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Stochastic Gradient Langevin Dynamics (SGLD) have been widely used for Bayesian sampling from certain

probability distributions, incorporating derivatives of the log-posterior. With the derivative evaluation of the

log-posterior distribution, SGLD methods generate samples from the distribution through performing as a

thermostats dynamics that traverses over gradient flows of the log-posterior with certainly controllable per-

turbation. Even when the density is not known, existing solutions still can first learn the kernel density models

from the given datasets, then produce new samples using the SGLD over the kernel density derivatives. In

this work, instead of exploring new samples from kernel spaces, a novel SGLD sampler, namely, Randomized

Measurement Langevin Dynamics (RMLD) is proposed to sample the high-dimensional sparse representations

from the spectral domain of a given dataset.
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Specifically, given a random measurement matrix for sparse coding, RMLD first derives a novel likeli-

hood evaluator of the probability distribution from the loss function of LASSO, then samples from the

high-dimensional distribution using stochastic Langevin dynamics with derivatives of the logarithm

likelihood and Metropolis–Hastings sampling. In addition, new samples in low-dimensional measuring

spaces can be regenerated using the sampled high-dimensional vectors and the measurement matrix. The

algorithm analysis shows that RMLD indeed projects a given dataset into a high-dimensional Gaussian

distribution with Laplacian prior, then draw new sparse representation from the dataset through performing

SGLD over the distribution. Extensive experiments have been conducted to evaluate the proposed algorithm

using real-world datasets. The performance comparisons on three real-world applications demonstrate the

superior performance of RMLD beyond baseline methods.
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1 INTRODUCTION

Statistical learning algorithms [50] can be improved, with better generalization performance, via
Bayesian sampling from the posterior Oracles. For examples, authors in [28, 59, 61] proposed to
improve the generalization error bounds of linear classifiers, such as Fisher’s discriminant anal-
ysis [55, 56, 58, 61], Support Vector Machines [59] and regularized linear regression models [28],
through re-sampling from a Markov-chain, which characterizes the distribution of multivariate
datasets for training and testing. Furthermore, [53] extent the effects of such Bayesian sampling
from linear models to the functional regression tasks based on Gaussian processes [36]. More re-
cently, Du et al. [17] studied a neural network based approach to facilitate Bayesian sampling steps
for the (approximate) inference of Deep Generative Models. All above research studies [17, 28, 59,
61] study the relevance of Bayesian sampling to the generalization of learning systems.

1.1 Backgrounds

Among a wide range of sampling algorithms, Markov Chain Monte Carlo (MCMC) techniques [3,
51] such as Hamiltonian Monte Carlo (HMC) via Stochastic Gradient Langevin Dynamics
(SGLD) [11, 17] provide the supports or solutions to random sample generation for a wide range
of machine learning tasks. For example, SLGD can provide extra data/parameters sampling from
specific prior distribution for data augmentation task [4, 9] and Bayesian learning/inference [3,
52], where the new data improve the performance of the tasks. Specifically, given the gradi-
ent/derivative estimation of the log-density function, SGLD samples a sequence of new data from
the target distribution through discretizing a second-order Langevin dynamics [52]. SGLD can
draw samples from arbitrary probabilistic distributions with controllable biases using the deriva-
tive/gradient oracles of the distribution [30].

Estimating the gradient/derivative of the density function is a key procedure in SGLD method
and in many applications the density function unknown or not differentiable. Thus, before SGLD
can generate new samples and improve the learning performance on a specific dataset, it is nec-
essary to first well-build a density or approximate the corresponding derivative based on the
training datasets. A typical way to handle the case is using Kernel Density Estimation [10], a
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non-parametric method to estimate the probability density function. Such kind of solutions namely
Kernel Sequential Monte Carlo [42] or Kernel HMC [45] can be used to learn the distribution form
the target datasets, with the selection of appropriate Kernels, such as Gaussian Kernel. Then SGLD
is able to draw new instances form this modeled distribution.

1.2 Technical Challenges

Although such kernel density estimation can provide close approximations of the target probability
density, a couple of factors may lead to obstacles when using kernel density estimation in practice:

(1) Kernel Distance Measurement. One of the traditional methods to evaluate the effectiveness
of the modeled density is to calculate the geometric distance between the modeled density
and the oracle one. However, it is inapplicable for some data distributions with uncommon
structures, such as high-resolution image data. To this point, without a carefully hand-
chosen and data-specific kernel function, such geometric distance-based evaluation often
leads to unstable or intractable kernel density functions. We also need to carefully choose
the kernel according to the datasets, which makes the kernel density estimation unstable
and intractable.

(2) Curse of Dimensionality. The high-dimensional data distribution is hard to approximate
by the kernel density estimation [6], and the inaccurate modeled distribution cannot give
the proper guide of SGLD when generating the sequence of new samples. Scott et al. [43]
demonstrated a progressive deterioration of multivariate kernel density estimation as the
dimension increases by showing that an increase in sample size is required to attain an
equivalent amount of accuracy.

(3) Computation Complexity. Not only the accuracy suffers from the high dimensions, but the
computation cost also increases significantly [40, 41]. In addition, it is quite time consum-
ing to select an optimal bandwidth for the kernel when the datasets are of high dimension
with tremendous instances [37, 49]. For example, the images in the MNIST dataset are with
28 × 28 = 784 dimensions and the dataset contains 60,000 images. Setting up an optimal
kernel for SGLD is time-consuming. Besides the bandwidth selection, it is also suffering
the heavy load for calculating the derivatives of the kernel density functions especially
in high-dimension space, i.e. mixing computation for the first derivatives of LogSumExp
functions and extra large matrix/vector multiplications.

There is a pressing need for methods to replace kernel density estimation and to provide accurate
derivative evaluation of probability density. To lower the computational complexity to compute
the derivative of kernel density functions, Sasaki et al. [40, 41] proposed the direct density deriv-
ative estimator that learns a regression model through sampling from fitted kernels, then predicts
the derivatives using the regression model. With such methods, one can draw samples from the
distribution with low computational complexity. However, such methods still cannot handle the di-
mensionality curse of kernel methods, which may cause significant performance degradation [44]
due to the divergence between fitted and ground truth distributions.

