Partitioning-Based Scheduling of OpenMP Task Systems With Tied Tasks

Yang Wang, Xu Jiang, Nan Guan, Zhishan Guo, Xue Liu, and Wang Yi, Fellow, IEEE

Abstract—OpenMP is a popular programming framework in both general and high-performance computing and has recently drawn much interest in embedded and real-time computing. Although the execution semantics of OpenMP are similar to the DAG task model, the constraints posed by the OpenMP specification make them significantly more challenging to analyze. A tied task is an important feature in OpenMP that must execute on the same thread throughout its entire life cycle. A previous work [1] succeeded in analyzing the real-time scheduling of tied tasks by modifying the Task Scheduling Constraints (TSCs) in OpenMP specification. In this article, we also study the real-time scheduling of OpenMP task systems with tied tasks but without changing the original TSCs. In particular, we propose a partitioning-based algorithm, P-EDF-omp, by which the tied constraint can be automatically guaranteed as long as an OpenMP task system can be successfully partitioned to a multiprocessor platform. Furthermore, we conduct comprehensive experiments with both synthetic workloads and established OpenMP benchmarks to show that our approach consistently outperforms the work in [1]—even without modifying the TSCs.

Index Terms—Multicore, parallel tasks, real-time scheduling, partitioning, OpenMP, tied tasks

1 INTRODUCTION

Real-time systems are shifting from single-core to multicore processors to meet the rapidly increasing requirements of high performance and low power consumption. Software must be parallelized to fully utilize the computation power of multicore processors. OpenMP [2], the de facto parallel programming framework for shared memory architectures in both general and high-performance computing domains, is gaining increasing attention for use in embedded platforms [3], [4], [5], [6], [7], [8], [9], [10]. Using Directed Acyclic Graphs (DAG) to model parallel workloads is a common way in real-time analysis. OpenMP has supported explicit tasks since version 3.0, and its execution semantics are quite similar to the DAG model, which has motivated much theoretical work on the real-time scheduling and analysis of DAG task models [11], [12], [13], [14], [15].

A tied task is an important feature in OpenMP task systems. In OpenMP, the tasks are tied by default, unless an untied keyword is explicitly placed. Tied task forces a task to execute on the same thread throughout its entire life cycle without migrating to another thread. In particular, if the execution of a tied task is interrupted, it must be resumed on the same thread later. In addition, the OpenMP specification poses special constraints on the execution of tied tasks, called Task Scheduling Constraints (TSCs), which also need to be taken into account while scheduling tied tasks. Therefore, the existing results using DAG models cannot be directly applied to OpenMP task systems with tied tasks because the DAG models cannot fully capture the constraints of tied tasks posed by the OpenMP specification.

Despite the constraints on tied tasks, tied tasks enjoy the following benefits [4], [5], [16] because they preclude migrations among threads: (1) a tied task simplifies the implementation of the scheduling algorithm and reduces context switching costs; (2) in many cases, a tied task can help reduce the difficulty of avoiding deadlocks in the presence of critical sections; (3) a tied task can help make library functions thread-safe. Meanwhile, situations still exist when developers must use untied tasks instead of untied tasks. OpenMP has always been thread-centric before OpenMP 3.0. Threads provide a very useful abstraction of processors, and developers have capitalized on this capability. Threadprivate storage, threadspecific features and thread-local storage provided by the native threading package or the linker are all useful for making library functions thread-safe. However, employing threadprivate variables or anything dependent on thread ID is strongly discouraged in untied tasks [16]. In contrast, it is easier and more predictable to use this information in tied tasks. Therefore, tied tasks are essential in OpenMP programming.
There is not much work focusing on analyzing the real-time scheduling of OpenMP task systems with tied tasks. Sun et al. proposed the first guaranteed response time bound for the OpenMP task system with tied tasks in [1], under a scheduling algorithm called BFS'. BFS' modifies the original TSCs posed in the OpenMP specification to mitigate the tied task scheduling problem. However, how to use the original TSCs to schedule and analyze OpenMP task systems with tied tasks, which can provide hard real-time guarantees, is vastly open.

To address the above problem, we propose an effective algorithm called P-EDF-omp, which is a partitioning-based multiprocessor scheduling algorithm for OpenMP-DAGs. We first decompose the OpenMP-DAG into subtasks corresponding to the vertices using the existing decomposition strategy from [17]. These subtasks have their own release times and deadlines. Then at design time, the Subtask Assignment Procedure (SAP) in P-EDF-omp partitions every subtask to a dedicated processor. Next at runtime, each processor uses the non-preemptive earliest-deadline-first algorithm (EDF_np) to schedule the subtasks that have been assigned to it. In this study, we prove that all the subtasks can automatically meet their deadlines when scheduled by EDF_np on their dedicated processors, if they were successfully assigned to the processors by the SAP in P-EDF-omp. Thus, the SAP can be used as an off-line schedulability-test for OpenMP-DAGs with tied tasks.

We conduct experiments under both synthetic workloads and established OpenMP benchmarks to evaluate the performance of our schedulability-test. The experimental results show that P-EDF-omp outperforms the BFS' algorithm proposed in [1] under different parameter configurations in terms of the acceptance ratio.

2 RELATED WORK

OpenMP4 [2], the de facto standard for shared memory parallel programming in high-performance computing (HPC), has recently gained much attention in the embedded and real-time domains [1], [3], [4], [5], [7], [18], [19], [20], [21] due to its capability to define explicit subtasks and the data dependencies existing among them. This capability allows very sophisticated types of fine-grained and irregular parallelism to be expressed. Moreover, OpenMP is supported in the newest multicore embedded architectures and has become a firm candidate for developing future real-time embedded systems.

The authors of [22] conducted an evaluation of different scheduling policies using their run-time system Nanos++ [23] and analyzed the differences existing between tied and untied tasks from an average performance point of view. In addition, the average-case performance analysis of OpenMP applications is discussed in [24], [25], [26].

The first attempt to apply OpenMP4 was introduced in [4], where the authors studied how to construct an OpenMP task graph that contains sufficient information for real-time DAG scheduling models to be applied. Then, timing guarantees can be derived from the task graph with considering the tasking semantics of OpenMP4. Serrano et al. [5] provided the first response time bound analysis for the OpenMP DAG task model with untied tasks and tied tasks.

Fig. 1. An example of OpenMP program and OpenMP-DAG.

pointed out that when tied tasks exist, the OpenMP task system would have an unacceptably pessimistic response time bound.

Moreover, Serrano et al. [19] investigated the scheduling of OpenMP tasks with limited preemptions. Sun et al. [20] considered the conditional branches in OpenMP programs and proposed a linear-time algorithm for computing the response time bound. Serrano et al. [7] analyzed the response time for an OpenMP task system supporting heterogeneous multicores. However, none of these works have considered tied tasks. Sun et al. proposed the first guaranteed response time bound for the OpenMP task system with tied tasks in [1]. However, they modified the original Task Scheduling Constraints (TSCs) posed by the OpenMP specification, while in this paper we use the original TSCs without modifying them.

3 OVERVIEW OF OPENMP PROGRAMS

With OpenMP, one can design parallel tasks that are either implicit tasks (e.g., omp loop) or explicit tasks (omp task). In this paper, we consider only OpenMP 3.0 or higher versions, which support the task directive.

3.1 OpenMP Threads

An OpenMP program starts with a parallel directive (e.g., Line 1 in Fig. 1a), which constructs an associated parallel region that includes all the codes enclosed in a pair of brackets following the parallel directive (e.g., Lines 2–27 in Fig. 1a). The parallel directive creates a team of m OpenMP threads (m is specified with the num_threads clause). In OpenMP, the execution entity for executing tasks is called a thread (which equates to a thread in the underlying OS). Similar to previous works [4], [5], each thread is assumed to exclusively execute on a dedicated processor (i.e., the OMP_PROC_BIND variable is set to be "true"). In

1. For simplicity, we focus only on explicit OpenMP tasks, which are annotated by the task directive. The implicit OpenMP tasks related to work-sharing directives are out of the scope of this paper.
2. The OMP_PROC_BIND is an OpenMP environment variable: if it is set to be true, OpenMP threads do not move among processors; otherwise, OpenMP threads may move among processors.
the rest of this paper, the concept of “processor” is equivalent to the thread executing on it and we use these two terms interchangeably. The general case in which a processor is bound to multiple threads is out of the scope of this paper.

3.2 OpenMP Tasks

A parallel region can consist of a set of independent parallel units, called OpenMP tasks. In this paper, the term “task” refers to an OpenMP task. A task is created when a task directive is encountered (e.g., Ti, Line 3 in Fig. 1a). All the codes enclosed in the brackets following the task directive (e.g., the codes in Lines 4, 10, 20 and 27 belong to task Ti) form the body of the task.

If a task Ti is enclosed in the body of another task Tj, Ti is a child of Tj and Tj is the parent of Ti. Two tasks that share the same parent are siblings. Moreover, a task Ti is a descendant of Tj, if Ti is a child (or the child of child—with arbitrary levels of recursion) of Tj. In this case, Tj is an ancestor of Ti. For example, in Fig. 1b, task T2 is a child of task T1, and tasks T3 and T6 are siblings because they share the common parent T1. Task T5 is a descendant of T1, and T1 is an ancestor of T5.

3.3 Task Synchronization

The two most widely used synchronization mechanisms in OpenMP are taskwait directives (e.g., Line 26 in Fig. 1a) and depend clauses (e.g., Lines 13 and 16 in Fig. 1a) as described below.

- **taskwait.** A task can synchronize with its children via taskwait directives. A taskwait directive blocks the parent task until all of its children (but not other descendants beyond children) created prior to the taskwait directive have completed. For example, in Fig. 1b, tasks T2, T1 and T7 synchronize with T1 through a taskwait directive: T1 cannot complete the execution of u11 until tasks T2, T4 and T7 complete.

- **depend.** Depend clauses impose an order between two sibling tasks. If a task has an in dependence on a variable, it cannot start execution until all its previously created sibling tasks with an out or inout dependences on the same variable complete. In Fig. 1b, T1 and T6 synchronize with each other through a depend clause, and T6 must wait for T1 to complete.

3.4 Runtime Constraints

The scheduling process for OpenMP tasks assigns tasks (or task vertices) onto threads, ensuring that the following OpenMP scheduling constraints are satisfied.

Task Scheduling Points (TSP). In OpenMP, a TSP is a point in a program at which execution can be interrupted and scheduling may be triggered. A TSP occurs upon task creation and completion, and at synchronization points such as taskwait directives. TSPs divide a program into several parts (e.g., block11 in Fig. 1a), and an TSP exists between any two adjacent partitions, implying that the execution of each vertex should not be interrupted (i.e., the execution of each part is non-preemptive).

