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Abstract—The United States National Airspace System is
currently operating at a level close to its maximum potential.
The workload on the system, however, is only going to increase
with the influx of unmanned aerial vehicles and soon, commercial
space transportation systems. The traffic flow management is
currently managed based on the flight path requests by the airline
operators; while the minimum separation assurance between
flights is handled strategically by air traffic control personnel.
A more tactical approach would be to plan for a longer time
horizon which is non-trivial given the uncertainties in the airspace
due to weather. In this work, we consider a simplified model of
the airspace as a grid of sectors and the uncertainties in the
airspace are modeled as blocked sectors. In the modeled airspace
with uncertainties, we schedule multiple flights using a dynamic
shortest path algorithm. A novel cost function based on potential
energy fields is proposed for use in the path planning algorithm
to handle blocked sectors. A priority-based contention resolution
scheme is proposed to extend the solution to multiple flights. We
then demonstrate the proposed framework using a simulated test
case.

I. INTRODUCTION

The Next Generation Air Transportation System (NextGen)
[1] is a collection of new technologies and tools provided
by the Federal Aviation Administration (FAA) to improve the
safety and efficiency of the National Airspace System (NAS).
Managing the capacity and demand in the national airspace is
one of the primary focuses of the NextGen. However, current
techniques to manage the capacity are at best tactical rather
than strategic. Developing strategic decisions is naturally a
harder problem which involves resolving conflicts in flight
paths, diverting traffic away from weather affected regions
of the airspace, maintaining a minimum separation between
flights.

In this work, majority of the focus in on the capacity of
the airspace sectors. Sector capacity refers to the maximum
number of flights that can be handled by the air traffic
controllers in a given interval of time. This sector capacity

is largely determined by the workload incurred by the air
traffic controllers that manage the sector to preserve separation
assurance among several other safety constraints [2]. Separa-
tion assurance is the safety invariant that assures a minimum
distance required to be maintained between any two aircrafts.
Several works [2], [3] have established a workload model that
characterizes the different categories of work that is required to
be handled by the controllers. Among all workloads, the traffic
dependent workloads are transit workload, conflict workload
and recurring workload. Further, weather induced flow con-
strained areas in the air space have degraded sector capacities
due to the additional workload on the air traffic controllers to
guide to flights. In addition to all the disturbances, even under
normal weather conditions, human factors such as fatigue can
reduce the actual sector capacity from the maximum sector
capacity. To address this problem, recent research has focused
on getting accurate position and heading of the aircrafts,
better weather prediction models, data communication instead
of voice communication for effective information exchange,
several flow management programs like ground delay, en
route delay programs. We aim to directly reduce the traffic
dependent workload by developing a path planning framework
to strategically design flight paths considering the uncertain
dynamics of the weather.

There exist several preliminary works to handle the path-
planning problem. A∗ search [4] and geodesic computation [5]
are some of the widely used approaches to tackle the problem.
The presence of uncertainties have also been considered in the
path planning procedures [6], [7], however, those approaches
rely on the A∗ search algorithm [8]. Aircraft routing can not
be modeled as a shortest path routing problem because of
the dynamic changes in the weather, which affects the path
costs. A change in the path cost may make the planned route
infeasible and in worst cases, the aircraft may not be able to
reach its destination in time. There are two desirable properties
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expected from the routing algorithm. The first property is to
perform rerouting with minimal overhead and not drastically
change the flight path. The second desired property is avoiding
the local minima problem. Avoiding local minima problem
guarantees that the flight reaches its destination [9]. When
multiple flights and dynamic obstacles such as the weather is
considered, the local minima problem can occur with certain
cost functions.

Graph-based path planning algorithms work for simple
cases, and as discussed earlier, it does not capture the com-
plexity of the air traffic problem. Zhong [10] has provided
a detailed survey of the various optimal path planning tech-
niques with various objectives such as fuel savings, delay
minimization, reducing emissions and many more. Schilke and
Hecker [11] proposed a route optimization framework under
adverse weather data by first aggregating the airspace sectors
to avoid and then planning a route based on A∗ search. In
these approaches, the path is to be updated in intervals when
there is an update in the long-term weather forecast data.

