for successfully
scheduling tasks is that the resource’s lower bound is larger
than the workload’s upper bound for all jobs. As we know
that the lower resource bound increases with the core speed ρ

and the upper workload bound decreases with the core speed
ρ, we aim to find the minimum speed ρ to make the suffi-
cient condition hold. Such a minimum speed ρ is the capacity
augmentation bound as shown in Definition 1.

In the following, the upper workload bound is analyzed in
Sections IV-A and V-A. Moreover, the lower resource bound
is given in Section IV-B. Determining the infimum of speed
ρ is given in Section V-B.

IV. PRELIMINARY RESULTS

In this section, we introduce some concepts and properties
that will be useful in deriving the capacity augmentation bound
in the next section.

A. Interference

Suppose we are analyzing the schedulability of an arbi-
trary job Jk,a, the ath instance of task τk, under GEDF

scheduling. When analyzing Jk,a, we assume that all the
other jobs can meet their deadlines. Another job Jj,b

of τj can interfere with Jk,a if the following conditions
hold.

1) At some time point, Jj,b and Jk,a are both unfinished
(this implies the scheduling windows of Jj,b and Jk,a

are overlapped, assuming that Jj,b meets its deadline).
2) The absolute deadline of Jj,b is no later than the absolute

deadline of Jk,a, i.e., dj,b ≤ dk,a.
For any task τj we distinguish its jobs that may interfere with

Jk,a into two types by considering whether their scheduling
windows are fully contained in the scheduling window of Jk,a

(see in Fig. 4).
1) Carry-in Jobs: A carry-in job (Jj,b) must be released

before the job of interest (Jk,a) and has an absolute dead-
line earlier than the absolute deadline of Jk,a, i.e.,rj,b <

rk,a ∧ dj,b ≤ dk,a [as shown in Fig. 4(a)].
2) Fall-in Jobs: A fall-in job’s (Jj,b) scheduling window

is fully contained in the scheduling window of the job
of interest (Jk,a). More specifically, Jj,b is released after
the release time of Jk,a, and the absolute deadline of Jj,b

is earlier than the absolute deadline of Jk,a, i.e., rj,b ≥
rk,a ∧ dj,b ≤ dk,a [as shown in Fig. 4(b)].

Note that a job Jj,b that is a carry-in job of Jk,a does not
interfere with Jk,a, if Jj,b has finished before the release time
rk,a of Jk,a. If the carry-in job Jj,b of Jk,a is unfinished at rk,a,
then Jj,b can interfere with Jk,a, and we call the work that
is from the carry-in jobs of Jk,a and interferes with Jk,a as
carry-in work.

Definition 2 (Carry-in Work): For a job Jk,a under anal-
ysis, the carry-in work, denoted by χk,a, is the total work
from the carry-in jobs executed in the scheduling window
of Jk,a.

According to Definition 2, the work from a carry-in job Jj,b

to Jk,a contributes to the carry-in work of Jk,a if it is executed
during the interval [rk,a, dj,b] (recall that when analyzing the
schedulability of Jk,a we assume Jj,b can meet its deadline).

Similarly, a fall-in job may not interfere with Jk,a unless Jk,a

is unfinished at the release time of Jj,b. If Jj,b interferes with
Jk,a, the amount of interfering work from Jj,b is Cj, which is
called fall-in work.

Definition 3 (Fall-in Work): For a job Jk,a under analysis,
its fall-in work Fk,a is the total work from the fall-in jobs
released before Jk,a finishes its execution.

Note that the fall-in work Fk,a of Jk,a not only consists of
the work from Jk,a’s fall-in jobs, but also contains the work
from Jk,a itself.

Let nk,a
j be the number of Jk,a’s fall-in jobs that are released

from the task τj (see an example in Fig. 5). The total amount
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Fig. 5. Number of Jk,a’s fall-in jobs from τj is nk,a
j = 3.

of the fall-in work of Jk,a is upper bounded by

Fk,a ≤
∑

i

nk,a
i Ci =

∑
i

uin
k,a
i Pi. (4)

Definition 4 (Remaining Window Length): Let Jj,b be a
carry-in job from task τj for the analyzed job Jk,a, the
remaining window length of τj is defined as

α
k,a
j = dj,b − rk,a.