Tied Tasks. In OpenMP, a task can be either tied or untied. When a tied task starts execution on a thread, it will subsequently only execute on this thread throughout its entire life cycle. Specifically, if the execution of a tied task is interrupted, this task must later resume on the same thread. In contrast, an untied task can be executed on different threads. Thus, when the execution of an untied task is interrupted, this task can later be resumed by any thread. By default, OpenMP tasks are tied, unless explicitly specified as untied.

Task Scheduling Constraint (TSC). OpenMP enforces the task scheduling constraint [27]: “Scheduling of new tied tasks is constrained by the set of task regions that are currently tied to the thread, and that are not suspended in a barrier region. If this set is empty, any new tied task may be scheduled. Otherwise, a new tied task may be scheduled only if it is a descendant task of every task in the set.”

4. MODELING

4.1 OpenMP Task Model

We consider an OpenMP task system Θ, which can be represented as a DAG G = (V, E), where V represents the set of vertices, and E represents the set of edges. Θ consists of n OpenMP tasks \{Ti, T2, ..., Tn\}, and each task is either tied or untied. Specifically, we use Ψ to denote the task set that consists of all the tied tasks in Θ. A task Ti consists of a set of vertices \{u₁h₁, u₂h₂, ..., uₙhₙ\} and a vertex uh in V corresponds to the x-th vertex of task Ti and is associated with a worst-case execution time c(uₙhₙ). Each OpenMP task contains a unique entry vertex and a unique exit vertex. The task system Θ is released recurrently with a period P and has an implicit deadline, i.e., D = P. The total worst-case execution time of all vertices of a task system Θ is denoted by C = \sum_{u \in V} c(u). The utilization U of a task system Θ is defined as U = C/P. In this paper, we only consider task systems with U > 1.

Edge (uh₁, uh₂) in E denotes the precedence constraint between vertices uh₁ and uh₂, such that uh₂ can execute only after uh₁ completes. In this case, uh₂ is called a predecessor of uh₁ and uh₁ is a successor of uh₂. u is eligible to be executed when all its predecessors have completed. And Th is eligible if uh₁ is eligible. Moreover, we call Th an active task if Th is eligible but has not completed the execution of all the vertices it contains.

Definition 1 (Descendant Task Set). \(Ψ_{ desc}(Th)\) denotes the set of OpenMP tasks that are descendant tasks of Th.

Definition 2 (Preassigned Vertices). \(ωr_{Th}\) denotes the set of every successor vertex of uh₁ in tied task Th, i.e., \(ωr_{Th} = \{u_{h2}, u_{h3}, ..., u_{hn_{h}}\}\)

3. Additional TSPs are implied by various constructs barrier, target, taskfield, taskgroup; however, for simplicity, we do not consider these constructs or the if/finally clauses of the task directive in this paper.
\(L \) denotes the sum of \(c(u) \) of each vertex \(u \) on the longest chain (also called the critical path) of task system \(\Theta \), i.e., the execution time of the task system \(\Theta \) to be exclusively executed on an infinite number of processors. \(L \) can be computed in linear time with respect to the size of the DAG [28]. The laxity of \(\Theta \) is \((P - L)\). We use \(\Upsilon \) to denote the elasticity of \(\Theta \), which is defined as \(\Upsilon = L/P \). Apparently, when a task set \(\Theta \) is schedulable on a multicore platform composed of \(m \) identical processors, the following conditions must hold:

\[
L \leq P \quad \text{and} \quad U \leq m.
\]

There are three types of edges in a graph, i.e., \(E = E_1 \cup E_2 \cup E_3 \), as detailed below.

Control Flow Edges \((E_1) \), denoted by dotted-line arrows in Fig. 1b, model the control flow dependencies within a task.

Task Creation Edges \((E_2) \) are denoted by dashed-line arrows in Fig. 1b. A parent task points its child tasks via this type of edges.

Synchronization Edges \((E_3) \) are denoted by solid-line arrows in Fig. 1b. There are two synchronization edge subtypes that correspond to the taskwait directives and depend clauses.

Notice 1. The P-EDF-omp algorithm in this paper treats all edges in the same way. In other words, from the viewpoint of our scheduling algorithm, these three types of edges are all equivalent in the OpenMP-DAG. Hence in the rest of this paper, the figures use only a single type of edge (solid-line arrows).

Fig. 1b shows the OpenMP-DAG which corresponds to the OpenMP program in Fig. 1a.

4.2 OpenMP Runtime Model

Given a task graph \(G = (V, E) \) and a team of processors \(S = \{s_1, \ldots, s_m\} \) (recall that the concept of “processor” is equivalent to the thread executing on it), a schedule is to assign tasks to processors such that each vertex of \(V \) can be executed until completion.

Definition 3 (Tied Task Set). \(\Gamma_i(t) \) denotes the set of active tasks that have been tied to processor \(s_k \) before time \(t \).

As introduced in Section 3.4, according to the OpenMP specification, the OpenMP task scheduling must fulfill several constraints at runtime. We concentrate on the following three constraints in this paper. The formal statements for these constraints are as follows.

- **Task Scheduling Points (TSP):** For \(\forall u \in V \), once the execution starts, it cannot be interrupted until completion (but task execution may be preempted or suspended at vertex boundaries).

- **Tied Tasks:** For \(\forall T_h \in \Psi, \) if the entry vertex \(u_{0h} \) in \(T_h \) starts execution on processor \(s_h \), then \(u_{0h} \) itself as well as \(\forall u_{ij} \in \omega(T_h) \) must be executed on \(s_h \) throughout their entire life cycle; they cannot migrate to another processor.

- **Task Scheduling Constraint (TSC):** At time \(t \), the entry vertex \(u_{0h} \) of a tied task \(T_h \) can be executed by processor \(s_h \) if for \(\forall T_j \in \Gamma_k(t), T_h \in \Psi_{des}(T_j) \). TSC enforces that a new tied task \(T_h \) can be executed by \(s_h \) at time \(t \) only if \(T_h \) is a descendant of all the active tasks tied to \(s_k \) before \(t \). Specifically, \(T_h \) can be executed by \(s_h \) if \(\Gamma_h(t) = \emptyset \).

5 Partition

In this section, we present the P-EDF-omp algorithm, which is a partitioning-based multiprocessor scheduling algorithm for scheduling the sporadic subtask set decomposed from the OpenMP-DAG with tied tasks on identical multiprocessor platforms. The main idea of P-EDF-omp is based on the FBB-FFD algorithm in [11]. The FBB-FFD algorithm is a simple partitioning algorithm, which is a variant of a bin-packing heuristic known as first-fit-decreasing.

In Section 5.1, we clarify the basic procedure of our approach. In Section 5.2, we briefly introduce the decomposition strategy in [17]. We use to transfer the OpenMP-DAG into a sporadic sequential subtask set. Then, in Section 5.3, we define P-EDF-omp and state how the Subtask Assignment Procedure works.

5.1 Overview of Our Algorithm

Based on the constraint for tied tasks that they cannot migrate to another processor throughout their entire life cycle, we chose partitioned scheduling. In partitioned scheduling, the vertices are not allowed to migrate among processors once partitioned to one processor. In order to get the subtasks corresponding to the vertices for partitioning, we need to decompose the OpenMP-DAG first. After we determine how to partition the subtasks to processors, the processors schedule their “local” subtasks at runtime, and the problem becomes that of real-time scheduling on a single core. Due to the optimality of EDF for uniprocessors [29], [30] and the constraint that the vertex execution cannot be interrupted, we chose the non-preemptive earliest-deadline-first algorithm \((EDF_{np})\) as the runtime scheduler. Later in Section 6, we prove that if P-EDF-omp can successfully partition all the subtasks to the processors in the off-line phase, every subtask can automatically meet its deadline with \(EDF_{np} \) as the runtime scheduler on the corresponding processor. Hence, the goal of the proposed algorithm is to find a feasible way to partition the subtasks (corresponding to the vertices in OpenMP-DAG), which we obtain from decomposition. The algorithm can be divided into two phases: the off-line phase and the on-line phase.

- **Phase 1: off-line phase**
 - **Decomposition**.
 - This part consists of two steps:
 - Decomposition. In this step, we use the decomposition strategy in [17] to decompose the
Table 1: Notations Adopted in This Paper

<table>
<thead>
<tr>
<th>Notations</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θ</td>
<td>an OpenMP task system</td>
</tr>
<tr>
<td>n</td>
<td>number of OpenMP tasks in Θ</td>
</tr>
<tr>
<td>Th</td>
<td>an OpenMP task</td>
</tr>
<tr>
<td>nv</td>
<td>number of vertices in Th</td>
</tr>
<tr>
<td>G</td>
<td>the workload structure of Θ</td>
</tr>
<tr>
<td>V</td>
<td>the set of vertices in G</td>
</tr>
<tr>
<td>E</td>
<td>the set of edges in G</td>
</tr>
<tr>
<td>N</td>
<td>the number of vertices/subtasks in G</td>
</tr>
<tr>
<td>c(u_v, s)</td>
<td>worst-case execution time (WCET) of a vertex u_v</td>
</tr>
<tr>
<td>C</td>
<td>total WCET of all vertices of Θ</td>
</tr>
<tr>
<td>L</td>
<td>the longest length among all path of Θ</td>
</tr>
<tr>
<td>D</td>
<td>the deadline of Θ</td>
</tr>
<tr>
<td>P</td>
<td>the period of Θ</td>
</tr>
<tr>
<td>U</td>
<td>the utilization of Θ</td>
</tr>
<tr>
<td>Y</td>
<td>the elasticity of Θ</td>
</tr>
<tr>
<td>Ψ</td>
<td>the set of tied tasks in Θ</td>
</tr>
<tr>
<td>π_c(T_h)</td>
<td>the set of all descendant tasks of T_h</td>
</tr>
<tr>
<td>π_s(T_h)</td>
<td>the set of successors of u_h in tied task T_h</td>
</tr>
<tr>
<td>S</td>
<td>the team of the processors</td>
</tr>
<tr>
<td>s_k</td>
<td>the k-th processor</td>
</tr>
<tr>
<td>k</td>
<td>the number of subtasks in T_k</td>
</tr>
<tr>
<td>D[s], D[s]</td>
<td>the processor demand in time interval [s, t]</td>
</tr>
<tr>
<td>Γ_k(t)</td>
<td>active tasks that were tied to s_k before time t</td>
</tr>
<tr>
<td>Θ_odecomp</td>
<td>the resulting sequential subtask from decomposition</td>
</tr>
<tr>
<td>s_i</td>
<td>a segment in decomposition</td>
</tr>
<tr>
<td>τ_i</td>
<td>a resulting sequential subtask from decomposition</td>
</tr>
<tr>
<td>e_i</td>
<td>WCET of τ_i corresponding vertex (τ_i’s execution requirement)</td>
</tr>
<tr>
<td>Δ_i</td>
<td>the lifetime window of τ_i</td>
</tr>
<tr>
<td>d_i</td>
<td>length of lifetime window Δ_i</td>
</tr>
<tr>
<td>n_i</td>
<td>starting and stopping time of Δ_i</td>
</tr>
<tr>
<td>i_iv</td>
<td>a time interval</td>
</tr>
<tr>
<td>d_iv</td>
<td>the length of time interval i_iv</td>
</tr>
<tr>
<td>d_ir</td>
<td>starting and stopping time instant of i_ir</td>
</tr>
<tr>
<td>K(τ_i, i_ir)</td>
<td>Interval Load of τ_i in time interval i_ir</td>
</tr>
<tr>
<td>U_τ_i</td>
<td>Union Time Interval of lifetime windows of τ_i and τ_j</td>
</tr>
<tr>
<td>d_u(τ_i, τ_j)</td>
<td>length of the Union Time Interval</td>
</tr>
<tr>
<td>Δ_u(τ_i, τ_j)</td>
<td>starting time instant of Δ_u(τ_i, τ_j)</td>
</tr>
<tr>
<td>Δ_u(τ_i, τ_j)</td>
<td>stopping time instant of Δ_u(τ_i, τ_j)</td>
</tr>
<tr>
<td>L_h</td>
<td>the lifetime window of T_h</td>
</tr>
<tr>
<td>p_h</td>
<td>starting and stopping time instant of Δ_h</td>
</tr>
<tr>
<td>T_h</td>
<td>tied task T_h assigned to s_k with p_h ≤ t < p_h</td>
</tr>
</tbody>
</table>

