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Abstract—Linear Discriminant Analysis (LDA) is widely-used
for supervised dimension reduction and linear classification. Clas-
sical LDA, however, suffers from the ill-posed estimation problem
on data with high dimension and low sample size (HDLSS). To
cope with this problem, in this paper, we propose an Adaptive
Wishart Discriminant Analysis (AWDA) for classification, that
makes predictions in an ensemble way. Comparing to existing
approaches, AWDA has two advantages: 1) leveraging the
Wishart distribution, AWDA ensembles multiple LDA classifiers
parameterized by the sampled covariance matrices via a Bayesian
Voting Scheme, which theoretically improves the robustness of
classification, compared to LDA classifiers using a single (prob-
ably ill-posed) covariance matrix estimator; 2) AWDA updates
the weights for voting optimally to adapt the local information
of each new input data, so as to enable the nonlinear classifi-
cation. Theoretical analysis indicates that AWDA guarantees a
close approximation to the optimal Bayesian inference and thus
achieves robust performance on high dimensional data. Extensive
experiments on real-world datasets show that our approach
outperforms state-of-the-art algorithms by a large margin.

Index Terms—Data Mining, Classification, Linear Discrimi-
nant Analysis, Bayesian Inference and Wishart Distribution

I. INTRODUCTION

Linear Discriminant Analysis (LDA) is frequently used

as one of the common performance benchmarks for lin-

ear classification problem, with respect to LDA’s provable

Bayesian optimality [1]. However, recent studies demonstrate

the limitation of classical LDA under high dimension and low

sample size (HDLSS) settings [2]. This is because it is difficult

to recover the “true” parameters, e.g., (inverse) covariance

matrix, from a relatively small number of training samples [3].

When the number of dimensions of data is larger than the

number of samples, the sample covariance estimation used in

classical LDA, is singular and not invertible. In this case, LDA

cannot produce any valid prediction. Even when the sample

size is larger than the number of dimensions, the sample

(inverse) covariance estimation could be quite different from

the “true” (inverse) covariance matrix, with an inconsistent

estimate of the largest eigenvalues and almost-orthogonal

eigenvectors to the truth [3]. Such ill-posed estimation problem
significantly degrades the performance of LDA. Moreover, the

data for practical classification problem is usually not linearly

separable [4, 5]. Therefore, the linear classification sometimes

cannot provide good results.

To address the ill-posed estimation problem, several

regularization-based methods have been proposed to accu-

rately estimate the (inverse) covariance matrix [6–8] or linear

coefficients [9, 10] under high dimension and low sample size

settings [11]. Further, to handle the non-linearity, some kernel-

based or nonparameteric LDA classifiers [12–15] have been

proposed. In summary, these methods intend to improve LDA

classification through optimizing the parameters of LDA, such

as (inverse) covariance matrices, linear projection metrics,

or kernel settings, in a so-called optimal model selection
manner [16].

Instead of “bidding” the optimal parameter in the full and

usually unknown parameter space, in this work, we intend to

improve LDA in an ensemble way [17], while adapting to the
new input data. Specifically, we first sample a set of (inverse)

covariance matrices from both training data and the new
input data, then “weighted-averages” the classification results

of multiple LDA classifiers parameterized by the sampled

inverse covariance matrices via a Bayesian Voting Scheme [18].

Theoretical studies show that such Bayesian voting scheme

can secure a wider margin and guarantee a good classification

performance with a lower generalization error bound [18].

This theoretically guarantees that the proposed framework

can “on average” outperform those regularization-based LDA

classifiers using only single (inverse) covariance matrix esti-

mator [19]. More importantly, the sampled (inverse) covari-

ance matrices used by different LDA classifiers are updated

with each new input data instance. In this way, the proposed

classifier enables nonlinear classification by leveraging local

information of the input data [20].

However, the aforementioned Input-Adaptive Bayesian Vot-
ing Scheme is not computationally efficient. As the sampled

(inverse) covariance matrices are assumed to be updated to

adapt each new input data for classification, the sampling

complexity is very high. Especially, when the number of di-

mensions of data is high, it is quite time-consuming to sample

the (inverse) covariance matrices, while ensuring each sampled

matrix is positive-semidefinite. Thus, we propose a novel

method, Adaptive Wishart Discriminant Analysis (AWDA),

which can approximate the optimal prediction results with

minimal sampling efforts.

Specifically, AWDA first surrogates the distribution of

inverse covariance matrices using a Wishart distribution esti-

mated from the training data, then a set of inverse covariance

matrices are sampled based on the distribution. The “weighted-

averaged” result over the classification results from LDA

classifiers parameterized by these sampled inverse covariance

matrices are used for prediction. The “weights” in ensemble

learners are updated by each new input data for classifica-

tion optimally in a Bayesian manner. In this way, AWDA
can approximate the aforementioned input-adaptive Bayesian
voting schema, with proven convergence rate. Our theoretical

analysis further proves that (1) the error of approximation

could quickly converge with the increasing number of sampled
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TABLE I: Summary of notations

Symbol Definition
n the number of training samples
m the number of sampled inverse covariance matrices
p the number of dimensions of data sample
λ the tuning parameter of De-Sparsified Graphical Lasso
̂T the scale matrix of De-Sparsified Graphical Lasso
xi the vector of i-th data sample (1≤i≤ n)
li the label of i-th data sample (1≤ i ≤ n, li ∈{-1, +1})
x the vector of new input data sample for classification
Θ the inverse covariance matrix estimated (Θ ∈ Sn

+)

X+1 set of positive samples
X−1 set of negative samples
x̄ mean value of all training samples
x̄+1 the mean value of positive training samples
x̄−1 the mean value of negative training samples
Σ̄+1 the covariance of positive training samples
Σ̄−1 the covariance of negative training samples
Σ̄ the variance of all training samples

f(·) the classification function of Fisher’s LDA
W(·) Wishart distribution

W−1(·) Inverse Wishart distribution

inverse covariance matrices m at the speed O(m−
1
2 ); and (2)

the error is not sensitive to the dimensions of the data, that

means the performance of high dimensional data classification

could be well-guaranteed.