1.3 Summary of Contributions

From the previous discussions, it is clear that a new probabilistic model is required to define (i) the
prior probability of samples and characterize (ii) the likelihood from the given dataset. In this
work, we propose a novel SGLD sampler, namely Randomized Measurement Langevin Dynamics

(RMLD). Instead of exploring in the kernel spaces, RMLD samples the high-dimensional sparse rep-
resentations from the given dataset. Inspired by compressed sensing [14, 29], RMLD assumes all
samples in the datasets are the low-dimensional measurements of certain high-dimensional sparse
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Table 1. Notations for RMLD

Notations Description
A Measurement matrix
Y An (Low-dimensional) observation
X The sparse representation that potentially exists
P (X) Prior probability distribution
P (x |X) Likelihood of x based on the parameter X

D The set of original data samples
T Total number of iterations for SGLD exploration
K The number of generated samples required
m Size of mini-batch (m ≥ 1)
η Step-size for SGLD dynamics discretization
λ A tuning parameter for sparsity induction
discount Factor controls the “quality” of sample generation.
XK The sequence of K generated samples

vectors, based on a certain dictionary or namely measurement matrix [46]. With the distribution
of the given dataset, a continuous probability distribution exists in such a high-dimensional space.
Thus, each sample drawn from the high-dimensional distribution corresponds to a potential low-
dimensional measurement via the same measurement matrix (and reverse).

Specifically, with a measurement matrix for compressed sensing, e.g., a random Gaussian ma-
trix [8], RMLD first proposes a novel log-density evaluator of the probability distribution that char-
acterizes the given datasets. Such log-density evaluator is derived from the loss function of Least
Absolute Shrinkage and Selection Operator (LASSO) [29, 47], with low complexity solutions for
exact derivative computation. Then, given the log-density (derivative) evaluator, RMLD can draw
high-dimensional samples from the distribution using a second-order stochastic Langevin dynam-
ics with a Metropolis–Hastings (MH) sampler.

Finally, with the high-dimensional samples drawn, two types of applications can be supported
as follows. (1) Using the random measurement matrix, one can project the high-dimensional sam-
ples to their low-dimensional samples. In this way, RMLD performs as a generator that reproduces
new datums from the datasets with intractable likelihoods. (2) In addition, one can directly use
generated the high-dimensional samples to augment the machine learning algorithms with sparse
coding. For example, some image classification tasks can be improved using compressed sensing,
while they can further be improved by incorporating the high-dimensional data generation based
on the same measurement matrix. Extensive experiments are conducted to evaluate the proposed
algorithms with the two applications using four real-world datasets including MNIST, Fashion
MNIST, Quick Draw and EMNIST. The performance comparisons on the two applications demon-
strate the excellence of RMLD beyond baseline methods.

2 RELATED WORKS: BAYESIAN SAMPLING WITH SLGD

In this section, we first introduce the related works of this work, then review the most relevant
work. The notations used in this article have been listed in Table 1.

2.1 SGLD for Bayesian Sampling

For a great number of machine learning tasks, sampling from a given distribution is frequently re-
quired. Among a wide range of samplers, MCMC [3] comprises a class of general-purpose sampling
algorithms with fast mixing properties. Through incorporating a Markov chain derived from the
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distribution, MCMC can sample from the distribution by traversing the Markov chain via a number
of steps. To construct the Markov chain from a distribution, the stochastic gradient Hamiltonian
Monte Carlo (SGHMC) [11, 30] has been proposed to use the discrete-time Langevin dynamics [52]
coupled by the gradient flow of logarithm density of the probability distribution [5]. The random
jumps with the Langevin dynamics help SGHMC traverse the Markov chain and obtain samples.

2.1.1 SGLD Continuous-time Process. Specifically, given the posterior density model P(X) ∝
exp(−U (X)) of the desired distribution, SGLD draws a sequence of samples, e.g., X1,X2, . . . , from
the distribution P(X) through discretizing the Langevin dynamics as follows:

{
dX = r dt

dr = −∇U (X)dt − Brdt +N (0, 2Bdt ),
(1)

where r is a vector referring the momentum of the dynamics, B refers to a constant matrix that
controls the influence of noise. The noise term N (0, 2Bdt ) generates a Gaussian noise i.i.d from
N (0, 2B) over the time t , so as to incorporate randomness during the sampling procedure. To
obtain a sample, one can theoretically set the initial state of dynamics as the white noise, i.e.,
X(0) ∼ N (0, I) and r (0) = 0.

2.1.2 SGLD Algorithms. To implement the SGLD for as a Bayesian sampler, certain discretiza-
tion form of this dynamics can be further developed through Euler-Maruyama scheme. The algo-
rithm can be designed as an iterative process on discrete time t , such that

⎧⎪⎨
⎪
⎩

Xt+1 = vt + ηvt

vt+1 = vt − γηvt − α∇U (Xt )dt +
√

2γαϵt ,
(2)

with the changing rate of momentum η and the random Gaussian white noise ϵt at time t . For
every iteration (or every certain number of iterations), the algorithm draws a sample from the
distribution. In this way, the SGLD can iteratively sample a sequence of new instances from the
target distribution. From time t = 0, we can consider the output X0, X1, X2 . . . , as a sequence of
samples drawn from a posterior distribution with log-density log P (X) ∝ U (X).

For initialization prior to the sampling process, one can set the value of the noise as X0 ∼ N (0, I)
and momentum as v0 = 0. The trajectories traversed by the above algorithm is considered as a
discrete-time approximation to SGLD which would asymptotically converge to the desired distri-
bution [30].

