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Abstract—OpenMP is a promising framework for developing
parallel real-time software on multi-cores. Recently, many graph-
based task models representing realistic features of OpenMP task
systems have been proposed and analyzed. However, all previous
studies did not model the loop structures, which is common in
OpenMP task systems. In this paper, we formulate the workload
of OpenMP task systems with loop structures as the cyclic graph
model and study how to compute safe upper bounds for the worst-
case response time (WCRT). The loop structures combined with
the creation of tasks and conditional branches result in a large
state space. Simply unrolling the loop and/or enumerating all
the possible execution flows would be computationally intractable.
As the major technical contribution, we develop a linear-time
dynamic programming algorithm to compute the WCRT bound
without unrolling loops or explicitly enumerating the execution
flows. Experiments with both synthetic task graphs and realistic
OpenMP programs are conducted to evaluate the performance
of our method.

Index Terms—OpenMP, response time bound, loop structure

I. INTRODUCTION

Multi-cores are becoming mainstream hardware platforms

for embedded and real-time systems. To fully utilize the pro-

cessing capacity of multi-cores, software should be parallelized.

OpenMP [1], the de facto standard of parallel programming

frameworks on shared memory architectures, appears to be

promising for developing efficient parallel embedded and real-

time software on multi-cores. OpenMP supports explicit parallel

task systems since version 3.0. Directed Acyclic Graphs (DAG)

is a widely used workload model to represent parallel tasks.

This motivates much theoretical work on real-time scheduling

and analysis of DAG task models [2]–[17].

However, the characteristics of OpenMP task systems cannot

be fully captured by the standard DAG task model. Unlike

traditional real-time system models in which the program-

level structures (e.g., if-else and loops) and system-

level behaviors (e.g., the activation of tasks and multitasking

execution) are handled separately, the workload generated by

OpenMP task systems is tightly coupled with the program-level

structure. Fig. 1 shows an example OpenMP program, where

three tasks τ1, τ2, and τ3 are created from different branches

of an if-else structure wrapped in a loop. Previous work

has studied OpenMP real-time task systems with if-else
[18]–[23], but it is still an open problem to model and analyze

OpenMP task systems in which creation of tasks is nested in

† Corresponding author: Nan Guan, nanguan@cityu.edu.hk

loops as exampled in Fig. 1. Realistic OpenMP programs

often have creation of tasks nested in loops. For example, in

the BOTS benchmark [24], 10 out of 12 programs have such

structures.

Fig. 1: An example OpenMP program with loop structure.

In this paper, we study how to bound the worst-case response

time (WCRT) of OpenMP task systems with loops. Our work

is built upon the classical response time bound by Graham

for the DAG task model [25]. Applying Graham’s bound to

OpenMP task systems with loops is a challenging problem.

The workload abstraction of OpenMP task systems is cyclic
graphs (due to loops), instead of the acyclic graphs considered

in previous work [23]. On the one hand, it is not wise to convert

cyclic graphs into acyclic graphs (by unrolling loops) and

then directly reuse the existing acyclic-graph-based analysis

method (e.g., in [23]). The reason is that simply unrolling

loops will result in very large acyclic graphs (especially in

the presence of nested loops) and make the analysis problem

computationally intractable. On the other hand, there is no

evidence that the WCRT can be estimated without exploring the

internal structure of loops. Especially, when a loop contains

if-else, the (critical parameters used in) WCRT bound is

not necessarily derived by taking the same branch in different

iterations of the loop (We will illustrate this in Sec. V). The

combination of if-else and loops results in a very large

state space of the possible run-time behaviors, e.g., if we wrap

the if-else structure in the loop with iteration number

100 as shown in Fig. 1, there are 2100 possible execution flows

depending on which branch is taken in each iteration of the

loop. It is highly intractable to explicitly enumerate them to

derive the WCRT bound.

To address the above challenges, we propose efficient

methods to compute the desired Graham’s WCRT bound of

the OpenMP tasks with loops. The main contribution of

this paper is to design a linear-time dynamic programming
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algorithm for more exactly calculating the parameters (e.g.,

the volume and the length) used in the WCRT bound. Our

method does not need to unroll loops and thus the timing

complexity is independent from the loop bounds. This is

achieved by exploring deep insights about the workload

characteristics of the OpenMP task systems and designing

proper abstractions to efficiently explore the control-flow of

the program. Experiment results show the effectiveness of our

analysis techniques, i.e., comparing with the baseline method

that can only derive parameters’ upper bound, our method (for

computing parameters more exactly) can always significantly

improve the WCRT bound.

II. RELATED WORK

Vargas et. al [12] for the first time modeled OpenMP task

systems by DAGs. Serrano et. al [11] developed WCRT bound

analysis for the OpenMP DAG task model. They studied the

OpenMP tasks under Breadth-First-Scheduling (BFS) and Work-

First-Scheduling (WFS), and pointed out that when there are

only untied tasks, the WCRT of an OpenMP system can be

well bounded by the classical Graham’s bound for traditional

DAG model [25]. However, when there are tied tasks, they

showed that the OpenMP task systems have unacceptably large

WCRT. Sun et. al [13] proposed BFS∗ algorithm, and derived

a WCRT bound for tied tasks. All above work assumes

that OpenMP programs do not have if-else clauses. The

task models with both intra-task parallelism and if-else
structures are studied in [19]–[22]. These models all assume

“well composed” graph structures recursively composed by

single-source-single-sink parallel and conditional components.

Sun et. al [23] proposed a dynamic programming to deal with

the non-well-composed DAGs, but they cannot handle loop
structures. In this paper, we can analyze the non-well-composed

DAGs that have not only if-else structures, but also loop
structures. Vargas et.al [26] also studied the OpenMP program

with if-else and loop structures. This paper works on a

different level from Vargas’s work [26], which aims to reduce

the memory consumption in the OpenMP runtime, and does

not focus on the WCRT analysis. Moreover, the DAG model

in [26] does not consider the inner-task control flow structure,

i.e., each task is formulated as a vertex. Instead, in this paper

we model each task as a control flow graph, and reveal tasks’

inner structure. [27] studies OpenMP programs with nested

parallel regions and the parallel loop structure, which

belongs to a work-sharing structure, meaning that the iterations

of a loop are executed in parallel. It is totally different from

the loop (which is a control flow structure) discussed in this

paper.

III. OVERVIEW OF OPENMP SYSTEMS

In this paper, we focus on OpenMP programs using

parallel, task and taskwait directives1, which are

1The syntax of an OpenMP directive in C language is “#pragma omp
directive-name”. Instead of the full syntax of a directive, we only use
the “directive-name” for simplicity. Moreover, additional clauses including
target, taskyield, taskgroup, critical and depend are out of
the scope of this paper.

supported by OpenMP 3.0 [1] and above. Fig. 2 gives an

example OpenMP program, where the parallel directive

(Line 1) constructs the associated parallel region from

Lines 2 to 13. The parallel region is further partitioned

into a set of parallel units, called tasks. Each task corresponds to

the code region immediately enclosed in the brackets following

a task directive. We use T to denote the set of OpenMP

tasks, i.e., T = {τ1, · · · , τn}, where τk is the k-th task in T ,

and n = |T | is the task number. OpenMP supports nested

tasks. More precisely, task τl is nested in task τk if the task
directive of τl is contained in τk’s code region. In this case,

we say τk is the parent of τl, and τl is the child of τk. We

assume that a task has at most one parent. The task with no

parent is called the main task of T . For example, Fig. 2 shows

a task set with 4 tasks. The main task τ1 has two children τ2
and τ4. τ2 is the parent of τ3. The code region of τ1 includes

Lines 4, 7, 8, 9, 10, 11 and 13.

Fig. 2: An example OpenMP program and its digraph model.