In the rest of the paper, we introduce the background and

formulate the problem of research in Section II. In Section

III, we present the proposed algorithm AWDA. We brief

the theoretical analysis on AWDA in Section IV. In Section

V, we evaluate AWDA with other baseline algorithms using

binary classification benchmark datasets and large-scale real-

world Electronic Health Record (EHR) datasets. We review

the related work, discuss the future work and finally conclude

the paper in Section VI and VII.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce the preliminaries of our

research, then formulate the research problem of this paper.

Important notations are listed in Table I.

A. Linear Discriminant Analysis

To solve the binary classification problem aforementioned,

we consider a simple LDA classifier f(x) ∈ {±1} based on

the given p-dimensional data vector x and the labeled samples

x1, x2, ...xn

f(x, x̄, x̄+1, x̄−1,Θ) = sign
(
(x− x̄)T Θ(x̄+1 − x̄−1)

)
,

(1)

where the signal function sign(·) maps the non-negative input

to +1 and the negative input to −1; x̄ refers to the mean

vector of all samples x1, x2, ...xn; and x̄+1, x̄−1 refer to the

mean vectors of the positive samples and negative samples

receptively. Θ is the inverse covariance matrix (namely pre-

cision matrix) estimated from data sample x1, x2, ...xn. The

most common estimation of the inverse covariance matrix is

the inverse of pooled sample estimation considering the two

classes, i.e., Θ = Σ̄−1. Thus, we write f(x, Σ̄−1) as the

classical Fisher’s Linear Discriminant Analysis.

B. Bayesian Voting Scheme

Given a binary classifier hω(x) ∈ {±1}, which is param-

eterized by ω, the Bayesian Voting Classification [18] of the

classifier is:

sign

(∫
ω

hω(x)p(ω)dω
)
, (2)

where p(ω) is the prior probability of the parameter ω. As a

binary classifier, the above classifier in Eq. 2 outputs the label

with the highest weighted vote. The theoretical advantages of

Bayesian voting scheme are addressed in [18].

C. Problem Formulation

To handle the uncertainty of (inverse-) covariance matrix

estimates for LDA, through combining Bayesian Voting and

LDA, we can consider a new classifier as:

sign

⎛
⎝ ∫
Θ≥0
f(x, x̄, x̄+1, x̄−1,Θ)P (Θ|x1, x2, ...xn, x)dΘ

⎞
⎠ ,

(3)

where P (Θ|x1, x2, ...xn, x) is the probability of the inverse

covariance matrix Θ̂, given the n training samples x1, x2, ...xn
as well as the new sample for prediction x. In our research, we

named this pattern as Input Adaptive Bayesian Voting. Note

that we take the new input vector x into account for generating

the “hypothesis” Θ of Bayesian inference.

With all above backgrounds and settings in mind, the

problem of this research is to compute Eq. 3. However, there

exist at least two major technical challenges:

Challenge I: Fast Computation and Lazy Sampling -
To compute the integral in Eq. 3, a common solution is

to leverage a Monte-Carlo Integration algorithm [21] that

first randomly samples a group of positive-semidefinite ma-

trices e.g., Θ1,Θ2 . . .Θm from the distribution with prob-

ability density function P (Θ|x1, x2, ...xn, x), then averages

f(x, x̄, x̄+1, x̄−1,Θ) over the sampled positive-semidefinite

matrices as 1
m · ∑m

i=1 ·f(x, x̄, x̄+1, x̄−1,Θi). This method

can give an approximate result of Eq. 3. However, the den-

sity function of the sampled positive-semidefinite matrices

P (Θ|x1, x2, ...xn, x) depends on the input x. That means,

for each new testing sample x, we have to build a new

probability distribution based on P (Θ|x1, x2, ...xn, x), then

sample a new group of positive-semidefinite matrices and

run the Monte-Carlo Integration accordingly. Obviously, the

computational cost to re-sample a new group of positive-

semidefinite matrices for each new input x is high. Thus, we

need a “Lazy Sampling” mechanism, which only samples a

group of positive-semidefinite matrices once, then uses the

same group of matrices for arbitrary input x.

Challenge II: Approximation and Sampling Complexity
- The accuracy of classification highly depends on whether

the proposed algorithm can approximate the Eq. 3 as well as

the sampling complexity (i.e., how many sampled (inverse)

covariance matrices are used in the inference). For the high-

dimensional numeric integration [22], the approximation is
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usually bottle-necked by the number of dimensions (e.g., the

number of data dimensions is p, the number of dimensions

of positive-semidefinite matrices p × p) and the sampling

complexity (e.g., the number of sampled positive-semidefinite

matrices m). Intuitively, the convergence of algorithms can

be improved, with increasing sampling complexity and lower

dimensionality. However, we aim at proposing an algorithm

to approximate Eq. 3 with a low computational/sampling

complexity while ensuring a close approximation. Especially,

we require an approximation rate that is not sensitive to the

dimensionality of the data sample (p), so as to enable the high

dimensional data classification.

In the rest of the paper, we present a novel classifier, Adap-
tive Wishart Discriminant Analysis – AWDA, which tackles

the two research challenges, with low computational/sampling

complexity and proven dimensionality-insensitive approxima-

tion rate.

III. AWDA: THE ADAPTIVE WISHART DISCRIMINANT

ANALYSIS

In this section, we introduce our solution to compute Eq. 3

as follows. We first re-formulate Eq. 3. Then, we introduce the

algorithm of AWDA to compute the reformulation of Eq. 3.

A. Problem Reformulation

We first define P (x|Θ) as the probability of input vector x
given the inverse covariance matrix Θ, and P (Θ|x1, x2...xn)
as the probability of the inverse covariance matrix Θ, given

the training samples x1, x2...xn. Then, we define a function:

g(x)

=

∫
Θ≥0
f(x, x̄, x̄+1, x̄−1,Θ)P (x|Θ) · P (Θ|x1, x2...xn) dΘ.

(4)

Theorem 1. Eq. 3 is equivalent to the classification result of
sign(g(x)).