OpenMP-DAG (which contains tied tasks) into a sequential subtask set Θ_odecomp. Each subtask corresponds to a vertex in Θ_odecomp and has its own execution requirement (which equals the WCET of the vertex), starting and ending times of its own lifetime window.

- **Partition.** After obtaining the resulting sequential sporadic subtask set, we use the Subtask Assignment Procedure (SAP) to assign the subtasks to “available” processors following the runtime constraints introduced in Section 3.4, using a “first-fit” heuristic.

 - **Phase 2:** on-line phase

 In this phase, each processor uses the non-preemptive earliest-deadline-first algorithm (EDFnp) as the runtime scheduler to schedule the subtasks assigned to it.

 Discussion About the On-Line Phase. Although the majority of the P-EDF-omp algorithm completes during the off-line phase, we still choose on-line scheduling with EDFnp rather than choosing off-line scheduling for the following reasons. If the execution times of the subtasks are all constants, we could indeed create a scheduling table at design time and implement off-line scheduling. However, we can only obtain the worst-case execution time rather than the real execution time of each subtask at design time, and the worst-case execution time (WCET) may occur only in various extreme cases; the real execution time is typically less than the WCET. Thus, if we were to adopt off-line scheduling, the subtasks would have to wait even after they complete execution at runtime; otherwise, we could not guarantee that the rules in the table would be satisfied. Consequently, adopting off-line scheduling reduces processor utilization, especially when other jobs (not the ones from the OpenMP-DAG) are waiting to be scheduled in the system. However, on-line scheduling does not suffer from this problem. In general, on-line scheduling is more flexible, and it utilizes processor resources better, which makes it more popular than off-line scheduling in embedded and real-time domains. Hence, we choose to use on-line scheduling rather than off-line scheduling in P-EDF-omp.

5.2 Decomposition Strategy

In this section, we first briefly introduce the decomposition strategy in [17].

5.2.1 Segmentation

In this step, we divide the time window between two successive releases of Θ (of length P) into several segments \{s_1, s_2, ..., s_p\} and assign the workload of each vertex (which equals the WCET of the vertex) to these segments. A vertex may be split into several parts and assigned to different segments. We first construct a timing diagram for Θ that defines the earliest ready time of each vertex u, denoted by rd(y(u)), and the latest finish time of u, denoted by fsh(u), assuming that Θ executes exclusively on a sufficient number of processors and that the entire Θ workload must be completed within L.

The segmentation algorithm consists of three main steps:

- **Step 1:** Assign each vertex that only covers a single segment. All the segments are then classified into two types (light and heavy segments) according to the

 > 6. If vertex u has no outgoing edges, fsh(u) = L.
ratio of the total amount of the workload of every vertex (or a part of a vertex) assigned to the segment and the segment length. For each segment, if this ratio is no greater than \(C/L \), the segment is a light segment; otherwise, it is a heavy segment.

- Step 2: Assign the remaining vertices to light segments insofar as possible, without turning any light segment into a heavy segment.
- Step 3: Assign the remaining vertices, if any, to the heavy segments arbitrarily.

Definition 4 (Lifetime window of a vertex \(u_i \)).

Regardless of whether a vertex \(u_i \) has been split into several parts, the time interval between the starting time of segment \(s^p \) and the ending time of segment \(s^h \) is called the lifetime window of \(u_i \), where \(s^h \) is the segment whose starting time equals \(rdy(u_i) \) in the segmentation and \(s^p \) is the segment whose ending time equals \(fsh(u_i) \) in the segmentation.

We use \(\Delta_i \), to denote the lifetime window of \(u_i \), and \(\eta_i^u \) and \(\eta_i^p \) to denote the times at which \(\Delta_i \) starts and ends, respectively. More specifically, \(\eta_i^u \) equals the starting time of \(s^p \) and \(\eta_i^p \) equals the ending time of \(s^h \).

Clearly, in the segmentation, the starting and ending times of each vertex \(u_i \)'s original lifetime window are \(rdy(u_i) \) and \(fsh(u_i) \), respectively. Later in the laxity distribution, the lifetime window of \(u_i \) will change as the starting time of \(s^p \) and the ending time of \(s^h \) change. See [17] for more details regarding the laxity distribution rules.

Example 3. After laxity distribution, the OpenMP-DAG in Fig. 3 is transformed into a timing diagram with the workload assigned as shown in Fig. 5. The lifetime window of \(u_{11} \) becomes [0,8] and the lifetime window of \(u_{21} \) becomes [8,16].

5.2.3 Vertex Reassembling

A vertex may be split into several parts during the segmentation step such that each vertex part may be assigned to a different segment. In this step, we reassemble the different parts of a vertex, adjust the time constraints obtained from the laxity distribution step accordingly, and then use them to obtain the vertex’s (the subtask’s) release time and deadline. Note that in this step, we simply reassemble all the parts belonging to the same vertex; we do not change the lifetime window obtained from the previous step.

The vertex reassembling forces the sequential subtasks that belong to the same vertex to be assigned to one processor by the P-EDF-omp algorithm (which will be discussed later). The reassembling operation will not affect the off-line partitioning. Hence, we choose to implement this step during decomposition to simplify the Subtask Assignment Procedure, which will be shown next.

5.2.4 Resulting Sequential Sporadic Subtask Set

After decomposition, we obtain a resulting sequential sporadic subtask set \(\Theta_{decomp} = \{ \tau_1, \tau_2, \ldots, \tau_N \} \), where each sequential subtask \(\tau_i \) corresponds to a vertex in the original OpenMP-DAG (after vertex reassembling). We use \(N \) to denote the total number of sequential subtasks as well as the number of nodes in OpenMP-DAG. Each subtask \(\tau_i \) can be represented as a triple \(\langle e_i, \eta_i^u, \eta_i^p \rangle \), where \(e_i \) represents the execution requirement of \(\tau_i \) (which equals the WCET of corresponding vertex), and \(\eta_i^u \) and \(\eta_i^p \) represent the starting and ending times of \(\tau_i \) (the lifetime window of \(\tau_i \)), respectively. More specifically, \(e_i, \eta_i^u \) and \(\eta_i^p \) are the artificial release time and deadline (relative to the release time of the OpenMP-DAG) of each subtask after vertex reassembling.
Notice 2. In this paper, we consider η_i^t (the starting time of the first released vertex’s lifetime window) to be time 0, i.e., $\eta_i^t = 0$. Therefore, the time points considered in this paper, such as η_i^t and η_i^p, are all absolute times.

This resulting sequential sporadic subtask set is the object partitioned by the SAP in P-EDF-omp at design time.

Example 4. After decomposition, the OpenMP-DAG in Fig. 3 is transformed into a resulting sequential subtask set, as shown in Fig. 6. The lifetime window of u_{11} is [0,8] and the lifetime window of u_{21} is [8,16], both of which are the same as the results after laxity distribution.

5.3 The P-EDF-omp algorithm

In this section, we present P-EDF-omp, a partitioning-based multiprocessor scheduling algorithm for OpenMP-DAGs.

The most important part of P-EDF-omp is the Subtask Assignment Procedure (SAP), which is used to partition the subtasks to processors satisfying the Partitioning Conditions (which will be introduced later) at design time.

To better understand how P-EDF-omp works, we first introduce some auxiliary concepts. Recall that we assume $\eta_i^t = 0$, and the starting and ending times of the lifetime window of subtask τ_i are both absolute times.

We use the concept of Interval Load (denoted by K) to denote the processor demand of each subtask τ_i during the considered time interval.

Definition 5 (The Interval Load). For subtask τ_i, the Interval Load $K(\tau_i, i_{w2})$ in time interval $i_{w2} \rightarrow [i_{w2}^t, i_{w2}^p]$ is defined as follows:

$$K(\tau_i, i_{w2}) = \begin{cases} e_i, & \eta_i^t \geq i_{w2}^t \text{ & } \eta_i^p \leq i_{w2}^p \\ 0, & \text{otherwise} \end{cases}$$

Definition 6 (Overlapping Subtasks). If the lifetime windows of $\tau_i(\Delta_i \rightarrow [\eta_i^t, \eta_i^p])$ and $\tau_j(\Delta_j \rightarrow [\eta_j^t, \eta_j^p])$ satisfy the following:

1. $\eta_i^t \leq \eta_j^t < \eta_i^p \text{ & } \eta_j^p > \eta_j^p$

then we say that τ_j is an Overlapping Subtask of τ_i, which means that the lifetime windows of these two subtasks either partially or entirely overlap.

Definition 7 (Union Time Interval). For two Overlapping Subtasks τ_i and τ_j, we use $\Delta_{un}(\tau_i, \tau_j)$ to denote the Union Time Interval, which is the union of lifetime windows of τ_i and τ_j, and use $d_{un}(\tau_i, \tau_j)$ to denote the length of the Union Time Interval $\Delta_{un}(\tau_i, \tau_j)$.

Example 5 illustrates the Union Time Interval $\Delta_{un}(\tau_i, \tau_j)$ for the Overlapping Subtasks τ_i and τ_j.

