
Partitioning-Based Scheduling of OpenMP Task

Systems With Tied Tasks

Yang Wang , Xu Jiang , Nan Guan , Zhishan Guo , Xue Liu , and Wang Yi, Fellow, IEEE

Abstract—OpenMP is a popular programming framework in both general and high-performance computing and has recently drawn

much interest in embedded and real-time computing. Although the execution semantics of OpenMP are similar to the DAG task model,

the constraints posed by the OpenMP specification make them significantly more challenging to analyze. A tied task is an important

feature in OpenMP that must execute on the same thread throughout its entire life cycle. A previous work [1] succeeded in analyzing

the real-time scheduling of tied tasks by modifying the Task Scheduling Constraints (TSCs) in OpenMP specification. In this article,

we also study the real-time scheduling of OpenMP task systems with tied tasks but without changing the original TSCs. In particular,

we propose a partitioning-based algorithm, P-EDF-omp, by which the tied constraint can be automatically guaranteed as long as an

OpenMP task system can be successfully partitioned to a multiprocessor platform. Furthermore, we conduct comprehensive

experiments with both synthetic workloads and established OpenMP benchmarks to show that our approach consistently outperforms

the work in [1]—even without modifying the TSCs.

Index Terms—Multicore, parallel tasks, real-time scheduling, partitioning, OpenMP, tied tasks

Ç

1 INTRODUCTION

REAL-TIME systems are shifting from single-core to mul-
ticore processors to meet the rapidly increasing

requirements of high performance and low power con-
sumption. Software must be parallelized to fully utilize
the computation power of multicore processors. OpenMP
[2], the de facto parallel programming framework for
shared memory architectures in both general and high-
performance computing domains, is gaining increasing
attention for use in embedded platforms [3], [4], [5], [6],
[7], [8], [9], [10].

Using Directed Acyclic Graphs (DAG) to model parallel
workloads is a common way in real-time analysis. OpenMP
has supported explicit tasks since version 3.0, and its execu-
tion semantics are quite similar to the DAG model, which
has motivated much theoretical work on the real-time
scheduling and analysis of DAG task models [11], [12], [13],
[14], [15].

A tied task is an important feature in OpenMP task sys-
tems. In OpenMP, the tasks are tied by default, unless an
untied keyword is explicitly placed. Tied task forces a task
to execute on the same thread throughout its entire life cycle
without migrating to another thread. In particular, if the exe-
cution of a tied task is interrupted, it must be resumed on
the same thread later. In addition, the OpenMP specification
poses special constraints on the execution of tied tasks,
called Task Scheduling Constraints (TSCs), which also need
to be taken into account while scheduling tied tasks. There-
fore, the existing results using DAGmodels cannot be directly
applied to OpenMP task systemswith tied tasks because the
DAG models cannot fully capture the constraints of tied

tasks posed by theOpenMP specification.
Despite the constraints ontied tasks,tied tasks enjoy the

following benefits [4], [5], [16] because they preclude migra-
tions among threads: (1) a tied task simplifies the implemen-
tation of the scheduling algorithm and reduces context
switching costs; (2) in many cases, a tied task can help
reduce the difficulty of avoiding deadlocks in the presence of
critical sections; (3) a tied task can help make library func-
tions thread-safe.Meanwhile, situations still existwhendevel-
opers must use tied tasks instead of untied tasks. OpenMP
has always been thread-centric before OpenMP 3.0. Threads
provide a very useful abstraction of processors, and develop-
ers have capitalized on this capability. Threadprivate storage,
threadspecific features and thread-local storage provided by
the native threading package or the linker are all useful for
making library functions thread-safe. However, employing
threadprivate variables or anything dependent on thread ID
is strongly discouraged in untied tasks [16]. In contrast, it is
easier and more predictable to use this information in tied

tasks. Therefore, tied tasks are essential in OpenMP
programming.

� Yang Wang and Xu Jiang are with the Northeastern University, Shenyang
110819, China. E-mail: {wy09e15, jiangxu617}@163.com.

� Nan Guan is with the Hong Kong Polytechnic University, Hong Kong.
E-mail: nan.guan@polyu.edu.hk.

� Zhishan Guo is with the University of Central Florida, Orlando, FL 32816
USA. E-mail: zsguo@ucf.edu.

� Xue Liu is with the McGill University, Montreal, QC H3A 0G4, Canada.
E-mail: xueliu@cs.mcgill.ca.

� Wang Yi is with the Northeastern University, Shenyang 110819, China,
and also with the Uppsala University, 752 36 Uppsala, Sweden.
E-mail: yi@it.uu.se.

Manuscript received 30 Oct. 2019; revised 3 Dec. 2020; accepted 28 Dec. 2020.
Date of publication 31 Dec. 2020; date of current version 28 Jan. 2021.
(Corresponding author: Xu Jiang.)
Recommended for acceptance by M. Becchi.
Digital Object Identifier no. 10.1109/TPDS.2020.3048373

1322 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

1045-9219 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0980-8455
https://orcid.org/0000-0003-0980-8455
https://orcid.org/0000-0003-0980-8455
https://orcid.org/0000-0003-0980-8455
https://orcid.org/0000-0003-0980-8455
https://orcid.org/0000-0003-2675-2895
https://orcid.org/0000-0003-2675-2895
https://orcid.org/0000-0003-2675-2895
https://orcid.org/0000-0003-2675-2895
https://orcid.org/0000-0003-2675-2895
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0003-3775-911X
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0001-5252-3442
https://orcid.org/0000-0001-5252-3442
https://orcid.org/0000-0001-5252-3442
https://orcid.org/0000-0001-5252-3442
https://orcid.org/0000-0001-5252-3442
mailto:wy09e15@163.com
mailto:jiangxu617@163.com
mailto:nan.guan@polyu.edu.hk
mailto:zsguo@ucf.edu
mailto:xueliu@cs.mcgill.ca
mailto:yi@it.uu.se

There is not much work focusing on analyzing the real-
time scheduling of OpenMP task systems with tied tasks.
Sun et al. proposed the first guaranteed response time
bound for the OpenMP task system with tied tasks in [1],
under a scheduling algorithm called BFS�. BFS� modifies the
original TSCs posed in the OpenMP specification to mitigate
the tied task scheduling problem. However, how to use
the original TSCs to schedule and analyze OpenMP task sys-
tems with tied tasks, which can provide hard real-time
guarantees, is vastly open.

To address the above problem, we propose an effective
algorithm called P-EDF-omp, which is a partitioning-based
multiprocessor scheduling algorithm for OpenMP-DAGs.
We first decompose the OpenMP-DAG into subtasks corre-
sponding to the vertices using the existing decomposition
strategy from [17]. These subtasks have their own release
times and deadlines. Then at design time, the Subtask
Assignment Procedure (SAP) in P-EDF-omp partitions
every subtask to a dedicated processor. Next at runtime,
each processor uses the non-preemptive earliest-deadline-
first algorithm (EDFnp) to schedule the subtasks that have
been assigned to it. In this study, we prove that all the
subtasks can automatically meet their deadlines when
scheduled by EDFnp on their dedicated processors, if they
were successfully assigned to the processors by the SAP in
P-EDF-omp. Thus, the SAP can be used as an off-line sched-
ulability-test for OpenMP-DAGs with tied tasks.

We conduct experiments under both synthetic workloads
and established OpenMP benchmarks to evaluate the perfor-
mance of our schedulability-test. The experimental results
show that P-EDF-omp outperforms the BFS� algorithm pro-
posed in [1] under different parameter configurations in
terms of the acceptance ratio.

2 RELATED WORK

OpenMP4 [2], the de-facto standard for shared memory par-
allel programming in high-performance computing (HPC),
has recently gained much attention in the embedded and
real-time domains [1], [3], [4], [5], [7], [18], [19], [20], [21]
due to its capability to define explicit subtasks and the data
dependencies existing among them. This capability allows
very sophisticated types of fine-grained and irregular paral-
lelism to be expressed. Moreover, OpenMP is supported in
the newest multicore embedded architectures and has
become a firm candidate for developing future real-time
embedded systems.

The authors of [22] conducted an evaluation of different
scheduling policies using their run-time system Nanos++
[23] and analyzed the differences existing between tied

and untied tasks from an average performance point of
view. In addition, the average-case performance analysis of
OpenMP applications is discussed in [24], [25], [26].

The first attempt to apply OpenMP4 was introduced in
[4], where the authors studied how to construct an
OpenMP task graph that contains sufficient information
for real-time DAG scheduling models to be applied. Then,
timing guarantees can be derived from the task graph with
considering the tasking semantics of OpenMP4. Serrano
et al. [5] provided the first response time bound analysis
for the OpenMP DAG task model with untied tasks and

pointed out that when tied tasks exist, the OpenMP task
system would have an unacceptably pessimistic response
time bound.

Moreover, Serrano et al. [19] investigated the scheduling
of OpenMP tasks with limited preemptions. Sun et al. [20]
considered the conditional branches in OpenMP programs
and proposed a linear-time algorithm for computing the
response time bound. Serrano et al. [7] analyzed the
response time for an OpenMP task system supporting het-
erogeneous multicores. However, none of these works have
considered tied tasks. Sun et al. proposed the first guaran-
teed response time bound for the OpenMP task system with
tied tasks in [1]. However, they modified the original Task
Scheduling Constraints (TSCs) posed by the OpenMP speci-
fication, while in this paper we use the original TSCs with-
out modifying them.

3 OVERVIEW OF OPENMP PROGRAMS

With OpenMP, one can design parallel tasks that are either
implicit tasks (e.g., omp loop) or explicit tasks (omp task).
In this paper, we consider only OpenMP 3.0 or higher ver-
sions, which support the task directive.1

3.1 OpenMP Threads

AnOpenMP program starts with a parallel directive (e.g.,
Line 1 in Fig. 1a), which constructs an associated parallel

region that includes all the codes enclosed in a pair of brack-
ets following the parallel directive (e.g., Lines 2–27 in
Fig. 1a). The parallel directive creates a team of m
OpenMP threads (m is specified with the num_threads

clause). In OpenMP, the execution entity for executing tasks
is called a thread (which equates to a thread in the underly-
ing OS). Similar to previous works [4], [5], each thread is
assumed to exclusively execute on a dedicated processor
(i.e., the OMP_PROC_BIND 2 variable is set to be “true”). In

Fig. 1. An example of OpenMP program and OpenMP-DAG.

1. For simplicity, we focus only on explicit OpenMP tasks, which are
annotated by the task directive. The implicit OpenMP tasks related to
work-sharing directives are out of the scope of this paper.

2. The OMP_PROC_BIND is an OpenMP environment variable: if it
is set to be true, OpenMP threads do not move among processors; oth-
erwise, OpenMP threads may move among processors.

WANG ET AL.: PARTITIONING-BASED SCHEDULING OF OPENMP TASK SYSTEMSWITH TIED TASKS 1323

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

the rest of this paper, the concept of “processor” is equivalent
to the thread executing on it and we use these two terms
interchangeably. The general case in which a processor is
bound tomultiple threads is out of the scope of this paper.

3.2 OpenMP Tasks

A parallel region can consist of a set of independent par-
allel units, called OpenMP tasks. In this paper, the term
“task” refers to an OpenMP task. A task is created when a
task directive is encountered (e.g., T1, Line 3 in Fig. 1a). All
the codes enclosed in the brackets following the task direc-
tive (e.g., the codes in Lines 4, 10, 20 and 27 belong to task
T1) form the body of the task.

If a task Ti is enclosed in the body of another task Tj, Ti is
a child of Tj and Tj is the parent of Ti. Two tasks that share
the same parent are siblings. Moreover, a task Ti is a descen-
dant of Tj, if Ti is a child (or the child of child—with arbi-
trary levels of recursion) of Tj. In this case, Tj is an ancestor
of Ti. For example, in Fig. 1b, task T2 is a child of task T1,
and tasks T5 and T6 are siblings because they share the com-
mon parent T4. Task T5 is a descendant of T1, and T1 is an
ancestor of T5.

3.3 Task Synchronization

The two most widely used synchronization mechanisms in
OpenMP are taskwait directives (e.g., Line 26 in Fig. 1a)
and depend clauses (e.g., Lines 13 and 16 in Fig. 1a) as
described below.