Control Flow Structure. The code region of a task (also

called the task region) can be seen as a block with a single entry

and a single exit, which correspond to the first statement and

the last statement of the task region, respectively. Moreover, a

task region may contain conditional structures, e.g., if-else
and loop structures, and both of them can also be seen as

single-entry-single-exit blocks. For the sake of simplicity, we

assume that an if-else block exactly has two branches. A

loop block exactly has a body with the loop bound K, i.e.,

the loop body should not be executed more than K times.

Conditional blocks are allowed to be nested. For example,

Fig. 2 shows an if-else block (Line 8) nested in a loop
block (Line 7). We assume that the conditions of all conditional

blocks are independent, e.g., the value of the loop condition

exp1 does not affect the value of the if condition exp2, and

vise versa.

A conditional block is irregular if it contains OpenMP

directives (e.g., task and taskwait). We say task system T
is well composed if there is no irregular block in T . Otherwise,

T is non-well composed. For example, Fig. 2 shows an irregular

if-else block, which contains both task and taskwait
directives. Consequently, the task system in Fig. 2 is non-well

composed. This paper tackles both well composed and non-well

composed systems.
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Execution Semantics. The execution of OpenMP task

system T begins with the execution of its main task τ1. Other

tasks are executed only if its task directive is executed. For

any task τk of T , the execution of τk means to execute τk’s

code region from the entry to the exit. When encountering

an if-else block, exactly one of its branches is executed.

When encountering a loop block with loop bound K, its body

is executed at most K times. Moreover, when encountering

a task directive, a child task of τk is created, which must

be executed later. When encountering a taskwait directive,

the task τk is suspended until all τk’s children that are created

beforehand have been finished.

Runtime. At OpenMP runtime, tasks created from the

OpenMP task system are scheduled to execute on threads,

which are execution entities (mapped to, e.g., a thread in the

underlying OS) to execute OpenMP tasks. Similar to previous

work [11], [12], we assume each thread to exclusively execute

on a dedicated core. In OpenMP, a task is either tied or

untied. The tied task forces its code to be executed on the

same thread. In contrast, an untied task can migrate among

threads. There are two types of OpenMP-compliant scheduling

algorithms. One is called WFS [28], which prefers to execute

newly created tasks. The other one is BFS [29], which tends

to execute tasks that have been executed on the threads. The

common feature of WFS and BFS is that they are both work-

conserving when scheduling untied tasks, i.e., no thread

will be left idle if there are tasks eligible for execution. For

tied tasks, BFS and WFS not only lose the work-conserving

property, but also may lead to extremely bad timing behaviors

(in the worst-case all parallel workloads are executed on the

same thread) [11]. We only consider untied tasks in the rest

of this paper.

IV. SYSTEM MODEL

We formulate the OpenMP task system T as a digraph

such that each task τk of T has a control flow graph (CFG)

structure, and there are inter-dependencies among tasks of T .

In the following, we first introduce the intra-task structure of

a task τk, and then introduce the inter-task structure of the

whole task system T .

Intra-task structure. The CFG of a task τk is formulated

as a tuple τk = (Vk, Ek), where Vk is the set of vertices, and

Ek is the set of control flow (CF) edges. Here we use the

same symbol τk to denote the CFG of task τk for reducing

notations. Each vertex vik of Vk represents a sequential code

segment of task τk, and has the worst-case execution time cik.

Each CF edge (vik, v
j
k) ∈ E, denoted by a solid-line arrow in

Fig. 2, represents the dependency between vertices vik and vjk.

We say vik is the predecessor of vjk if there is an edge from

vik to (the predecessor of) vjk, and in this case, vjk is called

the successor of vik. A vertex is called the source vertex of

τk, denoted as vsrck , if it has no predecessors (via CF edges).

A vertex is called the sink vertex of τk, denoted as vsnkk , if

it has no successors (via CF edges). There is a single source

vertex and a single sink vertex in τk, in the sense that the

code region of τk is a block with a single entry and a single

exit (as described in Sec. III). Similarly, for each subgraph B
of τk, we call a vertex vik of B as the entry vertex of B if

vik’s predecessors are all outside B, and we call vik as the exit
vertex of B if vik’s successors are all outside B.

We distinguish two types of vertices of τk: conditional
vertices and non-conditional vertices. The non-conditional

vertex is represented by a circle in the figure, which has at

most one incoming CF edge and at most one outgoing CF edge.

Conditional vertices come in pairs, represented by diamond and

triangle in the figure, which separately denote the entry vertex

venk and exit vertex vexk of a conditional block. We formulate

two types of conditional blocks as follows.

• If-else block Bif contains two branches B1 and B2,

which are disjoint with each other. Each branch Bi (i = 1, 2)

is also a subgraph of τk with a single entry vertex and a

single exit vertex. The entry vertex of Bi is pointed by a

CF edge from Bif ’s entry vertex venk . The exit vertex of Bi

points to Bif ’s exit vertex vexk via a CF edge. Fig. 2 shows

an if-else block with entry vertex v31 , exit vertex v61 and

two branches: v41 and v51 .

• Loop block Blp contains a body B, which is a subgraph of

τk with a single entry vertex and a single exit vertex. The

entry vertex venk of Blp has two outgoing CF edges: one

points to B’s entry vertex, and the other one points to Blp’s

exit vertex vexk . venk is pointed by B’s exit vertex via a CF

edge, which is called as the back edge of Blp. Fig. 2 shows

a loop block with an entry vertex v21 , an exit vertex v71
and a body that contains vertices from v31 to v61 . A loop
block Blp with loop bound K can be unrolled into a directed

acyclic (sub)graph as shown in Fig. 3, where the body B
of Blp is duplicated for K times. In practice, we do not

unroll any loops in a program. We just use this concept for

illustration purposes.

A vertex vik may be contained in several (nested) conditional

blocks, we say vik is closely contained in the innermost block

among all these nested blocks. Fig. 2 shows that the if-else
block and the loop block both contain v41 , which is only

closely contained in the if-else block.

Fig. 3: illustration for unrolling a loop block.

Inter-task structure. Recall that the whole OpenMP task

system T can be represented by a digraph, which contains the

CFG of each task in T . The inter-task edges of T ’s digraph

can only connect the task and its child tasks. For the sake of

convenience, instead of the whole digraph of T , we separately

draw the CFG for each task τk of T (with τk’s child tasks,

which are represented by rectangles in the figure). We formulate

two types of inter-task edges as follows.

• Task creation (TC) edge, denoted by dotted-line arrows in

the figure. A vertex vik is called the creation vertex if

vik represents the task directive that creates a child task τl
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of τk. There is a TC edge from the creation vertex vik
to the source vertex vsrcl of τl. Fig. 2 shows a creation
vertex v11 , which creates τ2. Consequently, (v11 , v

1
2) is a TC

edge.

• Task wait (TW) edge, denoted by dashed-line arrows in the

figure. A vertex vjk is called the wait vertex if vjk represents

the taskwait directive in the code region of τk. For any

task τl whose creation vertex vik is a predecessor of vjk,

there is a TW edge from the sink vertex vsnkl of τl to the

wait vertex vjk. As shown in Fig. 2, v41 is a wait vertex.

There is a TW edge from v12 to v41 , in the sense that τ2’s

creation vertex v11 is the predecessor of v41 . Moreover,

there is a TW edge from v14 to v41 since v51 is a predecessor

of v41 (The reason is that there is a path from v51 to v41 via

the back edge (v61 , v
2
1) of the loop block.)

Execution Model. We note that the digraph of T may have

cycles due to loop structures. We unroll all loop blocks of

T from the innermost loop to the outermost loop, and obtain

the DAG of T , based on which the execution flow of T is

defined as follows.

Definition 1 (Execution Flow). The execution flow (EF) ε of
T (written as ε � T ) is a subgraph of T ’s DAG such that
the source vertex vsrc1 of the main task τ1 must belong to ε,
and for any vertex vik that has been involved in ε, if vik is an
entry vertex of a conditional block, only one of its immediate
successors is involved in ε. Otherwise, all of its immediate
successors (via CF edges and TC edges) are involved in ε. An
edge (vik, v

j
l ) of T ’s DAG is involved in ε only if its ending

points vik and vjl are both involved in ε.