However, these works focus on dealing with the path finding
problem of a single flight or do not consider rapidly adapting
the flight path to changes in the weather along the path.
Because of the push towards autonomous drones for civilian
and logistic purposes, there will be an increased demand
on air traffic controllers. This work aims at automating the
routing process, such that the air traffic controllers can act as
an oversight instead of manually decongesting the air space.
The multi-target case models multiple target at the same time
while the interaction between the different flights is handled
by priorities. The priority assignment is not in the scope
of the paper and it could be assigned based on the flight
dependent information such as time of flight, fuel capacity,
flight speed etc.

Our Contributions. The following is a summary of contribu-
tions in this work.

1) A novel cost function based on potential energy fields is
proposed for the graph search algorithm. The cost func-
tion captures the information about the blocked sectors
and contending flights.

2) A priority-based contention resolution is proposed to
support path planning for multiple flights in a shared
airspace.

Organization. Section II introduces the models used to repre-
sent the airspace, the sector capacity and the flight model. In
Section III we propose a path planning framework for multiple
flights. A heuristic cost function is proposed in Subsection
III-B. Using the cost function, we show the path planning
for a single flight in Subsection III-C. Later, in Subsection
III-D we extend the framework to include multiple flights.
Simulation results to demonstrate the framework using a set
of sample flights is shown in Section IV. Finally, we present
our conclusions and thoughts on future works in Section V.
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Fig. 1: A sample representation of the airspace with sectors
s1, s2, . . . , s15 considering an hexagonal grid, which shows the
weather model. A flight can only traverse between adjacent
sectors.

II. MODELS AND PROBLEM STATEMENT

In this section, the airspace model and the sector capacity
model is stated. Based on the models, the air traffic scheduling
problem is then formulated.

A. Airspace Sector Model

The airspace is represented by a contiguous set of sectors.
The set of all sectors S = {s1, s2, . . . , sn} represents the
available sectors and each sector is managed by its own
control center. The airspace as a whole is therefore represented
using a graph G with the sectors as vertices with adjacent
sectors connected by edges. For any sector si ∈ S, the subset
N(si) ⊂ S represents the neighbors of si, i.e., ∀sj ∈ N(si),
an aircraft can transit directly from si to sj represented by the
edge eij in the graph.

An example of the graph model is as shown in Figure 1.
The altitude of the flight in a sector is not considered in this
model, since altitude changes are infrequent and assumed to
be handled by the air traffic controllers. Since the routing of
the flight is automated at a finer granularity, majority of the
workload for the air traffic controllers is reduced. Due to the
simpler structure of our airspace, the distance traveled by a
flight transiting from one sector to the other is assumed to be
equal to the euclidean distance between the sectors.

B. Sector Capacity Model

Sector capacity refers to the number of flights that can be
handled by the air traffic controllers in any given sector. For
simplicity, we assume that each sector can handle the same
amount of flights and therefore normalize the sector capacity.
The sector capacity can further be reduced by adverse weather
conditions for a short period of time. The capacity of a sector
si at time k is represented by xi[k], where k ∈ N. The capacity
xi[k] takes a real value in the range [0, 1]; A value of 0 means
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that the sector is blocked and has no more capacity, while a
value of 1 means that the sector capacity is at its maximum
and there are no flights or adverse weather in the sector.

