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Abstract—Challenging scheduling problems arise in the im-
plementation of cyber-physical systems upon heterogeneous plat-
forms with (serial) data offloading and (parallel) computation.
In this paper, we adapt techniques from scheduling theory to
model, analyze, and derive scheduling algorithms for real-time
workloads on such platforms. We characterize the performance of
the proposed algorithms, both analytically via the approximation
ratio metric and experimentally through simulation experiments
upon synthetic workloads that are justified via a case study on
a CPU-GPU platform. The evaluation exposes some divergence
between the analytical characterization and experimental one;
recommendations that seek to balance such divergent character-
izations are made regarding the choice of algorithmic approaches.

I. INTRODUCTION

Many emerging safety-critical cyber-physical systems
(CPS), including self-driving cars [1], unmanned aerial vehi-
cles [2], and robotics [3], are characterized by an increased
degree of autonomous decision-making, which often relies
upon artificial intelligence and machine learning components
to perform important operations. Since these components have
high data parallelism and are computationally intensive, there
is a trend in moving towards parallel and heterogeneous
computing architectures in the cyber-physical systems (CPS)
domain to cope with the increasing performance requirements.
These architectures integrate general-purpose CPUs (known as
the host) with low-power and high-performance accelerator
devices, e.g., DSP fabrics, GPUs or FPGAs. Example archi-
tectures include the NVIDIA Tegra X1 [4], TI Keystone II [5],
and Xilinx UltraScale [6].

This trend makes it imperative that we better understand
how to schedule workloads upon the host+accelerator plat-
forms in a manner that is cognizant of real-time constraints and
concerns. To fully exploit the performance capabilities of the
accelerators, programs written on such platforms often form a
host-centric acceleration model that consists of two stages:
(i) the host first offloads the code and data to accelerator
devices; (ii) the offloaded workloads are then executed upon
the computing accelerators.

In this paper, we aim to better understand how to make the
host-centric acceleration model work efficiently for real-time
and latency-sensitive systems. We report upon our experiences
in building and analyzing a framework for scheduling a
particular form of real-time workload upon a specific host-
centric acceleration architecture. Our motivation and objective
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in sharing our experiences are to contribute towards a better
theoretical understanding of the use of host+accelerator com-
puting platforms in safety-critical CPSs. Specific contributions
include the following.
• We propose a formal scheduling-theoretic representation

of the scheduling problem upon the host-centric acceler-
ation architectures. Although this model is by no means
being proposed as one that is appropriate for representing
all real-time workloads upon host+accelerator platforms,
we believe that it is suitable and can be easily extended for
a reasonably large class of applications. Additionally, we
hope that some of the advanced scheduling-theoretic ideas
that we have adapted and applied here (borrowed from
prior work on flow-shop scheduling [7], two-dimensional
bin-packing [8], and parallel job scheduling [9], [10]) can
find their applicability in the formalization and solution
of other resource allocation and scheduling problems on
host+accelerator platforms.

• We develop, prove correct, and characterize the effec-
tiveness of two different algorithms with provable per-
formance properties for solving our scheduling problem
on the host-centric acceleration architecture. One of these
algorithms is developed from first principles, and the other
is derived by leveraging off relationships between our
problem and previously studied problems in “traditional”
scheduling theory. We believe that both algorithms are
relatively simple to understand and practical to implement.

• We supplement our analytical characterization of our al-
gorithms and a comparison of their performance from a
theoretical perspective, with an experimental evaluation
via extensive simulation on synthetic workloads. The
simulation experiments have yielded several interesting
insights that may further guide the choice of algorithms for
scheduling workloads upon host+accelerator platforms.

• Finally, we demonstrate the practicality of our scheduling-
theoretic representation of the host+accelerator scheduling
problem and the proposed algorithms via a case study
conducted on a real CPU+GPU platform.

II. PROBLEM SPECIFICATION AND PRIOR RESULTS

We propose a formal model for the scheduling problem
upon a host+accelerator platform to meet a particular kind
of real-time constraint. More specifically, our model explicitly
captures the data offloading between the host and the acceler-
ator and represents the computing workload on the accelerator
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as parallelizable jobs on multiple computing units of the accel-
erator. Our scheduling-theoretic representation is designed to
abstract out the main functionalities of host+accelerator plat-
forms, thereby enabling the derivation of theoretical analyses
and scheduling algorithms. In Section VI, we provide a case
study to demonstrate that our model is capable of representing
the main characteristics of a CPU+GPU platform.

A. PROBLEM SPECIFICATION

System model. We consider a host-centric acceleration
architecture with a host and an accelerator device connected
via a non-preemptive bus. The accelerator device consists of
multiple computing units (called processors throughout this
paper). We let m denote the number of processors that are
available in the accelerator device.

Workload model. We seek to schedule a collection of n
tasks T = {τ1, · · · τn} upon the host-centric acceleration
architecture. All the jobs of T are generated upon the host,
and their data must first be serially offloaded to the accelerator
device where they may be executed in parallel.

More precisely, each task τi of T , consisting of data
offloading and (parallel) execution of its job, is characterized
by the following parameters:
• xi is the time duration required for task τi to offload

data from the host to the accelerator device. The data
offloading of each task τi is non-preemptive. After the
data offloading, the system can start to execute the corre-
sponding (parallel) job of τi on the accelerator device. Let
X

def
=

∑
i xi denote the total duration of the data offloading

associated with all jobs of task set T .
• χi ≤ m is the maximum degree of parallelism of task τi,

i.e., there is no benefit to assign more than χi processors to
its job. The computing job of task τi is moldable, meaning
that the number of assigned processors mi may be any
number (≤ χi); however, it cannot change once the job
starts executing1.

• A work function wi(k) is specified to give the total
execution requirement of τi when assigned k ∈ 1, 2, ..., χi

processors. We assume that (i) total workloads are mono-
tone, i.e., wi(k) is non-decreasing (this assumption is rea-
sonable, since total workload cannot decrease just by as-
signing more processors); and (ii) the execution lengths are
monotone; i.e., wi(k)/k is non-increasing — by assigning
more processors, per-processor execution time will not
increase2. In particular, we say a job has a linear speedup
if it has a constant work function, i.e., wi(k) = wi(1).

• Let Wi
def
= wi(χi) = yiχi denote the total execution

requirement of τi when assigned the maximum possible
number (χi) of processors, where yi denotes the duration

1A malleable job, on the contrary, may change the number of processors
upon which it runs during its execution, while a rigid job needs to execute
on a fixed number of processors. The terminology in such classification is not
always consistent — we use the terminology as defined in [10].

2Note that although some of the theoretical bounds to be derived in this
paper requires stricter assumptions (e.g., linear speedup), all algorithms work
upon models satisfying the aforementioned (very general) assumptions.

within which job τi guarantees to complete if executing
at maximum parallelism. Wmax

def
= maxi{Wi} denotes the

largest execution requirement of any job, while ymax
def
=

maxi{yi} denotes the longest execution length of any job,
when given the maximum number of processors this job
can use. Additionally, we use WΣ

def
=

∑
i Wi to denote the

total amount of execution that is needed for the whole
system. Note that ymax and Wmax may be defined by
different jobs: it is not necessary that there be a single
job τi for which yi = ymax and Wi = Wmax.

Problem/Objective. In this paper, we aim to efficiently
schedule jobs of T on the host+accelerator platforms such
that the completion time of all jobs (equivalently, the overall
duration of the schedule of T , or the makespan of T ) is
minimized. (This objective is closely related to the so-called
frame-based real-time task systems where tasks have the same
implicit deadline and release their jobs synchronously.)

Worst-case approximation ratio. As our objective is to min-
imize the overall duration of the schedule, we quantify the ef-
fectiveness of an algorithm A by its worst-case approximation
ratio: the maximum, over all problem instances, of the ratio
between the duration of the schedule for a particular instance
obtained by A to that obtained by an optimal algorithm.