Proof. Assuming x1, x2, ...xn, and x are drawn i.i.d. from an

unknown distribution, according to the Bayesian theorem, we

decompose P (Θ|x1, ...xn, x) as

P (Θ|x1, ...xn, x) =
P (x|Θ)P (x1...xn|Θ)P (Θ)

P (x)P (x1...xn)

= P (x|Θ)P (Θ|x1, x2...xn) · P (x)−1.
(5)

Thus, Eq. 3 can be re-written as sign(p(x)−1 g(x)). As p(x)−1
is positive for ∀x. As a result, we can conclude sign(g(x)) =
sign(p(x)−1 · g(x)) is consistently equivalent to Eq. 3.

In this way, the key of proposed research is to compute

Eq. 4. We propose a straightforward method, AWDA: the

algorithm consists of a probabilistic model that can generate

m sampled inverse covariance matrices according to the den-

sity function P (Θ|x1, x2...xn), then calculate Eq. 3 through

Monte-Carlo Integration using the sampled inverse covariance

matrices. The design of AWDA is described in the following.

B. AWDA Framework Design

Given the reformulation of the problem, we design the

algorithm of AWDA that consists of the following two

phases:

• Training Phase - Given the labeled data pairs 〈x1, l1〉,
〈x2, l2〉 . . . 〈xn, ln〉 for training, this phase outputs the

model of AWDA classifier as a group of sampled inverse

covariance matrices and the mean vectors (Θ1 . . .Θm, x̄,

x̄+1, x̄−1) drawn from a Wishart distribution. The pseudo

code is given in Algorithm 1. Note that a tuning parameter

λ is used here for the Wishart distribution modeling.

• Testing Phase - Given a new data vector x for classifi-

cation, the sampled matrix Θ1 . . .Θm and the estimated

means x̄, x̄+1, x̄−1, the algorithm outputs the classifi-

cation result e.g., ±1 through Bayesian inference. The

pseudo code is given in Algorithm 2.

Note that, through the problem reformulation addressed in

Theorem 1, AWDA is expected to classify any data vector

x (i.e., approximate Eq. 3 with arbitrary x) using only one

group of sampled inverse covariance matrices. The design and

implementation of the key parts of AWDA is addressed in

following sections.

Algorithm 1 Training Phase of AWDA
1: procedure AWDA TRAIN(〈x1, l1〉 . . . 〈xn, ln〉, λ, p, m)

2: /* Step I: Pooled Sample Estimation */

3: X+1 ← set of positive samples〈x1, l1〉 . . . 〈xn, ln〉
4: X−1 ← set of negative samples〈x1, l1〉 . . . 〈xn, ln〉
5: x̄← 1

n

∑n
i=1 xi;

6: x̄+1 ← 1
|X+1|

∑
∀xi∈X+1 xi;

7: x̄−1 ← 1
|X−1|

∑
∀xi∈X−1 xi;

8: Σ̄+1 ← 1
|X+1|

∑
∀xi∈X+1(xi − x̄+1)(xi − x̄+1)T ;

9: Σ̄−1 ← 1
|X−1|

∑
∀xi∈X−1(xi − x̄+1)(xi − x̄−1)T ;

10: Σ̄ = |X+1|
n Σ̄+1 + |X−1|

n Σ̄−1;
11: /* Step II: Wishart Distribution Modeling and Sampling */

/*Using De-Sparsified Graphical Lasso [23]*/

12: T̂ ← DSGLasso(Σ̄, λ);
13: v ← max {n, p};

14: Build Wishart distribution W(T̂ , v);
15: For i = 1 to m

16: Σi ← draw a random sample on W−1(T̂−1, v);
17: Θi ← Σ−1i ;

18: End
19: return (Θ1 . . .Θm, x̄, x̄+1, x̄−1).

C. AWDA TRAIN: Training Phase of AWDA
As shown in Algorithm 1, given the labeled data pairs

〈x1, l1〉, 〈x2, l2〉 . . . 〈xn, ln〉 for training, the Training Phase
builds the AWDA model with a set of sampled inverse co-

variance matrices Θ1,Θ2, . . .Θm and the estimation of mean

vectors x̄, x̄+1, x̄−1. While one can straightforwardly estimate

the mean vectors x̄, x̄+1, x̄−1 with the sample estimation using

lines 3-7 in Algorithm 1, the way to sample inverse covariance

matrices from the training data is still challenging.
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Algorithm 2 Testing Phase of AWDA
1: procedure AWDA TEST(x, (Θ1 . . .Θm, x̄, x̄+1, x̄−1))
2: /*Binary Classification as Bayesian Inference*/

3: ḡ ← 0;

4: For i = 1 to m

5: ḡ ← ḡ + 1
m · f(x, x̄, x̄+1, x̄−1,Θi) · P (x|Θi);

/*the probability P (x|Θi) is addressed in Eq. 10*/

6: End
7: return sign(ḡ).

In our research, to sample inverse covariance matrices Θ1,
Θ2, . . .Θm according to P (Σ|x1, x2...xn), AWDA leverages

a Wishart Distribution [24] namely W(T̂ , v), where T̂ refers

to the positive-definite scale matrix for the Wishart distribution

and v is the degree of freedom. In following paragraphs, we

introduce the detailed design of the Training Phase.

1) Sample Estimation for Means and Covariance Matrices:
Given the the labeled data pairs 〈x1, l1〉, 〈x2, l2〉 . . . 〈xn, ln〉,
AWDA first estimates the pooled sample covariance matrix Σ̄
using the code listed in lines 3-10 in Algorithm 1. Specifically,

the algorithm first sorts all samples for training into two groups

– positive samples and negative samples, then estimate the

sample mean and sample covariance matrices separately using

the data in these two groups. Further, the algorithm pools the

two sample covariance matrices as a whole, with respect to

the frequencies of the two groups.

2) Scale Matrix Estimation: Given the pooled sample

covariance matrix estimation Σ̄, to advance the estimation

accuracy, the algorithm estimates the scale matrix T̂ using De-

Biased Graphical Lasso [23]. The calculation of De-Sparsified

Graphical Lasso (denoted by DSGlasso(Σ̄, λ) in line 12 of

Algorithm 1), based on the pooled sample covariance matrix

Σ̄ and the given tuning parameter λ, is in the following.

T̂ = 2Θ̂(λ) − Θ̂(λ)Σ̄Θ̂(λ), (6)

where Θ̂(λ) refers to the Graphical Lasso estimator:

Θ̂(λ) = argmin
Θ≥0

⎛
⎝tr(Σ̄Θ)− log |Θ|+ λ

∑
j �=k

|Θjk|
⎞
⎠ , (7)

where
∑

j �=k |Θjk| refers to the sum of absolute value of the

non-diagonal elements in matrix Θ.