Example 5. As shown in Fig. 7a, suppose there are two Overlapping Subtasks τ_i and τ_j; in this case, the Union Time Interval of τ_i and τ_j is $\Delta_{un}(\tau_i, \tau_j) = [\eta_i^t, \eta_j^p]$ (i.e., $\Delta_{un}(\tau_i, \tau_j) = \eta_i^t$, $\Delta_{un}^p(\tau_i, \tau_j) = \eta_j^p$), and the length of $\Delta_{un}(\tau_i, \tau_j)$ is $d_{un}(\tau_i, \tau_j) = \eta_j^p - \eta_i^t$. For cases in which the lifetime windows of two subtasks overlap entirely, as shown in Fig. 7b, the Union Time Interval of these two lifetime windows is simply the larger lifetime window, i.e., in this case, $\Delta_{un}(\tau_i, \tau_j) = \Delta_{un}^p(\tau_i, \tau_j) = \eta_j^p$ and $d_{un}(\tau_i, \tau_j) = \eta_j^p - \eta_i^t$.

Similar to the lifetime window of subtask τ_i, we define the lifetime window of an OpenMP task T_h as follows: (Suppose T_h consists of the subtask set $\{\tau_{h1}, \tau_{h2}, \ldots, \tau_{h_m}\}$)

Definition 8 (Lifetime window of OpenMP Task). The lifetime window of T_h (denoted by Λ_h) is the time interval from the starting time of the lifetime window of the entry vertex in T_h to the ending time of the exit vertex’s lifetime window, i.e., $\Lambda_h \rightarrow [\eta_{h1}^t, \eta_{h1}^p]$. Specifically, we use ρ_h^t and ρ_h^p to denote the starting and ending times of Λ_h, i.e., $\rho_h^t = \eta_{h1}^t, \rho_h^p = \eta_{h1}^p$.

In the following, we introduce the Partitioning Conditions used in our work and how we employ them to determine whether a processor is “available” for a subtask.

Partitioning Conditions. The Partitioning Conditions cover three possible conditions (the subtask to be assigned is $\tau_i((\epsilon_i, \eta_i^t, \eta_i^p))$, $\tau_i \in T_h$).

Condition 1: (Basic Condition.)

In the lifetime window of $\tau_i(\Delta_i \rightarrow [\eta_i^t, \eta_i^p])$

$$d_i = \sum_{\tau_j \in \Pi_k, j \neq i} K(\tau_j, \Delta_i) \geq e_i,$$

where d_i is the length of the lifetime window of τ_i, i.e., $d_i = \eta_i^p - \eta_i^t$. Π_k denotes the set of subtasks already assigned to processor s_k, and $\Pi_k = \emptyset$ at time 0.

Condition 2: (Additional Condition.)

If an Overlapping Subtask τ_j of τ_i exists, then in their Union Time Interval $\Delta_{un}(\tau_i, \tau_j)$

$$d_{un}(\tau_i, \tau_j) = \sum_{\tau_j \in \Pi_k, j \neq i} K(\tau_j, \Delta_{un}(\tau_i, \tau_j)) \geq e_i$$

Condition 3: (TSC Condition.)

$$\Gamma_h^\tau(\eta_i^t) = \emptyset \ \forall T_h \in \Gamma_h^\tau(\eta_i^t), T_h \in \Psi_{des}(T_h),$$

where $\Gamma_h^\tau(t)$ denotes the set of tied tasks that have been assigned to processor s_k, whose lifetime window starts before
the current time and ends after the current time (i.e., for \(\forall t \in T_q \subseteq \Gamma_k(t), \rho_q^\alpha(t) \leq t < \rho_q^\omega(t) \)). In particular, \(\Gamma_k(0) = \emptyset \).

The Partitioning Conditions consist of three parts. We use the following example to explain the main idea behind these parts. Suppose we want to partition the subtask \(t_i \) to processor \(s_k \).

1. Condition (1), the basic condition, simply ensures that \(s_k \) can satisfy the processor demand of \(t_i \) (which is its WCET) in its lifetime window.

2. Condition (2), the additional condition, addresses the following situation. If the subtask \(t_v \), which corresponds to \(u_{h1} \) in the tied task \(T_h \), has been assigned to \(s_k \), all the subtasks corresponding to \(\forall u \in \omega_{T_h} \) should all be partitioned to \(s_k \). Therefore, although their lifetime windows may not have started yet, we can already determine which processor they should be assigned to, and the processor resource should be seen as “pre-reserved” for these vertices. Hence, by the time we partition \(t_r \), some subtasks whose lifetime windows start after \(t_r \) may already exist on the processor. Therefore, if a subtask \(t_r \) exists such that \(t_r \) is an Overlapping Subtask of \(t_v \), we need to ensure that \(s_k \) can accommodate both subtasks during their Union Time Interval. Thus, we design Condition (2).

3. Condition (3) ensures that the TSC in the OpenMP specification can be satisfied.

 Evidently, we do not need to check all three Partitioning Conditions while partitioning every subtask in \(\Theta_{\text{decomp}} \). For example, if \(u_{h1} \) in tied task \(T_h \) has been assigned to \(s_k \), there is no need to check whether Condition (3) can be satisfied for \(\forall u \in \omega_{T_h} \). Next, we will clarify how to use the Partitioning Conditions to determine whether a processor is “available” for different types of subtasks.

 Availability. Suppose the subtask to be assigned is \(t_i \) \((t_i \in T_h)\). The process of using the Partitioning Conditions to determine whether a processor \(s_k \) is “available” for \(t_i \) can be divided into the following cases for different types of \(t_i \).

 - Case 1: \(T_h \) is an untied task, \(s_k \) is “available” for \(t_i \) if and only if Condition (1) and Condition (2) in the Partitioning Conditions are satisfied.
 - Case 2: \(T_h \) is tied and \(s_k \) is “available” for \(t_i \) if and only if all three conditions in Partitioning Conditions are satisfied for \(t_i \) itself, and Condition (1) and Condition (2) can be satisfied for every subtask corresponding to \(u \in \omega_{T_h} \) at the same time.
 - Case 3: \(T_h \) is tied and \(s_k \) is “available” for the “available” processor for this type of subtask \(t_i \) will always be the one to which \(u_{h1} \) has been assigned.

 The subtasks are divided into three types.

 1. If \(t_i \) corresponds to a vertex in an untied task, we only need to consider whether a processor can satisfy the processor demand (its WCET) in its lifetime window using Partitioning Conditions (1) and (2). This guarantees that if we can find an “available” processor for \(t_i \), \(t_i \) can meet its deadline when scheduled by \(EDF_{hp} \) at runtime (which will be proved later in Section 6).

 2. If \(t_i \) corresponds to \(u_{h1} \) in tied task \(T_h \), we first need to determine whether the TSC in OpenMP can be satisfied using Partitioning Condition (3). Moreover, since every subtask corresponding to \(u \in T_h \) has to be assigned to this processor, we need to use Partitioning Conditions (1) and (2) to check whether the processor can satisfy their processor demand in their lifetime windows for all these subtasks (as we do for the vertex in an untied task) rather than checking only whether the processor can satisfy the processor demand of \(t_i \) itself. Otherwise, the processor resources may be insufficient for the complete tied task, and some successor subtasks of \(t_i \) may miss their deadlines. We can only partition \(t_i \) to \(s_k \) if we can ensure that sufficient processor resources exist for all vertices in the same task.

 Algorithm 1. Function is_available\((s_k, t_i)\) \((t_i \in T_h, \Delta_i \rightarrow [\eta_i^\alpha, \eta_i^\omega])\)

 1: f_available\((s_k, t_i)\)=0;
 2: if \(d_i = \sum_{v \in \omega_{T_h}} K(t_i, \Delta_i) \geq e_i \) then
 3: f_available\((s_k, t_i)\)=1;
 4: for tp=1:1:|Q_h| do
 5: if \((\eta^\alpha_{Q_h(tp)} < \eta_i^\alpha && \eta^\omega_{Q_h(tp)} > \eta_i^\omega) \) then
 6: f_available\((s_k, t_i)\)=1;
 7: \(\Delta_{un} = \min\{\eta^\alpha_{Q_h(tp)}; \eta_i^\alpha\} \);
 8: \(\Delta_{un} = \max\{\eta^\omega_{Q_h(tp)}; \eta_i^\omega\} \);
 9: if \((\Delta_{un} - \Delta_{st} \leq \sum_{v \in \omega_{T_h}} K(t_i, \Delta_i) \geq e_i \) & check_union\((t_i, s_k, \Delta_{un}, \Delta_{st}) = 1\) then
 10: f_available\((s_k, t_i)\)=1;
 11: else
 12: f_available\((s_k, t_i)\)=0;
 13: break;
 14: end if
 15: end if
 16: end for
 17: end if
 18: return f_available\((s_k, t_i)\);

 (3) If \(t_i \) corresponds to \(u \in \omega_{T_h} \) in tied task \(T_h \), \(t_i \) can be directly assigned to the processor to which \(u_{h1} \) is assigned. This processor has already been labeled as “available” for \(t_i \) while assigning \(u_{h1} \); thus, it does not need to be checked again.

 Accordingly, the Subtask Assignment Procedure (SAP) will try to assign all subtasks in \(\Theta_{\text{decomp}} \) to the “available” processors, using a “first-fit” heuristic. In other words, for \(\forall t_i \in \Theta_{\text{decomp}} \), the SAP will scan the processors in a canonical order (e.g., from processor 1 to \(m \)) and assign \(t_i \) to the first “available” processor. These subtasks are partitioned in non-decreasing order based on the starting times of their lifetime windows; i.e., if there are two subtasks \(t_i \) and \(t_j \), and \(\eta_i^\alpha < \eta_j^\alpha \), the SAP will try to assign \(t_i \) before \(t_j \). If the SAP fails to find a processor \(s_k \) for \(t_i \), then this OpenMP-DAG is not schedulable by P-EDF-comp.

 After \(t_i \) has been assigned to \(s_k \), \(s_k \) subsequently uses \(EDF_{hp} \) to schedule its local subtasks at runtime.

 The pseudo-code of our “is_available” algorithm, which will be called by the SAP, is shown in Algorithm 1. It is used
to check whether the processor demand of \(\tau_i \) can be satisfied by \(s_k \), using Partitioning Conditions (1) and (2).