III. ALGORITHM I

An straightforward strategy to the scheduling problem de-
scribed in Section II is to schedule the jobs in a work-
conserving manner: sequentially offload jobs and execute them
whenever there are idle processors. Specifically, when there
are k idle processors, we assign min(χi, k) idle processors to
an offloaded job τi. However, this work-conserving strategy
may lead to very bad timing behaviors. The following example
shows that under this work-conserving strategy, jobs may be
forced to execute sequentially in the worst case.

Example 1. Consider the following two jobs τ1 and τ2 with
linear speedup, where L is some constant:

jobs xi Wi χi

τ1 1 2(m− 1) m− 1
τ2 1 mL m

Fig. 1: Work-conserving schedule of jobs in Example 1.

As shown in Figure 1, we sequentially offload the jobs
τ1 and τ2, and then schedule them by the work-conserving
algorithm. At time instant t = 2 when τ2 completes offloading,
the only idle processor is assigned to τ2 according to the
work-conserving property. Therefore, the parallel job of τ2
is enforced to be executed sequentially, and the makespan
is mL + 2. Clearly, if we do not execute job τ2 as soon
as it completes offloading and, instead, execute τ2 after the
completion of τ1 (at time 3), τ2 can be executed in full
parallelism. The corresponding makespan is L+ 3.

The example suggests that it may not be a good strategy
to execute a job as soon as it completes offloading. The
case becomes even worse when the number of processors mi
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assigned to τi is much smaller than the number of processors
that the job τi needs (χi), i.e., mi � χi.

Motivated by this example, we design a strategy to decide
the time point at which it is “proper” to assign idle processors
to a job. Our strategy, presented in pseudo-code form as Al-
gorithm 1, is characterized by two parameters α and Q, where
α ≤ 1 is a positive real number and Q is an ordering of the
jobs to be scheduled. Briefly speaking, Algorithm 1 offloads
jobs in the order of Q, and then executes each offloaded job
only when there are enough (≥ αm) idle processors.

Algorithm 1: GPUSched1(α,Q)

1 while Q is not empty do
2 if |Savail| ≥ αm then
3 τi := Dequeue(Q);
4 assign min (|Savail|, χi) processors to τi
5 offload τi to its assigned processors;
6 execute τi on its assigned processors;

Algorithm 1 operates in the following manner:
1) During run-time, Algorithm 1 maintains, at each instant,

the set Savail of processors that are not currently assigned
to any job. Savail is initialized to include all m proces-
sors; when processors are assigned to a job (Line 4 of
Algorithm 1), Savail is updated to remove the assigned
processors. Similarly, when a job completes its execution,
the processors assigned to it are returned to Savail.

2) Algorithm 1 considers the jobs in T in the order in which
they are present in the queue Q. When considering a job,
Algorithm 1 determines whether at least a fraction α of the
processors is available. If not, it waits until at least αm
processors become available following the completion of
other jobs to which processors were previously assigned.

3) Once at least αm processors are (or become) available, the
job τi at the head of the queue Q is selected for execution.
This entails the following steps:
a) The maximum number of the available processors that

τi is able to use, mi ← min(|Savail|, χi), are assigned
to it (and therefore removed from Savail).

b) τi is offloaded from the host to the accelerator device
(again in the order in which they appear in Q).

c) Once offloading is completed, τi immediately begins
its execution on the assigned mi processors.

Since the bus connecting the host to the accelerator device
is non-preemptive, the data offloading from the host to the
accelerator device happens non-preemptively. Hence, multiple
jobs may be queued awaiting offloading to the accelerator
device via the bus after having been assigned processors by
Algorithm 1. However, once a job has completed its offloading
phase it immediately begins its execution: there is no addi-
tional delay between the completion of the offloading phase
and the commencement of execution upon the processors.

A. AN INSTANTIATION OF ALGORITHM 1
We now consider an instantiation of Algorithm 1 in which:

• the job with the largest execution requirement (recall
from Section II that this execution requirement is denoted
Wmax) is required to be the last job in Q; and

• α is assigned a value as follows:

α ← Wmax

WΣ
(1)

These values for Q and α have been selected in order to
facilitate the derivation of performance bounds for Algorithm 1
that quantify its deviation from optimality (Corollary 1 below).
Later in Section III-B we will consider different design choices
for Q and α, and will show (Theorem 3) that these choices
could result in even better performance.

Theorem 1. The makespan of any schedule that is generated
by the above instantiation of Algorithm 1 for the collection of
jobs T upon m processors is bounded by

WΣ

m
+X +max

(
ymax,

WΣ

m

)
(2)

(Recall that X
def
=

∑
i xi denotes the total data-offloading time;

WΣ
def
=

∑
i Wi denotes the total execution requirement; and ymax

def
=

maxi{Wi/χi} denotes the maximum execution time of job with full
parallelism on χi processors.)

Proof. Without loss of generality, let us assume that the
schedule begins at time-instant zero and ends at time-instant tf
(and hence has a makespan of tf ). As illustrated by Figure 2,
we define ta to be the instant < tf at which some job that
completes at time-instant tf begins its execution upon the
processors that have been assigned to it, and tb to be the
time-instant, also < tf , at which all the data-offloading from
the host to the accelerator completes. We note that since a job
immediately begins execution when its data has been offloaded
from the host to the accelerator, it must be the case that
ta ≤ tb. Hence, the makespan tf can be written as

tf = tb + (tf − tb) ≤ tb + (tf − ta) (3)

Fig. 2: Illustration for the proof of Theorem. 1

Observe that over the interval [0, tb), Algorithm 1 does not
offload data on the shared bus when it is blocked at line 2
because fewer than αm processors are available — the m−αm
processors are actually executing jobs.3 Let � denote the total
duration for which this happens. By the definition of X , we
have that

tb = �+
∑
i

xi = �+X (4)

Additionally, we can bound � by the following argument:

3Though Algorithm 1 removes processors from Savail when they are
assigned to a job instead of when the job begins to execute upon them, it
must be the case that these processors are now executing (since there is no
data offloading happening, i.e., the data needed for all assigned processors to
begin execution has already been offloaded to the accelerator device).
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• At each instant in �, more than (1 − α) × m processors
are executing. Hence, the total execution that is completed
within the intervals of cumulative length � is > (1−α)m�.

• Since the job with the largest execution requirement,
Wmax, is the last job in queue Q and hence has its data
offloaded last, its execution starts at tb. All the execution
done in l must be comprised entirely of the other jobs.

Therefore, we have

(1− α)m� < (WΣ −Wmax)

⇔ � <
WΣ −Wmax

(1− α)m

⇔ � <
WΣ −Wmax

(1− Wmax
WΣ

)m
(By definition of α: Eqn 1)

⇔ � <
WΣ

m
(5)

From Expressions 4 and 5, we conclude that

tb <
WΣ

m
+X (6)

Consider now the interval [ta, tf ), during which the last job to
complete is executing. Let τk denote this job. Consider when
τk reaches the head of the queue Q in Algorithm 1. There are
two possibilities:
• If χk ≤ |Savail| at that point in time, then τk is assigned χk

processors and executes for a duration of Wk/χk, which is
≤ ymax (by definition of ymax — see Section II). In this
case, we have

(tf − ta) ≤ ymax (7)

• Else, it must be the case that χk > αm. Since |Savail| ≥ αm
at that point in time, we have mk ≥ αm. Therefore, in this
case, the execution duration of τk is at most Wk

αm , i.e.,

(tf − ta) ≤ Wk

αm
≤ Wmax

αm
(8)

From Expressions 7 and 8 and by applying the definition of
α (in Equation 1), we have

(tf − ta) ≤ max

(
ymax,

Wmax

αm

)
≤ max

(
ymax,

WΣ

m

)
(9)

Finally from Expressions 3, 6, and 9, we conclude that

tf <
WΣ

m
+X +max

(
ymax,

WΣ

m

)

and the theorem is proved.