Fig. 4: The EF ε of the OpenMP task system T in Fig. 2.

Fig. 4 shows an example EF ε of T in Fig. 2, which starts

with the source vertex v11 of τ1. The task τ2, τ3 and τ4 (as

well as their corresponding TC edges) are involved in ε since

their creation vertices (e.g, v11 , v12 and v51) are involved in

ε. The body of the loop block is executed twice in ε, and

thus, the vertices in the loop block are duplicated. The TW

edges between τ1’s child task and the wait vertices of τ1 are

also added into ε.
The execution of T is equivalent to travel an EF ε of T ,

which starts with the source vertex vsrc1 . A vertex becomes

eligible to be executed only when its predecessors (in ε) are all

completed. When a vertex is completed, all its successors (in

ε) should be executed. In Fig. 4, the vertex v41 is eligible if the

vertices v31 , v14 and v12 are completed. According to Sec. III,

we schedule the EF ε on m threads under work-conserving

algorithms, in the sense that a thread always tries to execute

vertices of ε, and no threads will be left idle if there are vertices

eligible for execution.

V. RESPONSE TIME BOUNDS

For any EF ε of T , we use R(ε) to denote the worst-case

response time (WCRT) of ε, which equals the maximum time

taken to execute all vertices in ε on m threads. The WCRT

R(T ) of T is defined as follows.

R(T )=max
ε�T

R(ε) (1)

It is difficult to precisely compute the WCRT R(T ) due to

timing anomalies [25], i.e., for any EF ε of T , the WCRT

R(ε) is not always led by executing each vertex in ε with the

worst-case execution time. Instead, we aim to compute an upper

bound of WCRT R(T ) by using two important parameters

defined as follows.

Definition 2 (length). For any EF ε of T , we use len(ε) to
denote the length of the longest path in ε. The length of T is
denoted as len(T ) = maxε�T len(ε).

Definition 3 (volume). For any EF ε of T , we use vol(ε) to
denote the total execution time of the vertices in ε. The volume
of T is denoted as vol(T ) = maxε�T vol(ε).

For example, by assuming that all conditional vertices in

Fig. 4 have zero execution time, and all non-conditional vertices

have unit execution time. The length of ε is 5 , and the

longest path of ε is π = (v11 , v
2
1 , v

3
1 , v

5
1 , v

1
4 , v

4
1 , v

6
1 , v

2
1 , v

7
1 , v

8
1).

The volume of ε equals 7. The following theorem gives an

upper bound of WCRT R(T ).
Theorem 1. Under work-conserving algorithms, tasks of T
executed on m threads have the WCRT bounded by

R(T ) ≤ m− 1

m
len(T ) + 1

m
vol(T ) (2)

Proof. Since EF ε is a DAG, when ε is scheduled by work-

conserving algorithms on m threads, the WCRT R(ε) can be

bounded by the Graham bound [11]:

R(ε) ≤ m− 1

m
len(ε) +

vol(ε)

m
(3)

and by (1), and moreover, since len(T ) ≥ len(ε) and

vol(T ) ≥ vol(ε), the lemma is proved.

From Thm. 1, we can separately compute the volume vol(T )
and the length len(T ) of T . Then we combine these two

parameters together by (2), and eventually obtain the upper

bound of WCRT R(T ). Computing the parameters for cyclic

digraph is challenging especially when loops contain if-else

components due to the fact that the maximum value of the

parameter is not necessarily led by taking the same branch

(of the if-else block) in different iterations of the loop
as illustrated in the following example.

Example 1. We consider the digraph of T in Fig. 2, and
take the length computation for example. We assume that the
execution time of each conditional vertex is zero, and the
execution time of each non-conditional vertex is 1. The loop
in Fig. 2 cannot be iterated more than two times. There are
two possible cases.
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• Case 1. The if-else block nested in the loop block
always takes the same branch in each iteration as
shown in Fig. 5. The longest path of ε1 is π1 =
(v11 , v

1
2 , v

4
1 , v

6
1 , v

2
1 , v

3
1 , v

4
1 , v

6
1 , v

2
1 , v

7
1 , v

8
1) and the longest path

of ε2 is π2 = (v11 , v
2
1 , v

3
1 , v

5
1 , v

6
1 , v

2
1 , v

3
1 , v

5
1 , v

1
4 , v

8
1), both of

which have the same length 5.

Fig. 5: The EFs ε1 and ε2 with if-else block taking the same
branch in each iteration of the loop block.

• Case 2. The if-else block nested in the loop block takes
different branch in each iteration. We obtain the longest path
π∗ = (v11 , v

1
2 , v

4
1 , v

6
1 , v

2
1 , v

3
1 , v

5
1 , v

1
4 , v

8
1) of T with length 6

when the digraph of T is executed as the EF ε3 that takes
the branch v41 in the first iteration, and takes the branch v51
in the second iteration as shown in Fig. 6.

Fig. 6: The EF ε3 with if-else block taking different branch in
each iteration of the loop block.

In sum, we know that the length of T in Fig. 2 is not led by
taking the same branch in each iteration of the loop block.

The above example indicates that we cannot exactly compute

the parameters unless the inner-structure of loop blocks is

carefully investigated. A straightforward way to compute the

parameters (e.g., the length and the volume) in (2) is to unroll

all loops and transform the (cyclic) digraph of T to an

equivalent DAG. Then we enumerate all EFs on T ’s DAG,

and find the one with the maximum parameter. However, it

is impractical since the number of EFs of T is exponential

regarding the number of loop/if-else blocks. Moreover,

simply unrolling loops results in a very large DAG model

especially in the presence of nested loops, which makes the

WCRT bound calculation problem computationally intractable.

In the following, we will propose efficient bound computation

methods that avoid loop unrolling or explicit execution-flow

enumeration. More specifically, we first compute the volume

vol(T ) in Sec. VI, and then compute the length len(T )
in Sec. VII. Computation results of these two sections are

eventually combined to solve the WCRT bound according to

(2). In both of the following two sections, we first propose

an approximation method that is based on an intuitive idea

and will be used as the baseline algorithm in the evaluation

work. Then, by exploring deep insights into T ’s hierarchical

structure, we propose a more precise method which is a little

complicated, but still remains linear-time complexity.

VI. COMPUTING vol(T )
A. Approximation Method

A trivial bound for the volume vol(T ) is given below.

vol(T ) ≤
∑
τk∈T

tcmax(τk)×
∑

vi
k∈τk

ttmax(v
i
k)× cik (4)

where tcmax(τk) is the maximum number of times that the task

τk can be created in an EF ε of T . ttmax(v
i
k) is the maximum

number of times that the vertex vik can be traveled in each

execution of τk. These parameters tcmax(τk) and ttmax(v
i
k)

are calculated by Alg. 1. First, we sort the tasks of T in the

order σ(T ) such that for any two tasks τk and τl, τl is before

τk if τl is the parent of τk. Exploiting the order of σ(T ), we

compute the maximum creation time tcmax(τk) for each task

τk ∈ T (see in Lines 1 to 6). For each task τk, we use γ(τk)
to denote the order in which the vertices of τk are sorted

topologically (by ignoring all back edges). We compute the

maximum traversal times of τk’s vertices in the order of γ(τk)
as shown in Lines 7 to 15.

Algorithm 1: Computing parameters in (4).