2.2 Variants of SGLD for Improved Sampling

Given the procedure of SLGD, a number of pioneering studies have been done to improve the
method. We sort them into four categories:

2.2.1 SGLD Dynamics and Averaging. Instead of using the second-order Langevin dynamics, the
first-order dynamics, such as the one that stochastic gradient descent (SGD) algorithm behaves as,
has been studied for approximately variational inference [32] with a sampling-based procedure.
The purpose of these dynamics is to minimize the Kullback–Leibler divergence between the sta-
tionary distribution of its continuous-time process and the posterior, while the sampled trajec-
tories can be viewed as an approximation to the inferences. Compared to SGD, SGLD leverages
a momentum term to expand the regions that the process explores. In addition to using alterna-
tive dynamics, averaging schemes are frequently used to further accelerate the search. Polyak and
Juditysky [35] first proved the optimality of averaging for SGD-based inference. While Polyak av-
erage requires the storage of the whole trajectory traversed by SGD, the average based on sliding
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windows helps to lower the space complexity while also ensuring good performance [33]. Fur-
thermore [1] proposed to use a coupled dynamics for Bayesian inference of matrix factorization.
Note that averaging has been frequently used to accelerate Bayesian inference (optimization) but
rarely for data generation.

2.2.2 Conditioning Gradients. The (vanilla) SGLD listed in Equation (1) might be significantly
influenced by the noise terms incorporated. To control the influence of Noise, Stochastic Gradient
Fisher Scoring (SGFS) [2] has been firstly proposed to use a positive-definite matrix H to precon-
dition the dynamics as follow:{

dX = Hrdt

dr = −∇U (X)dt − BHrdt +N (0, 2Bdt ).
(3)

The traditional SGLD can be viewed as a special case of SGFS with H = I. Please refer to Sec-
tion 5.1 of [33] for the analysis. Further [27, 34] preconditioned SGLD for Bayesian inference of
deep networks.

2.2.3 Stochastic Gradient Approximation. As was mentioned, the derivative evaluator of the
log-posterior density is indispensable for gradient-based sampling, while the gradient computation
for large high-dimensional datasets is quite time consuming. First of all, to lower the complexity
with increasing size of datasets, noisy gradient estimation with mini-batch of samples has been
widely used in [11, 25, 30, 44]. In addition to the direct estimation, some regression-based methods
have been studied that can learn to predict the gradient [40, 41]. Furthermore [19] studied to use
a conjugate gradient for sampling from a Gaussian process with an unbiased solver. Most recent
work replaces the common gradients with Fractional-order derivatives [60], so as to accelerate the
Bayesian inference with a log-concave density.

2.2.4 MH Correction. The sequence sampled by MCMC can be corrected using MH algo-
rithm [23], which rejects the newly generated sample, if the new sample is not “with respect
to the current sample, according to the distribution.” Tons of work have been done to use MH
or rejection-based method to correct the sampling sequence [3, 31]. The most recent work [18]
proved that bias caused by the step size can be appropriately corrected by using MH rejection
with strong theoretical consequences under the log-concave assumption.

A comprehensive survey has been made in [33]. While most of the above work intent to enable
Bayesian inference with samplers, this article aims at using gradient-based MCMC to generate
datums through sampling from distributions.

2.3 Comparison to Previous Works

As stated in the introduction section, our work studies a new problem that intends to draw sam-
ples of sparse representation from the distribution of the given dataset using SGLD. In terms of a
research problem, our work follows the sparsity settings of compressive sensing [16] (please see
also in Section 3), while especially focusing on generating new samples in the high-dimensional
space, rather than reconstructing the exact sparse representations for each existing datum in the
dataset.

In terms of methodologies, the most relevant work to us is Kernel HMC [44, 45], which studies
a similar research problem and leverages SGLD as well. Compared to Kernel HMC, which uses
Kernels to model to the distribution of the given dataset, our work adopts a probabilistic model
derived from Bayesian compressive sensing [8, 24] to model the distribution. In this way, RMLD
defacto models the posterior distribution using a Gaussian likelihood with Laplacian prior. Note
that compared to the derivatives of Bayesian compressive sensing, estimating the gradients of
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Kernel is quite time consuming (please see also in introduction section for detailed discussion
and references). In this way, RMLD lowers the computational complexity of the gradient estimation
while making sense in terms of the probability model.

Please note that this article is derived from our conference paper [57]. On top of our conference
version, we have made tremendous efforts in making the journal version standout as a complete
and comprehensive work. In this article, we have included new contributions as follow. We re-
vise the introductions section so as to include more discussion on our motivations, intuitions, and
possible intellect merit of this work. In Section 2, we reorganize the introduction to the related
work, with more comprehensive details presented. In Section 3, we included additional technical
backgrounds with preliminary models of our research, where a clear problem formulation is given
based on the aforementioned models, assumptions and settings. In terms of methodology, we ex-
tend our algorithm to incorporate an additional tuning parameter, namely, discount factor, which
controls the quality of generated data. Experiments have been done with one additional dataset
Quick Draw [22], which is artificially synthesized as vector plots by Recurrent Neural Networks
(RNNs). More discussion on experimental results and the overall article has been made by the end
of this version. The additional materials provided in the journal version yield audiences possibility
to further understand the theoretical advantage of the proposed algorithms.

3 BACKGROUNDS MODELS AND PROBLEMS

In this section, we present the backgrounds with preliminary models of our work, then formulate
the research problem.

3.1 Compressive Sensing

Compressive sensing or compressed sensing originally refers to a signal reconstruction technique
that intends to reconstruct the sparse representation of a signal from its low-dimensional mea-
surement, through solving an undetermined linear system [14, 15].

Given ad × p measurement matrix A (wherep � d) and ap-dimensional unknown sparse signal
X∗, one is assumed to obtain a noisy measurement of the signal such that

Y = AX∗ + ϵ, (4)

where ϵ refers to a noise following certain structural assumption [7, 8, 46, 48]. Compressive
sensing makes it possible to exactly reconstruct the sparse signal X∗ from Y and A, under so-called
k-sparsity and restricted isometric property assumptions [8].