3) Wishart Distribution Probabilistic Modeling: Based on

the scale matrix T̂ estimated in the last step, AWDA builds

the Wishart Distribution W(T̂ , v). The density function of

W(T̂ , v) is defined as follows: given any p×p positive definite

matrix Θ (as the inverse of potential covariance matrix), the

probability density of Θ on Wishart Distribution W(T̂ , v) is:

Pw(Θ|T̂ , v) =

1

2vp/2
∣∣∣T̂∣∣∣v/2 Γp ( v2)

|Θ|(v−p−1)/2e−(1/2) tr(̂T−1Θ), (8)

where |·| refers to the determinant and the multivariate gamma

function is defined as:

Γp

(v
2

)
= πp(p−1)/4

p∏
j=1

Γ

(
v

2
+

1− j
2

)
.

In our research, we set the degree of freedom v using the

maximum of the training dataset size n and the dimensionality

of data p (i.e., v = max{n, p}).

4) Wishart Distribution Sampling: Based on the typical

Inverse-Wishart Sampling Algorithm [25], AWDA first builds

an Inverse-Wishart Distribution W−1(T̂−1, v), which is the

conjugate prior for the covariance matrix of a multivariate

Gaussian distribution. Then the algorithm randomly generates

m covariance matrices Σ1,Σ2...Σm drawn from the Inverse-

Wishart Distribution W−1(T̂−1, v). Finally, the algorithm

estimates the inverse of Σ1,Σ2...Σm as the sampled inverse

covariance matrices Θ1,Θ2...Θm. The design of this algorithm

is listed in lines 14-17 in Algorithm 1.

D. AWDA TEST: Testing Phase of AWDA
Given a new data vector x for classification, and the trained

AWDA model with sampled inverse covariance matrices

Θ1,Θ2...Θm and the mean vectors x̄, x̄+1, x̄−1, the Testing
Phase outputs the classification result, via the approximation

to Eq. 3, as:

ḡ(x) =
1

m

∑
1≤i≤m

(f(x, x̄, x̄+1, x̄−1,Θi)P (x|Θi)) , (9)

where P (x|Θi) refers to the probability of the input vector

x given the inverse covariance matrix Θi. In this paper, we

characterize the probability as:

P (x|Θi) =
1√

2π|Θ−1
i |

e−
1
2 (x−x̄)TΘi(x−x̄), (10)

Finally, as addressed in Algorithm 2, the algorithm AWDA
uses sign(ḡ(x)) as the classification result.

The performance analysis of the proposed algorithm based

on Eq. 9 to approximating the formulated problem expressed

in Eq. 3 will be addressed in the following section.

IV. APPROXIMATION ANALYSIS

In this section, we present how close the approximation

is that ḡ(x) in AWDA can be used to approximate the re-

formulated problem g(x).
First of all, considering the fast convergence rate of

De-Sparsified Graphical Lasso [23] i.e., ||T̂ − Θ∗||∞ =
Op(

√
log p /n), with a fixed number of dimensions p and

an increasing number of samples n, we are more confident

to follow an assumption frequently made in many of previous

Bayesian inference studies [26–28]:

Assumption 1. For any positive-semidefinite matrix Θ i.e.,
∀Θ ≥ 0, there exists P (Θ|x1, x2...xn) = Pw(Θ|T̂ , v), where
Pw(Θ|T̂ , v) refers to the Wishart probability of Θ based on
the mean positive-semidefinite matrix T̂ and v = n−1. T̂ is an
estimate of inverse covariance matrix on samples x1, x2...xn.
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With Assumption 1, we can substitute P (Θ|x1, x2...xn)
with Pw(Θ|T̂ , v) i.e., the conjugate prior of inverse covariance

matrix based on Wishart Distribution, to enable the Bayesian

inference.

Theorem 2. Under Assumption 1, for any η > 0 sufficiently
small, with the increasing number of sampled inverse covari-
ance matrices m, our algorithm ḡ(x) converges to g(x) with
convergence rate |g(x)− ḡ(x)| ≤ Op(

√− log(η/2)/2m) with
probability at least 1− η.
Proof. Sampled inverse covariance matrices Θ1,Θ2, ..., Θm

are i.i.d. and all drawn from the Wishart distribution W(T̂ , v)
with probability density function Pw(Θ|T̂ , v). By the classical

Law of Large Numbers we know that as m→∞ we have

lim
m→∞ ḡ(x) =

∫
Θ≥0
f(x, x̄, x̄+1, x̄−1,Θ)P (x|Θ)Pw(Θ|T̂ , v)dΘ

= g(x),

under Assumption 1.

Let δ2 be the variance of f(x|Θ)P (x|Θ) under the distri-

bution given by Pw(Θ|T̂ , v), so that

δ2 = Varwf(x|Θ)P (x|Θ)

=

∫
Θ≥0

(f(x,Θ)P (x|Θ)− g(x))2 Pw(Θ|T̂ , v)dΘ .

By the Central Limit Theorem we know that for any γ > 0
we have

lim
m→∞Pw

(
|ḡ(x)− g(x)| ≤ γ δ√

m

)
=

1√
2π

∫ γ

−γ
e−t

2/2dt .

Moreover, based on Hoeffding’s inequality [Hoeffding, 1963],

we can conclude that for any η > 0 sufficiently small, as m
is large, with probability at least 1− η, we have

|g(x)− ḡ(x)| ≤
√
− 1

2m
· log

(η
2

)
.

Based on Theorem. 2, we can conclude that the classi-

fication result of sign(ḡ(x)) should be equivalent to Eq. 3,

when the number of sampled inverse covariance matrices m
is large. Our later experiments show that, with more than

100 sampled inverse covariance matrices m ≥ 100, AWDA
can deliver decent performance and consistently outperform

baseline algorithms, including SVM, Kernel SVM, Random

Forest and AdaBoost.