Obviously, α
k,a
j ≤ Dj [see Fig. 4(a)]. Moreover, as shown

in Fig. 5, the following inequality holds:

Dk ≥ α
k,a
j + Pj − Dj +

(
nk,a

j − 1
)

Pj + Dj

= α
k,a
j + nk,a

j Pj. (5)

B. Progress Under Work-Conserving Scheduling

The GEDF satisfies work-conserving property: cores will
never be idle if there are ready vertices waiting for execu-
tion. The work-conserving property guarantees the system to
make progress whenever there is ready workload to execute.
The progress can be guaranteed differently for two types of
intervals.

1) Complete Interval: At any time point in a complete
interval, all cores are busy.

2) Incomplete Interval: At any time point in an incomplete
interval, at least one core is idle.

In order to coincide with the analysis undertaken in the
following sections, this section considers a more general case
of scheduling on m cores with speed ρ. The following lemmas
are given in [14].

Lemma 2: On a processing platform of core speed ρ, the
remaining critical path length of each unfinished job reduces
by ρt after an incomplete interval of length t is elapsed.

Lemma 3: On a processing platform of core speed ρ, the
total work in a time interval of length t, in which the
accumulated length of incomplete intervals is t∗, is at least
ρmt − ρ(m − 1)t∗.

By Lemmas 2 and 3, we can obtain the following lemma.
Lemma 4: For any interval I that falls in the scheduling

window of job Jk,a, i.e., I ⊆ [rk,a, dk,a], if Jk,a finishes after
I, then the total amount of work done during I is at least
ρm|I| − (m − 1)Lk, where Lk is the critical path length of τk.

Proof: We first prove that the accumulated length of incom-
plete intervals in I, denoted by x, is no more than Lk/ρ. We
prove this by contradiction, assuming x > Lk/ρ. According
to Lemma 2, Jk,a’s critical path length reduces by ρ · x
after all the incomplete intervals with the total length x are
elapsed. Therefore, we can conclude that the critical path

length reduces by more than Lk at the end of I. which leads to
a contradiction as the length of the critical path is at most Lk.

By now, we know that the accumulated length of the
incomplete intervals in I is at most Lk/ρ. By Lemma 3,
the total amount of work done during I is at least
ρm|I| − (m − 1)Lk.

Lemma 4 implies a lower bound of the amount of work-
load that must be done during an interval when some jobs
are unfinished. This lemma will be used in the proofs of
Section V-B.

V. ANALYSIS

This section presents our schedulability analysis and the
capacity augmentation bound.

The main idea of our analysis is as follows. For any given
positive number ε, we formulate a speed function ρ(ε), and
assume that the task set is run on m cores with speed up ρ(ε).
Then, for every job released from the task system, we can
use a function of ε to bound its carry-in work. For every job,
the bounded carry-in work leads to bounded interference from
other tasks, and hence GEDF can successfully schedule all
of them. The infimum of the speed function ρ(ε) eventually
implies the capacity augmentation bound. In the following,
Section V-A derives an upper bound for carry-in work, based
on which, the proof for a capacity augmentation bound is
presented in Section V-B.

A. Upper Bound for Carry-in Work

In the following, we show that the carry-in work for a job
under analysis can be well bounded if scheduled on m ρ-speed
cores. First, for the cores with speed ρ ≥ 1, a straightforward
bound for carry-in work of the analyzed job Jk,a is as follows.

Lemma 5: If the core speed ρ ≥ 1, the carry-in work χk,a

for job Jk,a is bounded by

χk,a ≤ β
∑

i

uiDi. (6)

Proof: Using J1 to denote the set of carry-in jobs of Jk,a

that are unfinished at time rk,a, then we have

χk,a ≤
∑

Jj,b∈J1

ujPj

≤ β
∑

Jj,b∈J1

ujDj

[
∵ β = max

i

{
Pi

Di

}]

≤ β
∑

i

uiDi.
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The last step of the above inequality is because that each
constrained-deadline task τi has at most one job to be the
carry-in job of Jk,a. This completes the proof.

For the cores with speed ρ strictly larger than 1, by rep-
resenting the infimum of core speed ρ as a function, the
carry-in-work bound for the analyzed job Jk,a can be further
refined as shown in Lemma 6, and this is one of the basic
result of this paper.

Lemma 6: If the core speed ρ ≥ ρ(ε) (where ε > 0), the
carry-in work χk,a for job Jk,a is bounded by

χk,a ≤ β(1 + ε)
∑

i

uiα
k,a
i (7)

where

ρ(ε) = β(1 + ε) +
(

ε + 1

ε

)(
1 − 1

m

)
. (8)

(Recall that α
k,a
i is the remaining window length of task τi as

defined in Definition 4.)
Proof: We prove the lemma by an induction to jobs in the

order of their release time. The job of interest is denoted as
“Jk,a” at each induction step.