Weather impact on strategic air traffic management can be
modeled by a networked Markov process model called the
influence model. The influence model is shown to be able to
generate realistically model the weather dynamics [12]. We
use the influence model to model the dynamics of the sector
capacity being affected by the weather conditions. According
to the influence model, the probability of any sector sj ∈
V (G) influencing the sector si’s next capacity (i.e., xi[k+1])
is given by pi,j , where 0 ≤ pi,j ≤ 1 and

∑
j pi,j = 1. Once the

influencing sector sj is chosen, the sector si’s next capacity
xi[k + 1] is determined by the 2 × 2 local transition matrix

Ai,j =

[
Ai,j0,0 Ai,j0,1

Ai,j1,0 Ai,j1,1

]
, where Ai,jm,n

= p(xi[k + 1] =

n | xj [k] = m).
An example is shown below for understanding. From Figure

1, let s3 be the influencing sector for s1 and x1[0] =
1; x3[0] = 0 be the sector capacities at the two sectors at

time k = 0. And assuming A1,3 =

[
0.9 0.1

0.4 0.6

]
implies

p[x1[1] = 0 | x3[0] = 0] = 0.9

p[x1[1] = 1 | x3[0] = 0] = 0.1

Therefore, according to the influence model, there is a 10%
chance that the capacity of the sector s1 will be blocked
due to the weather in the next time interval. The transition
probabilities pi,j and the influence matrix Ai,j is calculated
from historic weather data. Later in the work, we will use
the influence model to generate weather data for simulation
purposes.

C. Flight Model

We consider a set of flights F = {f1, f2, . . . , fm}. Each
flight fl ∈ F has an origin sector ol and destination sector dl,
where ol, dl ∈ S. A basic requirement of air traffic scheduling
is to allocate a path from the origin sector to the destination
sector. In this work, we assume that the sectors are of the
same size and the flight time between sectors is assumed to
be equal to its euclidean distance. For each flight fl ∈ F , Dl

represents its maximum flight distance or deadline by which it
should reach the destination. The flight path pl for flight fl is
a path in the airspace graph G from the origin sector ol to the
destination sector dl. The edge weights in the path represent
the cost to travel from one sector to the next. Given a flight
path {ol, . . . , sl1 , sl2 , sl3 , . . . , dl}, if the flight is at sector sl1
at time k, then at time k + 1 the flight will be at sector sl2
and at time k + 2 at sector sl3 and so on.

D. Problem Statement

The state of the airspace system at time k is represented
by the position (i.e., sector) of all the flights fl ∈ F and the
capacity xi[k] of each sector. The number of flights in a sector
si at time k is given by ηk(si). The edge weight ck(si, sj) ≥ 0

in the airspace graph G represents the cost of transition from
si to sj at time k for flight fl. The goal of the work is to find
∀fl ∈ F , a flight path pl such that

argmin
{pl | ∀fl∈F}

ηk(si). (1)

III. SOLUTION FRAMEWORK

In this section, we give an overview of the D* Lite path
planning algorithm [13]. Next, we provide a cost function
for the search algorithm using a heuristic based on potential
fields. Then, we model the sectors blocked by weather as
obstacles and show the implementation of D* Lite algorithm
for a single flight. After the application for a single flight is
shown, we extend the framework to include multiple flights
simultaneously.

A. D* Lite Algorithm

For any given position in the graph, D* Lite algorithm
maintains two different cost estimates to the destination. The
first estimate g is based on the information about the map that
is already known. The second estimate rhs is a look-ahead
estimate. When the two estimates g and rhs are different, the
node in the graph is marked as inconsistent and is placed in
a priority queue. The nodes in the queue with a lower cost
estimate to the destination take a higher priority in the queue.

Initially, every node in the map assumes that its cost to the
destination is infinite since the map has not been explored yet.
The map exploration in a D* Lite algorithm starts from the
destination until the exploration reaches our current position.
The exploration is a repetitive update of inconsistent nodes
in the priority queue. The node with the highest priority is
updated to make its estimates equal and, then the neighboring
nodes are informed of the new cost g. If the neighboring node
finds a new path with a lower cost, its look-ahead cost rhs is
updated to reflect that which makes it inconsistent with its g
value and hence placed in the queue. This process is repeated
until the estimated cost from the current node is not infinite
and the current node is consistent. The exploration process is
terminated, and no further exploration is necessary. For further
details on the D* Lite algorithm, refer [13] by Koenig and
Likhachev.