Algorithm 2. Function check_union\((\tau_i, s_k, iv^st, iv^sp)\)

1: \(f_{\text{union}} = 1; \)
2: for \(tp=1:1|Q_k| \) do
3: \(\text{if } (\eta^st_{Q_k(tp)} < iv^st \&\& \eta^sp_{Q_k(tp)} > iv^st) \) \(\text{and } (iv^st \leq \eta^st_{Q_k(tp)} < iv^sp \&\& \eta^sp_{Q_k(tp)} > iv^sp) \) then
4: \(f_{\text{union}} = 1; \)
5: \(iv^st = \min(\eta^st_{Q_k(tp)}, iv^st); \)
6: \(iv^sp = \max(\eta^sp_{Q_k(tp)}, iv^sp); \)
7: \(\text{if } (iv^sp - iv^st = \sum_{j \in I_{k,p}^i} K(j, \Delta_{un}) \geq c_i \&\& \text{check_union}(\tau_i, s_k, iv^st, iv^sp) == 1) \) then
8: \(f_{\text{union}} = 1; \)
9: else
10: \(f_{\text{union}} = 0; \)
11: break;
12: end if
13: end if
14: end for
15: return \(f_{\text{union}}; \)

Notice 3. As stated in Algorithm 1, if there exists more than one subtask whose lifetime window partially overlaps with the lifetime window of \(\tau_i \) (we use \(S \) to denote the set of these subtasks), not only will we check whether Partitioning Condition (2) in Partitioning Conditions can be fulfilled for \(\forall \tau_j \in S \) with \(\tau_i \) but also whether Condition (2) in Partitioning Conditions can be fulfilled while considering all these subtasks jointly. For example, if both lifetime windows of \(\tau_j \) and \(\tau_k \) partially overlap with \(\tau_i \)'s lifetime window, when considering the partitioning for \(\tau_i \), we will check whether

1) \(\Delta_{un}(\tau_i, \tau_j) - \sum_{p \in I_{k,p}^i} K(p, \Delta_{un}(\tau_i, \tau_j)) \geq c_i \)
2) \(\Delta_{un}(\tau_i, \tau_k) - \sum_{p \in I_{k,p}^i} K(p, \Delta_{un}(\tau_i, \tau_k)) \geq c_i \)
3) \(\Delta_{un}(\tau_j, \tau_k) - \sum_{p \in I_{k,p}^i} K(p, \Delta_{un}(\tau_j, \tau_k)) \geq c_i \)

where, respectively

\[\Delta_{un}(\tau_i, \tau_j) = \min(\eta^st_{\tau_i}, \eta^st_{\tau_j}), \max(\eta^sp_{\tau_i}, \eta^sp_{\tau_j}), \]

\[\Delta_{un}(\tau_i, \tau_k) = \min(\eta^st_{\tau_i}, \eta^st_{\tau_k}), \max(\eta^sp_{\tau_i}, \eta^sp_{\tau_k}), \]

\[\Delta_{un}(\tau_j, \tau_k) = \min(\eta^st_{\tau_j}, \eta^st_{\tau_k}), \max(\eta^sp_{\tau_j}, \eta^sp_{\tau_k}), \]

and

Next, we present the pseudo-code of our “check_union” function, which is a recursive function called by Algorithm 1 and ensures that Partitioning Condition (2) can be fulfilled during partitioning. We use it to ensure that the processor demand in the Union Time Interval we considered will not exceed the length of the time interval in these two cases:

- Case 1: when more than one overlapping subtask of \(\tau_i \) exists, as described in Notice 3
- Case 2: when there exists a subtask \(\tau_k \) whose lifetime window does not overlap with the lifetime window of \(\tau_i \) but overlaps with the Union Time Interval of \(\tau_i \) and \(\tau_j \). For example, as shown in Fig. 8, we not only need to check whether Partitioning Condition (2) can be fulfilled for \(\Delta_{un}(\tau_i, \tau_j) \) but also whether Partitioning Condition (2) can be fulfilled for \(\Delta_{un}(\tau_i, \tau_k) \) even though \(\tau_k \) is not an overlapping subtask of \(\tau_i \).

Given Algorithms 1 and 2, we now show how the Subtask Assignment Procedure works in P-EDF-omp. The SAP assigns the subtasks to the processors based on the starting times of their lifetime windows. The pseudo-code of the SAP is shown in Algorithm 3. As stated earlier, it addresses the vertices for three different cases. Suppose the subtask that needs to be assigned is \(\tau_i \) and \(\tau_j \in T_h \).

Algorithm 3. Subtask Assignment Procedure \(\tau_i(e_i, \eta^st_i, \eta^sp_i) \) is to be Assigned and \(\tau_j \in T_h \)

1: if \(T_h \) is an undefined task then
2: for \(s_k=1:1|m \) do
3: if \(\text{is_available}(s_k, \tau_j) == 1 \) then
4: Assign \(\tau_i \) to \(s_k \) and update \(s_k \)'s data structure;
5: \(F_{\text{available}} = 1; \)
6: break;
7: else
8: \(F_{\text{available}} = 0; \)
9: end if
10: end for
11: else
12: if \(\tau_j \) is not the entry vertex in \(T_h \) then
13: Assign \(\tau_j \) to the processor \(\tau_j \) has been assigned to.
14: else
15: for \(k=1:1|m \) do
16: if \(\text{is_available}(s_k, \tau_j) \) \&\& \((\Gamma_k^s(\eta^st_i) = \emptyset \| \forall T_q \in \Gamma_k^s(\eta^st_i), \tau_j \in \Psi_{\text{da}}(T_q)) \) then
17: Get \(o_{\tau_j}; \)
18: for \(tp=1:1|o_{\tau_j}| \) do
19: if \(\text{is_available}(s_k, o_{\tau_j}(tp)) == 0 \) then
20: \(F_{\text{available}} = 0; \)
21: break;
22: else
23: \(F_{\text{available}} = 1; \)
24: end if
25: end for
26: if \(F_{\text{available}} == 1 \) then
27: Assign \(\tau_i \) to \(s_k \), update \(s_k \)'s data structure;
28: break;
29: end if
30: end if
31: end for
32: end if
33: end if

Example 6. We illustrate how SAP partitions the different types of vertices using the subtask set in Example 4.

Suppose we want to schedule this subtask set on a platform containing four identical processors. We use the partition of \(\tau_1, \tau_7 \) and \(\tau_8 \) (corresponding to \(u_{11}, u_{41} \), and \(u_{42} \), respectively) as representatives.

![Fig. 8. Example of the usage of “check_union” function in Case 2.](image-url)
• \(\tau_1; \tau_1 \in T_1 \) and \(T_1 \) is untied; therefore, we only need to check whether the processor can provide enough resources for \(\tau_1 \) using Partitioning Conditions (1) and (2). In this case, Partitioning Condition (1) is satisfied and no Overlapping Subtasks exist for \(\tau_1 \); consequently, \(s_1 \) is available for \(\tau_1 \). As a result, \(\tau_1 \) is assigned to \(s_1 \).

• \(\tau_1; \tau_1 \) is tied and \(\tau_1 \) corresponds to \(u_{s_1} \); therefore, we first need to check whether Partitioning Conditions (1) and (2) can all be satisfied. In this case, \(s_1 \) cannot fulfill Condition (1) for \(\tau_1 \), so we continue to check \(s_2 \)—Condition (3) cannot be fulfilled because \(T_3 \) has been assigned to this processor and \(T_3 \notin \Psi_{eks}(T_3) \). Hence, we move on to check \(s_3 \) and find that all three conditions can be satisfied. We also need to check whether Partitioning Conditions (1) and (2) can be fulfilled for \(u_{s_2} \) and \(u_{s_3} \). In other words, \(s_1 \) can satisfy the processor demand for all subtasks in \(T_1 \) and the TSCs are satisfied. Consequently, \(\tau_1 \) is assigned to \(s_3 \).

• \(\tau_1; \tau_1 \) is tied and \(\tau_1 \) corresponds to \(u_{s_1} \); therefore, we can assign it directly to the processor to which \(\tau_1 \) has been assigned (i.e., \(s_1 \)).

The partitioning process for other vertices functions the same way as described above. When the partitioning procedure is complete, the partitioned result for all the subtasks is illustrated in Fig. 9.

Discussion About OpenMP-Compliant Scheduling. Most existing OpenMP implementations support only two scheduling algorithms: Work First Scheduling (WFS) [31] and Breadth First Scheduling (BFS) [32]. WFS prefers to execute newly created tasks, while BFS tends to execute tasks that have been executed on the threads. The common feature of WFS and BFS is that they are both work-conserving with untied OpenMP task systems, where tasks can migrate among threads. For OpenMP task systems with tied tasks, BFS and WFS not only lose their work-conserving property but may also lead to extremely bad timing behaviors (in the worst-case, all parallel workloads will be executed on the same thread) [5].

In our paper, P-EDF-omp is not OpenMP-compliant from a scheduling view. Instead, P-EDF-omp is based on the decomposition of the OpenMP-DAG and the release times of the subtasks has been changed, which affects their runtime behavior. However, our approach is compliant with the special scheduling constraints in the OpenMP specification such as tied tasks, TSPs and TSC.

Therefore, this work has value, and we hope that it can provide some insights into what features could be included in the future OpenMP specification, because the OpenMP specification is a standard that keeps actively evolving rather than a static one. More specifically, P-EDF-omp is not supported by the current OpenMP specification for the following reasons. P-EDF-omp is a partitioning-based scheduling algorithm which needs to control the release time of each TSP and it also needs the deadline of each TSP for the Partitioning Conditions. Hence, to implement P-EDF-omp with OpenMP, we need to annotate each TSP and pass the timing parameters (release time and deadline) of each TSP to the OpenMP so that at runtime the each TSP can be scheduled by P-EDF-omp accordingly. However, the current OpenMP has neither the explicit annotations of TSPs nor the notion of recurrence [10]. Therefore, to be able to support partitioning-based scheduling algorithms like P-EDF-omp, the future OpenMP specification should be extended with subtask construct to explicitly annotate each subtask corresponding to the TSPs, and corresponding clauses to receive the timing parameters of each subtask (as later introduced in Section 8.3).

On the other hand, although the proposed algorithm may reduce processor utilization, its advantage is that it can provide hard real-time guarantees for OpenMP applications at design time. Hence, although P-EDF-omp is not currently an OpenMP-compliant scheduling algorithm, we believe this work could help in applying OpenMP to embedded and real-time domains.

Discussion About Our Approach. In fact, the dynamic execution model is one of OpenMP’s main strengths, and the actual workload structure can only be determined during runtime. Specifically, if the OpenMP program has conditional branches, we cannot know which branch will be taken at runtime, which will affect the OpenMP-DAG structures. This problem can be divided into two cases.

Case 1: the branches are contained in a single vertex. In this case, no matter which branch is taken in runtime, it can be bounded by the worst-case execution time such that our approach can address it.

Case 2: the branches cover multiple vertices. In this case, the number of spawned tasks may vary when different branches are taken.

However, our approach is based on decomposition; thus, we need to obtain the complete OpenMP-DAG beforehand. Consequently, the decomposition cannot be performed online or incrementally during execution. Therefore, our approach can neither address the dynamic execution model (e.g., Case 2) nor those OpenMP applications that are input-dependent whose task-graph and task-granularities vary. This is a serious limitation of our approach and occurs because up to now, we have focused solely on how to schedule tied tasks. The runtime schedulers that determine what occurs on-line, such as BFS, are suitable for the dynamic task model but cannot provide hard real-time guarantees for OpenMP applications as does our approach. Our approach would become much more valuable if it were able to address the dynamic execution model of OpenMP programs with tied tasks and test their schedulability—we hope to address this in future work.