1 for each task τk of σ(T ) from the first to the last do
2 if τk is the main task of T then
3 tcmax(τk) := 1;

4 else
5 //suppose that τk is created by vertex vjl of τl
6 tcmax(τk) := ttmax(v

j
l )× tcmax(τl);

7 for each vertex vik of γ(τk) from the first to the last do
8 if vik is the entry vertx of a loop block Blp then
9 // denote by K the loop bound of Blp;

10 ttmax(v
i
k) := (K + 1);

11 else
12 ttmax(v

i
k) := 1;

13 if vik is contained in some loop blocks then
14 //suppose that vik is closely contained in a loop

block Blp with the exit vertex vexk and the loop
bound K

15 ttmax(v
i
k) := ttmax(v

i
k)× ttmax(v

ex
k )×K;

Complexity. The parameter computation for each task τk costs

O(|Vk|), where |Vk| is the number of vertices in τk. The

complexity of Alg. 1 is O(N), where N =
∑

τk∈T |Vk| is

the total number of vertices in all tasks of T .

Pessimism. Formula (4) involves all vertices of T , and requires

that each vertex is traveled up to its maximum traversal times.

This may not correspond to a feasible EF since the vertices

in different branches of the same if-else block should be

mutually traveled. For example, by assuming that bound of

the loop block in Fig. 2 is 2, the vertex v51 is traveled twice

in an EF ε only if the vertex v41 is not traveled in ε. By (4),

the vertices v51 and v41 are both required to be traveled twice,
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which clearly violates the loop bound constraint. Formula (4)

is pessimistic and cannot compute an exact volume of T .

B. More Exact Method

To compute vol(T ) more exactly, we explore deep insights

into the hierarchical structure of a task, and propose the

definition of syntax tree as follows.

Definition 4 (syntax tree). For any task τk of T , the syntax
tree tr(τk) of τk is denoted as follows.
• The root node of tr(τk) represents τk itself.
• Each leaf node of tr(τk) corresponds to a vertex of τk.
• A non-leaf node B of tr(τk) represents a subgraph of τk:

– If B represents an if-else block Bif , it has four child
nodes venk , vexk , B1 and B2, which separately represent
the entry vertex, the exit vertex and the two branches of
Bif .

– If B represents a loop block Blp, it has three child
nodes venk , vexk and B′, which separately represent the
entry vertex, the exit vertex and the body of Blp.

– If B represents a sequence of blocks, it has two child nodes
B1 and B2, which separately represent the first block B1

of B and the rest blocks of B, i.e., B2 = B −B1.

Fig. 7: The syntax tree of τ1 in Fig. 2.

As shown in Fig. 7, the task τ1 in Fig. 2 with 8 vertices

corresponds to a syntax tree with 12 nodes. For reducing

notations, we use the same symbol to denote the tree node and

the subgraph represented by the tree node.

Lemma 1. The number of nodes in tr(τk) is less than 2|Vk|.
Proof. As we know that there are at most n non-leaf nodes

in a complete binary tree with n leaf nodes. According to

Def. 4, a non-leaf node of tr(τk) has at least two child nodes,

and thus, the non-leaf nodes of tr(τk) is less than that of the

complete binary tree if they have the same number of leaf

nodes. Moreover, since each leaf node of tr(τk) corresponds to

a vertex of τk, there are at most |Vk| non-leaf nodes in tr(τk).
This completes the proof.

Definition 5 (induced digraph). For any node B of tr(τk) that
represents a subgraph B of τk, the digraph G(B) induced by
B contains not only the vertices in B but also the induced
digraphs of the tasks created by the creation vertices in B.
The volume of the induced digraph G(B) of B is denoted as
vol(B) = max{vol(εB)|εB = G(B) ∩ ε, for any ε � T }.

For example, by considering the subgraph B1 in Fig. 7, its

induced digraph G(B1) contains B1 itself, the CFG of τ4 that

is created by the vertex v51 in B1, and the TC and TW edges

between the vertices of B1 and the vertices in τ4. The volume

vol(B1) of the induced digraph G(B1) equals 4 by assuming

that each non-conditional vertex has an unit execution time and

each conditional vertex has zero execution time. The induced

graph of the main task τ1 is the whole digraph of T , and

thus, the volume of T equals that of τ1’s induced digraph, i.e.,

vol(T ) = vol(τ1). Based on this observation, we can compute

the volume vol(T ) by solving vol(τ1). We propose a dynamic

programming algorithm to compute vol(τ1) as shown in Alg. 2.

Algorithm 2: Computing vol(T ).

1 for each task τk in σ(T ) from the last to the first do
2 for each node B in tr(τk) from leaves to the root do
3 if B is a leaf node representing vertex vik then
4 vol(B) := cik;

5 if vik is a creation vertex then
6 vol(B) :=vol(B)+vol(τl);//v

i
k creates τl;

7 else if B is the sequence of blocks (B1, B2) then
8 vol(B) := vol(B1) + vol(B2);

9 else if B is an if-else block then
10 vol(B) :=cenk +cexk +max{vol(B1),vol(B2)};

11 else if B is a loop block with body B′ then
12 vol(B) :=(K+1)×cenk +cexk +K×vol(B′);

13 return vol(T ) := vol(τ1);

As shown in Line 1 of Alg. 2, by exploiting the reversed

order of σ(T ), we compute the volume vol(τk) of the digraph

induced from each task τk ∈ T in an iterative way, i.e., for

any task τk and its child task τl, the volume vol(τl) computed

for τl can be used for the volume computation of (the induced

digraph of) τk. For each task τk, we travel its syntax tree

tr(τk) from leaves to root (Line 2), and compute the volume

vol(B) for each node B in tr(τk). If B is a leaf of tr(τk)
that represents a vertex vik of τk, we compute vol(B) by

distinguishing whether vik is a creation vertex or not (see in

Lines 3 to 6,). Otherwise, B represents a non-leaf node of

tr(τk). There are three possibilities. As shown in Lines 7 to

8, if B corresponds to a sequence of blocks (B1, B2), the

volume vol(B) is the summation of vol(B1) and vol(B2). If

B corresponds to an if-else block with branches B1 and

B2, the branch of B with the larger volume contributes to

vol(B) as shown in Line 10. If B corresponds to a loop
block Blp with the body B′ and loop bound K, we know that

the entry vertex venk of Blp can be executed at most K + 1
times and the body B′ of Blp can be executed at most K
times before jumping out of the loop. It indicates that vol(B)
is calculated by the equation in Line 12. Alg. 2 returns the

volume vol(τ1) of the main task τ1’s induced digraph as the

volume of T as shown in Line 13.

Complexity. The volume computation for each task τk costs

O(2|Vk|) according to Lem. 1. The complexity of Alg. 2 is

O(2N), recalling that N denotes the total number of vertices

in all tasks of T .
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VII. COMPUTING len(T )
A. Approximation Method

We solve an upper bound of len(T ) by Alg. 3. For each

task τk and each node B of τk’s syntax tree tr(τk), we use

len(B) to denote the length of the longest path in the induced

digraph G(B) of the block B, and we denote by lenu(B) the

upper bound of len(B). For each task τk in T , we compute

lenu(τk) of the induced digraph G(τk), and the length len(T )
is bounded by lenu(τ1) as shown in Line 13. The computation

of lenu(τk) relies on the computation results of τk’s child

tasks. Therefore, we exploit the reverse order of σ(T ) (Line 1),

and ensure that before computing lenu(τk) of the task τk, the

parameters lenu(τl) of τk’s child tasks τl have been computed.

For each task τk, we explore the nodes of τk’s syntax tree

tr(τk) from leaf nodes to the root node. For each node B of

tr(τk), we bound the length of B’s induced digraph G(B) by

considering the following two cases.

Algorithm 3: Computing the upper bound of len(T ).

1 for each task τk in σ(T ) from the last to the first do
2 for each node B in tr(τk) from leaves to the root do
3 if B is a leaf node of tr(τk) representing vertex vik

then
4 lenu(B) := cik;

5 if vik is creation vertex that creates τl then
6 lenu(B) := lenu(B)+lenu(τl);

7 else if B is the sequence of blocks (B1, B2) then
8 lenu(B) := lenu(B1) + lenu(B2);

9 else if B is an if-else block then
10 lenu(B) :=cenk +cexk +max{lenu(B1),len

u(B2)};

11 else if B is a loop block with body B′ then
12 lenu(B) := (K+1)×cenk +cexk +K×lenu(B′);

13 return lenu(T ) := lenu(τ1);

• If B is a leaf node of tr(τk) (see in Line 3), we assume that

B represents a vertex vik of τk, and there are two possibilities.

