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Abstract

Piggyback crowdsensing (PCS) is a novel ener-
gy-efficient mobile crowdsensing paradigm that 
reduces the energy consumption of crowdsensing 
tasks by leveraging smartphone app opportuni-
ties (SAOs). This article, based on several funda-
mental assumptions of incentive payment for PCS 
task participation and spatial-temporal coverage 
assessment for collected sensor data, first pro-
poses two alternating data collection goals. Goal 
1 is maximizing overall spatial-temporal coverage 
under a predefined incentive budget constraint; 
goal 2 is minimizing total incentive payment while 
ensuring predefined spatial-temporal coverage for 
collected sensor data, all on top of the PCS task 
model. With all of the above assumptions, set-
tings, and models, we introduce CrowdMind — a 
generic incentive allocation framework for the 
two optimal data collection goals, on top of the 
PCS model. We evaluated CrowdMind extensive-
ly using a large-scale real-world SAO dataset for 
the two incentive allocation problems. The results 
demonstrate that compared to baseline algo-
rithms, CrowdMind achieves better spatial-tem-
poral coverage under the same incentive budget 
constraint, while costing less in total incentive 
payments and ensuring the same spatial-tempo-
ral coverage, under various coverage/incentive 
settings. Further, a short theoretical analysis is 
presented to analyze the performance of Crowd-
Mind in terms of the optimization with total incen-
tive cost and overall spatial-temporal coverage 
objectives/constraints.

Introduction
With the rapid proliferation of sensor-equipped 
smartphones, mobile crowdsensing (MCS) [1] 
has become an efficient way to sense and collect 
environmental data of urban areas in real time 
(e.g., air quality, temperature, and noise level). 
Instead of deploying static and expensive sensor 
networks in urban areas, MCS leverages the sen-
sors embedded in mobile phones and the mobil-
ity of mobile users to sense their surroundings, 
and utilizes the existing communication infrastruc-
ture (3G, WiFi, etc.) to collect data from mobile 
phones scattered in an urban area. By collecting 
sensor readings from mobile users, a “big pic-
ture” of the environment in the target area can be 
obtained using MCS without significant cost. 

Our earlier work [2] demonstrated that there 

are two main players in MCS: the Organizer, who 
is the person or organization coordinating the 
sensing task, and the Participants, who are the 
mobile users involved in the sensing task. An MCS 
task usually requires the organizer to recruit par-
ticipants with incentive payment, to allocate sens-
ing tasks to selected participants, and to collect 
sensor readings from these participants’ mobile 
devices that will represent the characteristics of 
the target sensing region, often with a predefined 
budget for participant incentives.

Specifically, the MCS organizer needs to spec-
ify the target sensing area, which often consists of 
a set of subareas, and further specify the sensing 
duration (e.g., one week), which is usually divided 
into equal-length sensing cycles (e.g., each cycle 
lasts for an hour). Once the settings of subareas 
and sensing cycles are determined, the MCS appli-
cation usually needs to collect a number of sensor 
readings from each subarea of the target region 
in each sensing cycle. Taking a one-week urban 
air quality monitoring MCS task as an example, 
the MCS organizer first divides the whole area 
into 1 km2 grid cells, then splits the one-week 
MCS process into a sequence of one-hour sensing 
cycles [3], and further requests at least one MCS 
participant in each grid to upload the air quali-
ty sensor reading in each sensing cycle. Besides 
the full spatial-temporal coverage [4], the orga-
nizer frequently uses the partial spatial-temporal 
coverage metrics for MCS data collection, where 
the fraction of subareas being covered by at least 
one sensor reading in each sensing cycle is used 
to represent the coverage [5]. Usually, the use 
of full spatial-temporal coverage is to ensure the 
collected sensor readings representing each sub-
area in each sensing cycle, while the use of partial 
coverage aims to collect data that could represent 
the majority part (e.g., 80 percent) of subareas in 
each cycle.