Corollary 1. Algorithm 1, with Q and α initialized as de-
scribed in this section, has a worst-case approximation ratio
no larger than 3 when scheduling jobs with linear speedup.

Proof. It is evident that each of the three terms in Expression 2
of Theorem 1 is a lower bound on the makespan of a schedule
for the jobs of T upon m processors:
1) the first term, WΣ

m , is a lower bound on the execution
duration if all jobs have linear speedup and could execute
with full parallelism;

2) the second term X is a lower bound on the data-offloading
duration; and

3) in the third term, WΣ

m is a lower bound on the execution
duration under full parallelism, and ymax is a lower bound
on the duration of a single job with linear speedup.

The Expression 2 is therefore no more than a factor of three
larger than the optimal makespan of T upon m processors.

B. AN ALTERNATIVE INSTANTIATION OF ALGORITHM 1

In this section, we discuss an alternative instantiation of
Algorithm 1 and prove (in Theorem 3) that this alternative
instantiation dominates the one discussed in Section III-A:
any task set scheduled by the alternative instantiation has
a makespan bound no greater than the makespan bound
of the original instantiation. Our simulation experiments (in
Section V) additionally show that the alternative instantia-
tion tends to have a smaller actual makespan for randomly-
generated workloads.

Our alternative instantiation of Algorithm 1 places the job
with the largest execution requirement (Wmax) as the first job
in Q, and assigns α a value as follows:

α ← Wsec

WΣ
(10)

where Wsec denotes the second-largest execution requirement
of jobs in T :(

Wsec ≤ Wmax

)∧(∣∣∣{i | Wi > Wsec}
∣∣∣ ≤ 1

)
(11)

In Theorem 2, below, we will derive a makespan bound for
this alternative instantiation of Algorithm 1; in Theorem 3, we
will show that this makespan bound is smaller than the one
for the original implementaton (which is stated in Theorem 1).

As a notational convenience, in the remainder of this
section, we will assume that the jobs are indexed according
to the order in which they appear in the queue Q. In other
words, we assume that τ1 has maximum work (W1 = Wmax),
τ2 is the second job in Q, τ3 the third, and so on.

Theorem 2. With queue ordering and the value of α as speci-
fied above, the makespan of any schedule that is generated by
Algorithm 1 for the collection of jobs in T upon m processors
is bounded by

max
2≤k≤n

{F (k), x1 + y1}

where F (k) is defined as follows:

F (k)
def
= X −

n∑
j=k+1

xj +

(
WΣ −∑n

j=k Wj

)
(1− α)m

+max

(
Wk

αm
, yk

)
(12)

Proof. The main idea of this proof is to show that the RHS of
Expression 12 is an upper bound on the makespan: the duration
from starting the offloading of the first job to completing the
offloading of τk plus the duration taken to execute τk, when
τk is the last completed job during the schedule.

Without loss of generality, let us assume that the schedule
begins at time-instant zero and ends at time-instant tf , for a
makespan equal to tf . Let τk denote a job that completes at
time-instant tf , and let ta denote the instant < tf at which τk’s
data-offloading has completed and it begins execution upon
its assigned processors. Note that the first job τ1 in Q gets to

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:29:55 UTC from IEEE Xplore.  Restrictions apply. 



execute with full parallelism on χ1 processor. If it is the job
that completes lastly, the makespan tf = x1 + y1.

For the remaining cases of τk where k > 1, we will show
below that the sum of the first three terms in the RHS of
Expression 12 is an upper bound on the duration [0, ta) while
the last term is an upper bound on the duration [ta, tf ).

Consider first the interval [0, ta). Observe that over this
interval, Algorithm 1 will not offload data on the shared bus
when it is blocked at line 2 because fewer than αm processors
are available. Let � denote the total duration for which this
happens. We have that

ta =

(
k∑

j=1

xj

)
+ � =

⎛
⎝X −

n∑
j=k+1

xj

⎞
⎠+ � (13)

Additionally, we can bound � by the following argument:
• At each instant in �, more than (1−α)×m processors are

executing; hence, the total execution that is done during
intervals in � is greater than (1− α)m�.

• All this execution must be comprised entirely of the jobs
τ1, τ2, . . . , τk−1, as τk just finishes its offloading.

Therefore, we have

(1− α)m� < (

k−1∑
j=1

Wk) ⇔ (1− α)m� < (WΣ −
n∑

j=k

Wj)

⇔ � <
WΣ −∑n

j=k Wj

(1− α)m
(14)

From Expressions 13 and 14, we conclude that

ta < X −
n∑

j=k+1

xj +

(
WΣ −∑n

j=k Wj

)
(1− α)m

(15)

We now focus on the interval [ta, tf ). Consider when τk,
the job that completes at time-instant tf , reaches the head of
the queue Q in Algorithm 1. There are two possibilities:
• If χk ≤ |Savail|, then τk is assigned χk processors and

executes for a duration yk
def
= Wk/χk (by definition of yk

— see Section II). In this case, we have

(tf − ta) ≤ yk (16)

• Else, χk > |Savail| and mk, the number of processors
assigned to τk, is set equal to |Savail|. Since |Savail| ≥ αm,
we therefore have mk > αm. Hence, we have

(tf − ta) <
Wk

αm
(17)

From Expressions 16 and 17, we have

(tf − ta) ≤ max

(
yk,

Wk

αm

)
(18)

Summing the bounds on ta (Expression 15) and (tf − ta)
(Expression 18), we can bound the makespan tf by

X −
n∑

j=k+1

xj +

(
WΣ −∑n

j=k Wj

)
(1− α)m

+max

(
yk,

Wk

αm

)

which is the definition of F (k) — see Expression 12. Since
we do not necessarily know the identity of τk (i.e., which job

finishes lastly), we obtain the makespan bound by considering
all possibilities and taking the maximum.

Theorem 3. The bound of Theorem 2 dominates that of
Theorem 1.

Proof. Suppose that the bound of Theorem 2 achieves its
maximum value as x1 + y1. Recall that the first job τ1 in Q
has W1 = Wmax and is executed with full parallelism on χi
processor. Hence, the bound of Theorem 2 clearly dominates
that of Theorem 1, since

x1 + y1 ≤ X + ymax <
WΣ

m
+X +max

(
ymax,

WΣ

m

)

Suppose that the bound of Theorem 2 achieves its maximum
value at k, i.e., k = argmax2≤i≤n{F (i)}. We consider two
cases separately, depending on whether χk is larger than αm.

(i): χk ≥ αm. Note that since yk
def
= Wk/χk, it follows from

χk ≥ αm that yk ≤ Wk/(αm), and the last term (the “max”)
of Expression 12 equals Wk/(αm). We therefore have

F (k) ≤ X −
n∑

j=k+1

xj +

(
WΣ −∑n

j=k Wj

)
(1− α)m

+
Wk

αm

By algebraic simplification, this can be rewritten as

F (k) = X −
n∑

j=k+1

xj +

(
WΣ −∑n

j=k+1 Wj

)
(1− α)m

+
Wk

m

(
1

α
− 1

1− α

)

Observe that the sum of the first three items in the above
expression is maximized when k = n. Moreover, since α ≤ 1

2 ,
the coefficient of the Wk

m term is non-negative. Furthermore,
recall that the job τ1 has W1 = Wmax while k > 1, so the
above expression is maximized when Wk = Wsec:

F (k) ≤ X +
WΣ

(1− α)m
+

Wsec

m

(
1

α
− 1

1− α

)

= X +
WΣ

(1− α)m
+

αWΣ

m

(
1

α
− 1

1− α

)

= X +
WΣ

m

(
1

1− α
+ 1− α

1− α

)

= X +
2WΣ

m

which is clearly ≤ the bound of Theorem 1 (Expression 2).