� taskwait. A task can synchronize with its children
via taskwait directives. A taskwait directive
blocks the parent task until all of its children (but not
other descendants beyond children) created prior to
the taskwaitdirective have completed. For example,
in Fig. 1b, tasks T2, T4 and T7 synchronize with T1

through a taskwait directive: T1 cannot complete the
execution of u14 until tasks T2, T4 and T7 complete.

� depend. Depend clauses impose an order between
two sibling tasks. If a task has an in dependence on
a variable, it cannot start execution until all its previ-
ously created sibling tasks with an out or inout

dependences on the same variable complete. In
Fig. 1b, T5 and T6 synchronize with each other
through a depend clause, and T6 must wait for T5 to
complete.

3.4 Runtime Constraints

The scheduling process for OpenMP tasks assigns tasks (or
task vertices) onto threads, ensuring that the following
OpenMP scheduling constraints are satisfied.

Task Scheduling Points (TSP). In OpenMP, a TSP is a point
in a program at which execution can be interrupted and
scheduling may be triggered. A TSP occurs upon task crea-
tion and completion, and at synchronization points such as
taskwait directives.3 TSPs divide a program into several
parts (e.g., block11 in Fig. 1a), and a TSP exists between
any two adjacent parts, implying that the execution of each

vertex should not be interrupted (i.e., the execution of each
part is non-preemptive).

Tied Tasks. In OpenMP, a task can be either tied or
untied. When a tied task starts execution on a thread, it
will subsequently only execute on this thread throughout
its entire life cycle. Specifically, if the execution of a tied

task is interrupted, this task must later resume on the same
thread. In contrast, an untied task can be executed on dif-
ferent threads. Thus, when the execution of an untied task
is interrupted, this task can later be resumed by any thread.
By default, OpenMP tasks are tied, unless explicitly speci-
fied as untied.

Task Scheduling Constraint (TSC). OpenMP enforces the
task scheduling constraint [27]: “Scheduling of new tied

tasks is constrained by the set of task regions that are currently
tied to the thread, and that are not suspended in a barrier
region. If this set is empty, any new tied task may be scheduled.
Otherwise, a new tied task may be scheduled only if it is a
descendent task of every task in the set.4” Details about this con-
straint will be introduced in Section 4.2.

4 MODELING

4.1 OpenMP Task Model

We consider an OpenMP task systemQ, which can be repre-
sented as a DAG G ¼ ðV;EÞ, where V represents the set of
vertices, and E represents the set of edges. Q consists of n
OpenMP tasks fT1; T2; . . . ; Tng, and each task is either tied
or untied. Specifically, we use C to denote the task set that
consists of all the tied tasks in Q. A task Th consists of a set
of vertices fuh1; uh2; . . . ; uhnhg,5 and a vertex uhx in V corre-
sponds to the x-th vertex of task Th and is associated with a
worst-case execution time cðuhxÞ. Each OpenMP task con-
tains a unique entry vertex and a unique exit vertex. The
task system Q is released recurrently with a period P and
has an implicit deadline, i.e., D ¼ P . The total worst-case
execution time of all vertices of a task system Q is denoted
by C ¼ P

u2V cðuÞ. The utilization U of a task system Q is
defined as U ¼ C=P . In this paper, we only consider task
systems with U > 1.

Edge (uhx; ujz) in E denotes the precedence constraint
between vertices uhx and ujz such that ujz can execute only
after uhx completes. In this case, uhx is called a predecessor
of ujz and ujz is a successor of uhx. u is eligible to be executed
when all its predecessors have completed. And Th is eligible
if uh1 is eligible. Moreover, we call Th an active task if Th is
eligible but has not completed the execution of all the verti-
ces it contains.

Definition 1 (Descendant Task Set). CdesðThÞ denotes the
set of OpenMP tasks that are descendant tasks of Th.

Definition 2 (Preassigned Vertices). vTh denotes the set of
every successor vertex of uh1 in tied task Th, i.e.,
vTh ¼ fuh2; uh3; . . . ; uhnhg

3. Additional TSPs are implied by various constructs barrier, target,
taskyield, taskgroup; however, for simplicity, we do not consider these
constructs or the if/final clauses of the task directive in this paper.

4. We do not consider the barrier construct in this paper and do not
include the barrier condition. In addition, we do not consider TSC4 in
OpenMP4 because we do not consider if/final clauses of task directives.

5. For simplicity, we assume that OpenMP-DAGs have no condi-
tional branches to focus on the main point of this paper: how to sched-
ule tied tasks.

1324 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

L denotes the sum of cðuÞ of each vertex u on the longest
chain (also called the critical path) of task system Q, i.e., the
execution time of the task system Q to be exclusively exe-
cuted on an infinite number of processors. L can be com-
puted in linear time with respect to the size of the DAG [28].
The laxity of Q is ðP � LÞ. We use � to denote the elasticity
of Q, which is defined as � ¼ L=P . Apparently, when a task
set Q is schedulable on a multicore platform composed ofm
identical processors, the following conditions must hold:

L � P and U � m:

There are three types of edges in a graph, i.e., E ¼
E1 [E2 [E3, as detailed below.

Control Flow Edges (E1), denoted by dotted-line arrows in
Fig. 1b, model the control flow dependencies within a task.

TaskCreationEdges (E2) are denoted bydashed-line arrows in
Fig. 1b.A parent task points its child tasks via this type of edges.

Synchronization Edges (E3) are denoted by solid-line arrows
in Fig. 1b. There are two synchronization edge subtypes that
correspond to the taskwait directives and depend clauses.

Notice 1. The P-EDF-omp algorithm in this paper treats all edges
in the same way. In other words, from the viewpoint of our
scheduling algorithm, these three types of edges are all equivalent
in the OpenMP-DAG. Hence in the rest of this paper, the figures
use only a single type of edge (solid-line arrows).

Fig. 1b shows the OpenMP-DAG which corresponds to
the OpenMP program in Fig. 1a.

4.2 OpenMP Runtime Model

Given a task graph G ¼ ðV;EÞ and a team of processors S ¼
fs1; . . . ; smg (recall that the concept of “processor” is equiva-
lent to the thread executing on it), a schedule is to assign
tasks to processors such that each vertex of V can be exe-
cuted until completion.

Definition 3 (Tied Task Set). GkðtÞ denotes the set of active
tasks that have been tied to processor sk before time t.

As introduced in Section 3.4, according to the OpenMP
specification, the OpenMP task scheduling must fulfill sev-
eral constraints at runtime. We concentrate on the following
three constraints in this paper. The formal statements for
these constraints are as follows.

� Task Scheduling Points (TSP): For 8uhx 2 V , once the
execution starts, it cannot be interrupted until com-
pletion (but task execution may be preempted or sus-
pended at vertex boundaries).

� Tied Tasks: For 8Th 2 C, if the entry vertex uh1 in Th

starts execution on processor sk, then uh1 itself as
well as 8uhi 2 vTh must be executed on sk through-
out their entire life cycle; they cannot migrate to
another processor.

� Task Scheduling Constraint (TSC): At time t, the entry
vertex uh1 of a tied task Th can be executed by pro-
cessor sk if for 8Tj 2 GkðtÞ, Th 2 CdesðTjÞ. TSC enfor-
ces that a new tied task Th can be executed by sk at
time t only if Th is a descendant of all the active tasks
tied to sk before t. Specifically, Th can be executed by
sk if GkðtÞ ¼ ;.

Example 1. An example schedule of OpenMP-DAG in Fig. 1b
satisfying the TSC is shown in Fig. 2. At time t1, the currently
tied task set of s1 is G1ðt1Þ ¼ fT4g, and the tasks T5 and T7

are both eligible at time t1. Under TSC, T5 can be executed
by s1 butT7 cannot because T5 is a child of T4 but T7 is not.

Table 1 summarizes the notations used in this paper.

5 PARTITION

In this section, we present the P-EDF-omp algorithm, which
is a partitioning-based multiprocessor scheduling algorithm
for scheduling the sporadic subtask set decomposed from
the OpenMP-DAG with tied tasks on identical multipro-
cessor platforms. The main idea of P-EDF-omp is based on
the FBB-FFD algorithm in [11]. The FBB-FFD algorithm is a
simple partitioning algorithm, which is a variant of a bin-
packing heuristic known as first-fit-decreasing.

In Section 5.1, we clarify the basic procedure of our
approach. In Section 5.2, we briefly introduce the decompo-
sition strategy in [17], which we use to transfer the
OpenMP-DAG into a sporadic sequential subtask set. Then,
in Section 5.3, we define P-EDF-omp and state how the Sub-
task Assignment Procedure works.

5.1 Overview of Our Algorithm

Based on the constraint for tied tasks that they cannot
migrate to another processor throughout their entire life
cycle, we chose partitioned scheduling. In partitioned sched-
uling, the vertices are not allowed tomigrate among process-
ors once partitioned to one processor. In order to get the
subtasks corresponding to the vertices for partitioning, we
need to decompose the OpenMP-DAG first. After we deter-
mine how to partition the subtasks to processors, the pro-
cessors schedule their “local” subtasks at runtime, and the
problem becomes that of real-time scheduling on a single
core. Due to the optimality of EDF for uniprocessors [29],
[30] and the constraint that the vertex execution cannot be
interrupted, we chose the non-preemptive earliest-deadline-
first algorithm (EDFnp) as the runtime scheduler. Later in
Section 6, we prove that if P-EDF-omp can successfully parti-
tion all the subtasks to the processors in the off-line phase,
every subtask can automatically meet its deadline with
EDFnp as the runtime scheduler on the corresponding pro-
cessor. Hence, the goal of the proposed algorithm is to find a
feasible way to partition the subtasks (corresponding to the
vertices in OpenMP-DAG), which we obtain from decompo-
sition. The algorithm can be divided into two phases: the off-
line phase and the on-line phase.

� Phase 1: off-line phase
This part consists of two steps:

– Decomposition. In this step, we use the decom-
position strategy in [17] to decompose the

Fig. 2. An example schedule of OpenMP-DAG in Fig. 1b.

WANG ET AL.: PARTITIONING-BASED SCHEDULING OF OPENMP TASK SYSTEMSWITH TIED TASKS 1325

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

OpenMP-DAG (which contains tied tasks) into
a sequential subtask set Qdecomp. Each subtask
corresponds to a vertex in Qdecomp and has its
own execution requirement (which equals the
WCET of the vertex), starting and ending times
of its own lifetime window.

– Partition. After obtaining the resulting sequential
sporadic subtask set, we use the Subtask Assign-
ment Procedure (SAP) to assign the subtasks to
“available” processors following the runtime
constraints introduced in Section 3.4, using a
“first-fit” heuristic.

� Phase 2: on-line phase
In this phase, each processor uses the non-

preemptive earliest-deadline-first algorithm (EDFnp)

as the runtime scheduler to schedule the subtasks
assigned to it.

Discussion About the On-Line Phase. Although the majority
of the P-EDF-omp algorithm completes during the off-line
phase, we still choose on-line scheduling with EDFnp rather
than choosing off-line scheduling for the following reasons. If
the execution times of the subtasks are all constants, we could
indeed create a scheduling table at design time and imple-
ment off-line scheduling. However, we can only obtain the
worst-case execution time rather than the real execution time
of each subtask at design time, and the worst-case execution
time (WCET) may occur only in various extreme cases; the
real execution time is typically less than the WCET. Thus, if
we were to adopt off-line scheduling, the subtasks would
have to wait even after they complete execution at runtime;
otherwise, we could not guarantee that the rules in the table
would be satisfied. Consequently, adopting off-line schedul-
ing reduces processor utilization, especially when other jobs
(not the ones from the OpenMP-DAG) are waiting to be
scheduled in the system. However, on-line scheduling does
not suffer from this problem. In general, on-line scheduling is
more flexible, and it utilizes processor resources better, which
makes it more popular than off-line scheduling in embedded
and real-time domains. Hence, we choose to use on-line
scheduling rather than off-line scheduling in P-EDF-omp.

5.2 Decomposition Strategy

In this section, we first briefly introduce the decomposition
strategy in [17].