Base Case: If Jk,a is the very first job released in the system,
i.e., released at time 0, no carry-in jobs are released before
Jk,a, implying that χk,a = 0, and α

k,a
i = 0 for each τi ∈ τ .

Therefore, the condition (7) trivially holds

χk,a = 0 ≤ β(1 + ε)
∑

i

uiα
k,a
i = 0.

Inductive Step: For the case that Jk,a is not the first job
released in the system, we have the inductive hypothesis: every
job Jj,b released earlier than Jk,a satisfies

χ j,b ≤ β(1 + ε)
∑

i

uiα
j,b
i . (9)

In the following we prove that (7) holds for job Jk,a. First,
the condition (7) trivially holds if α

k,a
j > [Dj/(1 + ε)], for

every carry-in job Jj,b of Jk,a. The reason is as follows. From
Lemma 5, we have

χk,a ≤ β
∑

j

ujDj

< β(1 + ε)
∑

j

ujα
k,a
j

[
∵ α

k,a
j >

Dj

1 + ε

]
.

Therefore, in the following we only consider the case such
that at least one unfinished carry-in job Jj,b satisfies α

k,a
j ≤

[Dj/(1 + ε)]. Then by Dj = rk,a − rj,b + α
k,a
j and letting

	 = rk,a − rj,b, we have

	 ≥ ε

1 + ε
Dj. (10)

On the other hand, we have (see Fig. 6 for intuition)

	 ≥ α
j,b
i + Pi − Di + n	

i Pi + Di − α
k,a
i

≥ α
j,b
i + n	

i Pi + Pi − α
k,a
i (11)

where n	
i denotes the number of jobs that are

released after the release time rj,b of Jj,b, and

whose next job is released before the release time
rk,a of Jk,a.

Note that Jj,b has not finished at time rk,a. According to
Lemma 4, the total amount of work done during [rj,b, rk,a],
denoted by W	, is at least

W	 ≥ ρm	 − (m − 1)Lj. (12)

The work of W	 comes from three sets of jobs.
1) JA: the set of carry-in jobs of Jj,b.
2) JB: the set of carry-in jobs of Jk,a.
3) JC: the set of jobs that entirely fall in [rj,b, rk,a].

For example, in Fig. 6, JA = {Ji,c, Jl,d} (in red rectangles),
JB = {Ji,c+2, Jl,d} (in blue rectangles) and JC = {Ji,c+1} (in
green rectangles). Obviously, (JA ∪ JB) ∩ JC = ∅, and in
general JA ∩ JB �= ∅.

Let J ′
A = JA − JB. We use Wx to denote the total amount

of work done by jobs in Jx (for x = A′, A, B, C), the total
amount of work W	 done during [rj,b, rk,a] can be divided
into three parts

W	 = WA′ + WB + WC. (13)

In the following, we derive an upper bound for each part
above, respectively.

Upper Bound of WA′ : Since the work in WA′ is executed
in the interval between the release time rj,b of Jj,b and the
absolute deadline dj,b of Jj,b, WA′ is included in the carry-
in work χ j,b of Jj,b, i.e., WA′ ≤ χ j,b, and by the inductive
hypothesis (9), we have

WA′ ≤ β(1 + ε)
∑

i

uiα
j,b
i . (14)

Upper Bound of WB: We observe that the total amount of
work by the carry-in jobs of Jk,a, denoted by Ck,a can be
divided into two parts.

1) The work done before or at the release time rk,a of Jk,a.
This part includes WB.

2) The work done after the time rk,a, which equals χk,a.
Therefore, we have

Ck,a ≥ WB + χk,a. (15)

Each constrained-deadline task τi has at most one job
to be the carry-in job of Jk,a. Thus, the total amount of
work Ck,a from the carry-in jobs of Jk,a has an upper
bound Ck,a ≤ ∑

i uiPi and combining this with (15)
yields

WB ≤
∑

i

uiPi − χk,a. (16)

Upper Bound of WC: For each τi ∈ τ , recall
that n	

i is the number of jobs that are released after
the release time rj,b of Jj,b, and whose next job is
released before the release time rk,a of Jk,a [defined right
after (11)]. The total amount of work WC from JC can be
calculated as

WC =
∑

i

uin
	
i Pi. (17)
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Fig. 6. Illustration for the proof of Lemma 6.