(ii): χk < αm. Since yk
def
= Wk/χk, it follows that yk >

Wk/(αm). and the last term (the “max”) of Expression 12
equals yk. We therefore have

F (k) ≤ X −
n∑

j=k+1

xj +

(
WΣ −∑n

j=k Wj

)
(1− α)m

+
Wk

χk

By algebraic simplification, this can be rewritten as

F (k) = X−
n∑

j=k+1

xj+

(
WΣ −∑n

j=k+1 Wj

)
(1− α)m

+Wk

(
1

χk
− 1

(1− α)m

)

(19)
We now consider two possibilities, depending upon whether

the coefficient of Wk in Expression 19 above is ≥ 0.
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1) If the coefficient is ≥ 0, then Expression 19 is upper
bounded by the case when k ← n and Wk ← Wsec, and
the RHS of Expression 19 is bounded by

X +
WΣ

(1− α)m
− Wsec

(1− α)m
+

Wsec

χk

≤ X +
1

(1− α)m
(WΣ −Wsec) + ymax

= X +
1

(1− α)m
(WΣ − αWΣ) + ymax

= X +
WΣ

m
+ ymax

which is clearly ≤ the bound of Theorem 1.
2) Otherwise, the coefficient of Wk in Expression 19 is

negative, and we may discard this term to obtain the
following upper bound on its RHS :

X −
n∑

j=k+1

xj +

(
WΣ −∑n

j=k+1 Wj

)
(1− α)m

≤ X +
WΣ

(1− α)m
≤ X +

2WΣ

m
(Since Wsec ≤ WΣ

2
)

which is also obviously ≤ the bound of Theorem 1.

A further improvement. To derive the makespan bound of
Theorem 2, the sole constraint placed upon the structure of the
queue Q is that the job with the largest workload is at the head
of Q. We now specify how the jobs should be ordered in the
remainder of the queue to minimize the bound of Theorem 2
(recall that in this section we are indexing the jobs according
to their position in Q: τ1 is at the head of Q, τ2 is next,
and so on.). For each job τi in the remainder of the queue
(i = 2, · · · , n), we denote its associated weight zi as follows.

zi = max{ Wi

αm
, yi} −

Wi

(1− α)m
(20)

We sort the jobs in the reminder of the queue Q in the
decreasing order of their weights, i.e., for any i = 2, · · · , n−1,
jobs τi and τi + 1 in Q satisfy zi ≥ zi+1. More formally, we
use Algorithm 2 to find such an optimal ordering of jobs.

Algorithm 2: Finding an optimal ordering of jobs
Input: the set of jobs T = {τ1, · · · τn}
Output: a queue Q of the sorted jobs

1 τ1 := a job with maximum workload (i.e., W1 = Wmax)
2 for i = 1 up to n− 1 by +1 do
3 T ′ := T ′ − {τi};
4 τi+1 := argmaxτi∈T ′{zi}

Although ordering the queue in this manner does not change
the approximation ratio of the algorithm, it does result in
improved performance under many (perhaps most) cases. The
following lemma explains why this is a good idea.

Lemma 1. The bound of Theorem 2 achieves its infimum when
the queue Q of Algorithm 1 is ordered by Algorithm 2.

Proof. Let Q∗ denote the ordering of the jobs that is deter-
mined by Algorithm 2. Suppose, for a contradiction, that some

other ordering Q′ achieves a smaller bound than the queue Q∗.
We let τ ′i denote the i’th job in the queue Q′, ∀i = 1, · · · , n,
and let z′j denote the weight of τ ′j as defined in Expression 20.
We suppose that j (j ≥ 3) is the last position where the
weight of job τ ′j is larger than the weight of τ ′j’s next job,
i.e., z′j ≥ z′j+1 and z′j > z′j−1 (if such a position j does not
exist, it is easy to see that the ordering of the queue Q′ must be
determined by Algorithm 2, and the lemma trivially follows).
We consider the queue Q′′ obtained from Q′ by:
1) copying the jobs in positions 1, . . . , (j − 2) and positions

(j + 1), . . . , n of Q′ into the same positions in Q′′;
2) copying the job in position j−1 of queue Q′ into position

j of queue Q′′; and
3) copying the job in position j of Q′ into position j − 1 of

queue Q′′.
In other words, we obtain Q′′ from Q′ by “shifting” the j’th
and (j− 1)’th positions of the queue Q′, and copying the rest
of Q′ unchanged.

We observe that there are two positions j−1 and j at which
the queues Q′ and Q′′ differ. We will show below that the
bound of Theorem 2 is no larger if the ordering of queue Q′′

is used, than if the ordering of queue Q′ is used. By repeated
application of the argument above (equivalently, by induction),
it therefore follows that the bound of Theorem 2 is smallest
when the ordering of queue Q∗ is used.

We now show that the bound of Theorem 2 for the queue Q′′

is no larger than it is for Q′. Analogously to τ ′i , let τ ′′i denote
the job in the i’th position in the queue Q′′, ∀i = 1, 2, · · · , n.
It follows from the definition of F (k) (Expression 12) that
• For k ∈ [1, . . . , j − 2] ∪ [j + 1, . . . , n], the F (k) values

are identical for both queue orderings Q′ and Q′′. More
formally, we use x′

i, y
′
i, z

′
i and W ′

i to represent the param-
eters of the jobs τ ′i in Q′, and use x′′

i , y
′′
i , z

′′
i and W ′′

i to
represent the parameters of the jobs τ ′′i in Q′′. The F (k)s for
the ordering Q′ and Q′′ are rewritten as F ′(k) and F ′′(k),
respectively. From Expression 12, we have

F ′(k) =
k∑

i=1

x′
i +

∑k−1
i=1 W ′

i

(1− α)m
+max{W

′
k

αm
, y′k}

=

k∑
i=1

x′′
i +

∑k−1
i=1 W ′′

i

(1− α)m
+max{W

′′
k

αm
, y′′k} = F ′′(k)

• Since τ ′j = τ ′′j−1 and τ ′′j = τ ′j−1, we have z′′j = z′j−1 and
z′′j−1 = z′j . From Expressions 12 and 20, we have

F ′(j) =

j∑
i=1

x′
i +

∑j−1
i=1 W ′

i

(1− α)m
+max{

W ′
j

αm
, y′j}

=

j∑
i=1

x′
i +

∑j
i=1 W

′
i

(1− α)m
−

W ′
j

(1− α)m
+max{

W ′
j

αm
, y′j}

=

j∑
i=1

x′
i +

∑j
i=1 W

′
i

(1− α)m
+ z′j (21)

Since z′j−1 < z′j and z′′j = z′j−1 , we have z′′j < z′j . Thus,

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:29:55 UTC from IEEE Xplore.  Restrictions apply. 



F ′(j) >

j∑
i=1

x′
i +

∑j
i=1 W

′
i

(1− α)m
+ z′′j

=

j∑
i=1

x′′
i +

∑j
i=1 W

′′
i

(1− α)m
+ z′′j = F ′′(j)

Moreover, from Expression 21 and z′j = z′′j−1, we have

F ′(j) =

j∑
i=1

x′
i +

∑j
i=1 W

′
i

(1− α)m
+ z′′j−1

=

j∑
i=1

x′′
i +

∑j
i=1 W

′′
i

(1− α)m
+ z′′j−1

≥
j−1∑
i=1

x′′
i +

∑j−1
i=1 W ′′

i

(1− α)m
+ z′′j−1 = F ′′(j − 1)

In sum, we know that F ′(j) ≥ F ′′(j) and F ′(j) ≥ F ′′(j−1),
while for any k = 1, · · · , j − 2, j + 1, · · · , n, F ′(k) =
F ′′(k). Hence, we have maxk F

′(k) ≥ maxk F
′′(k), i.e.,

maxk{F (k)} for the queue ordering Q′′ is no larger than that
of the queue ordering Q′. The lemma follows.