V. EVALUATION

In this section, we report the evaluation results on AWDA
using two sets of experiments. We first introduce the exper-

imental results based on four benchmark datasets for binary

classification, where we compare the performance of AWDA
with existing LDA algorithms and other models. Then we

present the experimental results based on a real-world medical

application, where we further demonstrate the advantages of

the proposed algorithm using several case studies.

A. Experiment I: Evaluation on Benchmark Datasets

In this experiment, we use six binary classification bench-

mark datasets [29] to test the performance of AWDA. To

validate the superiority of AWDA over classical LDA, we

use six baseline approaches for comparison: LDA (with pseudo

inverse [30]), Two-stage LDA [31, 32], Linear Support Vector

Machine (SVM-Linear), Gaussian Kernel SVM (SVM-G),

Decision Tree (D-Three) and AdaBoost. To demonstrate the

effectiveness of our method, we compare our method with

baseline algorithms using two metrics: Accuracy and F1-Score.

Specifically, in order to simulate the HDLSS settings (p >
m), we set the size of training samples fixed at 50 × 2 with

200×2 testing samples, while the numbers of dimensions p
are p = 123 (for Adult-1, Adult-2 and Adult-3) and p = 300
(Web-1,Web-2 and Web-3). Specifically, we compare AWDA
with all six baseline algorithms, and repeat 20 times for each

setting. The experimental settings show that AWDA is always

one of the best classifiers for all datasets in all settings, and

consistently outperforms other algorithms.

1) Overall Comparison: Table II and Table III present the

experiment results of AWDA with six baselines on Adult and

Web benchmark datasets. For both accuracy and F1 metrics, on

a wide range of parameters (m: number of the sampled inverse

covariance matrices, and λ: the regularization parameter),

AWDA performs as one of the best classifiers among all

these methods. Specifically, AWDA outperforms the rest six

baselines with the highest accuracy and highest F1-score in

the experiments with Adult-1, Adult-2, and Web-1 datasets.

In the experiments with Adult-3, Two-staged LDA [31, 32]

outperforms AWDAin terms of both accuracy and F1-score,

while AWDA ranks at the 2nd and 3rd places with different

parameters. For Web-2 and Web-3 datasets, AWDA outper-

forms all other methods with the highest accuracy, while the

linear SVM delivers slightly higher F1-score. All in all, we

can conclude AWDA a decent binary classifier under HDLSS

settings (i.e., p = 123 > n = 50 × 2 for Adult benchmarks,

and p = 300 � n = 50× 2 for Web benchmarks).

2) Performance of Input-Adaptive Mechanism: To break-

down the performance improvement caused by “Input Adap-

tion” mechanism of AWDA, we propose a baseline algo-

rithm — “Averaged LDA Classifier” derived from AWDA
that gives unique weight to the output (±1) of each LDA

classifier, based on the sampled inverse covariance matrices,

and returns the sign of averaged output. Table IV presents the

performance of this baseline algorithm based on Adult and

Web datasets. In Table IV, the algorithm is evaluated using

the same settings as Table V and Table III. Due to the page

limitation, we only present the results of the baseline with fine-

tuned parameters. Obviously, AWDA algorithm significantly

outperforms the Average LDA, while the performance of Aver-

aged LDA is more consistent. Actually the standard deviation

of both accuracy and F1-score for Average LDA is around

0.0002, which is much smaller than the algorithms listed in

Table V and Table III. Comparing Average LDA to AWDA,

the Averaged LDA performs more stably, as it averages the
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TABLE II: Performance Comparison on Adult 1, Adult 2, and Adult 3 Benchmarks (50×2 Training Samples, 200×2 Testing

Samples), where “ACC.” refers to accuracy and “F1.” refers to F1-Score. Note: numbers in Red refer to the largest values,

Blue refers to the second-largest values, and Orange refers to the third-largest values.

Data Source

Adult-1 Adult-2 Adult-3

Parameter ACC. F1. ACC. F1. ACC. F1.

Depth Decision Tree (D-Tree)

10.0 0.713 ± 0.071 0.705 ± 0.074 0.717 ± 0.104 0.712 ± 0.116 0.721 ± 0.050 0.707 ± 0.066
20.0 0.686 ± 0.058 0.680 ± 0.080 0.696 ± 0.039 0.690 ± 0.054 0.698 ± 0.035 0.689 ± 0.044

LDA

0.717 ± 0.056 0.710 ± 0.066 0.730 ± 0.062 0.719 ± 0.070 0.727 ± 0.052 0.722 ± 0.059

Two-Stage LDA

0.757 ± 0.038 0.745 ± 0.034 0.761 ± 0.029 0.748 ± 0.037 0.772 ± 0.055 0.765 ± 0.058

(m,λ) AWDA (The Proposed Algorithm)

50, 1.0 0.771 ± 0.023 0.761 ± 0.028 0.777 ± 0.021 0.768 ± 0.020 0.772 ± 0.022 0.762 ± 0.027
50, 10.0 0.769 ± 0.022 0.758 ± 0.027 0.771 ± 0.021 0.759 ± 0.021 0.771 ± 0.024 0.759 ± 0.028

50, 100.0 0.768 ± 0.024 0.756 ± 0.029 0.763 ± 0.044 0.748 ± 0.041 0.768 ± 0.021 0.756 ± 0.021
100, 1.0 0.771 ± 0.023 0.767 ± 0.021 0.776 ± 0.021 0.752 ± 0.034 0.773 ± 0.022 0.763 ± 0.027

100, 10.0 0.768 ± 0.021 0.757 ± 0.026 0.770 ± 0.020 0.758 ± 0.020 0.771 ± 0.025 0.760 ± 0.029
100, 100.0 0.768 ± 0.024 0.755 ± 0.029 0.769 ± 0.021 0.757 ± 0.022 0.769 ± 0.027 0.758 ± 0.030
150, 1.0 0.770 ± 0.022 0.760 ± 0.028 0.776 ± 0.021 0.767 ± 0.021 0.772 ± 0.022 0.761 ± 0.027
150, 10.0 0.768 ± 0.022 0.756 ± 0.027 0.771 ± 0.020 0.759 ± 0.020 0.770 ± 0.025 0.759 ± 0.029