In addition to organizers’ efforts in the pro-
cess of participant recruitment, task assignment, 
and data collection, MCS also requires the par-
ticipants’ mobile devices to sustainably perform 
sensing tasks and upload sensor data during the 
MCS process. In order to prolong the battery 
life of mobile devices engaged in MCS, various 
solutions have been proposed to reduce energy 
consumption of individual mobile devices, rang-
ing from adapting sensing frequency to inferring 
part of data rather than sensing and uploading 
all data [6]. One of the effective solutions is 
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piggyback crowdsensing (PCS), which reduces 
energy consumption by leveraging smartphone 
opportunities [7]. Generally, a PCS app works 
as follows.

Before the MCS process, the organizer needs 
to first recruit participants and assign each recruit-
ed participant a list of sensing cycles that he/
she needs to return sensor data. Furthermore, it 
requires, as shown in Fig. 1, that each participant’s 
MCS device performs a sensing task and returns 
sensor readings immediately when the smartphone 
SAO is available in the sensing cycles with the PCS 
task assigned. By performing sensing tasks and 
uploading sensor data in parallel with an SAO, the 
PCS task model can significantly reduce energy 
consumption caused by crowdsensing [7]. For 
example, uploading sensing data in parallel with 
a 3G call can reduce about 75 percent of energy 
consumption in data transfer compared to the 
3G-based solution [8]. The work described in this 
article is based on our very recent publication 
[9]; we focus on the big picture, framework, and 
general idea in this article, while more technical 
details about the crowd sensing algorithm and its 
analysis can be found there. These two articles 
together serve as a whole piece, reporting our 
recent progress in incentive task allocation for 
crowdsensing.

To incentivize participants in mobile crowd-
sensing, the organizer usually pays each recruited 
participant a constant amount as the base incen-
tives; then a varying amount of bonus incentives 
would be offered depending on the number of 
cycles assigned with PCS tasks. Once the spa-
tial-temporal coverage and incentive payment set-
tings are determined, the MCS organizer needs 
to recruit participants and assign PCS tasks with 
either of the following two data collection goals:
•	 Maximizing the spatial-temporal coverage 

with a fixed budget
•	 Minimizing the total budget while ensuring 

the spatial-temporal coverage

Problem Formulation and 
Key Challenges

In this section, we first provide an overview of the 
general incentive allocation problem that unifies 
incentive task allocation problems under various 
incentives, spatial-temporal coverage, and data 
collection settings. Based on the generic problem 
formulation, we elaborate several key technical 
challenges.

Here, we first define the overall set of partic-
ipants as U = {u0, u1,… un} where each ui  U 
refers to a participant, the set of sensing cycles 

for PCS task as t = {t0, t1, … tm}, where each tj  T 
refers to a sensing cycle, and the task assignment 
as a = {(ui, tj) …  U   T where each (ui, tj)  
a refers to assigning a PCS task to Ui in sensing 
cycle tj; then the set of sub-regions in the target 
area as C = {c0, c1, …ck}. We define the sub-re-
gions that are covered by the task assignment a at 
sensing cycle t as covert(a), where covert(a)  C. 
Further, we define U(a)as the number of unique 
mobile users assigned with PCS tasks in a. Thus, 
the overall incentive budget consumption should 
be ba*u(a’)+bo*|a’|, which considers both base 
payment for each recruited participant and bonus 
incentive for each assigned task.

General Incentive Allocation Problem: With 
all of the above definitions in mind, the general 
form of the task allocation problem is to find a 
such that

For Goal.1:α = argmax
ʹα

covert ( ʹα )
t∈T
∑

                           s.t.ba *u( ʹα )+bo * ʹα ≤ B

For Goal.2 :α = argmax
ʹα

ba *u( ʹα )+bo * ʹα

                           s.t. covert ( ʹα ) ≥G,∀t ∈ T
 	

(1)

where B is the predefined budget for data collec-
tion. Goal.1 and G refer to the expected number 
of covered sub-regions for Goal.2 (G < |C| for 
partial coverage and G = |C| for the full cover-
age.), respectively. Note that covert(a) depends 
on the future mobility and SAOs of the select-
ed participants/cycles in a, which is not known 
beforehand. Our work intends to solve the pro-
posed problems through stochastic optimization 
and SAO/mobility prediction.