IV. ALGORITHM II

The algorithms in Section III above are derived from first
principles. In this section, we propose a different algorithm
that builds off prior results in “traditional” scheduling theory.
In the following, we first give a brief introduction to the rele-
vant prior work in traditional scheduling theory, exploring the
connection between our problem and the relevant traditional
scheduling problems.

A. RELEVANT PRIOR RESEARCH

We now briefly review some prior results from the tradi-
tional scheduling theory literature, that we will use in some
of the algorithms we derive in this section.

§1. Flow-shop scheduling. In flow-shop scheduling problems,
jobs need to be processed upon a number of different machines
in a specified order (which is the same for all jobs).

As described in Section II, the host+accelerator platforms
can be modeled as a 2-stage flow-shop in which the bus
connecting the host to the accelerator is the first stage and
the accelerator, the second. There is one bus between the
host and the accelerator and multiple identical processors in
the accelerator. The problem of scheduling non-parallelizable
jobs on such a flow-shop to minimize the overall makespan
is referred to as minimizing makespan (Cmax) in a 2-stage
flow-shop (F2) in which the first stage has one machine (P1)
and the second stage has m identical machines (Pm). This
problem is known to be NP-hard in the strong sense, even for
m = 2 (i.e., there are two identical machines in the second
stage) [11]. When there is only one machine in each stage,
however, Johnson’s rule [7] solves the problem optimally in
polynomial time. We will use Johnson’s rule in Section IV;
here, we briefly describe the rule.

Johnson’s rule: For jobs to be executed upon the 2-stage flow-
shop, with the i’th job needing to execute for xi time on the
first stage and yi time on the second stage. Johnson’s rule first
partitions the jobs into two disjoint subsets A and B; set A
contains all the jobs for which xi ≤ yi and set B, those for
which xi > yi. All the jobs of set A are scheduled first in
non-decreasing order of their xi parameters, followed by the
jobs of set B in non-increasing order of their yi parameters.

§2. Two-dimensional packing. Given a collection of rect-
angles and a bin with fixed width and unbounded height,
the two-dimensional packing problem [8] seeks to pack the
rectangles into the bin such that no two rectangles overlap and
the height to which the bin is filled is as small as possible.
(The rectangles are assumed oriented: each has a specified
side, referred to as its width, that must be parallel to the bottom
of the bin.) Coffman et al. [12] proposed an algorithm based
on the first-fit decreasing-height (FFDH) heuristic for solving
this problem. By drawing an analogy between the width of a
rectangle and the number of processors needed by a parallel
job, it is possible to directly apply the algorithm of [12] to the
makespan minimization problem for rigid parallel jobs. We
can also apply this algorithm to the makespan minimization
problem for moldable parallel jobs by simply ignoring the
“moldability” of moldable jobs and always assigning exactly
χi processors to each job τi; doing so yields the following
result, which we will use later in this paper.

Theorem 4 (From [12, Theorem 3]). Let T denote a collection
of moldable jobs to be scheduled upon m processors. Let ρ ≥
maxi {χi/m}. The collection of moldable parallel jobs T can
be scheduled upon m processors using the FFDH algorithm
of [12] with a makespan no larger than

ymax +

(
1 + ρ

m

)
×WΣ (22)

§3. Scheduling moldable jobs. Mounie et al. [9] have derived
an algorithm with polynomial running time for scheduling
monotonic jobs to minimize makespan, and have proved that
this algorithm has makespans no larger than

(
3
2 + ε

)
times the

optimal, for any constant ε > 0. Observe that this algorithm
can be used to obtain a

(
5
2 + ε

)
-approximate algorithm for

solving our problem, by simply first offloading all the data
to the accelerator and then using this

(
3
2 + ε

)
algorithm to

schedule the computations upon the accelerator.
The algorithm of Mounie et al. [9] is not really “practical”:

its running time, although indeed polynomial in problem size,
depends upon the value of ε and tends to become very large
for small ε. Nevertheless, we have implemented this algorithm,
and use it as a baseline for comparison with the other two,
more practically implementable, algorithms that we present in
Sections III and IV.

B. INSTANTIATION OF ALGORITHM II

We now use algorithms that have previously been proposed
for solving the flow-shop scheduling [7] and two-dimensional
packing [8], [12] problems (discussed above) as sub-routines
to our algorithm. The key idea here is to apply Johnson’s
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algorithm [7] to schedule the jobs with large maximum paral-
lelisms and then use FFDH algorithm [12] to schedule the rest
of jobs whose maximum parallelisms are small. The pseudo-
code of our algorithm is described in Algorithm 3.

Algorithm 3: GPUSched2(ρ)
1 Partition T into TGE and TLT (based on ρ)
2 Offload the data for
3 jobs in TGE first, ordered according to Johnson’s rule [7]
4 jobs in TLT next, in arbitrary order
5 Execute
6 jobs in TGE first, in the order they were offloaded
7 jobs in TLT next, according to FFDH [12]

Algorithm 3 is characterized by a parameter ρ, which is a
real number restricted to have a value between zero and one
(we will specify later the manner in which its precise value
is set). Given this value of ρ, our algorithm (i) partitions the
jobs into two (disjoint) subsets; (ii) offloads the data for the
jobs from the host to the accelerator via the shared bus; and
(iii) executes the jobs on the processors. We now detail how
each of these three steps is accomplished.

§i. Partitioning. The jobs in T are partitioned into two
subsets: TGE has jobs τi with χi ≥ ρm, and TLT has jobs
τi with χi < ρm. 4

§ii. Offloading. The data for all the jobs in TGE are offloaded
from the host to the accelerator first, followed by the data for
all the jobs in TLT . The order in which data-offloading for the
jobs in TGE happens is determined by Johnson’s rule [7]:

• All jobs with xi ≤ yi are scheduled first; amongst these,
they are ordered by non-decreasing xi

• All jobs with xi > yi are scheduled next; these are
ordered by non-increasing yi

Data-offloading for the jobs in TLT is ordered arbitrarily.

§iii. Execution. The jobs are considered for execution in the
following order: all the jobs in TGE are considered first, in the
order in which they were offloaded. Each such job τi will be
assigned exactly χi processors — the jobs are looked upon as
rigid parallel jobs, and their “moldability” is not taken advan-
tage of. A considered job τi begins execution when at least χi

processors become available and executes non-preemptively
for a duration of (at most) yi. The jobs in TLT are executed
once all the jobs in TGE have completed execution; these jobs
are scheduled according to the FFDH [12] algorithm (and the
makespan of just these jobs can, therefore, be determined by
applying Theorem 4).

Theorem 5. The makespan of the above schedule for the
collection of jobs in T upon m processors is bounded by

max
(
X + max

τj∈TGE

{xj}, max
τj∈TGE

{yj}+
∑

τj∈TGE

yj
)

+ max
τj∈TLT

{yj}+
(
1 + ρ

m

)
×

∑
τi∈TLT

Wi (23)

4The subscripts in TGE and TLT denote “Greater than or Equal to” and
“Less Than”, respectively.

Proof. Without loss of generality, let us assume that the
schedule begins at time-instant zero and has a makespan equal
to tf . Let ta denote the earliest instant by which all the jobs
have completed offloading their data from the host to the
accelerator, and all the jobs in TGE have completed execution
on the processors, i.e.,

ta = max{X,FGE} (24)

where X =
∑n

i=1 xi is the total offloading time, and FGE

is the time instant at which all jobs in TGE complete their
execution, as shown in Figure 3. Below we will show that
the first line of Expression 23 bounds the duration of the
interval [0, ta), while the second line bounds the duration of
the interval [ta, tf ). The theorem will then follow.

