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Abstract

Fisher’s Linear Discriminant Analysis (FLD) is a
well-known technique for linear classification, fea-
ture extraction and dimension reduction. The em-
pirical FLD relies on two key estimations from the
data – the mean vector for each class and the (in-
verse) covariance matrix. To improve the accuracy
of FLD under the High Dimension Low Sample Size
(HDLSS) settings, Covariance-Regularized FLD
(CRLD) has been proposed to use shrunken covari-
ance estimators, such as Graphical Lasso, to strike
a balance between biases and variances. Though
CRLD could obtain better classification accuracy,
it usually incurs bias and converges to the optimal
result with a slower asymptotic rate. Inspired by
the recent progress in de-biased Lasso, we propose
a novel FLD classifier, DBLD, which improves
classification accuracy of CRLD through de-biasing.
Theoretical analysis shows that DBLD possesses
better asymptotic properties than CRLD. We con-
duct experiments on both synthetic datasets and real
application datasets to confirm the correctness of our
theoretical analysis and demonstrate the superior-
ity of DBLD over classical FLD, CRLD and other
downstream competitors under HDLSS settings.

1 Introduction
Fisher’s Linear Discriminant Analysis (FLD) [Duda et al.,
2001] is a well-known technique for feature extraction and
dimension reduction [Kulis and others, 2013]. It has been
widely used in many applications, such as face recognition
[Peck and Van Ness, 1982], image retrieval, etc. An intrinsic
limitation of classical FLD is that its objective function relies
on the well-estimated and non-singular covariance matrices.
For many applications, such as the micro-array data analysis,
all scatter matrices can be singular or ill-posed since the data is
often with high dimension but low sample size (HDLSS) [Cai
et al., 2016].

The classical FLD classifier relies on two key parameters –
the mean vector of each type and the precision matrix. Under
the HDLSS settings, the sample precision matrix (a.k.a., the
inverse of sample covariance matrix) used in FLD is usually

ill-estimated and quite different from the inverse of popula-
tion/true covariance matrix [Cai et al., 2016]. For example,
the largest eigenvalue of the sample covariance matrix is not
a consistent estimate of the largest eigenvalue of the popu-
lation covariance matrix, and the eigenvectors of the sample
covariance matrix can be nearly orthogonal to the truth when
the number of dimensions is greater than the number of sam-
ples [Marčenko and Pastur, 1967]. Such inconsistency be-
tween the true and the estimated precision matrices degrades
the accuracy of FLD classifiers under the HDLSS settings [Zol-
lanvari and Dougherty, 2013].

A plethora of excellent work has been conducted to ad-
dress such HDLSS data classification problem for FLD. For
example, Krzanowski et al. [Krzanowski et al., 1995] sug-
gested to use pseudo-inverse to approximate the inverse co-
variance matrix, when the sample covariance matrix is sin-
gular. However, the precision of pseudo-inverse FLD is usu-
ally low and not well guaranteed. Other techniques include
the two-stage algorithm PCA+FLD [Ye et al., 2004], FLD
based on Kernels [Zhang and others, 2003] and/or other non-
parametric statistics [Kaski and Peltonen, 2003]. To over-
come the singularity of the sample covariance matrices, in-
stead of estimating inverse covariance matrix and mean vec-
tors separately, [Cai and Liu, 2011] proposed to estimate
the projection vector for discrimination directly. More popu-
larly, regularized FLD approaches [Krzanowski et al., 1995;
Witten and Tibshirani, 2009] are proposed to solve the prob-
lem. These methods can improve the performance of FLD
either empirically or theoretically [Durrant and Kabán, 2015;
Bickel et al., 2004], while few of them can directly address
the ill-estimated inverse covariance matrix estimation issue.

One representative regularization approach is Covariance-
Regularized FLD [Witten and Tibshirani, 2009] that replaces
the precision matrix used in FLD with a shrunken estimator,
such as Graphical Lasso [Friedman et al., 2008], so as to
achieve a “superior prediction”. Intuitively, through replacing
precision matrix used in FLD with a sparse regularized esti-
mation, the ill-posed problem caused by the HDLSS settings
can be well addressed. The sparse estimators usually converge
to the inverse of true/population covariance matrix faster than
the sample estimators [Cai et al., 2016]. With the asymptotic
properties, the sparse FLD should be close to the optimal FLD.
However, the way that the sparsity and the convergence rate of
the precision matrix estimator would affect the classification
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accuracy is not well studied in literature.
Further, with induced sparsity, the inverse covariance esti-

mator becomes biased [Zhang and Zhang, 2014]. The perfor-
mance of sparse FLD is frequently bottlenecked due to the
bias of the sparse estimators. Recently, researchers tried to
de-bias the Lasso estimator [Zhang and Zhang, 2014], through
adjusting the `1-penalty for the regularized estimation, so as
to achieve a better regression performance. Inspired by this
line of research, we propose to improve sparse FLD through
de-biasing (i.e., de-sparsifing) in this paper.
Our Contributions. With respect to the aforementioned is-
sues, in this paper, we made the following contributions.