1) vik is a creation vertex that creates the child task τl of τk.

The length of B is bounded by the summation of cik and the

upper bound lenu(τl) of the length related to τl as shown in

Line 6. 2) vik is not a creation vertex, and in this case, the

length of B is simply bounded by cik as shown in Line 4.

• Otherwise, a non-leaf node B has three possibilities. 1) B
represents a sequence of blocks. The first block of B is

denoted as B1, and we let B2 = B −B1. The length of B
is bounded by the summation of lenu(B1) and lenu(B2)
as shown in Line 8. 2) B represents an if-else block

Bif . The branch of B with larger length bound is used to

derive the upper bound of len(B) as shown in Line 10. 3)

B represents a loop block Blp. The upper bound lenu(B)
is calculated in Line 12 as we know that the entry vertex

venk of Blp is traveled at most K + 1 times, and the path of

Blp’s body B′ is traveled at most K times.

Complexity. We observe that Alg. 3 is obtained by slightly

modifying Alg. 2, and these two algorithms have the same

computation complexity. According to Lem. 1, Alg. 3 computes

the upper bound of len(T ) within O(2N), where N is the

total number of vertices in all tasks of T .

Pessimism. Alg. 3 cannot solve the length len(T ) exactly. We

take the computation of lenu(Blp) for the loop block Blp in

Fig. 2 as an example. We assume that all conditional vertices

have zero execution time, and all non-conditional vertices have

unit execution time. The loop bound of Blp in Fig. 2 is 2.

According to Lines 11 and 12, the length bound lenu(Blp)
equals 2× lenu(Bif ), where Bif is the if-else block inside

Blp. The longest path of Bif is (v31 , v
5
1 , v

1
4) with the length

2. Therefore, lenu(Blp) = 4. Actually, the longest path of

Blp is (v21 , v
3
1 , v

5
1 , v

1
4 , v

4
1 , v

6
1 , v

2
1 , v

7
1) with length 3, which is

less than the length bound lenu(Blp) computed by Alg. 3.

By using the computation result lenu(Blp), we further derive

the length bound lenu(B1) = 5 for the block B1 (as shown

in Fig. 7) according to Lines 7 and 8. Moreover, the length

bound lenu(v11) of the digraph G(v11) induced by v11 equals 3
according to Lines 5 and 6. The length bound lenu(τ1) for the

main task τ1 equals lenu(v11) + lenu(B1) = 8, according to

Lines 7 and 8. According to Line 13, the length bound of T
returned by Alg. 3 equals 8. As shown in Case 2 of Example 1,

the longest path of T has the length 6, which is less than the

one calculated by Alg. 3.

B. More Exact Method

From above section, we know that for any block B of τk,

it is not sufficient to exactly derive the length of T if we only

know the length of the longest path of B’s induced digraph

G(B). In this sub-section, we propose a dynamic programming

algorithm to compute the length len(T ) more exactly. To this

end, we explore deep insights about the inner structure of B’s

induced digraph G(B), and introduce six types of paths that

travel the vertices of G(B) with an entry vertex venk and an

exit vertex vexk as follows.

• Π∗en(B): the set of paths that start with the entry vertex venk
of B. For example, the path (v31 , v

4
1) is a path in Π∗en(Bif )

for the if-else block Bif in Fig. 2.

• Π∗wt(B): the set of paths that start with a wait vertex of

B. For example, the path (v41 , v
6
1 , v

2
1 , v

3
1 , v

5
1) is a path in

Π∗wt(Blp) for the loop block Blp in Fig. 2.

• Πex
en(B): the set of paths that start with the entry vertex venk

of B and end at the exit vertex vexk of B. For example, the

path (v31 , v
5
1 , v

6
1) is a path in Πex

en(Bif ) for the if-else
block Bif in Fig. 2.

• Πct
en(B): the set of paths that start with the entry vertex venk

of B and end at the sink vertex of a child task of τk. For

example, the path (v31 , v
5
1 , v

1
4) is a path in Πct

en(Bif ) for the

if-else block Bif in Fig. 2.

• Πex
wt(B): the set of paths that start with a wait vertex of B

and end at the exit vertex vexk of B. For example, the path

(v41 , v
6
1) is a path in Πex

wt(Bif ) for the if-else block Bif

in Fig. 2.

• Πct
wt(B): the set of paths that start with a wait vertex of B

and end at the sink vertex of a child task of τk. For example,
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the path (v41 , v
6
1 , v

2
1 , v

3
1 , v

5
1 , v

1
4) is a path in Πct

wt(Blp) for the

loop block Blp in Fig. 2.

The longest path π of T must travel the paths of the above

path sets if π travels B. We illustrate this by considering two

possible cases. (1) If π enters into block B from the entry of B,

π contains the sub-path belonging to one of three path sets Πy
en,

where y = {∗, ex, ct}. (2) Otherwise, π must enter into B from

a wait vertex (via wait edges), and in this case, π contains

the sub-path belonging to one of three path sets Πy
wt, where y =

{∗, ex, ct}. For any path set Πy
x(B) (where x ∈ {en,wt} and

y = {∗, ex, ct}), we use leny
x(B) to denote the length of the

longest path in Πy
x(B), i.e., leny

x(B) = maxπ′∈Πy
x(B) len(π

′).
For any task τk ∈ T and for any node B of tr(τk), we use

the procedure complen(B) to compute all lengths leny
x(B) of

G(B) where x = {en,wt} and y = {ex, ct, ∗}.

Algorithm 4: Framework for computing len(T ).

1 for each task τk in σ(T ) from the last to the first do
2 for each node B in tr(τk) from leaves to the root do
3 complen(B);

4 return len(T ) := len(τ1);

Alg. 4 gives a framework to solve the length len(T ) of

T . For each task τk and for each node B of tr(τk), the

length computation procedure complen(B) uses the length

computation results of B’s child nodes and τk’s child tasks

(Lines 1 to 3). More precisely, the precedence order between

the computation procedures is described in Fig. 8.

Fig. 8: The precedence order of computation functions.

By letting B′ be the child node of B, the computation of

complen(B) relies on the computation results of complen(B′).
Moreover, by using the lengths computed by complen(B),
we can eventually compute the lengths leny

x(τk) for the task

τk whose syntax tree contains node B. Besides the lengths

computed by complen(B), the computation of complen(τk)
also needs the computation results of complen(τl) where τl
is the child task of τk. When every task completes its length

computation, we can derive the length of T as len(T ) =
len∗en(τ1) for τ1 is the main task of T (Line 4). The key point

of Alg. 4 is how to implement complen(B) for a given node

B of tr(τk), which is described below in more details.

Procedure of complen(B)

In the following, we propose a dynamic programming

algorithm to compute these longest path lengths leny
x(B) for

x ∈ {en,wt} and y = {∗, ex, ct}. There are four possible

cases below.

Case 1. B is a vertex vik of τk, i.e., B = vik. The lengths

leny
en(B) (for y = {∗, ex, ct}) are calculated as follows.

lenex
en(v

i
k) = cik (5)

lenct
en(v

i
k) =

{
cik + lenex

en(τl) vik creates τl,

−∞ else.
(6)

len∗en(v
i
k) =

{
cik + len∗en(τl) vik creates τl,

cik else.
(7)

and the lengths leny
wt(v

i
k) (for y = {∗, ex, ct}) are calculated

as follows.

leny
wt(v

i
k) =

{
leny

en(v
i
k) vik is a wait vertex,

−∞ else.
(8)

Lemma 2. For any vertex vik of τk, the lengths leny
x(v

i
k) is

correctly computed by (5) to (8).