The target of OpenMP-DAG decomposition is to assign
an artificial release time and deadline to each vertex, such
that the dependencies among different vertices can be auto-
matically guaranteed as long as each vertex respects its own
release time and deadline constraints. Upon decomposition,
an implicit deadline OpenMP task system is decomposed
into a set of constrained-deadline (i.e., deadline is no greater
than period) sequential subtasks, where each subtask corre-
sponds to a vertex in the OpenMP-DAG. Moreover, this
decomposition process ensures that the OpenMP-DAG will
be schedulable if all its subtasks are schedulable.

We use the example in Fig. 3 to illustrate the decomposi-
tion procedure, which consists of three main steps.

5.2.1 Segmentation

In this step, we divide the time window between two succes-
sive releases of Q (of length P) into several segments
fs1; s2; . . . ; spg and assign the workload of each vertex (which
equals the WCET of the vertex) to these segments. A vertex
may be split into several parts and assigned to different seg-
ments. We first construct a timing diagram for Q that defines
the earliest ready time of each vertex u, denoted by rdyðuÞ, and
the latest finish time of u, denoted by fshðuÞ,6 assuming thatQ
executes exclusively on a sufficient number of processors and
that the entireQworkloadmust be completedwithinL.

The segmentation algorithm consists of three steps:

� Step 1: Assign each vertex that only covers a single
segment. All the segments are then classified into
two types (light and heavy segments) according to the

TABLE 1
Notations Adopted in This Paper

Notations Descriptions

Q an OpenMP task system
n number of OpenMP tasks in Q
Th an OpenMP task
nh number of vertices in Th

G the workload structure of Q
V the set of vertices in G
E the set of edges in G
N the number of vertices/subtasks in G
cðuhxÞ worst-case execution time (WCET) of a vertex uhx

C total WCET of all vertices of Q
L the longest length among all path of Q
D the deadline of Q
P the period of Q
U the utilization of Q
� the elasticity of Q
C the set of tied tasks in Q
CdesðThÞ set of all descendant tasks of Th

vTh the set of successors of uh1 in tied task Th

S the team of the processors
sk the k-th processor
Pk the set of subtasks already assigned to sk
nsk number of subtasks in Pk

Dmt0;td the processor demand in time interval ½t0; td�
GkðtÞ active tasks that were tied to sk before time t
Qdecomp the resulting sequential subtask from

decomposition
si a segment in decomposition
ti a resulting sequential subtask from

decomposition
ei WCET of t0is corresponding vertex (t0is execution

requirement)
Di the lifetime window of ti
di length of lifetime window Di

hsti =h
sp
i starting and stopping time of Di

ivx a time interval
divx the length of time interval ivx
ivstx =iv

sp
x starting and stopping time instant of ivx

Kðti; ivxÞ The Interval Load of ti in time interval ivx
Dunðti; tjÞ Union Time Interval of lifetime windows of ti

and tj
dunðti; tjÞ length of the Union Time Interval
Dst
unðti; tjÞ starting time instant of Dunðti; tjÞ

Dsp
unðti; tjÞ stopping time instant of Dunðti; tjÞ

Lh the lifetime window of Th

rsth =r
sp
h starting and stopping time instant of Lh

Go
kðtÞ tied task Th assigned to sk with rsth � t < rsph

6. If vertex u has no outgoing edges, fshðuÞ ¼ L.

1326 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

ratio of the total amount of the workload of every
vertex (or a part of a vertex) assigned to the segment
and the segment length. For each segment, if this
ratio is no greater than C=L, the segment is a light
segment; otherwise, it is a heavy segment.

� Step 2: Assign the remaining vertices to light seg-
ments insofar as possible, without turning any light
segment into a heavy segment.

� Step 3: Assign the remaining vertices, if any, to the
heavy segments arbitrarily.

Definition 4 (Lifetime window of a vertex ui).
Regardless of whether a vertex ui has been split into several

parts, the time interval between the starting time of segment sp

and the ending time of segment sq is called the lifetime win-
dow of ui, where s

p is the segment whose starting time equals
rdyðuiÞ in the segmentation and sq is the segment whose end-
ing time equals fshðuiÞ in the segmentation.

We use Di to denote the lifetime window of ui, and hsti and
hspi to denote the times at which Di starts and ends, respec-
tively, i.e., hsti equals the starting time of sp and hspi equals the
ending time of sq.

Clearly, in the segmentation, the starting and ending
times of each vertex u0s original lifetime window are rdyðuÞ
and fshðuÞ, respectively. Later in the laxity distribution, the
lifetime window of ui will change as the starting time of sp

and the ending time of sq change. See [17] for more details
in segmentation algorithm.

Example 2. After segmentation, the OpenMP-DAG in Fig. 3
is transformed into a timing diagram with the workload
assigned as shown in Fig. 4. The lifetime window of u11

(which has not been split) is [0,5], while the lifetime win-
dow of u12

0s (which has been split) is [5,10].

5.2.2 Laxity Distribution

In this step, the laxity ðP � LÞ of this OpenMP-DAG will be
distributed into each segment created previously in the

segmentation step, based on a value called the structure char-
acteristic value for light and heavy segments. This means that
the length of every segment will be “stretched” to be longer.
Correspondingly, the lifetime window of each vertex changes
when the starting times of the segments change. After the
laxity distribution, each segment has new starting and end-
ing times. Correspondingly, the vertices contained in the
segments will have their own release times and relative
deadlines. Thus, an OpenMP-DAG is transformed into a set
of independent sequential sporadic subtasks. All the depen-
dency constraints of Q can be preserved if each vertex ui

executes in its lifetime window ½hsti ; hspi �. See [17] for more
details regarding the laxity distribution rules.

Example 3. After laxity distribution, the OpenMP-DAG in
Fig. 3 is transformed into a timing diagramwith the work-
load assigned as shown in Fig. 5. The lifetime window of u11

becomes [0,8] and the lifetime window of u21 becomes [8,16].

5.2.3 Vertex Reassembling

A vertex may be split into several parts during the segmen-
tation step such that each vertex part may be assigned to a
different segment. In this step, we reassemble the different
parts of a vertex, adjust the time constraints obtained from
the laxity distribution step accordingly, and then use them
to obtain the vertex’s (the subtask’s) release time and dead-
line. Note that in this step, we simply reassemble all the
parts belonging to the same vertex; we do not change the
lifetime window obtained from the previous step.

The vertex reassembling forces the sequential subtasks
that belong to the same vertex to be assigned to one proces-
sor by the P-EDF-omp algorithm (which will be discussed
later). The reassembling operation will not affect the off-line
partitioning. Hence, we choose to implement this step dur-
ing decomposition to simplify the Subtask Assignment Pro-
cedure, which will be shown next.

5.2.4 Resulting Sequential Sporadic Subtask Set

After decomposition, we obtain a resulting sequential spo-
radic subtask set Qdecomp ¼ ft1; t2; . . . ; tNg, where each
sequential subtask ti corresponds to a vertex in the original
OpenMP-DAG (after vertex reassembling). We use N to
denote the total number of sequential subtasks as well as
the number of nodes in OpenMP-DAG. Each subtask ti can
be represented as a triple hei; hsti ; hspi i, where ei represents
the execution requirement of ti (which equals the WCET of
corresponding vertex), and hsti and h

sp
i represent the starting

and ending times of Di (the lifetime window of ti), respec-
tively. More specifically, hsti and hspi are the artificial release
time and deadline (relative to the release time of the
OpenMP-DAG) of each subtask after vertex reassembling.

Fig. 3. OpenMP-DAG in Fig. 1b with random cðuÞ (P=36).

Fig. 4. A possible segmentation of OpenMP-DAG in Fig. 3.

Fig. 5. Laxity distribution of example in Fig. 3 (before reassembling).

WANG ET AL.: PARTITIONING-BASED SCHEDULING OF OPENMP TASK SYSTEMSWITH TIED TASKS 1327

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

Notice 2. In this paper, we consider hst1 (the starting time of the
first released vertex’s lifetime window) to be time 0, i.e., hst1 ¼
0. Therefore, the time points considered in this paper, such as
hsti and hspi , are all absolute times.

This resulting sequential sporadic subtask set is the
object partitioned by the SAP in P-EDF-omp at design time.

Example 4. After decomposition, the OpenMP-DAG in
Fig. 3 is transformed into a resulting sequential subtask
set, as shown in Fig. 6. The lifetime window of u11 is [0,8]
and the lifetime window of u21 is [8,16], both of which are
the same as the results after laxity distribution.

5.3 The P-EDF-omp algorithm

In this section, we present P-EDF-omp, a partitioning-based
multiprocessor scheduling algorithm for OpenMP-DAGs.

The most important part of P-EDF-omp is the Subtask
Assignment Procedure (SAP), which is used to partition the
subtasks to processors satisfying the Partitioning Conditions
(which will be introduced later) at design time.

To better understand how P-EDF-omp works, we first
introduce some auxiliary concepts. Recall that we assume
hst1 ¼ 0, and the starting and ending times of the lifetime win-
dow of subtask ti are both absolute times.

We use the concept of Interval Load (denoted by K) to
denote the processor demand of each subtask ti during the
considered time interval.

Definition 5 (The Interval Load). For subtask ti, the Interval
Load Kðti; ivxÞ in time interval ivx ! ½ivstx ; ivspx � is defined as
follows:

Kðti; ivxÞ ¼ ei; hsti � ivstx && h
sp
i � ivspx

0; otherwise

�
: (1)

Definition 6 (Overlapping Subtasks). If the lifetime win-
dows of tiðDi ! ½hsti ; hspi �Þ and tjðDj ! ½hstj ; hspj �Þ satisfy the
following:

1) hsti � hstj < h
sp
i && h

sp
j > h

sp
i or

2) hstj � hsti < h
sp
j

then we say that tj is an Overlapping Subtask of ti, which
means that the lifetime windows of these two subtasks either
partially or entirely overlap.

Definition 7 (Union Time Interval). For two Overlapping
Subtasks ti and tj, we use Dunðti; tjÞ to denote the Union

Time Interval, which is the union of lifetime windows of
ti and tj, and use dunðti; tjÞ to denote the length of the Union
Time Interval Dunðti; tjÞ.
Example 5 illustrates the Union Time Interval

Dunðti; tjÞ for the Overlapping Subtasks ti and tj.

Example 5. As shown in Fig. 7a, suppose there are two
Overlapping Subtasks ti and tj; in this case, the Union

Time Interval of ti and tj is Dunðti; tjÞ ! ½hsti ; hspj � (i.e.,
Dst
unðti; tjÞ ¼ hsti ;D

sp
unðti; tjÞ ¼ hspj) and the length of

Dunðti; tjÞ is dunðti; tjÞ ¼ hspj � hsti . For cases in which the
lifetime windows of two subtasks overlap entirely, as
shown in Fig. 7b, the Union Time Interval of these
two lifetime windows is simply the larger lifetime window,
i.e., in this case, Dunðti; tjÞ ! ½hstj ; hspj �, where Dst

unðti; tjÞ ¼
hstj ; D

sp
un ðti; tjÞ ¼ h

sp
j and dunðti; tjÞ ¼ h

sp
j � hstj .

Similar to the lifetime window of subtask ti, we define the
lifetime window of an OpenMP task Th as follows: (Suppose
Th consists of the subtask set fth1; th2; . . . ; thnhg)
Definition 8 (Lifetime window of OpenMP Task). The

lifetime window of Th (denoted by Lh) is the time interval
from the starting time of the lifetime window of the entry ver-
tex in Th to the ending time of the exit vertex’s lifetime win-
dow, i.e., Lh ! ½hsth1; hsphnh �. Specifically, we use rsth and rsph to
denote the starting and ending times of Lh, i.e., r

st
h ¼ hsth1;

r
sp
h ¼ h

sp
hnh

.

In the following, we introduce the Partitioning Conditions
used in our work and how we employ them to determine
whether a processor is “available” for a subtask.

Partitioning Conditions. The Partitioning Conditions cover
three possible conditions (the subtask to be assigned is
tiðheihsti ; hspi iÞ; ti 2 Th).