Putting (13), (14), (16), and (17) together, we have

W	 ≤ β(1 + ε)
∑

i

uiα
j,b
i +

∑
i

uin
	
i Pi +

∑
i

uiPi − χk,a

≤ β(1 + ε)
∑

i

ui

(
α

j,b
i + n	

i Pi + Pi

)
− χk,a

[∵ ε > 0, β > 1]

and by (12), we have

χk,a ≤ β(1 + ε)
∑

i

ui

(
α

j,b
i + n	

i Pi + Pi

)
− ρm	 + (m − 1)Lj

≤ β(1 + ε)
∑

i

ui

(
	 + α

k,a
i

)
− ρm	

+ (m − 1)Lj [∵ (11)]

and since
∑

i ui ≤ m and Lj ≤ Dj, we have

χk,a ≤ β(1 + ε)

(
m	 +

∑
i

uiα
k,a
i

)
− ρm	 + (m − 1)Dj

and by 	 ≥ (ε/[1 + ε])Dj, we have

χk,a ≤ (β(1 + ε) − ρ)m	 + (m − 1)

(
ε + 1

ε

)
	

+ β(1 + ε)
∑

i

uiα
k,a
i

and since ρ ≥ β(1 + ε) + (ε + (1/ε))(1 − (1/m)), we have

χk,a ≤
(

ε + 1

ε

)
(1 − m)	 +

(
ε + 1

ε

)
(m − 1)	

+ β(1 + ε)
∑

i

uiα
k,a
i

by which we finally get χk,a ≤ β(1 + ε)
∑

i uiα
k,a
i .

B. Upper Capacity Augmentation Bound

In this section, we propose an capacity augmentation bound
for the DAG tasks with constrained deadlines.

Recall that we can bound the fall-in work Fk,a by (4),
and Lemma 6 bounds the carry-in work χk,a, so by now

we have bounded the total amount of work to be executed
in the scheduling window of Jk,a, the job under analysis.
Next, we will present a lemma that identifies core speeds
for the platform to be able to finish this total amount of
work in the scheduling window of Jk,a, and thus guarantee
the schedulability.

Lemma 7: A task set that satisfies the necessary conditions
in Lemma 1 is schedulable under GEDF on a multicore plat-
form with core speed ρ ≥ β(1 + ε) + (ε + (1/ε))(1 − (1/m))

(where ε > 0), i.e., GEDF has a capacity augmentation bound
of β(1+ε)+(ε+(1/ε))(1−(1/m)), where β = maxi{(Pi/Di)}.

Proof: We prove this theorem by contradiction. Suppose an
arbitrary job Jk,a misses its deadline. It implies that all the
work done during the scheduling window [rk,a, dk,a] of Jk,a

(the length of which is Dk) can interfere with Jk,a (including
Jk,a’s work).

We use W to denote the total amount of work that has been
done in [rk,a, dk,a]. Since Jk,a misses deadline, we know

W ≤ χk,a + Fk,a. (18)

Since Jk,a has not finished at its absolute deadline dk,a, by
Lemma 4, we have

W ≥ ρmDk − (m − 1)Lk

≥ (1 + (ρ − 1)m)Dk [∵ m > 1, Lk ≤ Dk]. (19)

Then by (18) and (19), as well as the upper bounds for χk,a

in Lemma 6 and for Fk,a in (4), we have

(1 + (ρ − 1)m)Dk ≤ β(1 + ε)
∑

i

uiα
k,a
i +

∑
i

uin
k,a
i Pi

⇒ (1 + (ρ − 1)m)Dk ≤ β(1 + ε)
∑

i

ui

(
α

k,a
i + nk,a

i Pi

)
[∵ ε > 0, β > 1]

⇒ (1 + (ρ − 1)m)Dk ≤ β(1 + ε)
∑

i

uiDk [from (5)]

⇒ (1 + (ρ − 1)m)Dk ≤ β(1 + ε)mDk

[
∵

∑
i

ui ≤ m

]

⇔ 1 + (ρ − 1)m ≤ β(1 + ε)m
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⇔ ρ ≤ β(1 + ε) + 1 − 1

m

⇒ ρ < β(1 + ε) +
(

ε + 1

ε

)(
1 − 1

m

)
[
∵ m > 1, ε + 1

ε
≥ 2

]
.

It contradicts to the precondition ρ ≥ β(1+ε)+(ε+(1/ε))(1−
(1/m)), so assumption is not true and the lemma is proved.