Proof. Since there is a single path in Πex
en(v

i
k) which only

contains vertex vik, the length lenex
en(v

i
k) equals cik, and we

derive Formula (5). Formula (6) and (7) separately compute

lenct
en(v

i
k) and len∗en(v

i
k) by distinguishing whether vik is a

creation vertex or not. If this is the case, we assume that τl
is the child task of τk which is created by vik. The path of

Πct
en(v

i
k) begins with vik and travels a path in Πex

en(τl) related to

τl. It indicates lenct
en(v

i
k) = cik+ lenex

en(τl). Similarly, the path

of Π∗en(v
i
k) begins with vik and travels a path in Π∗en(τl), which

indicates len∗en(v
i
k) = cik + len∗en(τl). Otherwise, vik does not

create task. In this case, there is no path belonging to Πct
en(v

i
k),

and thus, we define the length lenct
en(v

i
k) as −∞. Moreover,

the path in Π∗en(v
i
k) only travels vik, and thus, len∗en(v

i
k) = cik.

Formula (8) computes leny
wt(v

i
k) by distinguishing whether

vik is a wait vertex or not. If this is the case, the path in

Πy
wt(v

i
k) begins with vik, and thus, the length leny

wt(v
i
k) equals

leny
en(v

i
k). Otherwise, there is no path in Πy

wt(v
i
k), and thus,

we define leny
wt(v

i
k) as −∞.

Case 2. B represents a sequence of blocks, and without loss

of generality, we use B1 to denote the first block of B, and

let B2 = B −B1 represent the rest blocks of B. We calculate

the lengths leny
x(B) (for x = {en,wt} and y = {∗, ex, ct})

as follows.

leny
x(B)=max{lenex

x (B1)+leny
en(B2), len

y
x(B1),

lenct
x (B1)+leny

wt(B2), len
y
x(B2)} (9)

Lemma 3. For any block B = (B1, B2), the lengths leny
x(B)

is correctly computed by (9).

Proof. The path π in Πy
x(B) has two possibilities. 1) π only

passes one of G(B1) and G(B2), i.e., π ∈ Πy
x(B1) ∪Πy

x(B2).
It indicates that leny

x(B) ≥ max{leny
x(B1), len

y
x(B2)}. 2) π

passes both G(B1) and G(B2), and can be divided into two

parts: π = (π1, π2), where π1 is the path which only travels

G(B1), and π2 is the path which only travels G(B2). There

are two sub-cases: a) π1 ends at the exit vertex of B1, i.e.,

π1 ∈ Πex
x (B1). since there is a control flow edge from the

exit vertex of B1 to the entry vertex of B2, and in order to
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guarantee the connectivity between π1 and π2, π2 must begin

with the entry vertex of B2, i.e., π2 ∈ Πy
en(B2). It indicates

that leny
x(B) ≥ lenex

x (B1) + leny
en(B2). b) π1 ends at the

sink vertex of a child task τl that is created by a vertex in

B1, i.e., π1 ∈ Πct
x (B1). Since only wait vertices of B2 can

be connected to the sink vertex of τl (via TW edges), to

guarantee the connectivity between π1 and π2, π2 must begin

with a wait vertex in B2, i.e., π2 ∈ Πy
wt(B2) It indicates that

leny
x(B) ≥ lenct

x (B1) + leny
wt(B2). In sum, we can derive

(9).

Case 3. B represents an if-else block which has an

entry vertex venk , an exit vertex vexk and two branches B1 and

B2. We calculate the lengths leny
x(B) (for x = {en,wt} and

y = {∗, ex, ct}) as follows.

lenex
en(B) = cenk +cexk +Lex

en (10)

lenct
en(B) = cenk +Lct

en (11)

len∗en(B) = max{lenex
en(B), c

en
k +L∗en} (12)

lenex
wt(B) = Lex

wt + cexk (13)

lenct
wt(B) = Lct

wt (14)

len∗wt(B) = max{L∗wt, len
ex
wt(B)} (15)

where Ly
x = max{leny

x(B1), len
y
x(B2)}.

Lemma 4. For any if-else block B, the lengths leny
x(B)

is correctly computed by (10) to (15).

Proof. Without loss of generality, we assume that branch

B1 has the larger length leny
x(B1) than branch B2, i.e.,

leny
x(B1) ≥ leny

x(B2) for each x = {en,wt} and y =
{ex, ct, ∗}. The longest path π in Πex

en(B) begins with the

entry vertex venk of B and ends at the exit vertex vexk of B.

According to the semantics of an if-else block, π can only

travel one of the two branches of B. As π is the longest path in

Πex
en(B), it must travel the longest path in Πex

en(B1), recalling

that we have assumed that lenex
en(B1) ≥ lenex

en(B2). Thus, the

length of π equals cenk + lenex
en(B1) + cexk , which indicates

(10).

The path in Πct
en(B) begins with venk and travels the longest

path in Πct
en(B1), which indicates (11).

The path π in Π∗en(B) may have two possibilities. 1) π
begins with venk and ends at vexk , i.e., π ∈ Πex

en(B), which

indicates len∗en(B) ≥ lenex
en(B). 2) π begins with venk and

only travels the induced digraph G(B1) of B1, and does not

travel vexk . In this case, π can be represented as π = (venk , π′),
where π′ is the longest path of G(B1), i.e., π′ ∈ Π∗en(B1). It

indicates that len∗en(B) ≥ cenk + len∗en(B1). In sum, we can

derive (12).

As the conditional vertex venk cannot be a wait vertex, the

path in Πex
wt(B) should begin with a wait vertex of a branch

of B, and ends at vexk . It indicates (13). The path in Πct
wt(B)

only travels the induced digraph of the branch of B, which

indicates (14). The path π in Π∗wt(B) may have two possible

cases. 1) π does not end at vexk , and in this case, π ∈ Π∗wt(B1).
2) π ends at vexk , and in this case, π ∈ Πex

wt(B). In sum, we

can derive (15).

Case 4. B represents a loop block which has an entry

vertex venk , an exit vertex vexk and a body B′. The loop bound

of B is K. We calculate lengths leny
x(B) of B (for x =

{en,wt} and y = {∗, ex, ct}) as follows. According to Line 2

of Alg. 4, lengths leny
x(B

′) of B′ must be calculated before

the computation of lengths leny
x(B).

lenex
en(B) = cenk +cexk +max{Γ1,Γ2} (16)

lenct
en(B) = cenk +lenct

en(B
′)+max{Γ3,Γ4} (17)

len∗en(B) = max{lenex
en(B), len

ct
en, A1, A2} (18)

lenex
wt(B) = lenex

wt(B
′) + max{Γ3,Γ4} (19)

lenct
wt(B) = lenct

wt(B
′) + max{Γ3,Γ4} (20)

len∗wt(B) = max{lenex
wt(B), len

ct
wt(B), A3} (21)

where

α = cenk +lenex
en(B

′)

β = lenct
wt(B

′)

γ = cenk +lenct
en(B

′)+lenex
wt(B

′)

A1 = cenk + len∗en(B
′)+max{Γ3,Γ4}

A2 = cenk +lenct
en(B

′)+len∗wt(B
′) + max{Γ5,Γ6}

A3 = len∗wt(B
′) + max{Γ3,Γ4}

Γ1 = αK

Γ2 = γ
K
2
�+{K

2
}max{α, β}

Γ3 = α(k−1)

Γ4 = γ
K−1
2
�+{K−1

2
}max{α, β}

Γ5 = α(k−2)

Γ6 = γ
K−2
2
�+{K−2

2
}max{α, β}

Here we use {·} to represent the remainder. In the following, we

only prove the correctness of (16), and discuss the correctness

of other formulas in Appendix A.

Lemma 5. For any loop block B, the length lenex
en(B) is

correctly computed by (16).

Proof. We prove the correctness of (16) as follows. We use

an automaton Aex
en to represent the paths of Πex

en(B) as shown

in Fig. 9.

Fig. 9: The automaton Aex
en representing the paths in Πex

en(B).