1. Inspired by De-biased Lasso [Javanmard and Monta-
nari, 2014], we study the problem of de-biasing the
Covariance-Regularized FLD (CRLD), which has been
widely-used for empirical sparse FLD estimation, for per-
formance improvement. To the best of our knowledge,
this is the first work aiming at de-biasing CRLD.

2. We propose a novel algorithm DBLD – De-Biased
Fisher’s Linear Discriminant Analysis on top of CRLD.
DBLD leverages yet-another De-Biased Estimator for
linear classification problem, to re-balance the variances
and biases of the estimation, through de-sparsifying the
projection vector obtained by CRLD.

3. Our theoretical analysis shows, under certain mild as-
sumptions, DBLD converges faster than CRLD with
sharp asymptotic rate. We also conduct extensive ex-
periments to demonstrate the advantage of the proposed
algorithms over other competitors. The results validate
the correctness of our theoretical analysis.

Notations. Following key notations are used in the rest of
this paper: Given a p-dimensional vector v ∈ Rp, we de-
note the `P vector-norm as |v|P = (

∑m
i=1 |vi|P)1/P (P is

a non-negative integer) and the `∞ vector-norm as |v|∞ =
max1≤i≤m{|vi|}. Given a matrix A ∈ Rm1×m2 , we denote
the `P matrix-norm as ||A||P = maxv∈Rp{|Av|P/|v|P}.
Note that the symbol p refers to the number of dimensions
of the data while m refers to the number of samples. The
operator Op(·) refers to the big-O-notation in high probability.

2 Preliminaries
In this section, we first briefly introduce the binary classi-
fier using FLD, then present the practice of CRLD based on
Graphical Lasso.

2.1 FLD for Binary Classification
To use the Fisher’s Linear Discriminant Analysis (FLD), given
the i.i.d. labeled data pairs (x1, `1) . . . (xm, `m), we first
estimate the sample covariance matrix Σ̄ using the pooled
sample covariance matrix estimator with respect to the two
classes [Duda et al., 2001], then estimate the sample precision
matrix as Θ̄ = Σ̄−1. Further, µ̄+ and µ̄− are estimated as the
mean vectors of the positive samples and the negative samples
in the m training samples, respectively.

Given all estimated parameters Σ̄ (and Θ̄ = Σ̄−1), µ̄+ and
µ̄−, the FLD model classifies a new data vector x as the result

of:
f̄(x) = argmax

`∈{−,+}
δ(x, Θ̄, µ̄`, π`), where

δ(x,Θ̄, µ̄`, π`) = x>Θ̄µ̄` −
1

2
µ̄>` Θ̄µ̄` + log π`,

(1)

where π+ and π− refer to the (foreknown) frequencies of
positive samples and negative samples in the whole population,
respectively.

2.2 Covariance-Regularized FLD via Graphical
Lasso

This algorithm, referred to as the Covariance-Regularized
FLD (CRLD) via Graphical Lasso, was derived from the Scout
family of FLD introduced by Witten et al. in [Witten and Tib-
shirani, 2009]. Compared to the classical FLD, this baseline
algorithm leverages Graphical Lasso estimator to replace the
precision matrix estimated using sample covariance matrix.
The proposed algorithm is implemented using the discriminant
function defined in Eq. 1, as:

f̂(x) = argmax
`∈{−,+}

δ(x, Θ̂, µ̄`, π`), (2)

where Θ̂ refers to the Graphical Lasso estimator based on the
sample covariance matrix Σ̄:

Θ̂ = argmin
Θ>0

tr(Σ̄Θ)− log det(Θ) + λ
∑
j 6=k

|Θjk|

. (3)

Note that, as a linear classifier, the CRLD decision rule
introduced in Eq. 2 can be re-formulated in a linear model,
such as:

f̂(x) = sign
(
δ(x, Θ̂, µ̄+, π+)− δ(x, Θ̂, µ̄−, π−)

)
= sign

(
x>β̂G + cg

)
,

(4)

where sign(·) function returns +1 if the input is non-negative,
and −1 when the input is negative. The vector β̂G = Θ̂(µ̄+ −
µ̄−) and the scalar cg = − 1

2 · (µ̄+ + µ̄−)>β̂G + log(π+/π−).
Obviously, β̂G is the vector of projection coefficients for linear
classification.

In this paper, we present the analytical results (i.e., statisti-
cal rate of convergence that β̂G approximates to the optimal
projection vector with varying number of samples n and di-
mensions p) of CRLD in Theorem 1.