Fig. 3: Illustration for the proof of Theorem. 5

First, consider the interval [0, ta). By Expression 24, we
know that the first line of Expression 23 bounds the duration
of interval [0, ta), if it bounds the completion time FGE of
the jobs of TGE . In the following, we derive the upper bound
of FGE . As illustrated by Figure 3, let τk ∈ TGE denote the
last job that had to wait for its data to arrive from the host in
order to begin execution on the accelerator. Let Ωe denote τk
plus the jobs in TGE that offloaded their data before τk, and
Ωl = (TGE \Ωe) denote the remaining jobs in TGE . Since τk
is, by definition, the last job in TGE that had to wait for data
offloading before beginning execution on the accelerator, we
can bound the duration of the interval [0, ta) by

FGE ≤
∑

τj∈Ωe

xj + yk +
∑

τj∈Ωl

yj (25)

We now consider two possibilities:
1) If xk ≤ yk, it follows from the fact that the jobs in TGE

are ordered according to Johnson’s rule that xj ≤ yj for
all τj ∈ Ωe. In this case, Inequality 25 yields

FGE ≤ ∑
τj∈Ωe

xj + yk +
∑

τj∈Ωl
yj

≤ ∑
τj∈Ωe

yj + yk +
∑

τj∈Ωl
yj

=
∑

τj∈TGE
yj + yk

≤ ∑
τj∈TGE

yj +maxτj∈TGE
{yj} (26)

which is the 2nd term in the first line of Expression 23.
2) The other possibility is that xk > yk, in which case we

have that xj > yj for all τj ∈ Ωl, and Inequality 25 yields

FGE ≤ ∑
τj∈Ωe

xj + yk +
∑

τj∈Ωl
yj

≤ ∑
τj∈Ωe

xj + xk +
∑

τj∈Ωl
xj

≤ ∑
τj∈TGE

xj + xk

≤ ∑
τj∈TGE

xj +maxτj∈TGE
{xj}

≤ X +maxτj∈TGE
{xj} (27)
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which is the first term in the first line of Expression 23.
By combining Expressions 26 and 27 into 24, we derive that
the first line of Expression 23 bounds the duration of [0, ta).

Next, consider the duration of the interval [ta, tf ). Over this
interval, our algorithm schedules the jobs in TLT according to
the FFDH algorithm [12]; the makespan of the resulting sched-
ule is, therefore, as specified in Expression 22 of Theorem 4.
Note that instantiating Expression 22 upon the collection of
jobs in TLT yields exactly the second line of Expression 23.
This completes the proof of Theorem 5.

In order to complete the specification of the algorithm, it
remains to specify a value for the parameter ρ. For this, we
use the following result (omitted due to space constraints):

Lemma 2. Any collection of linear speedup (or non-moldable)
jobs in T that is scheduled by Algorithm 3 with ρ ←

(√
2− 1

)
upon an m processors, has a makespan no larger than(√

2 + 1
)
× OPT + max

τj∈TLT

{
yj
}

+max

(
max

τj∈TGE

{
xj

}
, max
τj∈TGE

{
yj
})

(28)

where OPT denotes the makespan when T is scheduled upon
m processors by an optimal algorithm.

By observing that each of the “max” terms in Expression 28
is a lower bound on the duration of an optimal schedule,
we immediately obtain an approximation ratio of

(√
2 + 3

)
for Algorithm 3 instantiated with ρ ←

(√
2− 1

)
. While this

approximation ratio is not particularly good, we observe that
Lemma 2 also implies an asymptotic approximation ratio5 of(√

2 + 1
)

for Algorithm 3 instantiated with ρ ←
(√

2− 1
)
.

This asymptotic approximation ratio compares favorably with
the (absolute) approximation ratio of ( 52 +ε) that is obtainable
(as briefly discussed in Section IV-A.§3) by applying the
results of Mounie et al. [9]; hence we have chosen (

√
2−1) ≈

0.414 as the value of ρ in our implementation experiments.

V. EVALUATION

In this section, we conduct our comparative evaluation
of the algorithms that we discussed above using simulation
experiments with randomly-generated synthetic workloads.
Workload generation. Recall that a job τi is characterized
by a data offloading time xi, an execution requirement Wi,
and the maximum parallelism χi. For each simulation run, we
randomly generate an instance with n jobs where parameters
of each job are generated under uniform distributions unless
specified otherwise. Specifically, we first generate a random
integer z ranging from [1, 100] for the job size, and a ratio
a ranging from [β2 , β], where β ≤ 1 for the ratio between
offloading time and total job size. Then the data-offloading

5The asymptotic approximation ratio of an algorithm compares the algo-
rithm’s performance with that of an optimal algorithm as the problem size —
in our case, the number of jobs — becomes very large (→ ∞: approaches
infinity). As n → ∞, the two additive terms in Expression 28 become
negligibly small in comparison with OPT, and hence do not contribute to
the asymptotic approximation ratio.

time of a job is az, and the execution requirement is (1−a)z.
The maximum parallelism of each job ranges uniformly
from [1,m], where m is the total number of processors. We
construct two kinds of job collections: linear-speedup and
non-linear-speedup job collections. In the linear-speedup job
collection, each job τi has a constant work function, i.e.,
wi(mi) = Wi and yi = Wi/χi, where mi is the number
of processors assigned to τi. In the non-linear-speedup job
collection, each job τi has a work function defined as follows,
where ai = yi/2 is a constant.

wi(mi) =

{
aimi mi ≤ χi/2

2aimi mi > χi/2
(29)

Algorithm Comparison. We evaluated four implementations
that implements a baseline and our proposed algorithms:
1) Impl-I implements GPUSched1(α,Q) (listed as Algo-

rithm 1), as initially described in Section III-A with α ←
Wmax/WΣ and the job with execution requirement Wmax

at the end of Q.
2) Impl-I∗ implements GPUSched1(α,Q), as described in

Section III-B with α ← Wsec/WΣ,6 the job with execution
requirement Wmax at the front (head) of Q, and the
remainder of Q ordered according to the pseudocode listed
as Algorithm 2.

3) Impl-II implements GPUSched2(ρ), listed as Algorithm 3
in Section IV with ρ ← (

√
2− 1).

4) Impl-B (the “B” here stands for “baseline”) implements the
algorithm in [9] for scheduling moldable jobs discussed in
Section IV-A§3. (In this implementation, all the data was
first offloaded to the accelerator; after that, the problem of
executing the jobs on the processors of the accelerator was
solved as scheduling independent moldable jobs.)

We applied an additional optimization to Impl-I and Impl-I∗

with regards to data offloading. Line 2 of Algorithm 1 states
that a job starts its data-offloading only if there are enough
(i.e., at least αm) available processors. Here, we implement
the improved algorithms by a bit of look-ahead in the data
offloading: when job τi is at the head of the queue, although
there are not αm available processors at the current time, we
still start the offloading for τi if we know that there will be αm
available processors xi time units later. (Note that this does
not affect the theoretical bounds derived in previous sections.)
Evaluation criterion. One can calculate a lower bound on
the optimal makespan for any problem instance by:

LB = max{d∗ +min
i
{xi}, X +min

i
{yi}} (30)

where d∗ is set equal to two-thirds of the duration required
by Impl-B on the processors7. We quantify the goodness of
a schedule for an instance by its makespan divided by LB.
Hence, for a given problem instance, an algorithm, for which
this ratio is smaller, is “better” at scheduling that instance.