6 Schedulability

In this section, we prove that P-EDF-omp can work as an off-line schedulability-test in Theorem 2, using the SAP in Algorithm 3. Compared with the previous work [1], this schedulability-test can be used to determine whether an
OpenMP-DAG with tied tasks is schedulable during offline phase, without modifying the original TSCs posed in the OpenMP specification.

First, we prove that when using P-EDF-omp to schedule an OpenMP-DAG with tied tasks, the OpenMP scheduling constraints can be satisfied.

Lemma 1. When scheduled by P-EDF-omp, the scheduling constraints imposed by TSPs, Tied Tasks and TSC in the OpenMP framework, as stated in Section 4.2, can all be satisfied.

Proof. We prove the three constraints individually.

- As shown in Section 4.2, the existence of TSPs introduces constraints on the execution of the OpenMP task graph. In P-EDF-omp, we use non-preemptive EDF on every individual processor. Because the decomposition converts each node of a DAG into a traditional multiprocessor subtask, “non-preemptive” here means node-level non-preemption which corresponds to the definition of TSP. Therefore, this constraint can be satisfied.

- Tied Task is another important constraint brought by OpenMP. In P-EDF-omp, after we find the “available” processor for the entry vertex v_{x1} of a tied task T_{h}, the following vertices will be directly assigned to the same processor, which ensures that all the vertices of a task annotated as tied will be executed by the same processor. Hence, the scheduling constraint introduced by Tied Tasks is proved to be guaranteed.

- The constraint brought by TSC can clearly be guaranteed based on Condition (3) in the Partitioning Conditions.

Next, we prove that P-EDF-omp can guarantee that the deadline of every subtask will be met if all subtasks can be successfully assigned to the “available” processors by SAP.

A sufficient schedulability-test is given in [33]. Based on Theorem 1 in [33] combined with our model, we obtain Corollary 1, which provides sufficient conditions for a subtask set to be scheduled successfully by EDF$_{np}$ on a single processor.

Theorem 1. [33] Let Θ_{decomp} be a set of sporadic tasks $\Theta_{\text{decomp}} = \{r_1, r_2, \ldots, r_{|\Theta_{\text{decomp}}|}\}$ where $r_i = (e_i, p_i)$ (e_i and p_i denote r_i’s WCET and period, respectively), sorted in non-decreasing order by their period p_i. If Θ_{decomp} satisfies the following conditions (1) and (2), EDF$_{np}$ will schedule any concrete set of sporadic tasks generated from Θ_{decomp}.

1. \[\sum_{i=1}^{n} \frac{e_i}{p_i} \leq 1 \]
2. \[\forall i, 1 < i \leq n; \forall d_{iv_i}, p_i < d_{iv_i} < p_i, \]
\[d_{iv_i} \geq e_i + \sum_{j=i}^{n} \left(\frac{d_{iv_j} - 1}{p_j} \right) e_j \]

Corollary 1. Let $\Pi_k = \{r_1, r_2, \ldots, r_{|\Pi_k|}\}$ be the resulting concrete sporadic subtask set decomposed for OpenMP-DAG which are assigned to the same processor s_k, sorted in non-decreasing order by their deadlines, then if Π_k satisfies conditions (1) and (2), then the EDF$_{np}$ scheduling algorithm will schedule Π_k successfully.

1. \[\text{for } iv_x \rightarrow [0, \eta^{np}_{iv_x}] \text{ (whose length is } \eta^{np}_{iv_x}) \text{, } \sum_{i=1}^{n} K(r_i, iv_x) \leq 1 \]
2. \[\text{for } \forall i, \forall \text{ time interval } iv_x \text{ (whose length is } d_{iv_x}) \text{, } d_{iv_x} \geq e_i + \sum_{j=i}^{n} K(r_j, iv_x) \]
where $iv_x^{\text{dist}} \geq \eta^{np}_{iv_x}, iv_x^{\text{dist}} \geq \eta^{np}_{iv_x}$

Proof. We prove the contrapositive of the Corollary 1, i.e., Π_k satisfies the conditions (1) and (2) and yet there exists a subtask $r_h \in \Pi_k$ missing its deadline at some point in time when Π_k is scheduled by EDF$_{np}$.

In our model, for $\forall t_i \in \Theta_{\text{decomp}}$, the period of t_i is the same as the period of the OpenMP-DAG. Therefore, in every OpenMP-DAG life cycle, one and only one subtask needs to be considered.\[10\] Hence, Condition (2) in our Corollary 1 is the same as Condition (2) in Theorem 1 in [33]; therefore, in the following, we focus only on whether Condition (1) in Theorem 1 in [33] can be replaced by Condition (1) in our Corollary 1.

Let t_0 be the earliest point in time at which a deadline is missed. Π_k can be partitioned into three disjoint subsets.

$S_1 =$ the set of subtasks that have an invocation with a deadline at time t_0.

$S_2 =$ the set of subtasks that have an invocation occurring prior to time t_d and a deadline after t_d.

$S_3 =$ the set of subtasks not in S_1 or S_2.

Tasks in S_3 either have a release time greater than t_d, or they have not been invoked immediately prior to t_d. As will shortly become apparent, to bound the processor demand prior to t_d, it is sufficient to concentrate on the tasks in S_2. Let b_1, b_2, \ldots, b_k be the invocation times immediately prior to t_d of the tasks in S_2. There are two cases to consider.

Case 1: None of the invocations of tasks in S_2 occurring at times b_1, b_2, \ldots, b_k are scheduled prior to t_d.

Let t_0 be the end of the last period prior to t_d in which the processor was idle. If the processor has never been idle, let $t_0 = 0$. In the interval $iv_x \rightarrow [t_0, t_d]$, the processor demand is the total processing requirement of the tasks invoked at or after time t_0, with deadlines at or before time t_d (Dm_{t_0,t_d} is the processor demand in the interval $iv_x \rightarrow [t_0, t_d]$). Because no idle period exists in the interval $iv_x \rightarrow [t_0, t_d]$ and because a task misses a deadline at t_d, it follows that $Dm_{t_0,t_d} > t_d - t_0$. Therefore

$$t_d - t_0 < Dm_{t_0,t_d} = \sum_{i=1}^{n} K(r_i, iv_x).$$

10. EDF$_{np}$ scheduling happens at runtime and it schedules the jobs generated by each subtask r_i. However, because only one job exists for each subtask to be considered, we can directly use the subtask for simplicity.
This contradicts Condition (1) in Corollary 1. Therefore, Condition (1) has been proved.

Case 2: Some of the invocations of tasks in S2 occurring at times \(b_1, b_2, \ldots, b_h \) are scheduled prior to \(t_d \).

Case 2 establishes Condition (2) in Corollary 1. Because the proof of this case is almost the same as that in [33], we omit the proof of Case 2 here (see [33] for more details about this case). The main idea still involves proving by contradiction. □

Lemma 2. After a subtask \(\tau \) has successfully been assigned to a processor \(s_k \) by the Subtask Assignment Procedure in P-EDF-comp, it can be guaranteed to meet its deadline.

Proof. Based on Corollary 1, if our Partitioning Conditions can ensure that \(\theta_{\text{decomp}} \) can satisfy the conditions in Corollary 1, after \(\tau \) is successfully assigned to \(s_k \), EDF\(_{\text{up}} \) can successfully schedule it; thus, Lemma 2 can be proved.

In the following, we prove that our Partitioning Conditions can guarantee that the conditions in Corollary 1 are fulfilled.

According to Partitioning Conditions (1) and (2), for \(\forall \tau \in \Pi_k \) (suppose \(\tau \) is the subtask assigned to \(s_k \) with the latest \(\eta_{\text{sp}} \)). Then, we can conclude that the processor demand in the time interval \(iv_x \rightarrow [0, \eta_{\text{sp}}] \) will never exceed the length of this time interval, which is \(\eta_{\text{sp}} \), i.e.,

\[
\sum_{\tau_j \in \Pi_k, \tau_j \neq \tau} K(\tau_j, iv_x) + e_i \leq \eta_{\text{sp}}.
\]

Hence

\[
\sum_{j=1}^{n_{\tau}} K(\tau_j, iv_x) / \eta_{\text{sp}} \leq 1 \Rightarrow \sum_{j=1}^{n_{\tau}} K(\tau_j, iv_x) / \eta_{\text{sp}} \leq 1.
\]

Thus, Condition (1) in Corollary 1 can be fulfilled.

For Condition (2), the main idea is to guarantee that in any time interval, the processor demand will not exceed the length of the interval. We will prove this in three cases. The subtasks in \(\Pi_k \), which are assigned to the same processor \(s_k \), can be partitioned into three disjoint subsets (suppose \(\tau \) is the current subtask to be scheduled):

1. \(S_1 \) = the set of subtasks whose lifetime window does not overlap with \(\tau \)'s lifetime window
2. \(S_2 \) = the set of subtasks whose lifetime window partially overlaps with \(\tau \)'s lifetime window
3. \(S_3 \) = the set of subtasks whose lifetime window entirely overlaps with \(\tau \)'s lifetime window

For \(\tau \in S_1 \) (suppose the lifetime window of \(\tau \) is the one closest to \(\tau \)'s lifetime window), in the interval \(\Delta_j \rightarrow [\eta_{\text{sp}}, \eta_{\text{sp}}] \), we have

\[
d_j = \sum_{\tau_h \in \Pi_k, \tau_h \neq \tau} K(\tau_h, \Delta_j) \geq e_i.
\]

For \(\tau \), in the time interval \(\Delta_j \rightarrow [\eta_{\text{sp}}, \eta_{\text{sp}}] \), we have

\[
d_i - \sum_{\tau_p \in \Pi_k, \tau_p \neq \tau} K(\tau_p, \Delta_i) \geq e_i.
\]

Then, if we use \(\epsilon \geq 0 \) to denote the time distance between the lifetime windows of \(\tau_i \) and \(\tau_j \), we obtain

\[
\sum_{\tau_h \in \Pi_k} K(\tau_h, \Delta_j) + \sum_{\tau_p \in \Pi_k} K(\tau_p, \Delta_i) \leq d_j + d_i + \epsilon,
\]

which reflects that the processor demand in the time interval \([\eta_{\text{sp}}, \eta_{\text{sp}}] \) (supposing that the lifetime window of \(\tau_j \) starts prior to \(\tau_i \)'s lifetime window) is no greater than the length of the time interval, i.e.,

\[
d_{uv} = d_j + d_i + \epsilon \geq e_i + \sum_{\tau_h \in \Pi_k, \tau_h \neq \tau} K(\tau_h, \Delta_{uv}(\tau_i, \tau_j)).
\]

Therefore, in Case 1, Condition (2) in Corollary 1 can be fulfilled.

Case 3: subtasks in \(S_2 \).

We can directly use our Partitioning Condition (2) to prove that Condition (2) in Corollary 1 can be fulfilled.