To solve the above problems, we have to tack-
le the following technical challenges:

Predicting the future mobility and SAO of 
crowds using the historical mobility/SAO traces: 
To allocate incentive for SAO-based PCS tasks, 
we might first need to predict each participant’s 
mobility and SAOs during the entire PCS period, 
based on their historical mobility/SAO traces. In 
this way, we can predict when and where each 
participant will be more likely to return a sensor 
reading if a task is assigned.

Estimating the Spatial-Temporal Coverage 
Using the Predicted Mobility and SAOs: Given 
the predicted mobility/SAOs of all participants 
and the task allocation result a , we then need 
to estimate the likelihood of each subarea being 
covered by at least one sensor reading in each 
sensing cycle. To estimate the spatial-temporal 
coverage for data collection Goal.1, we can eas-
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Figure 1. Task assignment for piggyback crowdsensing.
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ily sum the likelihood of every subarea being 
covered in every sensing cycle to calculate the 
expectation of St|covert(a)|. On the other hand, 
to test whether the predefined spatial-temporal 
coverage is achieved (i.e., covert(a)  G), we also 
need a method to estimate the lower bound of 
|covert(a)|, ∀t  T.

Optimal Task Assignment Using the Estimat-
ed Coverage: Given the function that can esti-
mate |covert(a)| for any task assignment a using 
predicted mobility/SAO, there further needs to 
be a method to search the optimal a. 

In the target problem, the optimal solution 
should select a subset of participants from 
all users; then, for each selected participant, 
assign PCS tasks to a subset of her sensing 
cycles, with respect to the data collection goal. 
Thus, combinatorial optimization is needed to 
search among all the 2UT choices to solve the 
optimization problem for Goal.1 or Goal.2. 
Despite the NP-hardness of such combinatorial 
search, certain polynomial-time approximation 
algorithms are required to lower the computa-
tional complexity of the (near-)optimal search 
for a.

CrowdMind: A Generic Framework for 
PCS Incentive Allocation

With all the above technical challenges in mind, 
we propose CrowdMind — A Generic Framework 
for PCS Incentive Allocation. CrowdMind includes 
a set of mobility prediction, coverage estimation, 
and near-optimal task allocation algorithms, which 
could achieve the near-optimal incentive alloca-
tion for both data collection goals under certain 
incentive/coverage assumptions. 

Mobility Prediction Using Mobility Traces

Assuming the SAO sequence follows an inho-
mogeneous spatial-temporal Poisson process, 
the probability of a user Ui to have at least one 
SAO at subarea cj (cj  C) in sensing cycle t  T. 
This can be can be calculated as Pui,cj,t = 1 – e–
lui,cj,t, where lui,cj,t refers to the Poisson inten-
sity, which is estimated as the average number 
of SAOs that Ui has placed at cj in the historical 
traces corresponding to the sensing cycle t. For 
example, to estimate lui,cj,t for sensing cycle t 
from 08:00 to 09:00, we count the average num-
ber of SAOs placed by Ui at cj during the same 
period 08:00–09:00 in historical traces.

Coverage Estimation and Probabilistic Lower Bound

For Goal.1, given the task assignment   and 
SAO/mobility prediction result Pui,cj,t, we esti-
mate the spatial-temporal coverage for Goal.1 as 
the expectation of StT|covert()|, i.e., E(StT|-
covert()|) = StTScjCPcj,t(). We estimate the 
probability of the subarea cj being covered 
by   in sensing cycle t as: where Pcj,t() = 1 – 
∏∀uiut((1 – Pui,cj,t is the probability of the sub-
area cj being covered by   in sensing cycle t, 
and Ut()  U refers to the set of participants 
assigned with task in sensing cycle t.