3.2 �1-Penalized Least Square Estimation for Compressive Sensing

To obtain the sparse reconstruction, compressive sensing techniques offered several effective esti-
mators to invert the process listed in Equation (4) via solving the undetermined linear system with
the “fat” matrix A. All in all, under mild conditions on ϵ , the sparse signal reconstruction problem
can be reformulated as finding the �1-norm sparsest solution to the linear system [16], such tat

X�1 ← argmin
X∈Rp

‖X‖1 s.t. ‖AX − Y‖2 ≤ ε, (5)

where ε refers to the tolerable error of reconstruction. To compute the solution, the �1-norm reg-
ularized least square estimator (or namely, LASSO, in high–dimensional statistics) is frequently
used under K.K.T condition, such that

X̂�1 ← argmin
X∈Rp

1

2
‖AX − Y‖2 + λ‖X‖1, (6)

where λ refers to a tuning parameter with respect to the potential ε .
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3.3 Bayesian Compressive Sensing

Bayesian Compressive Sensing [24, 29] interpreted the estimator in Equation (6) as a Bayesian esti-
mation on the potential structure of such sparse signal via maximum a posteriori estimation, where
the probability of sparse signal X∗ = X with the noisy measurement Y and the given measurement
matrix A is modeled as follows

log P (X∗ = X|Y,A) ∝ 1

2
‖AX − Y‖2 + λ‖X‖1. (7)

Specifically, 1
2 ‖AX − Y‖2 is proportional to the log-likelihood term corresponding a Gaussian re-

construction error based on the measurements and λ‖X‖1 refers to the log-prior probability term
based on a 1

λ
-width Laplacian distribution [29].

3.4 Problem Formulation

As was stated in introduction section, the problem of our study is to generate samples of high-
dimensional sparse representations from a given dataset, so as to augment the machine learning
tasks on top of the sparse representation (with more data). In this way, we summarize the problem
setting of our research as following assumptions.

Assumption 1 (Compressed Realization). Given an (unknown) p-dimensional probability dis-

tribution P, one first draws n random i.i.d samples y1,y2, . . . ,yn from P. Suppose there exists a d × p
measurement matrix A andd � p. With the measurement matrix A andy1,y2, . . . ,yn , one can obtain

n d-dimensional (noisy) observations, such that ∀yi

xi = Ayi + εi and εi ∼ N (0,δ 2I), (8)

where δ controls the variance of white noise.

Problem. Given the matrix A and the d-dimensional observation set D = {x1,x2, . . . ,xn }, our
problem is to generate a sequence of identical and independent p-dimensional random vectors
X1,X2, . . . ,XK that maximize the likelihoods on P, such that

X1,X2, . . . ,XK ← argmax
x 1,x 2, ...,x K

K∏
t=1

P (x t ), (9)

where P (x t ) refers to the probability of the t th generated sample based on the distribution P. In
following sections, we introduce our proposed algorithm to solve above problem.

4 RMLD: SPECTRAL SAMPLER USING RANDOMIZED MEASUREMENT LANGEVIN

DYNAMICS

In this work, we propose RMLD—the Spectral Sampler using Randomized Measurement Langevin

Dynamics for HMC. In this section, we first present the overall algorithm design of RMLD. Then,
we introduce the detailed implementation of the algorithms.

4.1 The Algorithmic Framework

Given a dataset and a random measurement matrix for sparse reconstruction, RMLD first models
the posterior distribution of data spectrum using the dictionary-based Gaussian likelihoods with
a Laplacian prior, then adopt SGHMC to draw samples from the distribution of spectrum.

4.1.1 Data Input. Algorithm 1 shows the overall design of RMLD, where the input of algorithms
include (i)D–the set of original data samples, (ii) A the randomized measurement matrix for sparse
reconstruction in spectral spaces, (iii)T total number of iterations for SGLD exploration, (iv) K the
number of generated samples required, (v) m ≥ 1 the size of mini-batch, (vi) η > 0 the step-size
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for SGLD dynamics discretization, (vii) λ > 0 the parameter for �1 regularization for posterior
modeling, and (viii) discount > 0 a factor that control the “quality” of sample generation. The
algorithm outputs X1, X2, . . . ,XK –the sequence of K generated samples in the spectral space of
D. The overall complexity of this algorithm is O (Km), while some samples may repeat in the
generated sequence (i.e., # of unique samples ≤ K ). The algorithm is designed as follows.

4.1.2 Initialization. In line 1 of Algorithm 1, RMLD initializes the whole sampling procedure by
defining X0. A simple way to initialize is using the white noise i.i.d drawn fromN (0, I ). Yet another

method would first draw an i.i.d sample from the dataset i.e., z
i .i .d∼ D, then performs LASSO to

recover its high-dimensional sparse representation using z and the dictionary A, such that

X0 ← argmin
x

1

2
‖z − Ax ‖22 + λ‖x ‖1 . (10)

In this way, we can start the sequence of sampling from the sparse representation of a (known)
random sample.

ALGORITHM 1: RMLD: Spectral Sampler using Randomized Measurement Langevin Dynamics

1: procedure RMLD(D, A, T , K ,m, η, λ, discount)

2: Initialization: X0

3: /*Sequence Sampling*/

4: for all k = 1, 2, 3, . . . , K do

5: r0 ∼ N (0, I)
6: X0 ← Xk−1

7: /* Gradient-based sampling with T Steps*/

8: for all t = 1, 2, 3, . . . , T do

9: gt ← GradEst(Xt−1,D,A,m, λ)
10: rt ← rt−1 − ηgt − ηrt−1

11: Xt ← Xt−1 + ηrt

12: end for

13: /* Discounted Metropolis-Hastings Correction*/

14: Xk ← MH(Xk−1,XT ,T ,D, λ,η, discount)
15: end for

16: return X1, X2, X3, . . . ,XK , discount
17: end procedure

4.1.3 Sampling Sparse Representation from Spectral Distributions. In Lines 4–15 of Algorithm 1,
RMLD leverages a loop of K iterations to generate a sequence of K samples, where each iteration
performs an iterative process of T steps to obtain the next sample generated in the sequence.
Specifically, in each iteration (e.g., the kth iteration), RMLD first setups r0 using the white noise
and X0 with the previous sampling result Xk−1 in the sequence, so as to initialize r and X of the
SGLD dynamics. Then, RMLD walksT steps of discrete-time SGLD with noisy gradient estimator (in
line 9) to reach the potentially next sample XT . Further, a rejection-based MH correction is given
to decide whether (1) to accept XT as Xk or (2) to reject XT while reusing Xk−1 as Xk . Note that a
discount factor has been used here to adjust the bar of rejection. The design and implementation
of the noisy gradient estimator and MH correction would be introduced in the next sections.