Two important features of D* Lite algorithm that make it
suitable for our problem are as follows:

1) Exploration of the entire graph is not necessary. The
map exploration procedure starts from the destination and
terminates when a path is found from the current node.
Since the airspace is a vast region, it is unlikely that a
good path lies extensively far away from the source and
the destination.

2) When the map changes due to updates in the weather
forecast, the changes are propagated to the current node.
This propagation eliminates the need for recomputing
the path from scratch and allows a relatively very quick
recomputation of an updated path.
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B. Cost Function

Graph-based path planning algorithms require a defined cost
for a transition from one node to another. The heuristics behind
the cost function are application specific. In this subsection,
first, potential fields are introduced, and then a cost function
for the path planning problem is defined based on the designed
potential fields.

Potential functions have been extensively used in global
path planning algorithms [14]. Potential function approach
involves constructing a potential energy surface over the area
considered for path planning with the goal being the point(s)
with the lowest potential energy. The points in the energy
surface with the highest energy represents the obstacles. There
are two major sub-components that combine to form the
potential energy surface, namely the attractive potential and
the repulsive potential. Let the potential function associated
with an aircraft at sector si at time instant k be given as shown
in Equation (2)

Utot(si, k) = Uatt(si) + Urep(si, k), (2)

where, Uatt is the attractive potential and Urep is the repulsive
potential.
Attractive potential. The attractive potential Uatt(si) at si
is proportional to the square root of the Euclidean distance
r(si, sd) between si and the destination sector sd. The Uatt(si)
is calculated as shown in Equation (3).

Uatt(si) = katt
√

r(si, sd), (3)

where, katt is the attractive potential constant. The attractive
potential is chosen to be quadratic so that the magnitude of
the slope increases as the flight approaches the destination.

At destination dl for flight fl, r(dl, dl) = 0 which implies
Uatt(dl) = 0. Also, since the attractive potential depends on
the goal sector, the Uatt(dl) at any given sector si does not
change due to obstacles.
Repulsive potential. The repulsive potential Urep is used to
repel the aircraft away from obstacles, which in our case
are the blocked sectors. The repulsive potential must be
designed to prevent the aircraft from approaching the blocked
sectors. The repulsive potential is chosen to be a 2-dimensional
Gaussian function with the constrained sector as its center. The
amplitude and the spread of the Gaussian function are design
parameters to adjust the intensity of the repulsion and its range
of influence in the energy surface. The repulsive potential at
sector si at time k due to all the sectors in the airspace is
given by Urep(si, k) as shown in Equation (4).

Urep(si, k) =
∑
sj∈S

krep,j xi[k] exp

(
r(si, sj)

σrep,j

)
, (4)

where, krep,j ∈ R
+ is the repulsive potential amplitude,

σrep,j ∈ R
+ is the spread of the gaussian function corre-

sponding to the sector capacity at sector sj , xi[k] is a binary
value indicating the sector capacity of sector si at time k as
defined in Subsection II-B. A sample potential field is shown

Fig. 2: A sample potential field shown in Cartesian coordi-
nates with the destination at (7,9) and a blocked sector at
(2, 2), (7, 3), and (8, 2). The two adjacent sectors at (7, 3) and
(8, 2) contribute a higher magnitude due to their proximity to
each other. The color bar on the right indicates the magnitude
of the potential in the constructed potential energy surface.

in Figure 2, with blocked sectors at (2, 2), (7, 3), (8, 2) and the
destination sector at (7, 9).