For \(\forall \tau_j \in S_2 \), we have

\[
d_{uv}(\tau_i, \tau_j) = \sum_{\tau_h \in \Pi_k, \tau_h \neq \tau} K(\tau_h, \Delta_{uv}(\tau_i, \tau_j)) \geq e_i,
\]

where \(d_{uv}(\tau_i, \tau_j) \) is the length of the time interval \([\min(\eta_{\text{sp}}, \eta_{\text{sp}}), \max(\eta_{\text{sp}}, \eta_{\text{sp}})] \). In other words, our Partitioning Condition (2) ensures that in this case, the processor demand of the subtasks in this time interval will never be greater than the length of the interval, i.e.,

\[
d_{uv} = d_{uv}(\tau_i, \tau_j) \geq e_i + \sum_{\tau_h \in \Pi_k, \tau_h \neq \tau} K(\tau_h, \Delta_{uv}(\tau_i, \tau_j)).
\]

Therefore, in this case, Condition (2) in Corollary 1 is also guaranteed to be fulfilled.

Case 3: subtasks in \(S_3 \).

The subtasks in \(S_3 \) can be divided into two situations:

1) the lifetime window of \(\tau_i \) contains the window of \(\tau_j \)

 In this situation, we actually already consider the processor demand of \(\tau_j \) in Partitioning Condition (1)—it is already included in \(\sum_{\tau_h \in \Pi_k, \tau_h \neq \tau} K(\tau_h, \Delta_j) \). Consequently, Condition (2) in Corollary 1 will be fulfilled, i.e.,

 \[
d_{uv} = d_j \geq e_i + \sum_{\tau_h \in \Pi_k, \tau_h \neq \tau} K(\tau_h, \Delta_j).
\]

2) the lifetime window of \(\tau_j \) contains the window of \(\tau_i \)

 This situation is addressed in Partitioning Condition (2):

 \[
d_{uv}(\tau_i, \tau_j) = \sum_{\tau_h \in \Pi_k, \tau_h \neq \tau} K(\tau_h, \Delta_{uv}(\tau_i, \tau_j)) \geq e_i,
\]

 in which \(d_{uv}(\tau_i, \tau_j) \) denotes the length of the Union Time Interval \([\eta_{\text{sp}}, \eta_{\text{sp}}] \), i.e.,

 \[
 n_{\tau_{\text{sp}}}, \eta_{\text{sp}}[1]
 \]

11. This situation appears mainly for the "preassigned" subtasks due to the existence of tied tasks—\(\tau \) is not actually assigned to \(s_k \) yet, but the tied task to which it belongs has already been assigned to \(s_k \); therefore, the processor resources should be "pre-reserved" for \(\tau \). Thus, despite the fact that the starting time of the lifetime window of \(\tau \) occurs prior to \(\tau_i \)'s, we still have to consider \(\tau_i \)'s processor demand.
\[d_{i,x} = d_j \geq e_i + \sum_{\tau_k \in T_k, k \neq i} K(\tau_k, \Delta_j). \]

Therefore, Condition (2) in Corollary 1 is proved to be fulfilled in this situation.

In conclusion, Lemma 2 has been proved. \(\Box \)

At this point, we have proven that we can use the SAP in Algorithm 3 to test the schedulability of OpenMP-DAG at design time.

Theorem 2. An OpenMP-DAG is schedulable with the OpenMP scheduling constraints satisfied, if the SAP in Algorithm 3 can find “available” processors for \(\forall \tau_i \in \Theta_{\text{decomp}} \).

Proof. With Lemmas 1 and 2, Theorem 2 is proved. \(\Box \)

Similar to Theorem 1 in [33], our schedulability-test is a sufficient schedulability-test. P-EDF-omp is a partitioning-based scheduling algorithm, which is a transformation from the bin-packing problem. For classic bin packing problems, algorithms for finding an optimal solution to partitioning require exponential time [34]. For the partitioning of OpenMP-DAGs, we need to consider the OpenMP scheduling constraints, which raise more challenges to find optimal solutions. Hence in this paper, instead of trying to find optimal solutions, we study the sufficient conditions to schedule the OpenMP-DAGs with tied tasks in polynomial time.

7 Evaluation

In this section, we evaluate the performance of P-EDF-omp under both synthetic workloads and established OpenMP benchmarks. Specifically, we use the schedulability-test in Theorem 2 to test the schedulability of the OpenMP-DAG rather than executing the OpenMP-DAG on real hardware.

Since tied tasks raise significant challenges, the schedulability-tests of existing scheduling algorithms for the DAG model are not directly applicable to OpenMP-DAGs with tied tasks. Although several other papers exist that address the scheduling and analysis of OpenMP task systems, these papers either did not consider tied tasks [4], [7], [8], [9] or concluded that tied tasks would lead to unacceptably pessimistic response-time bounds due to their inherent complexity [5]. Hence, we compare the performance of our approach with the analysis methods in [1]: the bound in Equation (12) (denoted by BFS’-1) and the bound in Equation (25) (denoted by BFS’-2).

Moreover, we include a hypothesis schedulability test for OpenMP-DAGs without tied tasks in [5]: the response time bound under BFS in Equation (1) (denoted by untied). We use it to show the influence of tied tasks on the schedulability of OpenMP-DAGs. For these methods, the OpenMP-DAG is deemed to be schedulable if \(R \leq D \). In addition, to evaluate the schedulers’ impacts on the performance of the OpenMP application itself for synthetic workloads, we compare the average simulation execution times of OpenMP-DAGs under these three schedulers (BFS, BFS’ and P-EDF-omp). We normalized the three simulation execution times with respect to the response time bound for untied tasks under BFS in [5], which is

\[R_{\text{untied}} \leq L + (V - L)/m. \]

The acceptance ratio is the ratio between the number of OpenMP-DAGs deemed to be schedulable and the total number of OpenMP-DAGs participating in the experiment (with a specific parameter configuration), without considering the overheads from context switching and migration.

7.1 Synthetic Workload

The task parameters are generated as follows:

Task Graph. The OpenMP-DAG \(G = < V, E > \) is generated with \(n = 50 \) OpenMP tasks. The number of vertices contained in the OpenMP-DAG is randomly chosen in \([200,400]\), and the worst-case execution time of each vertex is randomly chosen in \([300,1500]\). Each task is set to be a tied task with a probability of \(p_{\text{tied}} \). For every task \(T_i \), we generate the synchronization edges as follows:

- If \(T_i \) has a child task, the last vertex \(v_{i,x} \) of \(T_i \) is set to be the taskwait vertex with a probability of \(p_{\text{tw}} \) when at least one predecessor of \(v_{i,x} \) (which belongs to \(T_i \)) has an outgoing task creation edge.
- The last vertex of \(T_i \) points to one of its siblings created after \(T_i \) by depend edge with a probability of \(p_{\text{dep}} \).

Deadlines and Periods. The period is set as \(D = P \).

- In Fig. 10d, the deadline \(D \) of \(\Theta \) is set as \(D = L/Y \).
- In other subgraphs in Fig. 10, the deadline \(D \) of \(\Theta \) is generated in a similar way with that in [35]: after \(L \) is fixed, \(D \) is generated based on a ratio between \(L \) and \(D \), which is randomly chosen in \([0.2,0.5]\).

Number of Processors.

- In Fig. 10a, the normalized utilization \(U_{\text{norm}} \) \((U_{\text{norm}} = U/m) \) of \(\Theta \) is predefined. After generating the OpenMP-DAG, we can compute the utilization \(U \) of \(\Theta \); then, we set the number of processors according to the formula \(m = \lceil \frac{1}{U_{\text{norm}}} \rceil \).
- For Figs. 10b and 10c, we set \(m = 4 \). For Figs. 10d and 10e, we set \(m = 8 \).

For each configuration (corresponding to one point on the X-axis), we generate 500 OpenMP-DAGs.

As shown in Figs. 10a, 10b, 10c, 10d, and 10e, we first set a basic configuration; then, in each group of experiments, we vary one parameter while keeping others unchanged.

The basic configurations are: \(n = 50, \ m = 4, \ p_{\text{tied}} = 0.5, \ p_{\text{dep}} = 0.5 \) and \(p_{\text{tw}} = 0.8 \).

In Fig. 10a, we evaluate the acceptance ratios of all tests under different normalized utilization. In Fig. 10b, the OpenMP-DAG is generated with different numbers of OpenMP tasks. Fig. 10c evaluates the acceptance ratios under different \(p_{\text{tied}} \) values. Fig. 10d shows the acceptance ratios of all tests under different elasticities \(Y \). Finally, in Fig. 10e, we test the average normalized simulation execution times of the three schedulers under different \(p_{\text{tied}} \) values.

As the experiment results in Figs. 10a, 10b, 10c, and 10d show, in general, the schedulability of all tests decreases as the processor contentions among tasks become more significant. We can observe that the performance comparison among all three approaches under different parameter settings is relatively consistent: P-EDF-omp > BFS’-2 > BFS’-
1. Among these schedulability-tests, BFS'-1 performs the worst because it simply counts the number of tied tasks that may be suspended at idle threads/processors and ignores the fact that only the executions of a subset of vertices in these tasks may influence the schedulability of the OpenMP-DAG. P-EDF-omp performs better than both BFS'-1 and BFS'-2 in most cases, because both BFS'-1 and BFS'-2 work only under modified TSC (which is called E-TSC in [1]) instead of the original TSC in OpenMP specification. Compared with the original TSC, E-TSC restricts not only the execution of vertices in tied tasks but also the execution of vertices in untied tasks (it does not allow untied vertices to start execution on an arbitrary processor) to make it possible to derive the response bounds for OpenMP-DAGs with tied tasks. However, it is evident that restricting the execution of vertices in untied tasks can negatively affect the schedulability of the OpenMP-DAG, while our schedulability-test works under the original TSC and does not suffer from this problem. Hence in most cases, P-EDF-omp performs better.

However, in Fig. 10d, the acceptance ratio of BFS'-2 is slightly higher than that of P-EDF-omp with $\Upsilon = 0.25$. This result occurs because in a configuration where the elasticity is small, the period and the deadline of the OpenMP-DAG will be quite large ($D = P$), making it more likely to satisfy $R \leq D$. In our approach, a lower Υ means a larger laxity, and the utilization will be relatively lower. Therefore, it is possible that there exist several OpenMP-DAGs that are deemed to be schedulable by BFS'-2 but unschedulable by our schedulability-test in Section 6. However, this kind of cases rarely occurs, and as shown in Fig. 10d, P-EDF-omp performs better than BFS'-2 in almost 99.5 percent cases.