150, 100.0 0.768 ± 0.024 0.756 ± 0.029 0.769 ± 0.021 0.757 ± 0.022 0.769 ± 0.027 0.758 ± 0.030
200, 1.0 0.770 ± 0.023 0.760 ± 0.027 0.776 ± 0.020 0.767 ± 0.020 0.773 ± 0.023 0.762 ± 0.027

200, 10.0 0.769 ± 0.022 0.757 ± 0.028 0.771 ± 0.020 0.759 ± 0.020 0.771 ± 0.025 0.760 ± 0.038
200, 100.0 0.768 ± 0.024 0.756 ± 0.028 0.769 ± 0.021 0.757 ± 0.021 0.769 ± 0.026 0.758 ± 0.030

SVM-Linear (Fine-tuned Parameter)

0.748 ± 0.051 0.739 ± 0.066 0.759 ± 0.044 0.748 ± 0.047 0.751 ± 0.024 0.744 ± 0.037

Bandwidth SVM-Kernal (Gaussian)

0.1 0.569 ± 0.211 0.484 ± 0.363 0.578 ± 0.227 0.490 ± 0.319 0.541 ± 0.004 0.471 ± 0.233
1.0 0.657 ± 0.084 0.716 ± 0.078 0.670 ±0.121 0.643 ± 0.154 0.662 ± 0.110 0.652 ± 0.100

# of Classifiers AdaBoost

100.0 0.716 ± 0.069 0.674 ± 0.093 0.731 ±0.064 0.681 ± 0.095 0.743 ± 0.050 0.696 ± 0.075
200.0 0.728 ± 0.057 0.678 ± 0.089 0.733 ± 0.069 0.681 ± 0.100 0.737 ± 0.056 0.686 ± 0.085

(a) Training (b) Testing

Fig. 1: Time Consumption of AWDA with Varying m (the

number of the sampled inverse covariance matrices) on Adult-

1 and Web-1 Datasets

outputs of multiple LDA classifiers [17]. On the other hand,

the proposed algorithm AWDA performs better with higher

accuracy and F1-score, due to the input adaption mechanism

used in AWDA.

3) Time Consumption Comparison: Figure. 1 demonstrates

the training and testing time consumption of AWDA on

Adult-1 and Web 1 datasets. In the figure, we report the

time consumption on varying numbers of sampled inverse

covariance matrices (i.e., m). Specifically, we report the time

consumption for training (average time consumption to train a

classifier based on n = 50× 2 training samples, in the 20 ex-

periments), and testing (average time consumption to classify

one sample, in the 20 experiments and each experiment with

200 × 2 testing samples). The y-axis is set to milliseconds.

Three solid lines in each figure refers to AWDA on Adult-1

datasets with the three λ settings, while the dash lines refer

to the results on Web-1 datasets. It is obvious that, while

the difference between various λ is insignificant, the time

consumption for both training and testing growth linearly with

the increasing m (the number of sampled inverse covariance

matrices).

Compared to the time consumption of baseline algorithms

evaluated in the same settings (reported in Table V), on all

m settings (from 50 to 200), AWDA consumes significantly

longer time in both training and testing. However, we believe

such time consumption (especially for testing) is still tolerable
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TABLE III: Performance Comparison on Web 1, Web 2 and Web 3 Benchmarks (50×2 Training Samples, 200×2 Testing

Samples), where “ACC.” refers to accuracy and “F1.” refers to F1-Score. Note: numbers in Red refer to the largest values,

Blue refers to the second-largest values, and Orange refers to the third-largest values.

Data Source

Web-1 Web-2 Web-3

Parameter ACC. F1. ACC. F1. ACC. F1.

Depth Decision Tree (D-Tree)

10.0 0.669 ± 0.111 0.611 ± 0.239 0.645 ± 0.068 0.550 ± 0.203 0.639 ± 0.051 0.536 ± 0.201
20.0 0.707 ± 0.046 0.692 ± 0.076 0.682 ± 0.075 0.649 ± 0.134 0.678 ± 0.072 0.630 ± 0.103

LDA

0.774 ± 0.066 0.781 ± 0.064 0.704 ± 0.091 0.695 ± 0.090 0.702 ± 0.085 0.697 ± 0.103

Two-Stage LDA

0.778 ± 0.080 0.757 ± 0.104 0.759 ± 0.084 0.732 ± 0.104 0.762 ± 0.051 0.733 ± 0.081

(m,λ) AWDA (The Proposed Algorithm)

50, 1.0 0.836 ± 0.023 0.836 ± 0.029 0.837 ± 0.033 0.834 ± 0.038 0.839 ± 0.024 0.837 ± 0.033
50, 10.0 0.794 ± 0.042 0.781 ± 0.068 0.787 ± 0.050 0.768 ± 0.064 0.781 ± 0.036 0.761 ± 0.058

50, 100.0 0.784 ± 0.043 0.768 ± 0.069 0.773 ± 0.052 0.749 ± 0.068 0.766 ± 0.041 0.741 ± 0.065
100, 1.0 0.837 ± 0.022 0.837 ± 0.028 0.838 ± 0.033 0.834 ± 0.037 0.839 ± 0.024 0.837 ± 0.033

100, 10.0 0.796 ± 0.041 0.782 ± 0.067 0.787 ± 0.051 0.768 ± 0.065 0.781 ± 0.038 0.761 ± 0.059
100, 100.0 0.782 ± 0.043 0.766 ± 0.070 0.774 ± 0.052 0.752 ± 0.068 0.766 ± 0.042 0.741 ± 0.066
150, 1.0 0.837 ± 0.023 0.838 ± 0.028 0.838 ± 0.033 0.835 ± 0.037 0.839 ± 0.021 0.837 ± 0.029

150, 10.0 0.795 ± 0.041 0.782 ± 0.067 0.787 ± 0.050 0.768 ± 0.064 0.780 ± 0.037 0.761 ± 0.059
150, 100.0 0.782 ± 0.043 0.765 ± 0.070 0.774 ± 0.053 0.751 ± 0.069 0.766 ± 0.041 0.742 ± 0.065
200, 1.0 0.838 ± 0.024 0.838 ± 0.029 0.837 ± 0.032 0.834 ± 0.037 0.838 ± 0.022 0.836 ± 0.030