For Goal.2, we need to estimate if at least G 
subareas would be covered by assigned tasks in 
. Thus, we calculate the probability of at least 
G subareas being covered by  in sensing cycle t 
(i.e., probabilistic lower bound) as

P covert (α) ≥G( ) =
     Pcc ,t (α)

cj∈c
∏

c≤C, c=g
∑

G≤g≤C
∑ 1−Pcc ,t (α)( )

cj∈C \c
∏

 
	

(2)

To solve Eq. 2, we implemented a low-complexity 
algorithm using the second-moment generating 
function [10]. 

Submodular Optimization for Task Assignment

We leverage submodular maximization algorithms 
to solve the combinatorial optimization problems 
of the PCS incentive allocation. We first introduce 
the algorithms used for Goal.1, then extend to 
Goal.2.

For Goal.1, the problem can be transformed to 
finding  that maximizes E(St|covert(a)|)subject 
to ba*u() + bo*||  B. As E(StT|covert()|) is a 
monotonic, non-decreasing, submodular function, 
this problem could be solved by state-of-the-art 
constrained submodular maximization algorithms, 
as described below.

When ba = 0 and bo > 0: the problem becomes 
a submodular set function maximization over a 
knapsack constraint problem. In this case, a sim-
ple incremental greedy algorithm [11], which 
selects the user-cycle pair (ui, cj) having the max-
imal spatial-temporal coverage increment, that is, 
(E(|covert(  {(ui, t))|) – E(|covert()|)) among 
all unselected user-cycle pairs. Then the algorithm 
adds (ui, cj) into  until the budget runs out, and 
can achieve the near-optimal solution. Suppose g 
is the solution searched by the incremental greedy 
algorithm [11]; then for any budget-feasible task 
assignment ∀*  R  T and ba*u(*) + bo*|*| 
B, we can ensure that E(StT|covert(g)|)  (1 – 
e–1)E(StT|covert(*)|). For detailed proof, please 
refer to [11].

When ba > 0 and bo = 0: we can first assume 
that, to enjoy the free sensing cycles (bo = 0), 
every selected participant’s sensing cycles should 
be assigned a PCS task. Then, again, the problem 
becomes a submodular set function maximiza-
tion over a knapsack constraint problem. A similar 
incremental greedy algorithm [11] selects a new 
participant Ui having the maximal spatial-temporal 
coverage increment over all sensing cycles, that 
is, E(StT|covert( (ui, t))|) – E(StT|covert()|). 
Then the algorithm adds {(ui, t*) : ∀t*  T} into  
until the budget runs out, and could be used to 
achieve the near-optimal solution with the same 
1 – e–1 bound. 

When ba > 0 and bo > 0: the problem becomes 
a submodular set function maximization over a sub-
modular knapsack constraint problem; in this case, 
a nested-loop greedy algorithm [12] can achieve 
the near-optimal solution using E(StT|covert()|) 
as the objective function. Suppose n is the solution 
sought by the nested-loop greedy algorithm [12]. 
Given a new budget g * B (where g is closed to 1), 
for any budget-feasible task assignment ∀*  R  T 
and ba*u(*) + bo*|*| g * B, we can ensure that 
E(StT|covert(n|)  (1 – e–1)E(StT|covert(*)|). For 
details, please refer to [11, 12]

For Goal.2, we can also use the greedy-based 
algorithms [11, 12] to solve the problem under 
the three corresponding ba/bo settings. Compared 
to the algorithms for Goal.1, which use budget 
feasibility as the stopping criterion of greedy 
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search, the greedy algorithms used for Goal.2 
leverage probabilistic lower bound Eq. 2 as the 
stopping criterion. Specifically, the greedy search 
process here continues selecting/adding new par-
ticipant-cycle pairs into a, until P(|covert(a)| G) 
 thr, where 0 < thr < 1 is a predefined threshold 
to bound the spatial-temporal coverage. Accord-
ing to the Markov inequality, we have:

P covert (α) ≥G( ) ≤
E covert (α)( )

G
 .