Condition (1): (Basic Condition.)
In the lifetime window of ti (Di ! ½hsti ; hspi �)

di �
X

tj2Pk;j6¼i

Kðtj;DiÞ � ei; (2)

where di is the length of the lifetime window of ti , i.e., di ¼
hspi � hsti . Pk denotes the set of subtasks already assigned to
processor sk, and Pk ¼ ; at time 0.

Condition (2): (Additional Condition.)
If an Overlapping Subtask tj of ti exists,

7 then in their
Union Time Interval Dunðti; tjÞ

dunðti; tjÞ �
X

th2Pk;h 6¼i

Kðth;Dunðti; tjÞÞ � ei: (3)

Condition (3): (TSC Condition.)

Go
kðhsti Þ ¼ ; k 8Tq 2 Go

kðhsti Þ; Th 2 CdesðTqÞ; (4)

where Go
kðtÞ denotes the set of tied tasks that have been

assigned to processor sk, whose lifetime window starts before

Fig. 6. Decomposition result of example in Fig. 3 (after reassembling).
Fig. 7. Example of Union Time Interval Dunðti; tjÞ.

7. We illustrate how this condition works in the situation where
more than one Overlapping Subtask of ti in Notice 3 exists, and the
details are provided in Algorithm 1.

1328 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

the current time and ends after the current time (i.e., for
8Tq 2 Go

kðtÞ; rstq � t < rspq). In particular, Go
kð0Þ ¼ ;.

The Partitioning Conditions consist of three parts. We use the
following example to explain the main idea behind these parts.
Supposewewant to partition the subtask ti to processor sk.

(1) Condition (1), the basic condition, simply ensures that
sk can satisfy the processor demand of ti (which is its
WCET) in its lifetime window.

(2) Condition (2), the additional condition, addresses the
following situation. If the subtask tj, which corresponds to
uh1 in the tied task Th, has been assigned to sk, all the sub-
tasks corresponding to 8u 2 vTh should all be partitioned to
sk. Therefore, although their lifetime windows may not have
started yet, we can already determine which processor they
should be assigned to, and the processor resource should be
seen as “pre-reserved” for these vertices. Hence, by the time
we partition ti, some subtasks whose lifetime windows start
after ti may already exist on the processor. Therefore, if a
subtask tj exists such that tj is an Overlapping Subtask of
ti, we need to ensure that sk can accommodate both sub-
tasks during their Union Time Interval. Thus, we design
Condition (2).8

(3) Condition (3) ensures that the TSC in the OpenMP
specification can be satisfied.

Evidently, we do not need to check all three Partitioning
Conditions while partitioning every subtask in Qdecomp. For
example, if uh1 in tied task Th has been assigned to sk,
there is no need to check whether Condition (3) can be satis-
fied for 8u 2 vTh . Next, we will clarify how to use the Parti-
tioning Conditions to determine whether a processor is
“available” for different types of subtasks.

Availability. Suppose the subtask to be assigned is ti
(ti 2 Th). The process of using the Partitioning Conditions to
determine whether a processor sk is “available” for ti can be
divided into the following cases for different types of ti.

� Case 1: Th is an untied task,
sk is “available” for ti if and only if Condition (1)

and Condition (2) in the Partitioning Conditions are
satisfied.

� Case 2: Th is tied and ti corresponds to uh1 2 Th,
sk is “available” for ti if and only if all three condi-

tions in Partitioning Conditions are satisfied for ti
itself, and Condition (1) and Condition (2) can be satis-
fied for every subtask corresponding to u 2 vTh at
the same time.

� Case 3: Th is tied and ti corresponds to u 2 vTh ,
the “available” processor for this type of subtask ti

will always be the one to which uh1 has been
assigned.

The subtasks are divided into three types.
(1) If ti corresponds to a vertex in an untied task, we

only need to consider whether a processor can satisfy the
processor demand (its WCET) in its lifetime window using
Partitioning Conditions (1) and (2). This guarantees that if we
can find an “available” processor for ti, ti can meet its dead-
line when scheduled by EDFnp at runtime (which will be
proved later in Section 6).

(2) If ti corresponds to uh1 in tied task Th, we first need
to determine whether the TSC in OpenMP can be satisfied
using Partitioning Condition (3). Moreover, since every sub-
task corresponding to u 2 Th has to be assigned to this pro-
cessor, we need to use Partitioning Conditions (1) and (2) to
check whether the processor can satisfy their processor
demand in their lifetime windows for all these subtasks (as
we do for the vertex in an untied task) rather than check-
ing only whether the processor can satisfy the processor
demand of ti itself. Otherwise, the processor resources may
be insufficient for the complete tied task, and some succes-
sor subtasks of ti may miss their deadlines. We can only
partition ti to sk if we can ensure that sufficient processor
resources exist for all vertices in the same task.

Algorithm 1. Function is availableðsk; tiÞ ðti 2 Th,
Di ! ½hsti ; hspi �Þ
1: f available(sk; ti)=0;
2: if di �

P
tj2Pk;j 6¼i Kðtj;DiÞ � ei then

3: f available(sk; ti)=1;
4: for tp=1:1:jQkj do
5: if (ðhstQkðtpÞ < hsti && hspQkðtpÞ > hsti Þ jj

ðhsti � hstQkðtpÞ < h
sp
i && h

sp
QkðtpÞ > h

sp
i Þ) then

6: f available(sk; ti)=-1;
7: Dst

un ¼ minfhstQkðtpÞ; h
st
i g;

8: Dsp
un ¼ maxfhspQkðtpÞ; h

sp
i g;

9: if (Dsp
un � Dst

un �
P

tj2Pk;j 6¼i Kðtj;DunÞ � ei &&

check unionðti; sk;Dst
un;D

sp
unÞ == 1) then

10: f available(sk; ti)=1;
11: else
12: f available(sk; ti)=0;
13: break;
14: end if
15: end if
16: end for
17: end if
18: returnf available(sk; ti);

(3) If ti corresponds to u 2 vTh in tied task Th, ti can be
directly assigned to the processor towhich uh1 is assigned. This
processor has already been labeled as “available” for ti while
assigning uh1; thus, it does not need to be checked again.

Accordingly, the Subtask Assignment Procedure (SAP) will
try to assign all subtasks in Qdecomp to the “available” process-
ors, using a “first-fit” heuristic. In other words, for 8ti 2
Qdecomp, the SAP will scan the processors in a canonical order
(e.g., fromprocessor 1 tom) and assign ti to the first “available”
processor. These subtasks are partitioned in non-decreasing
order based on the starting times of their lifetime windows; i.e., if
there are two subtasks ti and tj, and hsti < hstj , the SAPwill try
to assign ti before tj. If the SAP fails to find a processor sk for ti
then thisOpenMP-DAG is not schedulable by P-EDF-omp.

After ti has been assigned to sk, sk subsequently uses
EDFnp to schedule its local subtasks at runtime.

The pseudo-code of our “is_available 9” algorithm, which
will be called by the SAP, is shown in Algorithm 1. It is used

8. The details of how Overlapping Subtasks of ti are detected will be
presented later in Algorithm 1.

9. Every processor sk maintains a data structure Qk, where each ele-
ment in Qk is a triple hei; hsti ; hspi i that stores the execution requirements,
and the starting and ending times of the lifetime window of ti, which has
been assigned to sk.

WANG ET AL.: PARTITIONING-BASED SCHEDULING OF OPENMP TASK SYSTEMSWITH TIED TASKS 1329

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

to check whether the processor demand of ti can be satisfied
by sk, using Partitioning Conditions (1) and (2).

Algorithm 2. Function check unionðti; sk; ivst; ivspÞ
1: f union=1;
2: for tp=1:1:jQkj do
3: if ðhstQkðtpÞ < ivst && hspQkðtpÞ > ivstÞ jj

ðivst � hstQkðtpÞ < ivsp && hspQkðtpÞ > ivspÞ then
4: f union=-1;
5: ivst ¼ minfhstQkðtpÞ; iv

stg;
6: ivsp ¼ maxfhspQkðtpÞ; iv

spg;
7: if (ivsp � ivst �P

tj2Pk;j 6¼i Kðtj;D0
unÞ � ei &&

check unionðti; sk; ivst; ivspÞ ¼¼ 1) then
8: f union=1;
9: else
10: f union=0;
11: break;
12: end if
13: end if
14: end for
15: returnf union;

Notice 3. As stated in Algorithm 1, if there exists more than one
subtask whose lifetime window partially overlaps with the
lifetime window of ti (we use S to denote the set of these sub-
tasks), not only will we check whether Condition (2) in Parti-
tioning Conditions can be fulfilled for 8tj 2 S with ti but
also whether Condition (2) in Partitioning Conditions can be
fulfilled while considering all these subtasks jointly. For exam-
ple, if both lifetime windows of tj and th partially overlap
with t0is lifetime window, when considering the partitioning for
ti, we will check whether

1) dunðti; tjÞ �
P

tp2Pk;p 6¼i Kðtp;Dunðti; tjÞÞ � ei
2) dunðti; thÞ �

P
tp2Pk;p 6¼i Kðtp;Dunðti; thÞÞ � ei

3) dunðti; tj; thÞ �
P

tp2Pk;p 6¼i Kðtp;Dunðti; tj; thÞÞ � ei,
where, respectively

Dunðti; tjÞ ! ½minðhstj ; hsti Þ;maxðhspj ; hspi Þ�,

Dunðti; thÞ ! ½minðhsth ; hstÞ;maxðhsph ; hspi Þ�,
and

Dunðti; tj; thÞ ! ½minðhstj ; hsti ; hsth Þ;maxðhspj ; hspi ; hsph Þ�.

Next, we present the pseudo-code of our “check_union”
function, which is a recursive function called by Algorithm 1
and ensures that Partitioning Condition (2) can be fulfilled
during partitioning. We use it to ensure that the processor
demand in the Union Time Interval we considered will
not exceed the length of the time interval in these two cases:

� Case 1: when more than one overlapping subtask of
ti exists, as described in Notice 3

� Case 2: when there exists a subtask th whose lifetime
window does not overlap with the lifetime window of ti,
but overlapswith the Union Time Interval of tj and
ti. For example, as shown in Fig. 8, we not only need to
check whether Partitioning Condition (2) can be fulfilled
forDunðti; tjÞ but alsowhether Partitioning Condition (2)

can be fulfilled for Dunðti; tj; thÞ, even though th is not
an overlapping subtask of ti.

Given Algorithms 1 and 2, we now show how the Sub-
task Assignment Procedure works in P-EDF-omp. The SAP
assigns the subtasks to the processors based on the starting
times of their lifetime windows. The pseudo-code of the SAP
is shown in Algorithm 3. As stated earlier, it addresses the
vertices for three different cases. Suppose the subtask that
needs to be assigned is ti and ti 2 Th.

Algorithm 3. Subtask Assignment Procedure tihei; hsti ;
hspi i is to be Assigned and ti 2 Th

1: if Th is an untied task then
2: for sk=1:1:m do
3: if is availableðsk; tiÞ==1 then
4: Assign ti to sk and update s0ks data structure;
5: F_available=1;
6: break;
7: else
8: F_available=0;
9: end if
10: end for
11: else
12: if ti is not the entry vertex in Th then
13: Assign ti to the processor th1 has been assigned to.
14: else
15: for k=1:1:m do
16: if ((is availableðsk; tiÞÞ &&

ðGo
kðhsti Þ ¼ ; k 8Tq 2 Go

kðhsti Þ; Th 2 CdesðTqÞÞ then
17: Get vTh ;
18: for tp=1:1:jvTh j do
19: if (is_available(sk;vThðtpÞ)==0) then
20: F_available=0;
21: break;
22: else
23: F_available=1;
24: end if
25: end for
26: if (F_available==1) then
27: Assign ti to sk, update sk

0s data structure;
28: break;
29: end if
30: end if
31: end for
32: end if
33: end if

Example 6. We illustrate how SAP partitions the different
types of vertices using the subtask set in Example 4.

Suppose wewant to schedule this subtask set on a platform con-
taining four identical processors.We use the partition of t1, t7 and
t8 (corresponding to u11, u41, and u42, respectively) as
representatives.

Fig. 8. Example of the usage of “check_union” function in Case 2.