200, 10.0 0.795 ± 0.042 0.782 ± 0.067 0.786 ± 0.050 0.768 ± 0.064 0.780 ± 0.037 0.760 ± 0.059
200, 100.0 0.782 ± 0.044 0.766 ± 0.070 0.774 ± 0.052 0.751 ± 0.068 0.767 ± 0.041 0.742 ± 0.065

SVM-Linear (Fine-tuned Parameter)

0.728 ± 0.036 0.689 ± 0.042 0.800 ± 0.055 0.800 ± 0.054 0.802 ± 0.046 0.802 ± 0.055

Bandwidth SVM-Kernal (Gaussian)

0.1 0.561 ± 0.139 0.517 ± 0.159 0.530 ± 0.246 0.452 ± 0.038 0.545 ± 0.150 0.506 ± 0.196
1.0 0.610 ± 0.071 0.551 ± 0.182 0.615 ± 0.140 0.604 ± 0.148 0.620 ± 0.120 0.622 ± 0.161

# of Classifiers AdaBoost

100.0 0.554 ± 0.061 0.393 ± 0.304 0.554 ± 0.044 0.433 ± 0.264 0.553 ± 0.059 0.344 ± 0.175
200.0 0.565 ± 0.050 0.449 ± 0.257 0.568 ± 0.047 0.485 ± 0.229 0.563 ± 0.050 0.385 ± 0.126

TABLE IV: Performance of the Averaged LDA Classifier

Dataset Accuracy F1-Score
Adult-1 0.761±0.000 0.747±0.000
Adult-2 0.758±0.000 0.746±0.000
Adult-3 0.752±0.000 0.743±0.000
Web-1 0.654±0.000 0.575±0.000
Web-2 0.682±0.000 0.619±0.000
Web-3 0.687±0.000 0.635±0.000

for many applications (with no real-time requirements). For

example, AWDA consumes only 60 milliseconds to classify

a 300-dimension Web-1 data instance — AWDA can scan

60,000 web pages in one hour using a single PC. Moreover,

the Monte-Carlo sampling method for integral computation

can be easily parallelized with cloud computing systems, and

the time consumption can be further reduced for training and

testing.

In summary, the experimental results on time consumption

verify our algorithm designs. The experiments were all carried

out using an iMac desktop with 3.1 GHz Intel Core i5 CPU,

16G memory and macOS v10.12.

B. Experiment II: Early Detection of Diseases using Elec-
tronic Health Records (EHR) Data

While the first experiment validates the effectiveness of

AWDA on common benchmark datasets with fixed training

dataset size, in the second experiment, we evaluate the al-

gorithm using a real-world application with varying training

dataset sizes to demonstrate the potential of the proposed

algorithm for handling the real-world problems.

1) Experiment Setups: We use the de-identified EHR data

from the College Health Surveillance Network (CHSN), which

contains over 1 million patients and 6 million visits from 31

student health centers across the United States [33]. Among

all diseases recorded in CHSN, we choose mental health

disorders, including (a) anxiety disorders, (b) mood disor-
ders, (c) depression disorders, and (d) other related mental
health disorders, as the targeted disease for early detection.

We represent each patient using his/her diagnosis-frequency

vector [34] based on the clustered code set (the number of

dimensions p = 295), where four selected mental health

disorder codes are considered to represent the diagnoses of
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TABLE V: Time Consumption (milliseconds) of Baseline

Algorithms on Adult-1 and Web-1 Datasets

Benchmark Datasets

Adult-1 Web-1

Parameter Training Testing Training Testing

Depth Decision Tree

10.0 4.100 0.005 2.750 0.004
20.0 5.250 0.007 4.800 0.004

LDA

23.300 0.040 274.000 0.166

Two-Stage LDA (with dimension reduced [31, 32])

21.150 0.022 142.600 0.005

SVM-Linear

6.950 0.005 3.350 0.005

Bandwidth SVM-Kernal (Gaussian)

0.1 3.250 0.031 2.400 0.046
1.0 1.700 0.021 1.800 0.036

Instance Number AdaBoost

100.0 316.850 0.119 104.050 0.194
200.0 608.150 0.230 209.200 0.432

mental health disorders and we do not predict these four types

of mental disorders separately. Specifically, if a patient has any

of these four codes in his/her EHR, we say that he/she has been

diagnosed with mental health disorders as ground truth.

In order to test the early detection of diseases, for each

patient with mental health disorders, we use his/her historical

EHR data that was generated 90 days before he/she received

the first mental health disorders diagnosis. Further, patients

with less than two visits were excluded from the analysis.

To demonstrate the effectiveness of our method, we continue

using the Accuracy and F1-Score for evaluating the perfor-

mance early detection, and compare our method with the same

set of baseline algorithms. Specifically, the Accuracy metric

characterizes the proportion of patients who are accurately

classified in the early detection of mental disorders. The F1-

Score measures both correctness and completeness of the early

detection.

We perform experiments with the following settings: to

build the training sets, we randomly select 50 to 500 patients

with mental health disorders as the positive training samples,

and randomly select the same number of patients not been di-

agnosed with any mental health disorders as negative training

samples. Thus the training set for the two classes is balanced

(i.e., the number of dimensions p = 295 and training set size

is 50 ∼ 500 × 2). To build the testing sets, we randomly

select 200 patients (not included in the training set) from both

positive/negative groups. Also the testing set is balanced. For

each setting, we execute the seven algorithms and repeat 30

times.

2) Overall Comparison : Figure. 2 presents the perfor-

mance of our approach, along with classical LDA, linear SVM,

Kernel SVM and Decision Trees on 200 testing samples and

varying training sample sizes. AWDA(200, 1.0) refers to the

(a) Accuracy (b) F1-Score

Fig. 2: Overall Performance Comparison with Downstream

Classifiers on EHR Data

AWDA classifier based on 200 sampled inverse covariance

matrices using De-Sparsified Graphical Lasso with λ = 1.0
for Wishart scale matrix estimation. As can be seen from the

results, AWDA clearly outperforms the baseline algorithms

in terms of the overall accuracy, and F1-score. Due to the

space limit, we don’t present the comparison results based on

Two-stage LDA in Figure. 2. AWDA(200, 1.0) outperforms

Two-stage LDA by achieving on average 4.3% higher accuracy

and 3.5% higher F1-score. It is clear that AWDA outperforms

all these algorithms significantly.