6Wsec defined in Equation (11) is the second-largest execution requirement.
7Since the algorithm of [9], used by Impl-B for scheduling the jobs on

processors, is a ( 3
2
+ ε)-approximation, it follows that 3

2
of the duration

required by Impl-B on processors is a lower bound on the optimal makespan.
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Evaluation Results. We present three sets of results from
the experiments with linear-speedup job collections and non-
linear-speedup job collection respectively. We use the approx-
imation ratio (over LB) as the performance metric, which
provides a comparison across the different algorithms on
the workload with fixed parameters. Out of 1,000 generated
workloads under each parameter setting, we report the average,
10th percentile, 50th percentile, and 90th percentile of the
approximation ratio of each implementation8 in Fig. 4 to 6.

We can observe that Impl-B generally performs worse than
the other three. This is due to the fact that the baseline Impl-B
focuses primarily on minimizing the total processing time of
jobs, while overlooking the fact that increasing the overlapping
period between data-offloading and execution may also reduce
the total makespan. Our proposed methods (e.g., Impl-I, Impl-
I∗ and Impl-II) optimize both aspects in an integrated manner
and thus outperform the baseline method Impl-B. In addition,
Impl-II and Impl-I∗ outperform Impl-I in general, since these
implementations (compared with Impl-I) apply more com-
plicated mechanisms to minimize the makespan. Moreover,
for Impl-II and Impl-I∗, the reported 10th, 50th, and 90th
percentile approximation ratios (in boxes) stay relatively close
to the average, indicating that the performance and relationship
of the algorithms are relatively robust (i.e., less variable). We
also observed that there is a peak (i.e., worse performance) to
Impl-I and Impl-I∗ when the number of jobs is around 1 to
2 times the number of processors. Furthermore, Impl-I∗ and
Impl-II performs better when the jobs have linear speedup,
while Impl-I and Impl-B are insensitive to the types of jobs.

Fig. 4: m = 16, β = 0.5.

8In each set of Fig. 4 to 6, the top of the box represents the 10 percentile,
the middle of the box represents the 50 percentile, and the bottom of the box
represents the 90 percentile.

Specifically, Fig. 4 reports the implementations’ perfor-
mance on an increasing number of jobs per instance. When the
number of jobs becomes larger (than the number of proces-
sors), all three approaches, except for Impl-B, tend to perform
better. This is as expected since the overlapping between data-
offloading and execution upon the processors is more likely
to occur when there are more jobs. The larger proportion of
overlapping duration indicates the better performance of the
approaches. In contrast, the baseline Impl-B does not overlap
the data-offloading and execution, so its performance remains
the same. Additionally, the performance variation decreases
with an increasing number of jobs for all approaches, as the
execution of a long job has a better chance to overlap with
other jobs when there are more jobs available.

Fig. 5: n = 50, β = 0.5.

Fig. 5 shows the results when the number of processors
increases. The performance of Impl-B stays about the same
since (i) it does not allow any overlapping between data
offloading and execution, and (ii) the packing problem of the
execution part has a stable approximation ratio, leading to a
relatively unchanging makespan ratio over the optimal lower
bound. The approximation ratio of Impl-II decreases when the
number of processors increases, because jobs in TLT can better
utilize the accelerator when there are more processors. Impl-
I∗ outperforms Impl-II only when the number of processors
is small, since jobs tend to be executed sequentially under
Impl-II with a small number of processors.

Fig. 6 reports the approximation ratio against varying values
of β. Recall that a larger β indicates that the execution time
is more likely to dominate the total data offloading plus
execution duration of jobs. The approximation ratios of all the
approaches tend to grow when β < 1/2, while start to drop
soon after β exceeds 1/2. Again, this is not surprising since the
computation part dominates when β < 1/2 — all approaches
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Fig. 6: n = 50,m = 16.

suffer from not being able to pack optimally; when β gets
larger (than half), the sequential offloading time dominates,
and any approach would “pay” the same offloading time, while
most executions (in general with shorter lengths) can be easily
done in parallel to offloading.

VI. CASE STUDY

In this section, we demonstrate the practicality of our formal
scheduling-theoretic representation and the proposed algo-
rithms for the scheduling problem upon the host+accelerator
platforms, via a case study using workloads executed on
a real CPU+GPU platform. GPUs have been widely used
as accelerators for various applications, especially those in
autonomous CPSs. For example, Behzad Boroujerdian [2]
develops a simulation framework for micro aerial vehicles with
CPU+GPU platforms. Many computer vision applications
in CPSs, such as object detection for self-driving [1], 3D
tracking for humanoid robots [3], and instrument tracking for
intra-cardiac surgical procedures [13], must exploit GPUs to
accelerate their computations to meet their real-time demands.

Our particular CPU+GPU platform has a host CPU and
an NVIDIA TITAN X GPU with 30 streaming multiproces-
sors (SMs), connected via a single bidirectional peripheral
component interconnect express (PCIe) bus. We reserve 2
SMs for system applications and leave 28 SMs dedicated to
experimentation. We set the SM and memory frequencies of
the GPU at fixed values of 810MHz and 1911MHz, respec-
tively, using the nvidia-smi command, and set the GPU
to persistence mode to keep the NVIDIA driver loaded even
when no applications are accessing the GPU.

For this CPU+GPU platform, SMs are modeled as the
computing units upon which the computing workloads can
be executed in parallel. In contrast to the extensive works

that consider the entire GPU as a single sequential com-
puting unit [14]–[23], in this work, we try to exploit the
internal parallelism inside a GPU for efficient execution of
concurrent GPU workloads. To the other potential extreme,
each SM has smaller execution units that can simultaneously
perform the same computation on different data. However, the
scheduling inside an SM is controlled by its internal warp
scheduler, whose policy is not publicly disclosed. Extensive
research efforts have been made to understand the different
and complex properties of this internal scheduler on different
NVIDIA architecture via extensive experimental testing and
validation [24]–[28]. However, for better utilization and power
efficiency of the GPU, programmers are not given explicit con-
trol to access these smaller execution units in SMs individually.
Therefore, in our case study, we choose to model each SM
as one computing unit and only allow one SM to execute the
computation of a single job at any time, so the scheduler inside
an SM does not affect the scheduling between jobs.

We use software interfaces and techniques, including CUDA
Stream, persistent threads and SM ID selection [29]–[32], to
assign a set of dedicated SMs to a job (according to the
processor allocation produced by the proposed algorithms) and
allow concurrent execution of multiple GPU jobs. We use
cudaMemcpyAsync and cudaStreamSynchronize to
control the data offloading between CPU and GPU.
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Fig. 7: Execution times of a synthetic GPU computation
workload on different number of assigned SMs.

We generate synthetic GPU computation workloads using
matrix calculations. Figure 7 shows the execution times of
one such workload on varying numbers of assigned SMs. In
particular, the boxplots presents the actual execution times
for 100 measurements for each setting, where the blue boxes
give the first to third quartiles, and the red crosses are the
outliers.9 The dotted curve draws the calculated execution
times, assuming that the workload has linear speedup on up
to 28 SMs. Comparing the calculated and measured execution
times, we can see that the synthetic workload has a linear

9As the variance of measured execution times is very small given more
than 1 SM, the blue boxes are hidden under the red crosses.
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speedup on up to 16 SMs, after which the actual execution
times do not decrease further with more SMs assigned. Thus,
this synthetic workload has a maximum parallelism degree
χ of 16. To obtain the worst-case total work w(1) for the
experiment, we conduct the measurement for the workload by
occupying the remaining SMs with other busy work.