3 The Proposed Algorithm
In this section, we introduce our proposed algorithm DBLD—
De-Biased Fisher’s Linear Discriminant Analysis (via Graph-
ical Lasso), then present the theoretical analysis on the theo-
retical properties of the proposed algorithms.

3.1 DBLD: The De-Biased Estimation for
Covariance-Regularized FLD

Given the i.i.d. labeled data pairs (x1, `1) . . . (xm, `m) drawn
from the two classes with certain priors, as shown in Algo-
rithm 1. The algorithm first (i) estimates the sample estimation
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of covariance matrices and the mean vectors, then (ii) lever-
ages CRLD to estimate the shrunken projection vector β̂G.
Further, DBLD (iii) proposes a de-biased estimator (denoted
as DeBias function) to de-bias β̂G and obtain the projection
vector β̂D. Finally, we introduce a decision rule that enables
classification using the estimated β̂D.

Algorithm 1 DBLD Estimation Algorithm

1: procedure DBLD((x1, `1) . . . (xm, `m))
2: /*(i) Sample Estimators for Mean and Covariance */
3: X+ ← PositiveSampleSet((x1, `1)..(xm, `m));
4: X− ← NegativeSampleSet((x1, `1)..(xm, `m));
5: µ̄+ ← 1

|X+| ·
∑
x∈X+

x, µ̄− ← 1
|X−| ·

∑
x∈X−

x;
6: Σ̄+ ← 1

|X+| ·
∑
x∈X+

(x− µ̄+)(x− µ̄+)>;
7: Σ̄− ← 1

|X−| ·
∑
x∈X−

(x− µ̄−)(x− µ̄−)>;

8: µ̄← |X+|·µ̄++|X−|·µ̄−
|X+|+|X−| , Σ̄← |X+|·Σ̄++|X−|·Σ̄−

|X+|+|X−| ;

9: /*(ii) CRLD Estimator (to obtain β̂G) */
10: Θ̂← GraphicalLasso(Σ̄, λ);
11: β̂G ← Θ̂(µ̄+ − µ̄−);
12: /*(iii) DBLD Estimator (to obtain β̂D) */
13: X← [x1, x2, ...xm]; /*p×m matrix */
14: L← [`1, `2, . . . `m]>; /*m× 1 matrix */
15: U← [µ̄, µ̄, . . . µ̄];
16: /*U is an m× p matrix, every column is µ̄*/
17: c← −µ̄>β̂G;
18: C← [c, c, . . . , c]>;
19: /*C is a m× 1 matrix, every row is c*/
20: β̂D ← β̂G + 1

m · Θ̂ (X−U)
(

2 · L−X>β̂G −C
)

21: return β̂D;

In the following section, we present the design of the De-
Biased Estimator (denoted as DeBiasing function in Algo-
rithm 1) to obtain β̂D, then introduce the decision rule for
optimal classification. Later we analyze the theoretical proper-
ties of β̂D.

The De-Biased Estimator
Inspired by the De-biased Lasso [Javanmard and Monta-
nari, 2014], we propose to improve the performance of
CRLD through de-biasing βG. Given m labeled training
data (x1, `1), (x2, `2), . . . (xm, `m) with balanced labels, the
Graphical Lasso estimator Θ̂ on the data and the CRLD model
(i.e., β̂G), we propose a novel de-biased estimator of β̂D that
takes the form as

β̂D ← β̂G +
1

m
· Θ̂ (X−U)

(
2 · L−X>β̂G −C

)
, (5)

where we denote X as an p ×m matrix where 1 ≤ i ≤ m
and the ith column is xi; L as an m× 1 matrix (i.e., vector)
whose ith row is `i ∈ {±1}; U is a p×m matrix where each
column is µ̄ (as line 7 in Algorithm 1); and C is an m × 1
matrix where each row is c (as line 16 in Algorithm 1).

The DBLD Classifier.
Given the de-biased estimator β̂D, the DBLD classifies the
input vector x using the following rule:

f̂D(x) = sign

((
x> − µ̄+ + µ̄−

2

)>
β̂D + log(π+/π−)

)
.

(6)
In the following section, we present the analytical results
of DBLD, including the computational complexity of de-
biasing and statistical rate of convergence.

3.2 Complexity Analysis of DBLD

In this section, we analyze the computational complexity for
the three steps of Algorithm 1. The step (i) estimates the sam-
ple covariance matrices and mean vectors, which consumes at
most O(p2 ·m) operations. The step (ii) performs Graphical
Lasso and matrix multiplication, where the complexity based
on standard implementation [Friedman et al., 2008] is upper-
bounded by O(p3). The step (iii) de-biasing is implemented
as an exact formula with O(p2) complexity.
Remark 1. All three steps of Algorithm 1 are scalable on
both the number of dimensions (p) and the number of train-
ing samples (m). The overall complexity of the three steps
is O(p3 + p2 · m). Under the HDLSS setting p > m, the
computational complexity of DBLD is upper-bounded by
O(p3). On the other hand, with large sample setting where
m ≥ p, the worst case computational complexity of DBLD
is bounded by O(p2 ·m). Obviously, the proposed de-biasing
estimator (i.e., step (iii)) with complexity O(p2) would not
bound the performance, when compared to the first two steps.