Each edge of Aex
en is associated with a label such as venk , vexk

and πy
x which denotes the longest path in the path set Πy

x(B
′)

for x = {en,wt} and y = {∗, ex, ct}. There is an initial

state (pointed by the red arrow) and a final state (marked as a

two-layer cycle) in the automaton Aex
en. Each path in Πex

en(B)
can be represented as a path Aex

en from the initial state to the

final state. The regular formulation of the paths in Πex
en(B)

is venk vexk (venk πex
en)

n1(πct
wt)

n2(πct
enπ

ex
wtv

en
k )n3 , which means that
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the vertices venk and vexk are separately traveled once; and the

segments π1 = (venk , πex
en), π2 = πct

wt and π3 = (πct
en, π

ex
wt, v

en
k )

are separately traveled for n1, n2 and n3 times, where nk

(for k = 1, 2, 3) is allowed to be 0. Based on these notations,

the length lenex
en(B) of the longest path in Πex

en(B) can be

calculated as lenex
en(B) = cenk +cexk +Γ, where Γ is the solution

of the following optimization problem.

Γ = max{αn1+βn2 + γn3} (22)

s.t. n1 + n2 + 2n3 ≤ K (23)

where the objective function (22) solves the maximum workload

of traveling of the segments π1, π2 and π3. The constraint of

(23) ensures the loop bound K. Since lenct
en(B

′) ≥ lenct
wt(B

′),
we know that γ > β, and there are two cases.

• If α > γ, the objective function (22) achieves its supremum

if n1 = K and in this case, n2 = n3 = 0. This indicates

that Γ = Γ1.

• If γ ≥ α, we consider two sub-cases. (1) K is even, the

objective function (22) achieves its supremum if n3 =
K
2 ,

i.e., Γ = γK
2 . (2) K is odd, the objective function (22)

achieves its supremum if n3 = 
K2 �, and n1 = 1 and

n2 = 0 if α > β or otherwise, n2 = 1 and n1 = 0. We have

Γ = γ
K2 �+ {K2 }max{α, β}, and thus, Γ = Γ2.

In sum, we derive (16).

Complexity. The length computation procedure complen(B)
implemented in this sub-section should compute 6 parameters

leny
x(B) for x = {en,wt} and y = {ex, ct, ∗}, and computa-

tion of each parameter costs O(1) time. Moreover, the total

number of nodes in a syntax tree tr(τk) is 2|Vk| according to

Lem. 1. Therefore, the length computation for all tasks in T
costs O(12N), where N is the total number of vertices in T .

VIII. EVALUATION

We develop both randomly generated task sets and realistic

OpenMP programs to evaluate our WCRT computation methods.

We implement our methods in C++, and run the code on a PC

with an Intel i5-7500 CPU at 3.4GHZ. For each task set, we

use R1 to denote the WCRT bound with the volume and the

length that are separately computed by approximation methods

in Sec. VI-A and Sec. VII-A. Moreover, we denote by R2 the

WCRT bound with the parameters computed by the methods in

Sec. VI-B and Sec. VII-B. In order to show how many times our

exact methods can improve the WCRT bound, we evaluate the

bound ratio of R1 to R2, i.e., r = R1

R2
. We use t1 to denote the

computation time of the approximation method for computing

the WCRT bound R1, and use t2 to denote the computation

time of the method for computing the WCRT bound R2. The

computation time is measured in milliseconds (ms).

A. Randomly Generated Tasks

We generate a task system T that contains n tasks, and

use a n-node tree to define the relationship between the tasks

of T . Each node of the tree represents a task in T . More

specifically, the root of the tree represents the main task τ1.

The leaf node of the tree represents a task that does not have

child task. The non-leaf node of the tree represents a task that

has child tasks. The edge of the tree indicates the parent-child

relation between the corresponding tasks. Here the n-node tree

is randomly generated by the Prüfer method [30]: We let Tn

denote the set of all possible free trees with n tree nodes. The

number of trees in Tn is given by Cayley’s celebrated formula

|Tn| = 2n−2. The Prüfer method first randomly generates a

Prüfer string with n elements and then encodes the Prüfer

string into a n-node tree, which can generate trees of Tn with

equal possibility.
For any task τk of T , we assume that τk has nk child tasks,

and we randomly generate a CFG of τk with about K = nk

pcre

non-conditional vertices, where pcre is the possibility that a

non-conditional vertex of τk is a creation vertex. At the

very beginning, we generate a single vertex, and add it into

the vertex set Vnew. In each round, for each newly generated

vertex vik in Vnew, we generate the successor vertex of vik with

the possibility psuc = max{0, 1 − nnon

K }, where ncon is the

number of non-conditional vertices in the current CFG of τk.

Moreover, we replace the vertex vik by a conditional block

with the possibility pcnd. Furthermore, we let pcnd = pif +plp,

where pif is the possibility that a vertex is replaced by an

if-else block, and plp is the possibility that a vertex is

replaced by a loop block. The if-else block that is used

to replace vik has an entry vertex, an exit vertex and two

branches. Each branch contains a single vertex, which is added

into the vertex set Vnew. The loop block that is used to

replace vik has an entry vertex, an exit vertex and a body,

which contains a single vertex vjk. We add the newly generated

vertex vjk into the vertex set Vnew. The loop bound of a loop
block is randomly picked in the range [5, 10]. Each vertex has

the worst-case execution time randomly picked in the range

[1, 10]. This procedure is repeated until there are (more than)

K non-conditional vertices in τk. We randomly select nk non-

conditional vertices to be the creation vertices, and each points

to a child task of τk. Since the total number of non-conditional

vertices is about nk

pcre
, we know that each conditional vertex is

a creation vertex with the possibility pcre. For any conditional

vertex vik, if a predecessor of vik creates the child task of τk,

we let vik be a wait vertex with the possibility pwait.
We conduct experiments with different combinations of

parameters in Fig. 10. The values of the configurations are

written in the figure caption. For each data point, 1000 random

experiments have been run. We observe that our method can

significantly improve the WCRT bound, i.e., R2 is 31.35 times

smaller than R1 on average. Moreover, our methods are very

fast, i.e., R1 can be solved within 8.41 ms and R2 can be

solved within 16.13 ms on average.
As shown in Fig. 10(a), the ratio r of R1 to R2 increases

exponentially with the increase of the thread number m.

According to (2), the WCRT bounds R1 and R2 both decrease

when m increases. The trend of the ratio r in Fig. 10(a)

indicates R2 decreases much faster than R1. The computation

time t1 and t2 is unchanged with the increase of m. This

is because that the thread number m does not affect the

complexity of our methods.
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As shown in Fig. 10(b), the ratio r of R1 to R2 increases

when the task number n increases. We can conclude that R2

can tolerant the increase of tasks much better than R1. The

computation time t1 and t2 both increase linearly with the

increase of n.

Fig. 10: Evaluation results for random task sets.

As shown in Fig. 10(c) and (d), the ratio r of R1 to R2

increases when the possibilities plp and pif increase. The

reasons are typically twofold. (1) the upper bound of vol(T )
calculated by Alg. 1 becomes more pessimistic when there are

more loop blocks and more if-else blocks that are nested

with each other. (2) the upper bound of len(T ) calculated by

Alg. 3 becomes more pessimistic when there are more loop
blocks that contain creation vertices. The computation time

t1 and t2 decrease with the increase of plp, and increase with

the increase of pif . This is because that an if-else block

may take more time to analyze than a loop block since an

if-else block contains two branches, and comparatively, a

loop block only has one branch.

As shown in Fig. 10(e), the ratio r of R1 to R2 does not

change significantly with the increase of pcre. As we know

that the larger pcre indicates the less vertices in a task when

the creation vertices in the task is fixed. With less vertices, the

WCRT bound R1 and R2 both decrease, and the trend of r in

Fig. 10(e) indicates that R1 and R2 descend at the same rate.