TABLE I: Makespans (ms) of scaled task sets under different
algorithms and different numbers of available SMs

Algo. Calculated
makespan

Measured makespan on diff avail. SMs
7 SMs 14 SMs 21 SMs 28 SMs

Impl-I 4200 4088 4156 3997 3950
Impl-I* 3600 3485 3518 3350 3213
Impl-II 3600 3490 3522 3530 3579
Impl-B 4933 4803 4881 4879 4928

For the case study on 28 SMs, we construct a task set with
8 tasks, where the task parameters are shown in Figure 8. We
have implemented the different schedules under Impl-I, Impl-
I*, Impl-II, and Impl-B for this task set and measured the
execution timelines. For example, Figure 8 shows the timeline
for Impl-I*. We observe that the measured makespan is smaller
than the makespan calculated using the worst-case parameters,
mainly because the data offloading and computation take less
time in practice than the worst-case values. Also note that task
τ3 has a much shorter computation time, as it is the only job
executing in GPU and can make use of all the shared cache
and memories. We leave the cache and memory allocation for
accelerators as future work. We have also scaled this task set to
run on 7, 14, and 21 available SMs, by scaling the total work
and assigned SMs of tasks proportionally while keeping the
same timelines. The measured makespans on a varying number
of available SMs are very similar, as shown in Table I.

VII. RELATED WORK

Heterogeneous host+accelerator computing platforms re-
cently gain a lot of attention. Various techniques have been
developed for better utilizing the GPU and speed up the GPU
workloads. For example, Liu et al. [33] studied how to execute
tree traversal algorithms efficiently on a GPU. It proposed a
hybrid inspector-executor approach, where the CPU uses the
information of partial execution of the traversals on the GPU
to optimize the execution of the remaining portion of the
traversals. Lin et al. [34] proposed Integrated Vectorization
and Scheduling methods to exploit multiple forms of paral-
lelism for optimizing throughput for synchronous dataflows
on memory-constrained CPU-GPU platforms, such as the
signal and information processing on embedded systems. For
multi-tasking environments in the cloud, persistent threads
technique for allocating SMs to programs was proposed [29]–
[31]. Wang et al. [35] implemented a user-mode lightweight
CPU–GPU resource management framework to optimize the
CPU utilization while maintaining good Quality of Service
(QoS) of GPU-intensive workloads in the cloud, such as cloud
games. This work designed QoS-aware scheduling algorithms
for virtual machines running on CPU and GPU via adaptive

control. However, all of these works do not consider the data
transfer between CPU and GPU.

To demonstrate the importance of analyzing and schedul-
ing data transfer on CPU-GPU platforms, Gregg et al. [36]
benchmarked a variety of GPU kernels on different CPU-GPU
platforms and showed that data transfer time between CPU
and GPU could take from 1x to 50x longer than the GPU
processing time. To model data transfer in GPU workloads,
[37] create a model to predict the transfer time and estimate the
performance of different system mechanisms of overlapping
computation and data transfer, such as explicit and implicit
memory copy statements and CUDA streams. Chen et al. [38]
extend the original Flink on CPU clusters to GFlink on het-
erogeneous CPU-GPU clusters with multiple CPUs and GPUs
for big data. In addition to the new programming framework,
device cache and memory management schemes, and locality-
aware scheduling scheme, GFlink empirically reduces the
communication between JVM and GPU by bulk transfer and
asynchronous communication, which enables the communica-
tion to overlap with the computation on GPUs. [39] proposed
OS abstractions under the dataflow programming model for
accelerators such as GPUs to achieve good performance,
fairness, and low latency of applications. This abstraction
reduces unnecessary data copies and buffering by explicitly
specify the origin and destination of the data. In addition
to virtualizing a GPU into multiple logical GPUs for better
isolation, [40] developed techniques to support data swapping
and shared device memory functionality to improve memory-
copy throughput. Valery et al. [41] proposed a CPU–GPU
collaboration method to speed up Principal Component Anal-
ysis and reduce the power consumption on mobile devices,
via exploiting the shared memory architecture of System-on-
Chips. However, the above works do not consider the real-time
requirements of applications.

Much existing work on real-time scheduling on CPU-
GPU platforms only considers a GPU as a single sequential
computing unit without considering its internal parallelism and
concurrent execution of multiple tasks. Specifically, [14] pro-
posed priority-based scheduling policies to address the trade-
off between response times and throughput with GPU. [15]
presented two methods for integrating a GPU into soft real-
time multiprocessor systems, which was extended for multiple
GPUs in [16]. [18] optimized the execution of DNN work-
loads on GPU in a real-time multi-tasking environment. For
hard real-time systems, [17] proposed a scheduling approach
based on time-division multiplexing in GPU. The problem
of thermal-aware and energy-efficient execution on CPU-GPU
systems was studied in [21] and [23], while the co-scheduling
problem for fused CPU-GPU architectures with shared last
level cache was analyzed in [22]. For integrated System-on-
Chips, [42] characterized the memory access conflicts. Such
conflicts were addressed by a memory-arbitration mechanism
proposed in [43] and by a memory bandwidth throttling-based
approached developed in [44].

For improving the real-time performance of sequential ker-
nel execution, some works proposed software techniques to
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Fig. 8: Calculated execution timeline using the worst-case parameters (black) vs. Measured execution timeline (blue) for 8
tasks scheduled by Impl-I*. τ2 and τ3 have 1000ms offloading time, while the other tasks have 100ms offloading time. τ1, τ2,
and τ3 have total work of 19200ms, 16000ms, and 4000ms, respectively. τ4 to τ8 have a total work of 2000ms. τ1, τ2, and τ3
have maximum parallelism degrees of 16, 16 and 4, respectively, while the others have a maximum parallelism degree of 2.

allow preemption. In particular, [45] supported preemptive
data copies via providing preemption points at boundaries
between the data chunks, but the GPU kernels are executed
sequentially and non-preemptively by fixed-priority schedul-
ing, which was extended via splitting a kernel into sub-
kernels with preemption points in user-level [46] and in driver-
level [47]. In contrast, [48] transactionized GPU kernels to
allow abortion and roll back exploiting the heterogeneous
system architecture of System-on-Chips. [19] utilized the new
GPU architectural features, such as pixel-level preemption
and thread-level preemption, to implement the deadline-based
schedulers for GPU on an embedded System on a Chip.

For concurrent scheduling of multiple GPU kernels, there
have been some empirical results demonstrating its applicabil-
ity using memory page coloring and persistent threads [32],
and using gang scheduling with fixed preemption points
achieved on System-on-Chips [49]. [20] proposed a fine-
grained approach for scheduling OpenVX graphs and studied
its response time analysis. However, none of the above works
provide rigorous theoretical analysis considering the data
transfers and parallel execution in a GPU.

VIII. SUMMARY AND PERSPECTIVES

This paper described our efforts at applying scheduling the-
ory to provide real-time performance to the host+accelerator
platforms. We formulate this scheduling problem into a model
that was amenable to rigorous schedulability analysis while
capturing the main characteristics and abstractions of the
platforms. In this work, however, we restricted ourselves to
a simplified version of the general model and designed two
algorithms: one derived entirely from first principles and hence
unique to our problem, the other based upon several very
powerful prior results from traditional scheduling theory. We
compared both the theoretical and empirical performance of
these algorithms and demonstrated the practicality of our
model and the proposed algorithms via a case study conducted
on a real CPU+GPU platform.

The major limitation of our work is that the workload
analyzed in this work is very restricted. In many CPS, we

would expect to have recurrent tasks with different deadlines,
perhaps with each job (here, an invocation of a task) needing
to use the accelerator multiple times (rather than only once),
use the bus to transfer back the computation results from the
accelerator to the host, and also use the host for part of its
computation. Although the model proposed in this work can be
easily extended to represent such generalized workloads, it is
very challenging to extend the corresponding theoretical anal-
yses and scheduling algorithms. We plan to derive algorithms
and analysis tools for scheduling such general workloads on
the host+accelerator platforms.
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