3.3 Convergence Analysis of DBLD

In order to analyze the performance of DBLD, we first define
the linear projection vector of the optimal FLD as β∗. Givenm
samples (x1, `1), . . . (xm, `m) drawn i.i.d. from N (µ∗+,Σ

∗)
and N (µ∗−,Σ

∗) with the equal priors for training, the opti-
mal projection vector should be β∗ = Θ∗(µ∗+ − µ∗−) and
Θ∗ = Σ∗−1. We intend to understand how close β̂G and β̂D
approximate to the optimal estimation β∗.

Assumption 1. We follow the assumptions made in [Rothman
et al., 2010] that a positive constant K having

1/K ≤ λmin(Σ∗) ≤ λmax(Σ∗) ≤ K

exists. The operators λmin(·) and λmax(·) denote the smallest
and largest eigenvalues respectively. In this way, there exists
‖Σ∗‖2 ≤ K and ‖Θ∗‖2 ≤ K.

Assumption 2. We further follow the assumption that, the
data vectors for training are all realized from a random vector
X and there exists an constant B having |X|2 ≤ B. Thus
there has |µ̄+|2 ≤ B and |µ̄−|2 ≤ B.

Theorem 1. With appropriate setting of tuning parameter
λ �

√
logp/m (in Eq 3), the `2-vector-norm convergence

rate of CRLD β̂G approximating to the optimal estimation β∗
is:

|β̂G − β∗|2 = Op

(√
(p+ d) log p

m

)
, (7)
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where d = max1≤i≤p|{j : Σ∗
−1

i,j 6= 0}| refers to the maxi-
mal degree of the graph (i.e., population inverse covariance
matrix).

Proof. Here, we first prove the upper bound of |β̂G − β∗|∞.
As was defined β̂G = Θ̂(µ̄+ − µ̄−), then we have:

|β̂G − β∗|2 = |Θ̂(µ̄+ − µ̄−)−Θ∗(µ∗+ − µ∗−)|2. (8)

Considering the inequities |x+y|2 ≤ |x|2 + |y|2 and |Ax|2 ≤
||A||2 · |x|2, we have

|β̂G − β∗|2 ≤ ||(Θ̂−Θ∗)||2 · |µ̄+ − µ̄−|2
+ ‖Θ∗‖2

(
|µ̄+ − µ∗+|2 + |µ̄− − µ∗−|2

)
.

(9)

According to [Rothman et al., 2010], when λ �
√

logp/m,

we consider the spectral-norm convergence rate ‖Θ̂−Θ∗‖2 ≤
‖Θ̂−Θ∗‖F = Op(

√
(p+ d) · log p/m), the asymptotic rate

of sample mean vector [DasGupta, 2008] is |µ̄+ − µ∗+|2 =

Op(
√
p/m) and |µ̄−−µ∗−|2 = Op(

√
p/m), with the increas-

ing number of dimensions p and number of samples m.
Further, there has ‖Θ∗‖2 ≤ K (Assumption 1) and `2-

norms of all mean vectors are bounded by B. In this way, there
must exist positive constants C1 and C2 having:

|β̂G − β∗|2 ≤ C1 · 2B
√

(p+ d) log p

m
+ C2K

√
p

m
. (10)

Thus, according to the definition of asymptotic rate, we con-
clude the convergence rate as:

|β̂G − β∗|2 = Op

(√
(p+ d) log p

m

)
. (11)

Theorem 2. With appropriate setting of tuning parameter λ
(in Eq 3), the `2-vector-norm convergence rate of DBLD β̂G

approximating to the optimal estimation β∗ is:

|β̂D − β∗|2 = Op

(√
p log p

m

)
. (12)

Proof. Here, we prove the upper bound of |β̂D − β∗|∞. Con-
sider the definition of the de-biased FLD estimator β̂D intro-
duced in Eq. 5, we have

β̂D = β̂G +
2

m
· Θ̂XL

− 2

m
· Θ̂UL− 1

m
· Θ̂(X−U)(X−U)>β̂G.