1330 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

� t1: t1 2 T1 and T1 is untied; therefore, we only need
to check whether the processor can provide enough
resources for t1 using Partitioning Conditions (1)
and (2). In this case, Partitioning Condition (1) is
satisfied and no Overlapping Subtasks exist for t1; con-
sequently, s1 is available for t1. As a result, t1 is
assigned to s1.

� t7: T4 is tied and t7 corresponds to u41; therefore, we
first need to check whether Partitioning Conditions
(1), (2) and (3) can all be satisfied. In this case, s1 can-
not fulfill Condition (1) for t7, so we continue to check
s2—Condition (3) cannot be fulfilled because T3 has
been assigned to this processor and T4 =2 CdesðT3Þ.
Hence, we move on to check s3 and find that all three
conditions can be satisfied. We also need to check
whether Partitioning Conditions (1) and (2) can be
fulfilled for u42 and u43. In other words, s3 can satisfy
the processor demand for all subtasks in T4 and the
TSCs are satisfied. Consequently, t7 is assigned to s3.

� t8: T4 is tied and t8 corresponds to u42; therefore, we
can assign it directly to the processor to which t7 has
been assigned (i.e., s3).

The partitioning process for other vertices functions the
same way as described above. When the partitioning proce-
dure is complete, the partitioned result for all the subtasks
is illustrated in Fig. 9.

Discussion About OpenMP-Compliant Scheduling. Most
existing OpenMP implementations support only two sched-
uling algorithms: Work First Scheduling (WFS) [31] and
Breadth First Scheduling (BFS) [32]. WFS prefers to execute
newly created tasks, while BFS tends to execute tasks that
have been executed on the threads. The common feature of
WFS and BFS is that they are both work-conserving with
untied OpenMP task systems, where tasks can migrate
among threads. For OpenMP task systems with tied tasks,
BFS and WFS not only lose their work-conserving property
but may also lead to extremely bad timing behaviors (in the
worst-case, all parallel workloads will be executed on the
same thread) [5].

In our paper, P-EDF-omp is not OpenMP-compliant from
a scheduling view. Instead, P-EDF-omp is based on the
decomposition of the OpenMP-DAG and the release times
of the subtasks has been changed, which affects their run-
time behavior. However, our approach is compliant with
the special scheduling constraints in the OpenMP specifica-
tion such as tied tasks, TSPs and TSC.

Therefore, this work has value, and we hope that it can
provide some insights into what features could be included
in the future OpenMP specification, because the OpenMP
specification is a standard that keeps actively evolving
rather than a static one. More specifically, P-EDF-omp is not
supported by the current OpenMP specification for the

following reasons. P-EDF-omp is a partitioning-based sche-
duling algorithm which needs to control the release time of
each TSP and it also needs the deadline of each TSP for the
Partitioning Conditions. Hence, to implement P-EDF-omp
with OpenMP, we need to annotate each TSP and pass the
timing parameters (release time and deadline) of each TSP
to the OpenMP so that at runtime the each TSP can be
scheduled by P-EDF-omp accordingly. However, the cur-
rent OpenMP has neither the explicit annotations of TSPs
nor the notion of recurrence [10]. Therefore, to be able
to support partitioning-based scheduling algorithms like
P-EDF-omp, the future OpenMP specification should be
extended with subtask construct to explicit annotate each
subtask corresponding to the TSPs, and corresponding
clauses to receive the timing parameters of each subtask (as
later introduced in Section 8.3).

On the other hand, although the proposed algorithm
may reduce processor utilization, its advantage is that it can
provide hard real-time guarantees for OpenMP applications
at design time. Hence, although P-EDF-omp is not currently
an OpenMP-compliant scheduling algorithm, we believe
this work could help in applying OpenMP to embedded
and real-time domains.

Discussion About Our Approach. In fact, the dynamic exe-
cution model is one of OpenMP’s main strengths, and the
actual workload structure can only be determined during
runtime. Specifically, if the OpenMP program has condi-
tional branches, we cannot know which branch will be
taken at runtime, which will affect the OpenMP-DAG struc-
tures. This problem can be divided into two cases.

Case 1: the branches are contained in a single vertex. In
this case, no matter which branch is taken in runtime, it can
be bounded by the worst-case execution time such that our
approach can address it.

Case 2: the branches cover multiple vertices. In this case,
the number of spawned tasks may vary when different
branches are taken.

However, our approach is based on decomposition; thus,
we need to obtain the complete OpenMP-DAG beforehand.
Consequently, the decomposition cannot be performed on-
line or incrementally during execution. Therefore, our
approach can neither address the dynamic execution model
(e.g., Case 2) nor those OpenMP applications that are input-
dependent whose task-graph and task-granularities vary.
This is a serious limitation of our approach and occurs
because up to now, we have focused solely on how to
schedule tied tasks. The runtime schedulers that deter-
mine what occurs on-line, such as BFS, are suitable for the
dynamic task model but cannot provide hard real-time
guarantees for OpenMP applications as does our approach.
Our approach would become much more valuable if it were
able to address the dynamic execution model of OpenMP
programs with tied tasks and test their schedulability—
we hope to address this in future work.

6 SCHEDULABILITY

In this section, we prove that P-EDF-omp can work as an
off-line schedulability-test in Theorem 2, using the SAP in
Algorithm 3. Compared with the previous work [1], this
schedulability-test can be used to determine whether an

Fig. 9. Partition result of subtask set in Example 4.

WANG ET AL.: PARTITIONING-BASED SCHEDULING OF OPENMP TASK SYSTEMSWITH TIED TASKS 1331

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

OpenMP-DAG with tied tasks is schedulable during off-
line phase, without modifying the original TSCs posed in
the OpenMP specification.

First, we prove that when using P-EDF-omp to schedule
an OpenMP-DAGwith tied tasks, the OpenMP scheduling
constraints can be satisfied.

Lemma 1. When scheduled by P-EDF-omp, the scheduling con-
straints imposed by TSPs, Tied Tasks and TSC in the
OpenMP framework, as stated in Section 4.2, can all be
satisfied.

Proof.We prove the three constraints individually.

� As shown in Section 4.2, the existence of TSPs

introduces constraints on the execution of the
OpenMP task graph. In P-EDF-omp, we use non-
preemptive EDF on every individual processor.
Because the decomposition converts each node of
a DAG into a traditional multiprocessor subtask,
“non-preemptive” here means node-level non-
preemption which corresponds to the definition
of TSP. Therefore, this constraint can be satisfied.

� Tied Task is another important constraint
brought by OpenMP. In P-EDF-omp, after we
find the “available” processor for the entry vertex
vh1 of a tied task Th, the following vertices will
be directly assigned to the same processor, which
ensures that all the vertices of a task annotated as
tied will be executed by the same processor.
Hence, the scheduling constraint introduced by
Tied Tasks is proved to be guaranteed.

� The constraint brought by TSC can clearly be
guaranteed based on Condition (3) in the Partition-
ing Conditions. tu

Next, we prove that P-EDF-omp can guarantee that the
deadline of every subtask will be met if all subtasks can be
successfully assigned to the “available” processors by SAP.

A sufficient schedulability-test is given in [33]. Based on
Theorem 1 in [33] combined with our model, we obtain
Corollary 1, which provides sufficient conditions for a sub-
task set to be scheduled successfully by EDFnp on a single
processor.

Theorem 1. [33] Let Qdecomp be a set of sporadic tasks Qdecomp ¼
ft1; t2; . . . ; tjQdecompjg where ti ¼ ðei; piÞ (ei and pi denote t

0
is

WCET and period, respectively), sorted in non-decreasing order
by their period pi. If Qdecomp satisfies the following conditions
(1) and (2), EDFnp will schedule any concrete set of sporadic
tasks generated from Qdecomp

ð1Þ
Xn
i¼1

ei
pi

� 1

ð2Þ 8i; 1 < i � n; 8divx ; p1 < divx < pi;

divx � ei þ
Xi�1

j¼1

divx � 1

pj

� �
ej

Corollary 1. Let Pk ¼ ft1; t2; . . . ; tnsk g be the resulting con-
crete sporadic subtask set decomposed for OpenMP-DAG
which are assigned to the same processor sk, sorted in non-
decreasing order by their deadlines, then if Pk satisfies

conditions (1) and (2), then the EDFnp scheduling algorithm
will schedule Pk successfully.

ð1Þ for ivx ! ½0; hspnsk � (whose length is h
sp
nsk

Þ;Pnsk
i¼1 Kðti; ivxÞ

h
sp
nsk

� 1

ð2Þ for 8i; 8 time interval ivx (whose length is divxÞ;
divx � ei þ

X
th2Pk;h6¼i

Kðth; ivxÞ;

where ivstx � hsti ; iv
sp
x � h

sp
i

Proof. We prove the contrapositive of the Corollary 1, i.e.,
Pk satisfies the conditions (1) and (2) and yet there exists
a subtask th 2 Pk missing its deadline at some point in
time when Pk is scheduled by EDFnp.

In our model, for 8ti 2 Qdecomp, the period of ti is the
same as the period of the OpenMP-DAG. Therefore, in
every OpenMP-DAG life cycle, one and only one subtask
needs to be considered.10 Hence, Condition (2) in our
Corollary 1 is the same as Condition (2) in Theorem 1 in
[33]; therefore, in the following, we focus only on
whether Condition (1) in Theorem 1 in [33] can be
replaced by Condition (1) in our Corollary 1.

Let td be the earliest point in time at which a deadline
is missed. Pk can be partitioned into three disjoint
subsets.

S1 = the set of subtasks that have an invocation with a
deadline at time td,

S2 = the set of subtasks that have an invocation occur-
ring prior to time td and a deadline after td,

S3 = the set of subtasks not in S1 or S2.
Tasks in S3 either have a release time greater than td,

or they have not been invoked immediately prior to td.
As will shortly become apparent, to bound the processor
demand prior to td, it is sufficient to concentrate on the
tasks in S2. Let b1; b2; . . . ; bk be the invocation times
immediately prior to td of the tasks in S2. There are two
cases to consider.

Case 1: None of the invocations of tasks in S2 occurring at
times b1; b2; . . . ; bk are scheduled prior to td.

Let t0 be the end of the last period prior to td in which
the processor was idle. If the processor has never been
idle, let t0 ¼ 0. In the interval ivx ! ½t0; td�, the processor
demand is the total processing requirement of the tasks
invoked at or after time t0, with deadlines at or before
time td (Dmt0;td is the processor demand in the interval
ivx ! ½t0; td�). Because no idle period exists in the interval
ivx ! ½t0; td� and because a task misses a deadline at td, it
follows thatDmt0;td > td � t0. Therefore

td � t0 < Dmt0;td ¼
Xnsk
i¼1

Kðti; ivxÞ:

10. EDFnp scheduling happens at runtime and it schedules the jobs
generated by each subtask ti. However, because only one job exists for
each subtask to be considered, we can directly use the subtask for
simplicity.

1332 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

Hence

1 <

Pnsk
i¼1 Kðti; ivxÞ

h
sp
nsk

:

This contradicts Condition (1) in Corollary 1. Therefore,
Condition (1) has been proved.

Case 2: Some of the invocations of tasks in S2 occurring at
times b1; b2; . . . ; bk are scheduled prior to td.

Case 2 establishes Condition (2) in Corollary 1.
Because the proof of this case is almost the same as that
in [33], we omit the proof of Case 2 here (see [33] for
more details about this case). The main idea still involves
proving by contradiction. tu

Lemma 2. After a subtask ti has successfully been assigned to a
processor sk by the Subtask Assignment Procedure in P-EDF-
omp, it can be guaranteed to meet its deadline.

Proof. Based on Corollary 1, if our Partitioning Conditions
can ensure that Qdecomp can satisfy the conditions in
Corollary 1, after ti is successfully assigned to sk,
EDFnp can successfully schedule it; thus, Lemma 2 can
be proved.

In the following, we prove that our Partitioning Condi-
tions can guarantee that the conditions in Corollary 1 are
fulfilled.