Finally, as shown in line 16 of the Algorithm 1, RMLD outputs the sequence as the sampling
results. Note that such sampling procedure depends on the initial status such as X0. Then it is
better to repeat the whole algorithm multiple times while setting a relevant small K for each run,
to balance the bias and the time complexity.
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ALGORITHM 2: Noisy Gradient Estimation for �1-Penalized Log-Likelihood with Random Mini-
Batch

1: procedure GradEst(X, D, A,m, λ)

2: /*Noisy gradient estimation*/

3: M ← draw m i.i.d samples from D
4: gm ← A�AX − 1

m

∑
∀x ∈M A�x + λ · sign(X)

5: return gm

6: end procedure

4.1.4 Data Reconstruction via Compression. Note that the output of Algorithm 1 X1,X2, . . . ,XK

are a sequence of sparse representations based on the dictionary A. To obtain the generated da-
tums, which can be observed in low dimension, one uses A to compress the sampling results, such
that for ∀ Xk for 1 ≤ k ≤ K one can compute as the kth generated sample of low-dimensional ob-
servations. Note that some simple soft-thresholding strategies can be applied here to denoise the
data (e.g., images) and improve the reconstruction.

4.2 Gradient Estimation for Negative Log-Density

Algorithm 2 demonstrates the design of (noisy) gradient estimator used in the SGLD dynamics
and sampling. Specifically, we define the posterior probability distribution of the high-dimensional
sparse representation [29] of the dataset D using Bayes’ theorem as follow:

P (X|D) ∝ P (X)P (D|X) = P (X)
∏
∀x ∈D

P (x |X), (11)

where P (X) refers to the prior distribution and P (xi |X) is the likelihood of x ∈ D given the high-
dimensional sparse representation. Then, we define the prior distribution of X as the Laplacian
distribution such that

P (X) ∝ exp(−λ‖X‖1). (12)

Further, the likelihood of low-dimensional observation ∀x ∈ D given the high-dimensional sparse
representation X can be modeled using Gaussian distribution, such that

P (x |X) ∝ exp

(
− 1

|D| ‖x − AX‖22
)
. (13)

In this way the negative log-density can be modeled as

− log P (X|D) =
1

|D|
∑
∀x ∈D

‖x − AX‖22 + λ‖X‖1 + c, (14)

where c is a constant. We find above function above actually averages the LASSO losses using all
samples in the dataset D. The gradient of the negative log-density can be written as

∇ (− log P (X|D)) =
1

|D|
∑
∀x ∈D

A� (AX − x ) + λ · sign(X), (15)

where sign(·) → {±1} is the signal function. According to Lines 3–4 of Algorithm 2, the vector gm

indeed is a noisy estimation of the gradient with a mini-batch of m random samples drawn from
D, where the noise in the gradient estimation can be well controlled bym.
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4.3 Discounted MH Correction

Algorithm 3 presents the design of the MH correction mechanism used in Line 14 of Algorithm 1.
The major input of this algorithm includes (i) the previous generated sample X (i.e., Xk in Al-
gorithm 1), (ii) the current approaching sample Z (i.e., XT in Algorithm 1), (iii) the number of
iterations required T , and (iv) the step size of SGLD η. RMLD aims at correcting the bias caused
by the discretization of dynamics with step size η. The output of RMLD would assign to the newly
generated sample Xk .

ALGORITHM 3: Discounted Metropolis–Hastings Correction

1: procedure MH(X, Z, T, D, λ, η, discount)

2: /*Function and Derivative Evaluation*/

3: fx ← 1
2 |D |

∑
∀x ∈D ‖AX − x ‖22 + λ‖AX‖1

4: fz ← 1
2 |D |

∑
∀x ∈D ‖AZ − x ‖22 + λ‖AZ‖1

5: ∇fx ← 1
|D |

∑
∀x ∈D A� (AX − x ) + λ · sign(X)

6: ∇fz ← 1
|D |

∑
∀x ∈D A� (AZ − x ) + λ · sign(Z)

7: Δ← ηT
8: /*Transition Probability Estimation*/

9: α = min.
{
1,

exp(−fz−‖X−Z+Δ ·∇fz ‖22/4Δ)

exp(−fx−‖Z−X+Δ ·∇fx ‖22/4Δ)

}

10: γ
i .i .d∼ Uniform[0, 1]

11: if α > discount · γ then

12: return Z /* Accept Z*/

13: else

14: return X /* Reject Z*/

15: end if

16: end procedure

This algorithm first estimates the transition probability from X to Z and reverse. Then, the al-
gorithm outputs X or Z depending on whether X would be accepted or rejected respectively. In
Lines 2–7 of Algorithm 3, RMLD evaluates the negative log-density and the derivatives on X and
Z based on the whole dataset D respectively. Then it estimates the ratio α between the transi-
tion probability from X to Z and the transition probability from Z to X (in line 9). Such ratio is
upper-bounded by 1. Then, like other MH algorithms, RMLD randomly drawsγ ∼ Uniform[0, 1] and
compares γ to α to make the decision for acceptance/rejection. Note that the newly approaching
sample Z would be rejected when the ratio α , between the transition probabilities from X to Z and
reverse, is not greater than the discounted random number discount · γ .

Discounting trade-off. As was stated above, a discount factor discount has been used to control
the quality of generated data. Given a discount factor discount = 1, the algorithm would accept or
reject a generated sample with a standard bar (as other MH correction methods). When discount ∈
(0, 1], RMLD would lower the bar to accept a generated sample, then the algorithm enjoys a higher
rate of acceptance. On the other hand, given a discount factor discount > 1, the algorithm makes
it “more difficult” for acceptance (with higher transition probability required).