(13)

With the assumption of equal priors (π+ = π− = 0.5), L is a
m× 1 label matrix that half of its elements are +1 while the
rest are all−1. X refers to a p×mmatrix, where each column
is a sample of data e.g., x1, x2, . . . , xm. As was defined β̂G =

Θ̂(µ̄+ − µ̄−) = 2
m · Θ̂XL. As U is a matrix in which each

column is a constant vector (µ̄+ + µ̄−)/2 and L is a vector
with half elements as 1 and half elements as −1, thus 2

m ·

Θ̂UL = 2
m · Θ̂(UL) = 0. As each column of X refers

to a sample drawn from the original data distribution, thus
1
m (X−U)(X−U)> = Σ̄s is the sample covariance matrix
estimator. With all above in mind, we have

β̂D = β̂G +
(
I− Θ̂Σ̄s

)
β̂G, (14)

where I refers to a p × p identity matrix. Note that(
I− Θ̂Σ̄

)
β̂G can be considered as the de-sparsification term

that de-biases β̂G. Thus, considering the asymptotic rate
of sample mean vector [DasGupta, 2008] is |µ̄+ − µ∗+|2 =

Op(
√
p/m) and |µ̄− − µ∗−|2 = Op(

√
p/m), we have

|β̂D − β∗|2 ≤
∣∣∣∣∣∣(2 · I− Θ̂Σ̄s

)
Θ̂−Θ∗

∣∣∣∣∣∣
2
|µ̄+ − µ̄−|2

+ |Θ∗(µ̄+ − µ∗+ − µ̄− + µ∗−)|2

≤ 2B
∣∣∣∣∣∣(2 · I− Θ̂Σ̄s

)
Θ̂−Θ∗

∣∣∣∣∣∣
2

+ C2K
√

p

m
.

(15)
According to [Jankova et al., 2015], with appropriate setting
of λ, the spectral-norm convergence rate of the de-sparisified
estimator Θ̂D =

(
2 · Θ̂− Θ̂Σ̄sΘ̂

)
under mild conditions

should be ‖Θ̂D−Θ∗‖∞ = Op(
√

log p/m), then there exists
‖Θ̂D −Θ∗‖2 = Op(

√
p log p/m), with the varying number

of dimensions p and number of samples m. In this way, with
high probability, we conclude the convergence rate:

|β̂D − β∗|2 = Op

(√
p log p

m

)
. (16)

Remark 2. Compared to CRLD’s projection vector β̂G,
our method DBLD recovers the linear projection vector
β̂D with a faster asymptotic rate, i.e.,

√
p log p/m v.s.√

(p+ d) log p/m in a mild condition. Thus, it would ben-
efit to some applications, such as dimensionality reduction
and feature selection. Our later experimental results show
that DBLD outperforms CRLD with higher classification
accuracy, due to the faster statistical rate of convergence.
Remark 3. The proposed algorithm provides a sub-optimal
solution, when compared to [Cai and Liu, 2011]. Our work in-
tend to propose an estimator of β∗ through approximating Σ∗,
µ∗+ and µ∗− separately, while [Cai and Liu, 2011] approximates
β̂∗ straightforwardly via so-called “direct estimation”.

4 Experiments
In this section, we first validate different properties of DBLD
on the synthesized data. Then, we experimentally evaluate
the performance of DBLD using several real-world datasets.
Experiments show the superiority of DBLD.

4.1 Synthesized Data Evaluation
To validate our algorithms, we evaluate our algorithms on
a synthesized dataset (imported from [Cai and Liu, 2011]),
which is obtained through a pseudo-random simulation. The

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2892



0 50 150 200100
Training Set Size

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Ac
cu

ra
cy

CRLD
DBLD

(a) DBLD vs. CRLD

0 20 40 60 80
6

0.72

0.725

0.73

0.735

0.74

0.745

0.75

Ac
cu

ra
cy

CRLD
DBLD

(b) λ Tuning

Figure 1: Classification Accuracy of DBLD vs. CRLD on Pseudo-Random Synthesized Data

synthetic data are generated by two predefined Gaussian dis-
tributions N (µ∗+,Σ

∗) and N (µ∗−,Σ
∗) with equal priors. The

settings of µ∗+, µ∗− and Σ∗ are as follows: Σ∗ is a p×p symmet-
ric and positive-definite matrix, where each element Σ∗i,j =

0.8|i−j|, 1 ≤ i ≤ p and 1 ≤ j ≤ p. µ∗+ and µ∗− are both p-
dimensional vectors, where µ∗+ = 〈1, 1, . . . , 1, 0, 0, . . . , 0〉T
(the first 10 elements are all 1’s, while the rest p−10 elements
are 0’s) and µ∗− = 0. In our experiment, we set p = 200. To
simulate the HDLSS settings, we train CRLD and DBLD,
with 20 to 200 samples randomly drawn from the distributions
with equal priors, and test the two algorithms using 500 ran-
domly generated samples. For each settings, we repeat the
experiments for 100 times and report the averaged results, in a
cross-validation manner.