According to Partitioning Conditions (1) and (2), for
8ti 2 Pk (suppose ti is the subtask assigned to sk with
the latest hspi). Then, we can conclude that the processor
demand in the time interval ivx ! ½0; hspi � will never
exceed the length of this time interval, which is hspi , i.e.,

X
tj2Pk;j6¼i

Kðtj; ivxÞ þ ei � h
sp
i :

Hence

Xnsk
j¼1

Kðtj; ivxÞ
hspi

� 1)
Pnsk

j¼1 Kðtj; ivxÞ
hspi

� 1:

Thus, Condition (1) in Corollary 1 can be fulfilled.
For Condition (2), the main idea is to guarantee that in

any time interval, the processor demand will not exceed
the length of the interval. We will prove this in three
cases. The subtasks in Pk, which are assigned to the same
processor sk, can be partitioned into three disjoint subsets
(suppose ti is the current subtask to be scheduled):

S1=the set of subtasks whose lifetime window does not
overlap with t0is lifetime window

S2=the set of subtasks whose lifetime window partially
overlaps with t0is lifetime window

S3=the set of subtasks whose lifetime window entirely
overlaps with t0is lifetime window

Case 1: subtasks in S1.
For tj 2 S1 (suppose the lifetime window of tj is the one

closest to t0is lifetime window), in the interval Dj !
½hstj ; hspj �, we have

dj �
X

th2Pk;h6¼j

Kðth;DjÞ � ej:

For ti in the time interval Di ! ½hsti ; hspi �, we have

di �
X

tp2Pk;p 6¼i

Kðtp;DiÞ � ei:

Then, if we use � � 0 to denote the time distance
between the lifetime windows of ti and tj, we obtain

X
th2Pk

Kðth;DjÞ þ
X
tp2Pk

Kðtp;DiÞ � dj þ di þ �;

which reflects that the processor demand in the time
interval ½hstj ; hspi � (supposing that the lifetime window of tj
starts prior to t0is lifetime window) is no greater than the
length of the time interval, i.e.,

divx ¼ dj þ di þ � � ei þ
X

th2Pk;h 6¼i

Kðth;Dunðti; tjÞÞ:

Therefore, in Case 1, Condition (2) in Corollary 1 can be
fulfilled.

Case 2: subtasks in S2.
We can directly use our Partitioning Condition (2) to

prove that Condition (2) in Corollary 1 can be fulfilled.
For 8tj 2 S2, we have

dunðti; tjÞ �
X

th2Pk;h 6¼i

Kðth;Dunðti; tjÞÞ � ei,

where dunðti; tjÞ is the length of the time interval
½minðhstj ; hsti Þ;maxðhspj ; hspi Þ�. In other words, our Partition-
ing Condition (2) ensures that in this case, the processor
demand of the subtasks in this time interval will never
be greater than the length of the interval, i.e.,

divx ¼ dunðti; tjÞ � ei þ
X

th2Pk;h6¼i

Kðth;Dunðti; tjÞÞ:

Therefore, in this case, Condition (2) in Corollary 1 is
also guaranteed to be fulfilled.

Case 3: subtasks in S3.
The subtasks in S3 can be divided into two situations:

1) the lifetime window of ti contains the window of tj,
In this situation, we actually already consider

the processor demand of tj in Partitioning Condition
(1)—it is already included in

P
tj2Pk;j 6¼i Kðtj;DiÞ.

Consequently, Condition (2) in Corollary 1 will be
fulfilled, i.e., divx ¼ di � ei þ

P
th2Pk;h 6¼i Kðth;DiÞ.11

2) the lifetime window of tj contains the window of ti,
This situation is addressed in Partitioning Con-

dition (2):

dunðti; tjÞ �
X

th2Pk;j6¼i

Kðth;Dunðti; tjÞÞ � ei,

in which dunðti; tjÞ denotes the length of the
Union Time Interval ½hstj ; hspj �, i.e.,

11. This situation appears mainly for the “preassigned” subtasks
due to the existence of tied tasks—tj is not actually assigned to sk yet,
but the tied task to which it belongs has already been assigned to sk;
therefore, the processor resources should be “pre-reserved” for tj.
Thus, despite the fact that the starting time of the lifetime window of ti
occurs prior to tj

0s, we still have to consider tj
0s processor demand.

WANG ET AL.: PARTITIONING-BASED SCHEDULING OF OPENMP TASK SYSTEMSWITH TIED TASKS 1333

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

divx ¼ dj � ei þ
X

th2Pk;h 6¼i

Kðth;DjÞ:

Therefore, Condition (2) in Corollary 1 is proved
to be fulfilled in this situation.

In conclusion, Lemma 2 has been proved. tu
At this point, we have proven that we can use the SAP in

Algorithm 3 to test the schedulability of OpenMP-DAG at
design time.

Theorem 2. An OpenMP-DAG is schedulable with the
OpenMP scheduling constraints satisfied, if the SAP in Algo-
rithm 3 can find “available” processors for 8ti 2 Qdecomp.

Proof.With Lemmas 1 and 2, Theorem 2 is proved. tu
Similar to Theorem 1 in [33], our schedulability-test is a

sufficient schedulability-test. P-EDF-omp is a partitioning-
based scheduling algorithm, which is a transformation from
the bin-packing problem. For classic bin packing problems,
algorithms for finding an optimal solution to partitioning
require exponential time [34]. For the partitioning of
OpenMP-DAGs, we need to consider the OpenMP schedul-
ing constraints, which raise more challenges to find optimal
solutions. Hence in this paper, instead of trying to find opti-
mal solutions, we study the sufficient conditions to schedule
the OpenMP-DAGs with tied tasks in polynomial time.

7 EVALUATION

In this section, we evaluate the performance of P-EDF-omp
under both synthetic workloads and established OpenMP
benchmarks. Specifically, we use the schedulability-test in
Theorem 2 to test the schedulability of the OpenMP-DAG
rather than executing the OpenMP-DAG on real hardware.

Since tied tasks raise significant challenges, the sched-
ulability-tests of existing scheduling algorithms for the
DAG model are not directly applicable to OpenMP-DAGs
with tied tasks. Although several other papers exist that
address the scheduling and analysis of OpenMP task sys-
tems, these papers either did not consider tied tasks [4],
[7], [8], [9] or concluded that tied tasks would lead to unac-
ceptably pessimistic response-time bounds due to their
inherent complexity [5]. Hence, we compare the perfor-
mance of our approach with the analysis methods in [1]: the
bound in Equation (12) (denoted by BFS�-1) and the bound
in Equation (25) (denoted by BFS�-2).

Moreover, we include a hypothesis schedulability test
for OpenMP-DAGs without tied tasks in [5]: the response
time bound under BFS in Equation (1) (denoted by untied).
We use it to show the influence of tied tasks on the
schedulability of OpenMP-DAGs. For these methods, the
OpenMP-DAG is deemed to be schedulable if R � D. In
addition, to evaluate the schedulers’ impacts on the perfor-
mance of the OpenMP application itself for synthetic work-
loads, we compare the average simulation execution times
of OpenMP-DAGs under these three schedulers (BFS,
BFS� and P-EDF-omp). We normalized the three simula-
tion execution times with respect to the response time
bound for untied tasks under BFS in [5], which is
Runtied � Lþ ðV � LÞ=m.

The acceptance ratio is the ratio between the number
of OpenMP-DAGs deemed to be schedulable and the
total number of OpenMP-DAGs participating in the
experiment (with a specific parameter configuration),
without considering the overheads from context switch-
ing and migration.

7.1 Synthetic Workload

The task parameters are generated as follows:
Task Graph. The OpenMP-DAG G ¼< V;E > is gener-

ated with n ¼ 50 OpenMP tasks. The number of vertices
contained in the OpenMP-DAG is randomly chosen in
[200,400], and the worst-case execution time of each vertex
is randomly chosen in ½300; 1500�. Each task is set to be a
tied task with a probability of ptied. For every task Ti, we
generate the synchronization edges as follows:

� If Ti has a child task, the last vertex vix of Ti is set to
be the taskwait vertex with a probability of ptw
when at least one predecessor of vix (which belongs
to Ti) has an outgoing task creation edge.

� The last vertex of Ti points to one of its siblings cre-
ated after Ti by depend edge with a probability of
pdep.

Deadlines and Periods. The period is set as P ¼ D.

� In Fig. 10d, the deadlineD of Q is set asD ¼ L=�.
� In other subgraphs in Fig. 10, the deadline D of Q is

generated in a similar way with that in [35]: after L is
fixed, D is generated based on a ratio between L and
D, which is randomly chosen in [0.2,0.5].

Number of Processors.

� In Fig. 10a, the normalized utilization Unorm

(Unorm ¼ U=m) of Q is predefined. After generating
the OpenMP-DAG, we can compute the utilization U
of Q; then, we set the number of processors accord-
ing to the formulam ¼ d U

Unorm
e.

� For Figs. 10b and 10c, we setm ¼ 4. For Figs. 10d and
10e, we setm ¼ 8.

For each configuration (corresponding to one point on
theX-axis), we generate 500 OpenMP-DAGs.

As shown in Figs. 10a, 10b, 10c, 10d, and 10e, we first set
a basic configuration; then, in each group of experiments,
we vary one parameter while keeping others unchanged.
The basic configurations are: n ¼ 50, m ¼ 4, ptied ¼ 0:5,
pdep ¼ 0:5 and ptw ¼ 0:8.

In Fig. 10a, we evaluate the acceptance ratios of all tests
under different normalized utilization. In Fig. 10b, the
OpenMP-DAG is generated with different numbers of
OpenMP tasks. Fig. 10c evaluates the acceptance ratios
under different ptied values. Fig. 10d shows the acceptance
ratios of all tests under different elasticities �. Finally, in
Fig. 10e, we test the average normalized simulation execu-
tion times of the three schedulers under different ptied
values.

As the experiment results in Figs. 10a, 10b, 10c, and 10d
show, in general, the schedulability of all tests decreases as
the processor contentions among tasks become more signifi-
cant. We can observe that the performance comparison
among all three approaches under different parameter set-
tings is relatively consistent: P-EDF-omp> BFS�-2> BFS�-

1334 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

1. Among these schedulability-tests, BFS�-1 performs the
worst because it simply counts the number of tied tasks
that may be suspended at idle threads/processors and
ignores the fact that only the executions of a subset of verti-
ces in these tasks may influence the schedulability of the
OpenMP-DAG. P-EDF-omp performs better than both
BFS�-1 and BFS�-2 in most cases, because both BFS�-1 and
BFS�-2 work only under modified TSC (which is called E-
TSC in [1]) instead of the original TSC in OpenMP specifica-
tion. Compared with the original TSC, E-TSC restricts not
only the execution of vertices in tied tasks but also the exe-
cution of vertices in untied tasks (it does not allow
untied vertices to start execution on an arbitrary proces-
sor) to make it possible to derive the response bounds for
OpenMP-DAGs with tied tasks. However, it is evident
that restricting the execution of vertices in untied tasks
can negatively affect the schedulability of the OpenMP-
DAG, while our schedulability-test works under the origi-
nal TSC and does not suffer from this problem. Hence in
most cases, P-EDF-omp performs better.

However, in Fig. 10d, the acceptance ratio of BFS�-2 is
slightly higher than that of P-EDF-omp with � ¼ 0:25. This
result occurs because in a configuration where the elasticity
is small, the period and the deadline of the OpenMP-DAG
will be quite large (D ¼ P), making it more likely to satisfy
R � D. In our approach, a lower � means a larger laxity,
and the utilization will be relatively lower. Therefore, it is
possible that there exist several OpenMP-DAGs that are
deemed to be schedulable by BFS�-2 but unschedulable by
our schedulability-test in Section 6. However, this kind of
cases rarely occurs, and as shown in Fig. 10d, P-EDF-omp
performs better than BFS�-2 in almost 99.5 percent cases.