To lower the complexity of estimation, the transition probability estimation is linearized, e.g.,
Δ · ∇fx or Δ · ∇fz , using the aggregated step size Δ = ηT without considering the second-order
dynamics. In this way, we don’t need to calculate the aggregation of the T steps. On the other
hand, When T = 1, the proposed algorithm would perform exactly the same as [18] with a strong
theoretical guarantee to eliminate bias caused by the finite step-size η.
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(a) Original (b) Compression

(c) RMLD (d) RMLD w/o MH

(e) Kernel HMC () Vanilla GAN

Fig. 1. Examples of data synthesis and generation based on MNIST.

5 EXPERIMENTS AND EMPIRICAL VALIDATION

We propose to evaluate RMLD using four real-world benchmark datasets including MNIST, Fashion
MNIST, Quick Draw, and EMNIST for two applications such as data synthesis and regeneration,
spectral data augmentation for supervised machine learning and image classification.

5.1 Image Dataset Synthesis and Regeneration

To better understand the performance of RMLD for image data generation, we evaluate the proposed
algorithms with baselines using the visionary datasets. All these datasets consist of images with
28 × 28 pixels at gray-scale. In our research, we consider each image as a vector of 784 dimensions,
where each dimension is scaled from 0 to 255.

5.1.1 Baselines and Setup. We include the following methods as the baseline algorithms for
comparison. The work that is most relevant to our work is Kernel HMC [44, 45], which enables
Bayesian sampling without the derivative evaluator of the (log) posterior density. In addition to
Kernel HMC, we also want to measure the effect the MH correction to the performance of sam-
pling. Thus, we also include the option to disable/enable the MH correction during the sampling
procedure. With MH correction disabled, all samples that are traversed by the dynamics will be
accepted as the data generation. In this way, we provide three key baseline algorithms:

(1) RMLD without MH correction: An algorithm derived from RMLD without incorporating the
discounted MH rejection;
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(a) Original (b) Compression

(c) RMLD (d) RMLDw/o MH

(e) Kernel HMC (f) Vanilla GAN

Fig. 2. Examples of data synthesis and generation based on Fashion MNIST.

(2) Kernel HMC: The algorithm [44, 45] based on common SGLD, where Gaussian kernels
are used to model the posterior probability distribution of the given dataset for data
generation;

(3) Vanilla GAN: the most principled Generative Adversarial Network (GAN) [20] that gener-
ates images from random noise. All Vanilla GANs are trained using the training datasets
with 20,000 iterations. Note that the training process of vanilla GAN are usually collapsed,
due to the complexity of datasets, while some tricks are available to fix these issues [12].
The motivation to use Vanilla GAN is to demonstrate the capacity to learn distribution
from datasets through adversarial training over generator-discriminator structure [38].

The comparison between RMLD to its variant without MH correction demonstrates the improve-
ment made through rejecting low probability samples for data generation, while the comparison
to Kernel HMC illustrates the effectiveness of our fantastic intuition that leverages sparse cod-
ing/reconstruction in Monte Carlo settings (rather than compressed sensing).

Further, we setup the proposed algorithm RMLD (and RMLD without MH correction) with a
784 × 3,136 Gaussian random noise matrix as the measurement A. With such measurement ma-
trix, RMLD can reconstruct a higher dimensional (i.e., four times of original dimensions) probability
distribution that characterizes the given datasets as its low dimensional observations. Note that
the performance of RMLD can be further improved with a fine-tuned measurement matrix A given
through dictionary learning, though a Gaussian matrix is capable of providing a certain theoretical
consequence. All other parameters such as regularization term λ, step size η and batch size m for
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(a) Original (b) Compression

(c) RMLD (d) RMLD w/o MH

(e) Kernel HMC () Vanilla GAN (collapsed)

Fig. 3. Examples of data synthesis and generation based on QuickDraw.

both RMLD and baselines are all tuned best with repeated trials. All generated images (except GAN)
are filtered by the same Gaussian smoother to rescale each pixel at 0–255 range.

5.1.2 Results. Figures 1–4 demonstrate the original images and generated images by various
algorithms. Specifically, Figures 1 refers to the images randomly drawn from the MNIST dataset,
while Figure 1(b) demonstrates the results based on Compression, where for each image, we first
draw a random image from the original dataset, then we use LASSO and measurement matrix A

to reconstruct its high-dimensional representation, further we use A to obtain its low-dimensional
observation. We expect to observe the effect on the reconstruction and compression of the original
image. The comparison between compression to the original shows that the shape of letters and
digits for EMNIST and MNIST datasets can be well preserved through the reconstruction-and-
compression procedure, while the image quality for Fashion MNIST image reconstruction is poor.

Figures 1 (c)–(h) present the generated images of the MNIST dataset using RMLD, RMLD without
MH correction, Kernel HMC, and GAN, respectively. All these models have successfully gener-
ated images that are visible and human understandable. It is quite subjective to judge or compare
the quality of these images. We observe that the original images indeed incorporate some local
patterns, such as shadows and textures of materials. Most of the sampling methods can well re-
construct the shapes while missing the supports to the local patterns, RMLD seems working well for
both shape and pattern recovery. Similar observations can be made from the images generated for
all other datasets including Fashion MNIST, EMNIST and QuickDraw demonstrated in Figures 2–4.
We also find it is quite difficult for convolutional GAN to learn Quick Draw dataset [22]. We be-
lieve it is due to that the rest image datasets were all gray-scaled from photographs of real-world
objects, while Quick Draw consisted of images plotted or created by a computer program (RNN).
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(a) Original (b) Compression

(c) RMLD (d) RMLD w/o MH

(e) Kernel HMC () Vanilla GAN

Fig. 4. Examples of data synthesis and generation based on EMNIST.