 	
(3)

The proposed greedy search indeed optimizes 
the upper bound of Eq. 2 in each iteration and 
stops when Eq. 2 achieves the predefined thresh-
old. We can conclude that, for Goal.2, the greedy 
algorithms are near-optimal under the optimiza-
tion assumptions.

Evaluation and Result Analysis
In this section, we show the evaluation result of 
CrowdMind for the two MCS data collection 
goals. Specifically, we first introduce the datasets 
used in the experiments of both goals, and then 
present the evaluation results of CrowdMind for 
Goal.1 and Goal.2, respectively, to compare per-
formance against baselines.

Dataset and Experiment Setups

The dataset we used in evaluation is the D4D 
dataset [13], which contains 50,000 users’ phone 
call traces (each call records includes user ID, call 
time, and cell tower) from Cote d’Ivoire. We use 
this phone call dataset for the evaluation, with the 
following assumption:
•	 Assumption: We consider each phone call 

placed by these users is an SAO for the 
potential sensor reading uploading.
All these users are re-selected randomly every 

two weeks with anonymized user IDs. Thus, in 
this study, we design experiments based on such 
two-week periods. The call traces in the first 
week were used for participant selection, and 
we simulated the spatial-temporal coverage of 
selected participants using call traces in the sec-
ond week. Specifically, we extract the call traces 
of two connected regions in four two-week peri-
ods and build the following three datasets for 
our evaluation:
•	 BUSINESS: a commercial center of the city 

where 86 cell towers have been installed 
and around 7945–8799 mobile phone users 
place phone calls in any two-week period

•	 RESIDENTIAL: a residential area where 45 
cell towers have been installed and around 
6034–6627 mobile phone users place 
phone calls in any two-week period.

•	 BUSINESS+RESIDENTIAL: a combined area 
of both BUSINESS and RESIDENTIAL regions 
where 131 cell towers have been installed 
and around 11,363–12,049 unique mobile 
phone users place phone calls in any two-
week slot.

We used the four periods’ call traces to simulate 
four PCS tasks, each lasting for two weeks. We 
assume that each PCS task executes five days per 
week. We carried out experiments using a laptop 
with an Intel Core i7-2630QM Quart-Core CPU 
and 8 GB memory. CrowdMind and baseline 
algorithms were implemented with the Java SE 
platform on a Java HotSpot™ 64-Bit Server VM.

Baselines and Comparisons for Goal.1

In order to evaluate CrowdMind for Goal.1, 
we first introduce three baselines derived from 
state-of-the-art optimization algorithms, and then 
compare the performance of CrowdMind to 
the baselines in terms of coverage achieved by 
CrowdMind and three baselines under the same 
budget/incentive setting. Further, we use a case 
study to illustrate the number of sensor readings 
collected from each subarea under the specific 
incentive/budget/setting.

Baselines for Goal.1: We provide three base-
line task allocation methods using the greedy 
and partial enumeration schemes for compara-
tive studies: MaxCov — adding a user-cycle pair 
that maximizes coverage in each iteration without 
considering the incentive cost [8]; MaxUtil — add-
ing a user-cycle pair that has the maximal ratio of 
coverage improvement vs. incentive costs in each 
iteration; and MaxEnum — adding a user and a 
combination of his/her cycles that have the max-
imal ratio of coverage improvement vs. incentive 
costs; the algorithm is derived from [14].

Performance Comparisons for Goal.1: Spa-
tial-Temporal Coverage Comparisons under the 
Same Budget Constraint: From the spatial-tem-
poral coverage comparisons shown in Fig. 
3, we can observe that in all the cases Crowd-
Mind outperformed the three baselines with the 
same budget constraint, under the incentive and 
buget settings: ba = 10/30/50/70, bo = 1,and b 
= 1000/2000/3000. In the case of bo = 0, we 
illustrate the average spatial-temporal coverage 
comparison of the four methods based on the 
BUSINESS region with various budgets in Table 1. 
Note that the average spatial-temporal coverage 
could not be bigger than 100 percent, that is, 

∑t∈T covert (α)
T * C

≤100%.
 