Note that the capacity augmentation bound in Lemma 7
contains an open variable ε. Lemma 7 holds for any ε > 0,
and our target is to achieve a bound as low as possible. The
following lemma gives the value of ε to make the bound β(1+
ε) + (ε + (1/ε))(1 − (1/m)) to reach its minimum.

Lemma 8: β(1 + ε) + (ε + (1/ε))(1 − (1/m)) reaches
its minimum β + 2

√
(β + 1 − (1/m))(1 − (1/m)) with ε =√

([1 − (1/m)]/[β + 1 − (1/m)]).
Proof: We rewrite the β(1 + ε)+ (ε + (1/ε))(1 − (1/m)) as

β(1 + ε) +
(

ε + 1

ε

)(
1 − 1

m

)
= β + A + B

where A = (β + 1 − (1/m))ε, B = (1 − (1/m))(1/ε).
Since A+B ≥ 2

√
AB, we know the lower bound of β+A+B

β + A + B ≥ β + 2
√

AB = β + 2

√(
β + 1 − 1

m

)(
1 − 1

m

)
.

Since A + B reaches its minimum 2
√

AB with A = B, we can
solve the desired ε with(

β + 1 − 1

m

)
ε =

(
1 − 1

m

)
1

ε

by which we get ε = √
([1 − (1/m)]/[β + 1 − (1/m)]).

Now, by substituting the bound in Lemma 7 by its minimum
we can conclude the main result of this paper.

Theorem 1: A task set that satisfies the necessary con-
ditions in Lemma 1 is schedulable under GEDF on
a multicore platform with core speed ρ ≥ β +
2
√

(β + 1 − (1/m))(1 − (1/m)), i.e., GEDF has a capacity
augmentation bound of β + 2

√
(β + 1 − (1/m))(1 − (1/m)),

where β = maxi{(Pi/Di)}.
We can state Theorem 1 in the form of a direct schedula-

bility test on unit-speed cores.
Corollary 1: On m unit-speed cores, where m > 1, if a

sporadic task set τ with constrained deadlines satisfies the
following two conditions:

U∑ ≤ m

β + 2

√(
β + 1 − 1

m

)(
1 − 1

m

)
∀k : Lk ≤ Dk

β + 2

√(
β + 1 − 1

m

)(
1 − 1

m

)
where β = maxi{(Pi/Di)}, then τ is schedulable by GEDF.

C. Lower Capacity Augmentation Bound

This section gives an example to show the lower bound of
the capacity augmentation bound.

Fig. 7. Structure of the task set that demonstrates GEDF does not provide
a capacity augmentation bound less than [(β +

√
β2 + 4β)/2] + 1.

Fig. 8. Execution of the task set under GEDF at speed ρ.

The example is constructed as shown in Fig. 7. The task
set contains two tasks. One task τ1 is structured as a single
vertex with workload x followed by nm vertices with workload
y. Its critical path length L1 is x+y and so is its deadline. The
period of τ1 is set to be β(x+y), and moreover, the utilization
u1 is set to be m − 1

m − 1 = x + nmy

β(x + y)
. (20)

The other task τ2 has a single vertex with workload, dead-
line, and period equal to x + y − (x/ρ), and thus the critical
path length L2 of τ2 is x + y − (x/ρ) and the utilization u2 of
τ2 is 1.

Obviously, the necessity conditions (2) and (3) hold: U∑ =
u1 + u2 ≤ m, L1 ≤ D1 and L2 ≤ D2. During the execution, τ1
is released at the absolute time 0, and τ2 is released at time
(x/ρ) + 1. The execution is shown in Fig. 8.

We want to generate an example, so we want τ2 to miss its
deadline. In order for this to occur, we must have

x + y − x

ρ
+ 1 <

ny + x + y − x
ρ

ρ
. (21)

Reorganizing and combining (20) and inequality (21),
we get

ρ <
(n + 1)mβ + 2(nm − (m − 1)β)

2(nm − (m − 1)β) + 2((m − 1)β − 1)

+
√

(n + 1)2m2β2 + 4n((m − 1)β − 1)(nm − (m − 1)β)

2(nm − (m − 1)β) + 2((m − 1)β − 1)
.