5.1.3 Discussion on Image Generation. Comparing RMLD to RMLD w/o MH (the RMLD wit MH
Correction disabled), the images procedure by RMLD can be reviewed as a subset of images by
RMLD w/o MH, which has been carefully selected by the transition probabilities. The images sam-
pled by RMLD are rendered with higher sharpness, while the edges of RMLD w/o MH are usually
blurred. Kernel HMC is with the similar drawback, where the produced images are lack of detailed
local patterns and with blurred edges. The images produced by Vanilla GAN are generally with
good quality and local patterns reconstructed. From a Bayesian sampling perspective, we doubt
whether GAN or the general Generative Adversarial Net can sample from the original distribu-
tion of images consistently. Recent study [38] shows that Vanilla GAN failed to capture/cover the
whole distribution from sample generation with significant biases. Note that using “compression,”
one can also obtain good plots of images through a procedure based on compressing sensing and
the measurement matrix based compression. However, compression generates image one-by-one
based on original images and it can not generate any new images in these settings.

In summary, we conclude that RMLD is capable of generating images. Actually. it samples from the
distribution of sparse representation from the datasets, while one can easily convert these sparse
representations back to the images using the dictionary (i.e., measurement matrix). Compared to
the images produced Kernel HMC and GAN, we cannot observe the significant drawback of RMLD.
We subjectively the images generated by RMLD look better, as they preserve more local patterns
and textures.

5.1.4 Discussion on the Comparison with the Vanilla GAN. In our work, we compare RMLD with
the data generated by Vanilla GAN [20], where tricks to improve the image quality of GAN are
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Table 2. Error Comparison Using RMLD on MNIST, Fashion MNIST, Quick Draw, and EMNIST Datasets

MNIST [26] (n = 60,000, d = 784)

SVM �2-SVM ElasticNet �1-Log. Reg. �2-Log. Reg. �2-Percep.

RMLD 3.59 ± 0.00 5.74 ± 0.06 8.03 ± 0.08 5.49 ± 0.01 5.23 ± 0.08 12.54 ± 0.49

RMLDw/o MH 3.61 ± 0.03 5.87 ± 0.19 8.02 ± 0.08 5.50 ± 0.09 5.38 ± 0.06 18.84 ± 2.60

Original 5.96 ± 0.00 11.11 ± 1.29 9.55 ± 0.04 8.06 ± 0.01 7.99 ± 0.00 16.62 ± 0.00

Compression 3.61 ± 0.00 5.84 ± 0.18 7.89 ± 0.12 5.50 ± 0.00 5.32 ± 0.00 13.22 ± 0.00

Kernel HMC 6.14 ± 0.11 15.44 ± 2.40 17.09 ± 2.50 34.14 ± 7.11 13.46 ± 0.79 29.42 ± 4.98

Vanilla GAN 5.99 ± 0.09 11.33 ± 0.45 10.60 ± 0.59 8.11 ± 0.14 8.15 ± 0.89 15.05 ± 1.27

Fashion MNIST [54] (n = 60,000, d = 784)

SVM �2-SVM ElasticNet �1-Log. Reg. �2-Log. Reg. �2-Percep.

RMLD 13.09 ± 0.08 15.19 ± 0.27 17.54 ± 0.27 14.33 ± 0.00 14.54 ± 0.08 19.82 ± 0.69

RMLDw/o MH 13.54 ± 0.08 15.42 ± 0.35 17.77 ± 0.15 14.46 ± 0.08 14.69 ± 0.09 22.18 ± 2.62

Original 15.36 ± 0.00 19.88 ± 2.91 20.35 ± 2.92 15.81 ± 0.03 15.89 ± 0.00 30.84 ± 0.00

Compression 13.20 ± 0.00 15.32 ± 0.26 17.61 ± 0.10 14.34 ± 0.01 14.55 ± 0.00 25.09 ± 0.00

Kernel HMC 15.73 ± 0.18 27.07 ± 2.36 25.64 ± 3.14 25.70 ± 0.78 24.99 ± 0.44 37.30 ± 7.73

Vanilla GAN 15.39 ± 0.10 19.29 ± 1.26 19.39 ± 1.78 15.99 ± 0.09 16.09 ± 0.18 34.17 ± 2.69

Quick Draw [22] (n = 60,000, d = 784)

SVM �2-SVM ElasticNet �1-Log. Reg. �2-Log. Reg. �2-Percep.

RMLD 29.39 ± 0.00 33.98 ± 0.59 34.78 ± 0.13 32.42 ± 0.01 31.33 ± 0.00 52.47 ± 0.07

RMLDw/o MH 29.72 ± 0.08 34.07 ± 0.18 35.18 ± 0.45 32.64 ± 0.00 31.62 ± 0.03 56.55 ± 0.08

Original 35.22 ± 0.00 47.39 ± 1.80 43.06 ± 1.60 37.47 ± 0.02 37.6 ± 0.00 58.49 ± 0.00

Compression 29.43 ± 0.00 33.99 ± 0.80 35.05 ± 0.90 32.62 ± 0.00 31.34 ± 0.00 64.35 ± 0.00

Kernel HMC 35.54 ± 0.18 46.32 ± 1.14 42.36 ± 0.72 37.80 ± 0.14 37.88 ± 0.19 53.43 ± 1.37

Vanilla GAN 35.27 ± 0.20 46.39 ± 1.81 43.94 ± 1.92 37.63 ± 0.14 37.76 ± 0.15 53.70 ± 2.27

EMNIST [13] (n = 124,800, d = 784)

SVM �2-SVM ElasticNet �1-Log. Reg. �2-Log. Reg. �2-Percep.