In this experiment, we compare DBLD, CRLD and FLD
(with pseudo inverse). The results of FLD is not included
here, as it performs extremely worse than both CRLD and
DBLD under the HDLSS settings. Figure. 1(a) presents the
comparison between DBLD and CRLD, in terms of accuracy,
where each algorithm is fine tuned with the best parameter
λ. A detailed example of parameter tuning is reported in
Figure. 1(b), where we run both algorithms, with training set
size as 160, when varying λ from 1 to 70. From Figure. 1(a), it
is obvious that DBLD outperforms CRLD marginally. The λ
tuning comparison addressed in Figure. 1(b) shows that, given
a small λ, both CRLD and DBLD cannot perform well, as the
sparse approximation of β̂G and β̂D cannot be well recovered
in such case [Witten and Tibshirani, 2009]. When λ ≥ 6,
DBLD starts outperforming CRLD, while the advantage of
DBLD to CRLD decreases when increasing λ. However,
even with an extremely large λ, DBLD still outperforms
CRLD. In Figure 2(a), we present the evaluation results based
on unbalanced datasets, where the accuracy of algorithms
using m = 160 training samples drawn with varying priors
is illustrated. The proportion of positive training samples is
varying from 10% to 40%. It is obvious that all algorithms
achieve their best performance when the proportion of positive
training sample is 10% (the most unbalanced case).

To further verify our algorithms, we propose the optimal

FLD classifier β∗ = Θ∗(µ∗+ − µ∗−), which is all based on
the population parameters. We compare the β̂D, β̂G and β̄
estimated by DBLD, CRLD and FLD (with pseudo-inverse)
to β∗. Figure. 2(b) presents the comparison among |β̂D −
β∗|∞, |β̂G−β∗|∞ and |β̄−β∗|∞. It is obvious that β̂D is more
close to β∗ than β̂G and β̄. This observation further verifies
the Theorem 1 and 2. We also compare the accuracy of β∗ to
CRLD, DBLD and FLD. β∗ outperforms these algorithms
and the accuracy of β∗ is around 84.4% It is reasonable to
conclude that DBLD outperforms CRLD, because β̂D is
more close to β∗.

4.2 Benchmark Evaluation Results
In Figure. 3(a), we compare DBLD and other FLD algo-
rithms, including FLD with pseudo-inverse, Sparse FLD via
Graphical Lasso (CRLD) and Ye-FLD derived from [Ye et
al., 2004], on the Web datasets [Lin, 2017]. To simulate the
HDLSS settings (p� m), we vary the training sample sizes
from 30 to 120 while using 400 samples for testing. The num-
bers of dimensions p is 300. For each algorithm, reported
result is averaged over 100 randomly selected subsets of the
training/testing data with equal priors. CRLD and DBLD are
fine-tuned with the best λ. The experimental settings show
that DBLD consistently outperforms other competitors in
different settings. The non-monotonic trend of FLD with the
increasing training set size is partially due to the poor perfor-
mance of pseudo inverse used in FLD.

In addition to FLD classifiers, we also compared DBLD
with other downstream algorithms including Decision Tree,
Random Forest, Linear Support Vector Machine (SVM) and
Kernel SVM with Gaussian Kernel. The comparison results
are listed in Figure. 3(b). All algorithms are fine-tuned with
the best parameters under our experiment settings.

4.3 Early Detection of Diseases on EHR Datasets
To demonstrate the effectiveness of DBLD in handling the
real problems, we evaluate DBLD on the real-world Elec-
tronic Health Records (EHR) data for early detection of dis-
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Figure 2: More Performance Comparison based on Pseudo-Random Synthesized Data
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Figure 3: Performance Comparison on Benchmark Datasets (p = 300 and p� m, D-Tree: Decision Tree, R-Forest: Random Forest, K-SVM:
Kernel SVM, and L-SVM:Linear SVM)

Training Set Size

Algorithm 100 200 300 400 500 600 700

DBLD 0.659±0.022 0.677±0.028 0.691±0.024 0.692±0.023 0.690±0.021 0.696±0.024 0.701±0.023

FLD 0.543±0.034 0.586±0.033 0.616±0.022 0.642±0.029 0.642±0.022 0.657±0.025 0.658±0.026

Ye-FLD 0.627±0.050 0.620±0.077 0.652±0.063 0.620±0.067 0.655±0.062 0.637±0.064 0.670±0.045

Decision Tree 0.621±0.046 0.649±0.031 0.652±0.041 0.655±0.030 0.671±0.028 0.665±0.031 0.668±0.040

Linear SVM 0.615±0.026 0.628±0.030 0.647±0.023 0.666±0.029 0.666±0.021 0.670±0.030 0.675±0.029

Kernel SVM 0.635±0.032 0.669±0.027 0.674±0.039 0.678±0.021 0.668±0.038 0.688±0.024 0.682±0.029