It should be noted that a simple gradient descent approach
on the potential surface might seem to be an obvious approach.
However, potential field functions suffer from local minima
problem. The occurrence of local minima in the potential
energy surface can prevent the gradient descent approach
from reaching the global minimum which in our case is the
destination. Graph-based path planning algorithms, however,
have no such problem and are guaranteed to find a path to the
destination, if there exists one.
Cost function. With the potential energy surface constructed
using the attractive and repulsive potentials, we map a rela-
tionship between the potentials and the edge costs for the path
planning algorithm. Based on the definition of the edge cost
for D* Lite in [13], the edge cost to transit from si to sj
is 0 < c(si, sj) ≤ ∞. Considering the requirements, for our
application, we define the cost function as follows

c(si, sj) =

⎧⎪⎨
⎪⎩
r(si, sj) if Utot(si, k) ≥ Utot(sj , k)

r(si, sj) + Utot(sj , k) otherwise
− Utot(si, k)

(5)
where the total potentials Utot(si) and Utot(sj) are calculated
as shown in Equation (2) and r(si, sj) is the distance between
si and sj .
Local minima problem. An edge from a sector at a higher
potential to a sector at a lower potential has a cost that
corresponds directly to the distance between the sectors. This
cost function is similar to following a gradient descent. The
distance cost restricts the path from being infinitely long.
However, the second case of the cost function, when the edge
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is from a lower potential to an higher potential sector leads
to a local minima problem. When following gradient descent,
such an edge would be overlooked and therefore could result
in being stuck at the local minima. The cost function for the
path planning is designed to incur a penalty to traverse to an
higher potential sector with the penalty being proportional to
the difference in potential between the sectors. An undesired
effect of avoiding the local minima problem is that, it is
now possible to move into a blocked sector given sufficient
potential difference. An example of this is when the path
to avoid the blocked sector(s) is too long compared to the
penalty incurred to travel through the blocked sector(s). It also
permits moving from one blocked sector sj to an another sk,
if Utot(sj) ≤ Utot(sk). To address these issues, we propose a
modified cost function

c(si, sj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(si, sj) if si is not blocked and
Utot(si, k) ≥ Utot(sj , k)

r(si, sj) + Utot(sj , k) if si is not blocked and
− Utot(si, k) Utot(si, k) < Utot(sj , k)

r(si, sj) + Utot(sj , k) otherwise
− Uatt(si)

(6)

C. Path Planning for a Single Flight

With the transition cost between adjacent sectors defined,
we apply the path planning algorithm for the case of a single
flight in the airspace. As mentioned earlier in Subsection III-A,
there are two cost estimates g and rhs. The cost estimate g(si)
is the cost to destination from sector si. The cost estimate for
every sector is dynamically calculated using D* Lite.
Dynamic Updates. The generated path is based on the current
information of the blocked sectors in the airspace. However,
as the path is being traversed, updates to the sector capacities
may require recomputation of the path.
Example 1. To demonstrate the working for a single flight,
an airspace of size 41× 41 is considered with 200 randomly
chosen blocked sectors. The origin sector of the flight is
randomly chosen as the sector corresponding to (11,−10) in
the cartesian coordinates and similarly the destination sector
corresponding to (−16, 5). The flight path is overlayed on
the potential surface Utot in the Figure 3. Also, assuming the
weather is static, the calculated heuristic cost g(si) is shown
for each sector si in Figure 4. It should be noted that, due to
the dynamic computation of the D* Lite, the cost is calculated
only at relevant sectors as seen in Figure 4.

D. Path Planning for Multiple Flights

In this subsection, we extend the framework to include
multiple flights. The air traffic scheduling is a resource sharing
problem with multiple flights competing for the same set of
air space sectors. We use priority based content resolution to
resolve conflicts among flights.
Priority levels. As mentioned in the flight model in Section
II-C, each flight fl has a deadline Dl ∈ R

+. Based on

Fig. 3: The potential surface with randomly chosen 200 ob-
stacles, (11,−10) as origin sector and (−16, 5) as destination
sector.