From Fig. 10e, we can see that the average simulation
execution times of the OpenMP applications increase with
more tied tasks in the OpenMP-DAGs under all three
schedulers. The increasing speed of the execution time is
the fastest under BFS. This result occurs because when
tied tasks exist in the OpenMP-DAG, BFS is no longer

work-conserving, and in the extreme case, BFS may perform
as poorly as WFS (i.e., BFS may also execute the parallel
workloads sequentially, thus leading to poor timing behav-
ior). This condition is the reason why we were motivated to
design a scheduling algorithm for OpenMP-DAGs with
tied tasks. When only untied tasks exist in the OpenMP-
DAGs, the simulation execution time under P-EDF-omp is
larger than those under the other two scheduling algorithms
because during decomposition, we modify the release time
and deadline of each vertex, which reduces processor utili-
zation to some extent. In other words, if the SAP success-
fully assigns all the subtasks to processors, the execution
time of the OpenMP-DAG ought to be relatively close to the
period P . However, the increasing speed of the execution
time under P-EDF-omp is considerably slower than those
under the other two scheduling algorithms, and the normal-
ized execution time under P-EDF-omp is smaller than those
under the other two scheduling algorithms when more
tied tasks exist in the OpenMP-DAGs.

7.2 Established Benchmarks

Here, we evaluate the three approaches with workloads
generated according to established OpenMP benchmarks.
We collected 11 OpenMP programs written in the C lan-
guage from several benchmarks. Table 2 shows detailed
information regarding the OpenMP-DAGs corresponding
to these benchmarks. Columns 4–6 show the DAG feature
of each application.12

For these established OpenMP benchmarks, the task
parameters are collected and generated as follows:

Task Graph. For the OpenMP-DAG topologies of every
OpenMP program, we insert codes into these programs to
generate the vertices and edges corresponding to the TSPs.
The OpenMP-DAG topologies of each OpenMP program
are generated dynamically by running these OpenMP

Fig. 10. Comparisons under different dimensions.

12. There are 11 applications while we test two different input_sizes
for nqueens and sort in the evaluation.

WANG ET AL.: PARTITIONING-BASED SCHEDULING OF OPENMP TASK SYSTEMSWITH TIED TASKS 1335

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

applications on real single-core hardware (Intel i7-4770 CPU
running at 3.5 GHz with a 8,192 KB cache, and 4 GB RAM).
Then, we measured the WCETs for the vertices by executing
the programs on the same real hardware above. More spe-
cifically, we instrumented OpenMP programs with instruc-
tions to read the timer at the beginning and the end of each
vertex. The execution time of the vertex is the difference
between the start and end time stamps. We executed each
program on a single core 100 times and recorded the maxi-
mum execution time for each vertex as its WCET. The mea-
sured WCET gives a rough idea of the workload of each
vertex; however, it does not guarantee a safe WCET bound.
In the OpenMP-DAG generation, for most of the bench-
marks, we use the default input data that are included in
the source code of each benchmark. Table 2 lists the input
data that we adjusted to control the size of the OpenMP-
DAG, where the size column denotes the input_size. Other
parameters not presented are default values that we did not
set manually when running the applications.

Deadlines and Periods. Deadline D of each OpenMP appli-
cation is set asD ¼ L=�. The period is set as P ¼ D.

Number of Processors. For each OpenMP application, we
set the number of processors asm ¼ 20.

For each configuration (corresponding to one point on
the X-axis), we tested the schedulability of every OpenMP
application and computed the acceptance ratio as

the number of OpenMP applications that are schedulable

the total number of OpenMP applications

� �
;

where the total number of OpenMP applications is 13.
As shown in Fig. 10f, although our approach still per-

forms better than BFS�-1 and BFS�-2, the improvement in
acceptance ratio compared to BFS�-2 is slightly reduced
compared to the synthetic ones. The first reason is that the
number of OpenMP-DAGs (13) we used for each configura-
tion is considerably smaller than the number in synthetic
ones, and not all of the OpenMP applications we collected
contain tied tasks (such as botsspar in spec [36]). Our
approach is superior mainly when scheduling OpenMP-
DAGs with tied tasks. The second reason is that the
response time bound in BFS�-2 is highly dependent on the
max number of tied tasks in the OpenMP task chain where

the tasks are connected by taskwait edges. For these
OpenMP applications, this number ranges from 0 to 9,
which improves the acceptance ratio of BFS�-2. Thus, when
the elasticity is less than 0.25 (which means the period of
each OpenMP-DAG is relatively large), BFS�-2 performs as
better as does our schedulability-test. However, as the elas-
ticity increases, the performance of BFS�-2 drops more
quickly than that of our schedulability-test. The general
trend shown in Fig. 10f is similar to the results of synthetic
workload experiment: as the elasticity � increases, the
acceptance ratio decreases. Among these 13 OpenMP appli-
cations, the lower the ratio between the number of tied

tasks and the total number of tasks, the more easily the
OpenMP-DAG can be scheduled successfully. For example,
there are no tied tasks in botsspar in spec [36]; conse-
quently, this application can always be successfully sched-
uled with all three algorithms on the considered platform,
even when � ¼ 0:6. Some applications in bots [37] (from fft
to sort) contain recursive functions and have a relatively
large number of taskwait vertices, and these applications
appear to be more difficult to schedule. We also test the
schedulability of nqueens and sort with larger input sizes to
test the performance of P-EDF-omp at large cases. We found
that the WCET features and the structure features of the cor-
responding OpenMP-DAGs with larger input sizes are quite
similar to the ones with small input sizes, and the schedul-
ability of the OpenMP-DAGs appear not to be influenced
much by the size of the inputs.

8 DISCUSSION ABOUT THE IMPLEMENTATION

P-EDF-omp is a partitioning-based algorithm that does not
modify the TSCs in OpenMP specification. Ruffaldi et al.
presented an OpenMP toolchain for multicore partitioning
in [42] called “SOMA”, which includes a runtime support
that makes partitioning-based scheduling practicable for
OpenMP programs. SOMA allows the developers to add
specific information to each task, such as its deadline, acti-
vation time and period. Due to its similarity, P-EDF-omp
can be implemented based on SOMA in [42]13 and the trans-
formation tool in [43].

In this section, we present a possible solution about how
to implement P-EDF-omp based on the current OpenMP
specification. The basic implementation procedure includes:
(1) OpenMP-DAG generation, (2) Schedule generation, (3)
Code profiling, and (4) Runtime support.

8.1 OpenMP-DAG Generation

The first phase of the implementation is source code analy-
sis, where the goal is to generate the OpenMP-DAG of the
program and the annotated OpenMP code. Fig. 11a shows
the architecture of the transformation tool.14

The parser outputs abstract syntax trees (AST) that store all
the relevant information to create the corresponding graph
structure. The AST is used (1) by the Drawer to construct the
task graph of individual functions and (2) by the Call Analyzer

TABLE 2
Summary of the Established OpenMP Benchmarks

13. One important difference is that SOMA was designed for parti-
tioning OpenMP tasks while we need to partition the subtasks.

14. The light blue boxes are the existing tools we utilized, while the
dark blue boxes indicate functionalities we developed.

1336 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

to generate call graphs. The integrator combines both of them
to generate the task graph of the entire application.

Meanwhile, we introduce a new directive #pragma omp
subtask to annotate every TSP in the source code. The syntax
of the subtask construct is as follows:

#pragma omp subtask [clause ...] new-line

structured-block:

We annotate the source code with this directive; every subtask
construct includes all the code segments corresponding to a
vertex in the OpenMP-DAG, and we give each subtask con-
struct a unique identifier for further analysis. Thus, in addition
to theOpenMP-DAG,we obtain the annotatedOpenMP code.

In addition to the task graph topology, we provide two
types of reference weight values:

� Static Analysis. This type of reference value is
obtained by using the static WCET analysis tool
Chronos [44] to compute a safe WCET bound for the
codes associated with each individual vertex.

� Measurement.We measure the execution time for the
vertices by executing the programs on real hardware
(as described in Section 7.2).

8.2 Schedule Generation

In this phase, we use our proposed algorithm to compute
the schedule of the OpenMP-DAG and record relevant
information, including the starting and ending times of
each vertex’s lifetime window, and the mapping of each ver-
tex to the processors (vertices are identified by the identi-
fiers obtained in the preceding phase).

8.3 Code Profiling

OpenMP lacks an important feature: the notion of recur-
rence [10]. To include the real-time features, we incorporate
two clauses associated with the subtask construct: the event
clause and the deadline clause. These two clauses were first
proposed in [10]. The syntaxes of these two clauses are as
follows: (These two clauses are compatible.)

#pragma omp subtask event ðevent� expressionÞ

#pragma omp subtask deadline ðdeadline� expressionÞ;
where the event-expression represents the exact moment in
time at which the subtask release occurs and the deadline-
expression is the expression that determines the time instant
at which the subtask must finish. Only if event-expression
evaluates to true is the associated subtask released. The
expression shall evaluate to false after the subtask release.

We set the event-expression and deadline-expression of every
subtask construct based on the information obtained in the
preceding step. Thus, we obtain the final annotated OpenMP
code, which includes the real-time features we need.

8.4 Runtime Support

After obtaining the schedule and the final annotated OpenMP
code, we can use them as the input to the runtime, as SOMA
did in [42]. The aim of the runtime is to instantiate and man-
age the threads, and to control the execution of the vertices. In
particular it must allocate each vertex on the correct thread

and must guarantee the artificial release time of each vertex.
The runtime does not require time-consuming computations;
all its allocation decisions are made based on information
written in the schedule. The runtime support spawns the
threads and allocates jobs to themaccording to the schedule.

Specifically, when jobs arrive, the runtime uses the iden-
tifier to identify the corresponding subtask and allocate the
job to the thread based on the mapping written in the sched-
ule. These jobs will be stored in each thread’s local pool. The
thread uses EDFnp to schedule the jobs in its local pool. The
deadline-expression allows the thread to identify jobs corre-
sponding to the subtasks with the closest deadlines. Fig. 11b
shows the structure of the runtime support.

9 CONCLUSION

OpenMP is a promising parallel programming framework
in general-purpose and high-performance computing, and
has garnered increasing attention in the embedded and
real-time domains [1], [3], [4], [5], [6], [7], [8], [9], [10]. Previ-
ous work in [1] studied the timing analysis of OpenMP task
systems with regard to response time bounds by modifying
the original TSCs in the OpenMP specification. In this
paper, we propose a new algorithm, P-EDF-omp, that can
automatically guarantee satisfying the tied constraints as
long as an OpenMP task system can be successfully parti-
tioned to the multiprocessor platform. Experiments with
both randomly generated task sets and established OpenMP
benchmarks show that our approach consistently outper-
forms the work in [1]—even without modifying TSCs.

ACKNOWLEDGMENTS

This work was sponsored in part by the NSFC Project under
Grant 61772123. Xu Jiang is the co-first author.

REFERENCES

[1] J. Sun, N. Guan, Y. Wang, Q. He, and W. Yi, “Real-time schedul-
ing and analysis of OpenMP task systems with tied tasks,” in
Proc. IEEE Real-Time Syst. Symp., 2017, pp. 92–103.

[2] OpenMP Architecture Review Board (ARB), “OpenMP applica-
tion program interface V4.0,” OpenMP Forum, Tech. Rep., 2013.

[3] R. E. Vargas, S. Royuela,M.A. Serrano, X.Martorell, and E. Quinones,
“A lightweight OpenMP4 run-time for embedded systems,” in Proc.
21st Asia South PacificDes. Autom. Conf., 2016, pp. 43–49.

Fig. 11. Stages of implementation.

WANG ET AL.: PARTITIONING-BASED SCHEDULING OF OPENMP TASK SYSTEMSWITH TIED TASKS 1337

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

[4] R. Vargas, E. Quinones, and A. Marongiu, “OpenMP and timing
predictability: A possible union?,” in Proc. Des. Autom. Test Eur.
Conf. Exhib., 2015, pp. 617–620.

[5] M. A. Serrano, A. Melani, R. Vargas, and A. Marongiu, “Timing
characterization of OpenMP4 tasking model,” in Proc. Int. Conf.
Compilers Archit. Synthesis Embedded Syst., 2015, pp. 157–166.

[6] D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu, “A
real-time scheduling service for parallel tasks,” in Proc. IEEE 19th
Real-Time Embedded Technol. Appl. Symp., 2013, pp. 261–272.

[7] M. A. Serrano and E. Qui~nones, “Response-time analysis of DAG
tasks supporting heterogeneous computing,” in Proc. 55th ACM/
ESDA/IEEE Des. Autom. Conf., 2018, pp. 1–6.