(22)

In (22), for large enough nm, we have

ρ <
(β + 2)nm +

√(
β2 + 4β

)
n2m2

2nm

⇔ ρ <
β + √

β2 + 4β

2
+ 1. (23)

So there exists an example for any speed-up ρ that satisfies
the above conditions. Therefore, the capacity augmentation
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Fig. 9. n = 20, m = 16, β = 2, p = 0.25.

required by GEDF is at least [(β + √
β2 + 4β)/2] + 1. In

particular, the bound is [(3 + √
5)/2] for implicit deadline

task sets.
Corollary 2: The gap ratio of the bound in Theorem 1 to

the optimal one does not exceed 1.47.
Proof: By dividing the upper bound in Theorem 1 by the

lower bound in (23) and for large m, we obtain the upper
bound of the ratio of the gap ratio under analysis as follows:

2β + 4
√

β + 1

β + √
β2 + 4β + 2

. (24)

The maximum value of (24) is 1.4641, when β ≈ 2.

VI. EXPERIMENTS

In this evaluation, we compare the schedulability tests based
on Corollary 1 of this paper (denoted by CAP) and [13, Th. 21]
(denoted by BON), both of which are linear-time schedulabil-
ity test conditions for constrained-deadline DAG tasks under
GEDF.

The task sets are generated using the Erdös–Rényi method
G(nk, p) [33]. For each task τk, the number of vertices is
randomly chosen in the range [50, 250] and the worst-case
execution time of each vertex is randomly picked in the range
[50, 100]. A valid period Pk is generated according to its tar-
get utilization, and the deadline Dk is uniformly chosen in
[Pk/β, Pk]. For each possible edge we generate a random value
in the range [0, 1] and add the edge to the graph only if the
generated value is less than a predefined threshold p. In general
the critical path of a DAG generated using the Erdös–Rényi
method becomes longer as p increases, which makes the task
more sequential. We use n to denote the number of tasks in a
task set and m the number of cores. For each parameter config-
uration, we randomly generate 10 000 task sets. We compare
the acceptance ratio of CAP and BON. The acceptance ratio
is the ratio between the number of task sets deemed to be
schedulable by a method and the total number of task sets
that participate in the experiment (with a specific parameter
configuration).

Fig. 9 reports the acceptance ratio of the tests as a function
of the total utilization U∑, where we set n = 20, m = 16, β =
2, p = 0.25. We observe that CAP method clearly outperforms
the BON method.

Fig. 10 shows the results with different number of cores,
with a fixed utilization U∑ = 4, and set n = 20, β = 2,
p = 0.25. Since the total volume is fixed now, it becomes
easier to successfully schedule a task set with more cores.

Fig. 10. n = 20, U∑ = 4, β = 2, p = 0.25.

Fig. 11. n = 20, m = 16, U∑ = 2, β = 2.5.

Fig. 12. n = 20, m = 16, U∑ = 2, p = 0.25.

The experimental result shows that CAP requires less cores
than BON to make the task set to be schedulable.

Fig. 11 shows the results with different p (which determines
the intratask parallelism of tasks), with U∑ = 2, n = 20,
m = 16, and β = 2.5. We observe that CAP, the schedulability
is better for tasks with higher parallelism. This is because, for
a task with fixed volume, a more parallel structure in general
leads to a shorter critical path, and thus more laxity, which is
beneficial to schedulability. However, this trend is very weak
for BON. Fig. 11 shows that BON has a low acceptance ratio
ranging from 0.2 to 0.3 with different parallelism degrees,
which clearly implies the superiority of CAP over BON in
exploring the laxity of the tasks.

Fig. 12 shows the results with different β (which determines
the relative deadlines of tasks), with U∑ = 2, n = 20, m = 16,
and p = 0.25. For both tests, the schedulability ratio decreases
when β increases. However, CAP can tolerate the increase of
β much better than BON.

VII. CONCLUSION

In this paper, we consider multiple parallel tasks in the
DAG model, and prove that for parallel tasks with constrained
deadlines the capacity augmentation bound of GEDF is β +
2
√

(β + 1 − (1/m))(1 + (1/m)), where β = maxi{(Pi/Di)}.
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This is the first capacity augmentation bound for DAG tasks
with constrained deadlines. Compared with existing schedula-
bility test for the same problem setting also with linear-time
complexity, the capacity augmentation result reported here per-
forms better in terms of acceptance ratio. Moreover, we prove
that the optimal capacity augmentation bound cannot be lower
than (β + 2 + √

β2 + 4β)/2. The ratio of our bound to the
optimal one does not exceed 1.47. As the future work, we will
generalize the result of this paper to arbitrary-deadline tasks.
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