From Fig. 10e, we can see that the average simulation execution times of the OpenMP applications increase with more tied tasks in the OpenMP-DAGs under all three schedulers. The increasing speed of the execution time is the fastest under BFS. This result occurs because when tied tasks exist in the OpenMP-DAG, BFS is no longer work-conserving, and in the extreme case, BFS may perform as poorly as WFS (i.e., BFS may also execute the parallel workloads sequentially, thus leading to poor timing behavior). This condition is the reason why we were motivated to design a scheduling algorithm for OpenMP-DAGs with tied tasks. When only untied tasks exist in the OpenMP-DAGs, the simulation execution time under P-EDF-omp is larger than those under the other two scheduling algorithms because during decomposition, we modify the release time and deadline of each vertex, which reduces processor utilization to some extent. In other words, if the SAP successfully assigns all the subtasks to processors, the execution time of the OpenMP-DAG ought to be relatively close to the period P. However, the increasing speed of the execution time under P-EDF-omp is considerably slower than those under the other two scheduling algorithms, and the normalized execution time under P-EDF-omp is smaller than those under the other two scheduling algorithms when more tied tasks exist in the OpenMP-DAGs.

7.2 Established Benchmarks

Here, we evaluate the three approaches with workloads generated according to established OpenMP benchmarks. We collected 11 OpenMP programs written in the C language from several benchmarks. Table 2 shows detailed information regarding the OpenMP-DAGs corresponding to these benchmarks. Columns 4–6 show the DAG feature of each application.12

For these established OpenMP benchmarks, the task parameters are collected and generated as follows:

Task Graph. For the OpenMP-DAG topologies of every OpenMP program, we insert codes into these programs to generate the vertices and edges corresponding to the TSPs. The OpenMP-DAG topologies of each OpenMP program are generated dynamically by running these OpenMP

12. There are 11 applications while we test two different input_sizes for *nqueens* and *sort* in the evaluation.
The second reason is that the elasticity is less than 0.25 (which means the period of each OpenMP-DAG is relatively large), BFS*-2 performs as better as does our schedulability-test. However, as the elasticity increases, the performance of BFS*-2 drops more quickly than that of our schedulability-test. The general trend shown in Fig. 10f is similar to the results of synthetic workload experiment: as the elasticity τ increases, the acceptance ratio decreases. Among these 13 OpenMP applications, the lower the ratio between the number of tied tasks and the total number of tasks, the more easily the OpenMP-DAG can be scheduled successfully. For example, there are no tied tasks in botspar in spec [36]; consequently, this application can always be successfully scheduled with all three algorithms on the considered platform, even when $\tau = 0.6$. Some applications in bots [37] (from fft to sort) contain recursive functions and have a relatively large number of taskwait vertices, and these applications appear to be more difficult to schedule. We also test the schedulability of queens and sort with larger input sizes to test the performance of P-EDF-omp at large cases. We found that the WCET features and the structure features of the corresponding OpenMP-DAGs with larger input sizes are quite similar to the ones with small input sizes, and the schedulability of the OpenMP-DAGs appear not to be influenced much by the size of the inputs.

8 Discussion About the Implementation

P-EDF-omp is a partitioning-based algorithm that does not modify the TSCs in OpenMP specification. Ruffaldi et al. presented an OpenMP toolchain for multicore partitioning in [42] called “SOMA”, which includes a runtime support that makes partitioning-based scheduling practicable for OpenMP programs. SOMA allows the developers to add specific information to each task, such as its deadline, activation time and period. Due to its similarity, P-EDF-omp can be implemented based on SOMA in [42] and the transformation tool in [43].

In this section, we present a possible solution about how to implement P-EDF-omp based on the current OpenMP specification. The basic implementation procedure includes: (1) OpenMP-DAG generation, (2) Schedule generation, (3) Code profiling, and (4) Runtime support.

8.1 OpenMP-DAG Generation

The first phase of the implementation is source code analysis, where the goal is to generate the OpenMP-DAG of the program and the annotated OpenMP code. Fig. 11a shows the architecture of the transformation tool.14

The parser outputs abstract syntax trees (AST) that store all the relevant information to create the corresponding graph structure. The AST is used (1) by the Drawer to construct the task graph of individual functions and (2) by the Call Analyzer to create the corresponding graph structure. The AST is used (1) by the Drawer to construct the task graph of individual functions and (2) by the Call Analyzer to create the corresponding graph structure.

13. One important difference is that SOMA was designed for partitioning OpenMP tasks while we need to partition the subtasks.

14. The light blue boxes are the existing tools we utilized, while the dark blue boxes indicate functionalities we developed.
to generate call graphs. The integrator combines both of them to generate the task graph of the entire application.

Meanwhile, we introduce a new directive #pragma omp subtask to annotate every TSP in the source code. The syntax of the subtask construct is as follows:

```
#pragma omp subtask [clause ...] new-line
structured-block.
```

We annotate the source code with this directive; every subtask construct includes all the code segments corresponding to a vertex in the OpenMP-DAG, and we give each subtask construct a unique identifier for further analysis. Thus, in addition to the OpenMP-DAG, we obtain the annotated OpenMP code.

In addition to the task graph topology, we provide two types of reference weight values:

- **Static Analysis.** This type of reference value is obtained by using the static WCET analysis tool Chronos [44] to compute a safe WCET bound for the codes associated with each individual vertex.
- **Measurement.** We measure the execution time for the vertices by executing the programs on real hardware (as described in Section 7.2).

8.2 Schedule Generation

In this phase, we use our proposed algorithm to compute the schedule of the OpenMP-DAG and record relevant information, including the starting and ending times of each vertex’s lifetime window, and the mapping of each vertex to the processors (vertices are identified by the identifiers obtained in the preceding phase).

8.3 Code Profiling

OpenMP lacks an important feature: the notion of recurrence [10]. To include the real-time features, we incorporate two clauses associated with the subtask construct: the event clause and the deadline clause. These two clauses were first proposed in [10]. The syntaxes of these two clauses are as follows: (These two clauses are compatible.)

```
#pragma omp subtask event (event − expression)
```

```
#pragma omp subtask deadline (deadline − expression),
```

where the event-expression represents the exact moment in time at which the subtask release occurs and the deadline-expression is the expression that determines the time instant at which the subtask must finish. Only if event-expression evaluates to true is the associated subtask released. The expression shall evaluate to false after the subtask release.

We set the event-expression and deadline-expression of every subtask construct based on the information obtained in the preceding step. Thus, we obtain the final annotated OpenMP code, which includes the real-time features we need.

8.4 Runtime Support

After obtaining the schedule and the final annotated OpenMP code, we can use them as the input to the runtime, as SOMA did in [42]. The aim of the runtime is to instantiate and manage the threads, and to control the execution of the vertices. In particular it must allocate each vertex on the correct thread and must guarantee the artificial release time of each vertex. The runtime does not require time-consuming computations; all its allocation decisions are made based on information written in the schedule. The runtime support spawns the threads and allocates jobs to them according to the schedule.

Specifically, when jobs arrive, the runtime uses the identifier to identify the corresponding subtask and allocate the job to the thread based on the mapping written in the schedule. These jobs will be stored in each thread’s local pool. The thread uses EDFnp to schedule the jobs in its local pool. The deadline-expression allows the thread to identify jobs corresponding to the subtasks with the closest deadlines. Fig. 11b shows the structure of the runtime support.

9 Conclusion

OpenMP is a promising parallel programming framework in general-purpose and high-performance computing, and has garnered increasing attention in the embedded and real-time domains [1], [3], [4], [5], [6], [7], [8], [9], [10]. Previous work in [1] studied the timing analysis of OpenMP task systems with regard to response time bounds by modifying the original TSCs in the OpenMP specification. In this paper, we propose a new algorithm, P-EDF-omp, that can automatically guarantee satisfying the tied constraints as long as an OpenMP task system can be successfully partitioned to the multiprocessor platform. Experiments with both randomly generated task sets and established OpenMP benchmarks show that our approach consistently outperforms the work in [1]—even without modifying TSCs.

Acknowledgments

This work was sponsored in part by the NSFC Project under Grant 61772123. Xu Jiang is the co-first author.

References

et al. received the BS degree in computer sci-
Nan Guan received the BE and MS degrees from Northeastern University, Shenyang, China, in 2003 and 2006, respectively, and the PhD degree from Uppsala University, Uppsala, Sweden, in 2013. He is currently an assistant professor with the Department of Computing, Hong Kong Polytechnic University. Before joining PolyU in 2015, he worked as a faculty member with Northeastern University, China. His research interests include real-time embedded systems and cyber-physical systems. He received the EDAA Outstanding Dissertation Award, in 2014, Best Paper Award of IEEE Real-time Systems Symposium (RTSS), in 2009, Best Paper Award of Conference on Design Automation and Test in Europe (DATE), in 2013.

Zhishan Guo received the BE degree in computer science and technology from Tsinghua University, Beijing, China, in 2009, the MPhil degree in mechanical and automation engineering from the Chinese University of Hong Kong, Hong Kong, in 2011, and the PhD degree in computer science from the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, in 2016. He is an assistant professor with the Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida, and an assistant professor with the Department of Computer Science, Missouri University of Science and Technology, Rolla, Missouri. His current research interests include real-time scheduling, cyber-physical systems, and neural networks and their applications.

Xue Liu received the PhD (Hons.) degree in computer science from the University of Illinois at Urbana-Champaign, Champaign, Illinois. He was the Samuel R. Thompson chaired associate professor with the University of Nebraska-Lincoln and a visiting faculty with HP Labs, Palo Alto, California. He is currently a William Dawson scholar and professor with the School of Computer Science, McGill University. He has published more than 200 research papers in major peer-reviewed international journals and conference proceedings in these areas and received several best paper awards. His research interests include cyber-physical systems, IoT, machine learning, big data and applications, green IT, sustainability, and smart energy systems, computer systems and networking.

Wang Yi (Fellow, IEEE) received the PhD degree in computer science from the Chalmers University of Technology, Gothenburg, Sweden, in 1991. He is a chair professor with Uppsala University. His interests include models, algorithms, and software tools for building and analyzing computer systems in a systematic manner to ensure predictable behaviors. He was awarded with the CAV 2013 Award for contributions to model checking of real-time systems, in particular the development of UPPAAL, the foremost tool suite for automated analysis and verification of real-time systems. For contributions to real-time systems, he received best paper awards of RTSS 2015, ECRTS 2015, DATE 2013, and RTSS 2009, Outstanding Paper Award of ECRTS 2012 and Best Tool Paper Award of ETAPS 2002. He is on the steering committee of ESWEEK, annual joint event for major conferences in embedded systems areas. He is also on the steering committees of ACM EMSOFT (co-chair), ACM LCTES, and FORMATS. He serves frequently on Technical Program Committees for a large number of conferences, and was the TPC chair of TACAS 2001, FORMATS 2005, EMSOFT 2006, HSCC 2011, LCTES 2012 and track/topic chair for RTSS 2008, and DATE 2012–2014. He is a member of Academy of Europe (Section of Informatics).

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/csdl.