[8] G. Tagliavini, D. Cesarini, and A. Marongiu, “Unleashing fine-
grained parallelism on embedded many-core accelerators with
lightweight OpenMP tasking,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 9, pp. 2150–2163, Sep. 2018.

[9] A. Marongiu and L. Benini, “An OpenMP compiler for efficient
use of distributed scratchpad memory in MPSoCs,” IEEE Trans.
Comput., vol. 61, no. 2, pp. 222–236, Feb. 2012.

[10] M. A. Serrano, S. Royuela, and E. Qui~nones, “Towards an
OpenMP specification for critical real-time systems,” in Proc. Int.
Workshop OpenMP, 2018, pp. 143–159.

[11] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-
time scheduling for generalized parallel task models,” Real-Time
Syst., vol. 49, no. 4, pp. 404–435, 2013.

[12] J. Li, Z. Luo, D. Ferry, K. Agrawal, C. Gill, and C. Lu, “Global EDF
scheduling for parallel real-time tasks,” Real-Time Syst., vol. 51,
no. 4, pp. 395–439, 2015.

[13] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel
real-time tasks on multi-core processors,” in Proc. IEEE 31st Real-
Time Syst. Symp., 2010, pp. 259–268.

[14] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill,
“Parallel real-time scheduling of DAGs,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 25, no. 12, pp. 3242–3252, Dec. 2014.

[15] S. Baruah, “Improved multiprocessor global schedulability analy-
sis of sporadic DAG task systems,” in Proc. 26th Euromicro Conf.
Real-Time Syst., 2014, pp. 97–105.

[16] E. Ayguad�e et al., “The design of OpenMP tasks,” IEEE Trans. Par-
allel Distrib. Syst., vol. 20, no. 3, pp. 404–418, Mar. 2009.

[17] X. Jiang, N. Guan, X. Long, and H. Wan, “Decomposition-based
real-time scheduling of parallel tasks on multi-cores platforms,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,
no. 10, pp. 2319–2332, Oct. 2020.

[18] P. Burgio, G. Tagliavini, A. Marongiu, and L. Benini, “Enabling
fine-grained OpenMP tasking on tightly-coupled shared memory
clusters,” in Proc. Des. Autom. Test Eur. Conf. Exhib., 2013,
pp. 1504–1509.

[19] M. A. Serrano, A. Melani, M. Bertogna, and E. Qui~nones,
“Response-time analysis of DAG tasks under fixed priority sched-
uling with limited preemptions,” in Proc. Des. Autom. Test Eur.
Conf. Exhib., 2016, pp. 1066–1071.

[20] J. Sun,N.Guan, J. Sun, andY.Chi, “Calculating response-time bounds
for OpenMP task systems with conditional branches,” in Proc. IEEE
Real-Time Embedded Technol. Appl. Symp., 2019, pp. 169–181.

[21] A. Melani, M. A. Serrano, M. Bertogna, I. Cerutti, E. Quinones,
and G. Buttazzo, “A static scheduling approach to enable safety-
critical OpenMP applications,” in Proc. 22nd Asia South Pacific Des.
Autom. Conf., 2017, pp. 659–665.

[22] A. Duran, J. Corbal�an, and E. Ayguad�e, “Evaluation of OpenMP
task scheduling strategies,” in Proc. Int. Workshop OpenMP, 2008,
pp. 100–110.

[23] X. Teruel, X. Martorell, A. Duran, R. Ferrer, and E. Ayguad�e,
“Support for OpenMP tasks in Nanos v4,” in Proc. Conf. Center
Adv. Stud. Collaborative Res., 2007, pp. 256–259.

[24] X. Liu, J. Mellor-Crummey, and M. Fagan, “A new approach for
performance analysis of OpenMP programs,” in Proc. 27th Int.
ACM Conf. Int. Conf. Supercomput., 2013, pp. 69–80.

[25] K. A. Huck, A. D. Malony, S. Shende, and D. W. Jacobsen,
“Integrated measurement for cross-PlaNorm OpenMP perfor-
mance analysis,” in Proc. Int. Workshop OpenMP, 2014, pp. 146–
160.

[26] R. Dietrich, F. Schmitt, A. Grund, and D. Schmidl, “Performance
measurement for the OpenMP 4.0 offloading model,” in Proc. Eur.
Conf. Parallel Process., 2014, pp. 291–301.

[27] OpenMP Architecture Review Board (ARB), “OpenMP applica-
tion program interface V4.5,” OpenMP Forum, Tech. Rep., 2015.

[28] P. Voudouris, P. Stenstr€om, and R. Pathan, “Timing-anomaly free
dynamic scheduling of task-based parallel applications,” in Proc.
Real-Time Syst. Symp., 2017, pp. 365–376.

[29] M. Dertouzos, “Control robotics: The procedural control of physi-
cal processeds,” in Proc. IFIP Congr., 1974, pp. 807–813.

[30] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20, no.
1, pp. 46–61, 1973.

[31] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proc. ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, 1998, pp. 212–223.

[32] G. J. Narlikar, “Scheduling threads for low space requirement and
good locality,” Theory Comput. Syst., vol. 35, no. 2, pp. 151–187, 2002.

[33] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive
scheduling of periodic and sporadic tasks,” in Proc. 12th Real-Time
Syst. Symp., 1991, pp. 129–139.

[34] D. S. Johnson, “Near-optimal bin packing algorithms,” PhD dis-
sertation, Dept. Math., Massachusetts Inst. Technol., Cambridge,
MA, USA, 1973.

[35] S. Dinh, J. Li, K. Agrawal, C. Gill, and C. Lu, “Blocking analysis for
spin locks in real-time parallel tasks,” IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 4, pp. 789–802, Apr. 2018.

[36] M. S. M€uller et al., “SPEC OMP2012 — An application benchmark
suite for parallel systems using OpenMP,” in Proc. Int. Workshop
OpenMP, 2012, pp. 223–236.

[37] A.D.Gonz�alez, X. Teruel, R. Ferrer, X.M.Bofill, andE.Ayguad�e Parra,
“Barcelona OpenMP tasks suite: A set of benchmarks targeting the
exploitationof taskparallelism inOpenMP,” inProc. 38th Int. Conf. Par-
allel Process., 2009, pp. 124–131.

[38] V. Gajinov, S. Stipi�c, I. Eri�c, O. S. Unsal, E. Ayguad�e, and A. Cristal,
“DaSH: A benchmark suite for hybrid dataflow and shared mem-
ory programming models with comparative evaluation of three
hybrid dataflow models,” in Proc. 11th ACM Conf. Comput. Front.,
2014, Art. no. 4.

[39] J. M. Bull, J. P. Enright, and N. Ameer, “A microbenchmark suite
for mixed-mode OpenMP/MPI,” in Proc. Int. Workshop OpenMP,
2009, pp. 118–131.

[40] J. M. Bull, F. Reid, and N. McDonnell, “A microbenchmark suite for
OpenMP tasks,” in Proc. Int. Workshop OpenMP, 2012, pp. 271–274.

[41] P. Virouleau et al., “Evaluation of OpenMP dependent tasks with
the KASTORS benchmark suite,” in Proc. Int. Workshop OpenMP,
2014, pp. 16–29.

[42] E. Ruffaldi, F. Brizzi, G. Dabisias, and G. Buttazzo, “SOMA: An
OpenMP toolchain for multicore partitioning,” in Proc. 31st Annu.
ACM Symp. Appl. Comput., 2016, pp. 1231–1237.

[43] Y. Wang et al., “Benchmarking OpenMP programs for real-time
scheduling,” in Proc. IEEE Int. Conf. Embedded Real-Time Comput.
Syst. Appl., 2017, pp. 1–10.

[44] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A
timing analyzer for embedded software,” Sci. Comput. Program.,
vol. 69, no. 1, pp. 56–67, 2007.

Yang Wang received the BS degree in computer
science and technology and the MS degrees in
computer system architecture, both from North-
eastern University, Shenyang, China, in 2013 and
2015, respectively. She is currently working
toward the PhD degree with the School of Com-
puter Science and Engineering, Northeastern Uni-
versity, Shenyang, China. Her research interests
include real-time embedded systems, parallel
tasks, and real-time scheduling.

Xu Jiang received the BS degree in computer sci-
ence from Northwestern Polytechnical University,
Xi’an, China, in 2009, the MS degree in computer
architecture from the Graduate School of the Sec-
ond Research Institute of China Aerospace Sci-
ence and Industry Corporation, Beijing, China, in
2012, and the PhD degree from Beihang Univer-
sity, Beijing, China, in 2018. He is currently working
with the School of Computer Science and Engi-
neering, Northeastern University. His research
interests include real-time systems, parallel and
distributed systems, and embedded systems.

1338 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

Nan Guan received the BE and MS degrees from
Northeastern University, Shenyang, China, in
2003 and 2006, respectively, and the PhD degree
from Uppsala University, Uppsala, Sweden, in
2013. He is currently an assistant professor with
the Department of Computing, Hong Kong Poly-
technic University. Before joining PolyU in 2015,
he worked as a faculty member with Northeastern
University, China. His research interests include
real-time embedded systems and cyber-physical
systems. He received the EDAA Outstanding Dis-

sertation Award, in 2014, Best Paper Award of IEEE Real-time Systems
Symposium (RTSS), in 2009, Best Paper Award of Conference on
Design Automation and Test in Europe (DATE), in 2013.

Zhishan Guo received the BE degree in com-
puter science and technology from Tsinghua Uni-
versity, Beijing, China, in 2009, the MPhil degree
in mechanical and automation engineering from
the Chinese University of Hong Kong, Hong
Kong, in 2011, and the PhD degree in computer
science from the University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina, in 2016.
He is an assistant professor with the Department
of Electrical and Computer Engineering, Univer-
sity of Central Florida, Orlando, Florida, and an

assistant professor with the Department of Computer Science, Missouri
University of Science and Technology, Rolla, Missouri. His current
research interests include real-time scheduling, cyber-physical systems,
and neural networks and their applications.

Xue Liu received the PhD (Hons.) degree in com-
puter science from the University of Illinois at
Urbana-Champaign, Champaign, Illinois. He was
the Samuel R. Thompson chaired associate pro-
fessor with the University of Nebraska-Lincoln
and a visiting faculty with HP Labs, Palo Alto,
California. He is currently a William Dawson
scholar and professor with the School of Com-
puter Science, McGill University. He has pub-
lished more than 200 research papers in major
peer-reviewed international journals and confer-

ence proceedings in these areas and received several best paper
awards. His research interests include cyber-physical systems, IoT,
machine learning, big data and applications, green IT, sustainability, and
smart energy systems, computer systems and networking.

Wang Yi (Fellow, IEEE) received the PhD degree
in computer science from the Chalmers Univer-
sity of Technology, Gothenburg, Sweden, in
1991. He is a chair professor with Uppsala Uni-
versity. His interests include models, algorithms,
and software tools for building and analyzing
computer systems in a systematic manner to
ensure predictable behaviors. He was awarded
with the CAV 2013 Award for contributions to
model checking of real-time systems, in particular
the development of UPPAAL, the foremost tool

suite for automated analysis and verification of real-time systems. For
contributions to real-time systems, he received best paper awards of
RTSS 2015, ECRTS 2015, DATE 2013, and RTSS 2009, Outstanding
Paper Award of ECRTS 2012 and Best Tool Paper Award of ETAPS
2002. He is on the steering committee of ESWEEK, annual joint event
for major conferences in embedded systems areas. He is also on the
steering committees of ACM EMSOFT (co-chair), ACM LCTES, and
FORMATS. He serves frequently on Technical Program Committees for
a large number of conferences, and was the TPC chair of TACAS 2001,
FORMATS 2005, EMSOFT 2006, HSCC 2011, LCTES 2012 and track/
topic chair for RTSS 2008, and DATE 2012–2014. He is a member of
Academy of Europe (Section of Informatics).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WANG ET AL.: PARTITIONING-BASED SCHEDULING OF OPENMP TASK SYSTEMSWITH TIED TASKS 1339

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on April 28,2023 at 17:48:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