RMLD 13.14 ± 0.09 15.38 ± 0.11 28.80 ± 0.11 17.64 ± 0.11 14.41 ± 0.07 19.83 ± 0.69

RMLDw/o MH 13.32 ± 0.06 22.71 ± 0.10 29.32 ± 0.15 18.37 ± 0.13 18.43 ± 0.07 49.36 ± 2.48

Original 21.21 ± 0.00 37.33 ± 0.80 32.41 ± 0.50 28.82 ± 0.00 29.10 ± 0.00 50.62 ± 0.00

Compression 13.21 ± 0.00 22.60 ± 0.17 28.93 ± 0.05 18.33 ± 0.01 18.36 ± 0.00 49.43 ± 0.00

Kernel HMC 25.18 ± 0.19 42.54 ± 2.26 34.31 ± 0.68 31.59 ± 0.09 31.99 ± 0.07 56.55 ± 2.80

Vanilla GAN 22.17 ± 0.14 44.26 ± 1.70 38.98 ± 1.01 33.16 ± 0.29 33.21 ± 0.40 57.83 ± 2.35

all disabled [12, 21, 39]. To ensure the fair comparison, we trained the Vanilla GAN using the
comparable computational resources (CPU/GPU hours) consumed by other methods. Under above
settings, it sometimes leads to model collapse and often generates low quality images, compared
to RMLD and Monte Carlo-based solutions. Even though certain image quality improvement tricks
were used with additional computational cost, we still doubt that GAN could perform well in
terms of capturing the whole distribution of datasets. Some observation has been made from the
comparison between probabilistic models and GAN [38]. The next experiments based on spectral
data augmentation would further validate this observation, where the data generated by RMLD
could help to improve the generalization performance of common statistical machines with higher
testing accuracy, as RMLD demonstrates great potentials to capture the distribution.

5.2 Spectral Data Augmentation

To further evaluate the quality of samples drawn, we evaluate RMLD, as a tool for data augmen-
tation, using a wide range of linear classifiers including SVM, �2-SVM, �1-regularized Logistic
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(a) MNIST 2-SVM (b) Fashion MNIST 2-SVM

2-SVM (d) EMNIST 2-SVM(c) ick Draw

Fig. 5. Testing accuracy vs. discount factor on SVM classifiers.

Regression (entitled �1-Log. Reg.), �2-regularized Logistic Regression (entitled �2-Log. Reg.), and
�1-regularized Perceptron (entitled �1-Perceptron). We do not intend to perform such comparison
on top of neural networks, as these methods already incorporate data augmentation in their deep
architectures.

In this experiment, we shuffle the original datasets with the images generated in the ratio of 6:1.
Note that for the experiment based on RMLD and compression, we use the spectral data (generated
spectral samples by RMLD and/or the one obtained by LASSO using the same dictionary) for train-
ing and testing rather than the images. All algorithms are tuned with the best hyper-parameters
through 10 folder cross-validation on the training set. We repeat the experiments five times to
estimate the accuracy with intervals.

5.2.1 Results and Comparison. Table 2 presents the testing error comparison of the six clas-
sifiers on the three datasets with various augmentations. RMLD outperforms all baseline methods
with higher accuracy, while it marginally improves the results of compression (which consists of
the spectral representation of original data). It is obvious that, in the most cases, the upper interval
of the error of RMLD (indicating the worst case accuracy) is still lower than the lower interval of
baselines (indicating the best case accuracy). The comparison shows that RMLD significantly out-
perform the one based on the original dataset, Kernel HMC and GAN with clearly higher accuracy.
The comparison between RMLD and Kernel HMC demonstrate the power of sampling sparse rep-
resentation from space, rather than the spatial-temporal information of images. The comparison
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(a) MNIST ElasticNet (b) Fashion MNIST ElasticNet

(d) EMNIST ElasticNetick Draw ElasticNet(c)

Fig. 6. Testing accuracy vs discount factor on ElasticNet.

between RMLD and RMLD without MH correction shows the power of rejecting low probability sam-
ples to well augment the training set. The compression between RMLD and Compression shows the
effectiveness of Bayesian sampling for generating new spectral samples. We consider the advan-
tage of RMLD is due to the effectiveness combining sparse coding and Bayesian sampling.

5.2.2 Case Studies. Figures 5 and 6 demonstrated the accuracy of �2-SVM and ElasticNet Lo-
gistic Regression classifiers on varying discount factor. In overall, RMLD works very well with
excellent classification accuracy on top of a wide range of discount selection. Further, we ob-
served that both models would deliver a lower accuracy on both datasets when discount factor
is relatively small. It would enjoy a higher accuracy when increasing the discount factor and
achieve its best accuracy when the discount factor is set to around 1.15∼1.35. As was discussed
in Section 4.3, RMLD would enjoy its best performance for data augmentation when we slightly
increase the bar for generated image acceptance. The accuracy will fall down when discount fur-
ther increases, as the randomness given to the generated images would be relatively smaller in
such case.

6 DISCUSSION AND CONCLUSION

In this article, we formulate and study the problem of sparse representations sampling under sev-
eral key assumptions. The problem intends to draw new samples from an unknown sparse rep-
resentation domain using a given dataset, so as to generate a sequence of random, identical and
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independent samples (sparse representations). We then propose RMLD, which aims at sampling
the sparse representations from the given dataset. Incorporating a random measurement matrix
(or namely random dictionary) for sparse coding, RMLD leverages a SLGD to traverse on a log-
posterior density model derived from compressed sensing, where a sequence of samples can be
generated via the trajectory sampled by the dynamics. Due to the noise incorporated by mini-
batch re-sampling, this method can provide controllable randomness to the generated samples.
On the other hand, the perturbed gradient flow used in Langevin dynamics cannot ensure inde-
pendence between generated samples in a non-asymptotic setting [30].

The empirical validation, based on four benchmark image datasets, shows RMLD can draw the
possible sparse representation from the spectral space of the images, while the sparse represen-
tations drawn can be used to generate new images. We compare the images generated by RMLD
with those based on Kernel HMC and GAN. While all generated images are visible and human
understandable, the images produced by RMLD seem to preserve more local patterns and textures.
Moreover, our experiments indicate that the generated data could help to augment the original
datasets for supervised learning tasks, i.e., image classification. The comparison shows RMLD sig-
nificantly outperforms the one augmented by Kernel HMC (SGLD based on Gaussian Kernel) and
GAN with higher classification accuracy.
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