3) Comparison to Ensemble learners: As AWDA ensem-

bles the classification results from multiple classifiers, we

also compared AWDA to the existing ensemble learning

algorithms, such as Random Forest and AdaBoost. To compare

with ensemble learners with 100 and 200 basis classifiers, we

use AWDA with 100 and 200 sampled inverse covariance

matrices (i.e., ensemble with 100 and 200 LDA classifiers),

with λ = 1.0 for Wishart mean matrix regularization.

The performance comparison is illustrated in Figure. 3. It

is obvious that AWDA outperforms these two algorithms

in both 100-instance and 200-instance settings, while the

performance of Random Forest is not quite stable. Moreover,

Figure. 3 also shows the performance of AWDA classifiers

with 100 and 200 sampled inverse covariance matrices are

very similar. Indeed, we tested AWDA with 50 to 2000

inverse covariance matrices, the prediction accuracy or F1-

scores of AWDA is almost consistent on the varying number

of sampled matrices. This indicates that AWDA can provide

robust prediction performance, even when only a small number

of inverse covariance matrices are sampled.

4) Comparison on Discretization and Regularization:
AWDA leverages importance sampling-alike method to im-

prove the performance of approximation to the real integral in

a discretization manner. We compare AWDA to a classifier

namely “Discrete-AWDA” based on the simple discretization

strategy:

sign

⎛
⎝ ∑
1≤i≤m

f(x, x̄, x̄+1, x̄−1,Θi)P (x|Θi)Pw(Θi|T̂ , v)
⎞
⎠ .

Both two algorithms leverage a De-sparsified Graphical Lasso

with λ = 1.0, 10.0, 100.0 for the Wishart mean matrix
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(a) Accuracy (b) F1-Score

Fig. 3: Performance Comparison with Ensemble Learning

Classifiers on EHR Data

(a) Accuracy (100) (b) F1-Score (100)

Fig. 4: Performance Comparison with Different Discretization

and Regularization

estimation. Figure. 4 presents the performance comparison. It

shows AWDA outperforms the simple discretization strategy

using the same λ significantly.

In Figure 4, we also demonstrate the performance improve-

ment contributed by regularization (De-sparsified graphical

lasso) for Wishart mean matrix estimation. The lines entitled

“Sample-AWDA” refer to a derived method using the sample

inverse covariance matrix (pseudo-inverse when the covariance

matrix is singular) as the Wishart mean matrix. It shows that

AWDA can outperform Sample-AWDA significantly.

VI. RELATED WORK & DISCUSSION

In this section, we first summarize the most relevant work

of this paper. Then we compare our work to these related

researches. Further, we discuss several open issues of our

study.

We introduce several LDA extensions under High Dimen-

sion Low Sample Size (HDLSS) settings. As discussed above,

when LDA works in HDLSS, there exist two major technical

flaws: 1) the covariance matrix estimated using the sample

estimator is usually singular under HDLSS settings, while

LDA requires inverting covariance matrices for classification,

and 2) under HDLSS, the sample covariance matrix estimator

used in Fisher’s LDA is usually with large variance, which

might lead to inaccurate estimation of inverse covariance

matrix [3]. To handle the singularity issue, Ye et al. [30] first

extended the Pseudo-inverse and proposed a new optimization

criteria to handle the singularity issues, then the same group

of researchers proposed Two-staged LDA [31, 32] to improve

the performance of LDA with reduced dimensionality. Direct

LDA [35, 36] was proposed to use the simultaneous diago-
nalization of covariance matrices, which are non-singular, to

replace the original covariance matrices. On the other hand,

several researchers [9, 10, 37, 38] have proposed regularization

algorithm that lowers the variance of linear coefficients for

classification using �1/�2-norm penalties.

Compared to the above work, AWDA is distinct and novel

in two ways. First, compared to other extensions of LDA,

which focus on selecting an optimal parameter/model for bi-

nary classification, AWDA improves the performance of LDA

model using a model averaging scheme [17]. Furthermore,

compared to some statistical approaches [39] that rely on

an extremely large dataset and sample (inverse) covariance

matrices by re-grouping the dataset, our algorithm approxi-

mates the distribution of inverse covariance matrices using a

Wishart distribution, and leverages Monte-Carlo sampling to

approximate the results of Bayesian inference.

Second, our algorithm provides “local adaption” to the

classical Bayesian inference for LDA classification. Per each

input data for classification, AWDA updates the weight of

each classifier in an optimal manner via a Gaussian prior.

The significant performance improvement from the classical

LDA is partially due to the local adaption. Note that the

existing adaptive Bayesian inference [40] is mainly based on

MCMC sampling and “proposal and rejection” mechanism.

These methods need to sample a new group of parameters per

each new input. However, the time complexity of the sampling

process, which depends on how many sampled parameters

are rejected by new input data, is usually not controllable. In

the worst case, the time consumption of the sampling process

might grow exponentially with the sampling complexity (e.g.,

m in our research). Our method decomposes the training and

testing into phases: AWDA only needs to sample a group of

inverse covariance matrices once for building multiple classi-

fiers, then classify each new input data adaptively by using

updated weights for multi-classifier ensemble. Through using

a weight-updating mechanism, AWDA can work on a fixed

number of sampled inverse covariance matrices, and thus sig-

nificantly reduce the time complexity of sampling procedure

(as was verified in our experiments, the training/testing, i.e.,

sampling/inference, time complexity growth linearly with the

increasing m). Furthermore, compared to [40, 41], AWDA is

the first attempt of adaptive Bayesian inference to Fisher’s

LDA, by addressing the uncertainty of inverse covariance

matrix estimation and leveraging Wishart distribution as prior.

VII. CONCLUSION

In this paper, we proposed AWDA – a novel Fisher’s LDA

extension for binary classification under HDLSS. AWDA
lowers the uncertainty of LDA parameter estimation, in a

model averaging fashion, and further enables the nonlinear

classification, through the Input-Adaptive Bayesian voting

scheme. Theoretical analysis shows that AWDA guarantees

a close approximation to the optimal Bayesian inference.

The experimental results on common binary classification
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benchmarks and real-world EHR datasets show that AWDA
outperforms baseline algorithms significantly.
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