AdaBoost 0.631±0.035 0.630±0.039 0.620±0.028 0.622±0.027 0.621±0.022 0.617±0.025 0.626±0.070

CRLD 0.658±0.023 0.676±0.024 0.682±0.028 0.686±0.022 0.683±0.021 0.692±0.025 0.695±0.018

Random Forest 0.590±0.035 0.602±0.035 0.653±0.031 0.602±0.040 0.674±0.024 0.666±0.026 0.658±0.032

Table 1: Early Detection of Diseases Accuracy Comparison between DBLD and Baselines.

eases [Zhang et al., 2015]. In this application, each patient’s
EHR data is represented by a p = 295 dimensional vector,

referring to the outpatient record on the physical disorders
diagnosed. Patients are labeled with either “positive” or “neg-
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Training Set

Algorithm 100 200 300 400 500 600 700

DBLD 0.690±0.028 0.708±0.027 0.722±0.024 0.729±0.018 0.727±0.0118 0.736±0.018 0.734±0.022

FLD 0.539±0.048 0.580±0.044 0.611±0.030 0.646±0.027 0.644±0.025 0.662±0.028 0.663±0.032

Ye-FLD 0.644±0.100 0.657±0.124 0.688±0.071 0.678±0.057 0.698±0.035 0.698±0.035 0.712±0.027

Decision Tree 0.626±0.120 0.671±0.074 0.675±0.088 0.703±0.032 0.695±0.034 0.676±0.078 0.690±0.097

Linear SVM 0.616±0.031 0.627±0.041 0.651±0.026 0.675±0.031 0.675±0.026 0.680±0.035 0.690±0.031

Kernel SVM 0.701±0.063 0.723±0.022 0.702±0.115 0.726±0.016 0.681±0.115 0.734±0.019 0.715±0.071

AdaBoost 0.560±0.081 0.533±0.107 0.498±0.065 0.503±0.078 0.500±0.080 0.482±0.066 0.503±0.070

CRLD 0.696±0.021 0.716±0.021 0.719±0.024 0.725±0.018 0.721±0.015 0.733±0.021 0.734±0.016

Random Forest 0.419±0.126 0.509±0.102 0.613±0.067 0.509±0.110 0.661±0.036 0.640±0.058 0.603±0.063

Table 2: Early Detection of Diseases F1-Score Comparison between DBLD and other Baselines.

Datasets # Features # Samples

Leukemia 7,128 72 (47 / 25)
Colon 2,000 62 (40 / 22)

Table 3: Description of Datasets for Classification

ative”, indicating whether he/she was diagnosed with depres-
sion & anxiety disorders. Through supervised learning on the
datasets, the trained binary classifier is expected to predict
whether a (new) patient is at-risk or would develop to the de-
pression & anxiety disorders from their historical outpatient
records (physical disorder records) [Zhang et al., 2015].

We evaluate DBLD and other competitors, including Lin-
ear Support Vector Machine, Nonlinear SVM with Gaussian
Kernel, Decision Tree, AdaBoost, Random Forest and other
FLD baselines, with varying training dataset size m from 100
to 700. Table 1 presents the comparison results. To simplify
the comparison, we only present the results of the algorithm
with fine-tuned parameter, which is selected through 10-fold
cross-validation. It is obvious that DBLD and CRLD outper-
form other baseline algorithms significantly, while DBLD
performs better than CRLD. The advantage of DBLD over
other algorithms, such as SVM, is extremely obvious when
the size of training dataset m is small. With the increasing
sample size, though the margins of DBLD over the rest of al-
gorithms decrease, DBLD still outperforms other algorithms.
We also measured the F1-score of all algorithms, DBLD still
outperforms other competitors in the most cases. Please refer
to Table 2 for details.

4.4 Leukemia and Colon Cancer Datasets
We evaluate DBLD, CRLD and other baseline algorithms,
including Decision Tree, Random Forest and SVM, using
leukemia and colon cancer datasets (derived from [Lin, 2017;
Tibshirani et al., 2002]) under HDLSS settings (i.e., p =
7, 128 and 2, 000 vs. m = 20).

Table ?? presents the description of two datasets [Lin, 2017;
Tibshirani et al., 2002] that we used to evaluate the proposed
and baseline algorithms. “Leukemia” refers to the leukemia

cancer dataset [Tibshirani et al., 2002] that includes 7,128
features and totally 72 samples (for training and testing). In
this datasets, 47 samples are labeled as “ALL” class while 25
samples are identified as “AML”. On the other hand, “Colon”
refers to the colon cancer datasets [Lin, 2017] that are with
2,000 features and totally 62 samples, where 40 samples
are negative and 22 samples are identified as positive. Both
datasets are with a ultra-large number of dimensions but with
extremely low sample sizes (i.e., p� m).