As shown in Fig. 10(f), the ratio r decreases with the increase

of pwait. This is because that the number of wait vertices in a

task does not affect the upper bound of len(T ) calculated by

Alg. 3, but the exact length len(T ) becomes larger when there

are more wait vertices. The computation time t1 and t2 does

not change significantly with the increase of pcre and pwait.

B. Realistic OpenMP Programs

We collect 12 OpenMP programs from the BOTS benchmark

suite [24], and develop the ompTG tool to transform them into

DCG topologies. The framework of ompTG is shown in Fig. 11.

First, we analyze the OpenMP program, and slice the code

region for each task τk. Then we use the “ALFBackend” tool

[31] to translate each task τk’s code region into task_k.alf,

an intermediate code with ALF format, which contains both the

high level control flow information and the low level executable

operation information of a program. Based on the translated

ALF file task_k.alf, we use SWEET tool [32] to build the

control flow graph (CFG) of task τk. Besides the topology of

task graphs, the weight of each vertex, representing its WCET,

is also important information when calculating WCRT bounds.

The WCET of a vertex heavily depends on the underlying

hardware architecture. The current version of ompTG cannot

provide precise WCET information of vertices since it lacks

the underlying hardware model. We use the static WCET

analysis techniques in SWEET [32] to derive the safe WCET

for each vertex of τk, which uses the SimpleScalar [33] as the

underlying processor architecture. The detailed configuration

of SimpleScalar simulator can be found in [33], and we omit

it here due to the page limitations. Furthermore, we also use

the Frama-C [34] and the flow facts analyzer in SWEET tool

to analyze loop bound information.

Fig. 11: Framework of ompTG tool.

The first six columns of Table I show the detailed information

of the benchmark programs2. Columns 2-7 show whether the

applications contain a certain structure feature, where T stands

for the number of tasks, V stands for the number of vertices,

E stands for the number of edges, W stands for the number

of wait vertices, I and L respectively stand for the number

of if-else and loop structures containing creation or

wait vertices.

The 8-10 columns of Table I give the ratio r of R1 to

R2 and the computation time t1 and t2 for 12 benchmarks

with thread number m = 32. The bound ratio r for these

benchmarks is 3.66 on average. The ratio r for benchmark

sparselu achieves 30.45, which is the maximum among all

benchmarks. This is because that the nesting depth of loop
blocks is 3 or 4 in sparselu, and there are creation vertices

in the loop blocks with nesting depth 2. Comparatively, In

2Some programs have recursive procedures. The problem of dealing with
this kind of OpenMP task systems is out of the scope of this paper. In our
experiments, we let the iteration numbers of the recursion be 1 for these
programs so that they can also fit into our model.
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other benchmarks (except strassen), the nesting depth of

loop blocks is 1 or 2, and the creation vertices are only

contained in the loop block that is not nested in other loop
blocks. The nesting depth of loop blocks in strassen is 2

or 3, but there is no creation vertex contained in loop blocks.

The computation time t1 and t2 for these benchmarks are

positively correlated with the number of nodes and edges in

the task system, which are 14.82 ms and 40.26 ms on average,

respectively.

TABLE I: Summary of BOTS programs and evaluation results

program
parameters R1

R2

comp time (ms)
T V E W I L t1 t2

alignment 1 1208 1320 1 45 20 1.00 14.66 40.02
concom 3 126 145 3 3 2 1.81 1.91 4.37
fft 41 8361 8602 18 27 15 1.53 108.73 303.70
fib 8 63 76 2 5 0 1.10 0.77 1.97
floorplan 4 436 473 2 22 8 1.08 3.15 10.48
health 4 412 479 2 21 13 1.07 5.86 14.90
knapsack 7 189 211 2 17 0 1.34 1.94 6.78
nqueens 4 161 180 2 15 9 1.01 1.81 5.00
sort 9 638 725 4 15 3 1.02 10.85 24.77
sparselu 4 544 594 3 5 17 30.45 9.49 19.64
strassen 22 1246 1319 2 9 21 1.00 16.12 44.75
uts 2 191 218 2 7 6 1.49 2.58 6.73

IX. CONCLUSION

Unlike traditional real-time system models, the workloads

generated by OpenMP systems are tightly coupled with

program-level structures (e.g., if-else and loops). Previ-

ous work has studied OpenMP tasks with if-else, but none

of them can model and analyze OpenMP tasks with loops.

In this paper, we make efforts to expose both if-else and

loop structures in OpenMP tasks. We propose linear-time

methods to efficiently compute the two parameters (e.g., the

volume and the length) in the WCRT bounds of the OpenMP

tasks. Compared with the method that can only compute the

parameters roughly, our methods (for computing parameters

more exactly) is able to improve the WCRT bound.

APPENDIX A

Correctness of (17). The paths of Πct
en(B) can be represented

by the automation Act
en as shown in Fig. 12.

Fig. 12: The automaton Act
en representing the paths in Πct

en(B).

The regular formulation of the path in Πct
en is venk πct

en

(venk πex
en)

n1(πct
wt)

n2(πct
enπ

ex
wtv

en
k )n3 . The length lenct

en(B) can

be calculated as lenct
en(B) = cenk + lenct

en(B
′) + Γ′, where Γ′

is the solution of the following optimization problem.

Γ′ = max{αn1+βn2 + γn3} (24)

s.t. n1 + n2 + 2n3 ≤ K − 1 (25)

By solving the above problem, we derive (17).

Correctness of (18). We use A∗en in Fig. 13 to show the

paths of Π∗en(B). The corresponding regular formulation is

(venk π∗en|venk πct
enπ

∗
wt)(v

en
k πex

en)
n1 (πct

wt)
n2(πct

enπ
ex
wtv

en
k )n3 . The

length len∗en(B) is larger than cenk + len∗en(B
′)+Γ′ and cenk +

lenct
en(B

′) + len∗wt(B
′) + Γ′′, where Γ′ is defined by (24) and

Γ′′ is the solution of the following optimization problem.

Γ′′ = max{αn1+βn2 + γn3} (26)

s.t. n1 + n2 + 2n3 ≤ K − 2 (27)

By solving the above problem, and since len∗en(B) is no less

than lenex
en and lenct

en, we derive (18).

Fig. 13: The automaton A∗
en representing the paths in Π∗

en(B).

Correctness of (19). The paths of Πex
wt(B) are formu-

lated by an automaton Aex
wt as shown in Fig. 14, and

the corresponding regular formulation of these paths is

πex
wt(π

ex
env

en
k )n1(πct

wt)
n2(πex

wtv
en
k πct

en)
n3 . The length lenex

wt(B)
can be calculated as lenex

wt(B) = lenex
wt(B

′)+Γ′, where Γ′ is

the solution of the optimization problem in (24) and (25). By

solving this problem, we derive (19).

Fig. 14: The automaton Aex
wt representing the paths in Πex

wt(B).

Correctness of (20). We formulate the paths of

Πct
wt(B) as the automation Act

wt(B) in Fig. 15. The

corresponding regular formulation of these paths

is πct
wt(π

ex
env

en
k )n1(πct

wt)
n2(πex

wtv
en
k πct

en)
n3 . The length

lenct
wt(B) = lenct

wt(B
′) + Γ′, where Γ′ is the solution

of the optimization problem in (24) and (25). By solving this

problem, we derive (20).

Fig. 15: The automaton Act
wt representing the paths in Πct

wt(B).

Correctness of (21). The paths of Π∗wt(B) are for-

mulated as the language of the automation A∗wt in

Fig. 16, i.e., π∗wt(π
ex
env

en
k )n1(πct

wt)
n2(πex

wtv
en
k πct

en)
n3 . The length

len∗wt(B) = len∗wt(B
′)+Γ′, where Γ′ is the solution of the

optimization problem in (24) and (25). By solving this problem,

and since len∗wt(B) ≥ lenex
wt(B) and len∗wt(B) ≥ lenct

wt(B),
we derive (21).

Fig. 16: The automaton A∗
wt representing the paths in Π∗

wt(B).
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