Figure 2. Testbed for the evaluation.
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Baselines and Comparisons for Goal.2

In order to evaluate performance of CrowdMind 
for Goal.2, we build baselines and compare their 
performance to CrowdMind using the following 
spatial-temporal coverage constraint and incentive 
(ba, bo) settings:
•	 The base and bonus incentives are fixed to ba 

= 1 and bo = 0 respectively.
•	The spatial-temporal coverage constraint is set to 
the coverage ratio

G
C
= 85% and 95%.

 
Baselines for Goal.2: In our evaluation, we 

provide three baseline methods with different 
utility-based selection strategies from Crowd-
Mind, but all of them share the same iteration 
process and stopping criterion. The baselines 

are: MaxMin — instead of using the expectation 
of spatial-temporal coverage, this method using 

min
t∈T

P( covert (α) ≥G){ }
 

as the utility function of maximization; MaxCom 
— this method is derived from the idea proposed 
by [15], which selects the most “complementa-
ry” user-cycle pair in each iteration; and MaxCov 
— this method uses the same utility function as 
MaxCov for Goal.1. In all experiments, we set the 
stopping threshold in stopping criterion using an 
empirical value of thr = (99.99 percent)1/(|T|*|C|) 
for evaluating CrowdMind as well as the other 
three baselines.

Performance Comparisons for Goal.2: Overall 
Incentive Payment Comparisons under the Same 
Coverage Constraint: In Table 2, we present the 
performance comparison on overall incentives 
consumption (i.e., number of selected participants 
for each of the four tasks) between CrowdMind 
and baselines. It is clear that CrowdMind out-
performed the MaxMin, MaxCom, and MaxCov 
methods in all PCS tasks. On average, Crowd-
Mind consumed 10.0–21.5 percent less overall 
incentives compared to MaxMin (i.e., 10.0–21.5 
percent fewer selected participants), consumed 
23.7–43.5 percent less overall incentives com-
pared to MaxCom, and consumed 54.2–73.5 per-
cent less overall incentives compared to MaxCov. 
All these methods meet the predefined coverage 
constraints.

Conclusion and Discussion
In this article, we propose a unified incentive allo-
cation framework, CrowdMind, for piggyback 
crowdsensing. CrowdMind is designed to opti-

Figure 3. Evaluation results based on the three regions for Goal.1.
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Table 1. Average spatial-temporal coverage com-
parison in the BUSINESS region with bo = 0 and 
ba = 50.

CrowdMind MaxCov MaxEnum MaxUtil

B = 10,000

0.83 0.49 0.83 0.79

B = 20,000

0.94 0.74 0.94 0.92

B = 30,000

0.96 0.85 0.96 0.95
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mally allocate sensing tasks to PCS participants, 
subject to different incentive and spatial-temporal 
coverage constraints/objectives. Theoretical anal-
ysis proves that CrowdMind can achieve near-op-
timality for the two optimal MCS data collection 
goals, and evaluations with a large-scale real-world 
dataset show that CrowdMind outperformed all 
other baseline algorithms.
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Table 2. Average incentive payment (bo = 0 and ba = 1, where “CM.” refers to CrowdMind).

(a) BUSINESS region (b) RESIDENTIAL region (c) RESIDENTIAL+BUSINESS region

CM. MaxMin MaxCom MaxCov CM. MaxMin MaxCom MaxCov CM. MaxMin MaxCom MaxCov

G
C
= 95% G

C
= 95% G

C
= 95%

537.8 601.3 951 1667.5 505.3 622.8 756 1910 776.3 862.3 1291 2442.3

G
C
= 85% G

C
= 85% G

C
= 85%

258.5 293 422 564 257.3 327.8 337 617.8 321.8 377.3 557.8 997.3
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