Fig. 4: A map of g values for the map shown in Figure 3

the origin and destination, assuming there is no weather
interference or interference from other flights, it is possible to
calculate the minimum distance Ml ∈ R

+ to the destination.
Then, the slack time of the flight is defined as the difference
between the deadline Dl and the minimum distance Ml for
the flight fl.

slackl = Dl −Ml, ∀fl ∈ F (7)

The slack time here refers to the amount of time the flight can
afford to waste on its route to the destination. Based on the
slack time of the flight, a priority level pl ∈ Z

+ is assigned;
lower value has the higher priority. The flight with a lower
slack time receive a higher priority level. Therefore the priority
assignment to the flights must satisfy

∀fl, fm ∈ F , slackl < slackm ⇐⇒ pl < pm (8)

In case, two flights have the same slack, then it is assumed
that the ties are arbitrarily broken.
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Flights as obstacles. The blocked sectors are not under the
control of the flights and are therefore treated as obstacles and
a path is planned avoiding the obstacles. Similarly, under the
given priority assignment, a flight with a lower priority has no
control over the actions of a flight with a higher priority and
therefore treats the higher priority flight as an obstacle and
constructs a path to its destination.

The overall path planning framework for multiple flights is
given as a pseudo-code in Procedure 1.

Procedure 1. Path planning for multiple flights
Input: Origin and Destination for all flights
for each flight do

Calculate slack using Equation (7);
Assign priority following Condition (8);
Current sector = Origin;
Calculate potential fields using Equations (2, 3, 4);
Calculate the edge costs using Equation (6);

end
for each flight do

while Current Sector �= Destination do
Compute shortest path using D* Lite;
Current Sector = Next sector;
Update obstacles;
Update potential fields;
Update edge costs;

end
end

Computational Complexity. Since the underlying path-
planning algorithm has the algorithm is D* Lite, the compu-
tational complexity of path planning follows the algorithm.
Updating the cost function at a sector depends on each
other other sector in the map. Therefore, the complexity of
recalculating the cost function is O(|S|2).

IV. SIMULATION RESULTS

In this section, we demonstrate the working of the multiple
flight path planning framework by considering an airspace
with 11 × 11 sectors and 2 flights and few randomly chosen
blocked sectors as shown in Figure 5. The flights f1, f2 have
their origins at (0, 4), (5, 0) and destinations at (9, 5), (8, 9)
respectively. The assigned deadlines of the flights are D1 = 15
and D2 = 20. The slack is calculated to be slack1 = 5.57,
slack2 = 10.94 according to Equation (7) and therefore f1
gets the higher priority. At time k = 0, the initial flight path
is planned after resolving the priority levels for each flight.
After the flight path is established, the flights continue along
their paths at time k = 1 and sector capacity is continuously
changing. At time k = 3, it can be seen that due to the
blocked sectors near (8, 6) and the proximity to flight f2, the
planned path for flight f1 is updated drastically. It should also
be noted that the re-computation updates only the sectors that
are relevant to the path (e.g. the sectors behind the flight).

To show the time complexity of the framework, we compare
the run times of the algorithm for varying sector size and for

TABLE I: Average running time (in seconds) for varying
airspace size and number of flights

Number of Number of airspace sectors
flights 25 100 400

5 0.09 0.36 2.91
10 0.16 0.65 6.02
20 0.25 1.55 19.07
50 - 5.85 57.35

100 - - 172.21

number of flights to be scheduled. We generate flights with
randomly chosen origin and destinations and the airspace is
generated with blocked sectors at pseudo-random locations.
The algorithm is run on a Windows PC running on Intel Core
i7−3770 CPU @ 3.40 GHz and 16 GB of RAM. Although, the
CPU is quad-core, only one core was used for the simulation.
The results are presented in Table I. Each entry in the table
is in seconds, represents the average cumulative computation
time for the initial path planning and the subsequent updates
until all flights reach their destinations.

V. CONCLUSIONS AND FUTURE WORK

The air transportation system traditionally included com-
mercial passenger aircrafts and military aircrafts as its major
consumer. More recently, unmanned aerial vehicles and com-
mercial space transportation are growing fields under the FAA.
A robust decision support system that is capable of scaling up
with load is required to address the future needs. Towards
that larger goal, this work proposes a framework to handle
multiple flights under a simple airspace model. The application
of this framework is not limited to air transportation system.
It can be transferred to a range of cyber-physical systems
which require decision support systems such freight logistics
systems. Adjusting priority dynamically during run-time is
another direction that will improve the travel time.
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