To accurately estimate the performance of algorithms using
these datasets under HDLSS settings, we use cross-validation
to limit the potential over-fitting. In each round of cross-
validation, we first randomly drawn 20 samples with equal
prior from the datasets as the training set, and randomly drawn
20 samples with equal prior from the disjoint set of training
set as the testing set. For each round of cross validation, there
are no common samples shared by the two sets. We use the
training set to train each classifier (i.e., p = 7, 128 or 2, 000
andm = 20 ), so as to simulate the extremely HDLSS settings,
then test the trained classifiers using the testing set. For each
experiment, we repeat the cross-validation for 100 rounds.
All algorithms (including baselines and DBLD) are tuned to
have the best accuracy. The experiment results are shown in
Table ??. All results show that DBLD significantly improves
CRLD, and it outperforms all baseline algorithms with the
highest accuracy and F1-score. Please note that though we
trained classifiers using less training data, baselines in our
experiments perform comparably with the test errors reported
in [Tibshirani et al., 2002].

4.5 Summary of Experiment Results

We evaluate DBLD with a limited number of samples for
training i.e., p > m or m 6� p, to understand its performance
under HDLSS setting. For large sample scenario, i.e., when
m � p, the sample-based estimators may provide a robust
estimation of LDA. In this case, singularity issues might not
exist, then regularization and further the de-biasing procedures
are not mandatory.
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Colon Leukemia

Algorithm Accuracy F1 Score Accuracy F1 Score

DBLD 0.803 0.802 0.964 0.964

CRLD 0.633 0.630 0.690 0.690

Decision Tree 0.669 0.658 0.804 0.800

Random Forest 0.801 0.798 0.957 0.956

SVM 0.797 0.812 0.906 0.914

Table 4: Accuracy and F1-Score Comparison between DBLD and
other Baselines Based on Colonar and Leuk Cancer Datasets.

5 Related Work and Discussion
In this section, we review several most relevant studies of our
research. To address the HDLSS issues for FLD, a line of
research [Shao et al., 2011; Cai and Liu, 2011] proposed to
directly estimate a sparse projection vector without estimat-
ing the inverse covariance matrix (sample covariance matrix
is not invertible) and mean vectors separately. On the other
hand, [Peck and Van Ness, 1982; Bickel and Levina, 2008;
Witten and Tibshirani, 2009] proposed to first estimate the
inverse covariance matrix through shrunken covariance estima-
tors, then estimate the projection vector with sample mean vec-
tors. Through regularizing the (inverse) covariance matrix esti-
mation, these algorithms are expected to estimate a sparse pro-
jection vector with (sub-)optimal discrimination power [Zol-
lanvari and Dougherty, 2013]. Moreover, the performance of
FLD has been previously studied in [Durrant and Kabán, 2015;
Bickel et al., 2004].

In our paper, we focus on improving covariance-regularized
FLD [Witten and Tibshirani, 2009], through de-biasing the
projection vector estimated with Graphical Lasso [Witten
et al., 2011]. Our work is distinct due to the following
reasons: (1) Our work is the first to study the problem of
de-biasing the sparse FLD [Zhang and Zhang, 2014]; (2)
Compared to the existing solution to the de-biased linear
regression models [Javanmard and Montanari, 2014], we
proposed a novel de-biased estimator (using a different for-
mulate in Eq 5) for the covariance-regularized sparse Lin-
ear Discriminant Analysis [Witten and Tibshirani, 2009;
Witten et al., 2011]; (3) We analyzed the de-biased estimator
and obtained its asymptotic properties; (4) We validate our
algorithms through comparing a wide range of baselines on
both synthesized and real-world datasets, where the evaluation
result endorses our theory (e.g., asymptotic properties proved
in Theorem 1 and 2 vs. the curve shown in Fig 2(b)).

Discussion and Future Work. In this research, we com-
pare DBLD with CRLD, and common FLD (sample FLD,
pseudo-inverse FLD, Ye-FLD). We do not make further com-
parison with other sparse FLD [Cai and Liu, 2011], as we
focus on the covariance-regularization. In future work, we
plan to study the de-biased estimators for these sparse FLD.

6 Conclusion
In this paper, we studied the problem of improving the per-
formance of covariance-regularized FLD (CRLD) through
re-balancing the biases and variances of the projection vector

estimation. Inspired by the de-biased estimator of Lasso [Ja-
vanmard and Montanari, 2014], we proposed DBLD – a
novel De-Biased estimator for CRLD that lowers the estima-
tion error with faster asymptotic rate, through de-biasing the
projection vector obtained by CRLD. Our analysis shows that
DBLD is with better asymptotic properties, compared to
CRLD, and can obtain higher classification accuracy, under
HDLSS settings. The experimental results on synthesized and
real-world datasets show that DBLD outperformed all base-
line algorithms. Further, the empirical studies on estimator
comparison validate our theoretical analysis.
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