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Abstract—Mixed-criticality (MC) scheduling has been pro-
posed for embedded real-time systems to alleviate the dilemma
between runtime resource utilization and worst-case temporal
guarantees for critical functions. The approach of dropping all
low-criticality tasks upon a mode switch has been criticized
for potentially over-degraded performance. In this paper, we
focus on the graceful degradation for MC scheduling by pro-
viding bounded lateness for certain low-critical tasks. We define
MCQOS-schedulability that massages the required bounded
lateness into the definition of conventional MC-schedulability. A
virtual deadline based scheduler (EDF-VDS) is proposed with
utilization-based MCQOS-schedulability test and and closed-
form lateness bounds.

Index Terms—real-time systems, mixed-criticality scheduling,
graceful degradation, lateness bounds, server task

I. INTRODUCTION

Due to size, weight, and power (SWaP) constraints, embed-
ded system designs often demand high efficiency and resource
utilization. On the other hand, real-time system designs of-
ten cap the system utilization, in order to provide provable
worst-case temporal guarantees that might take overestimated
pessimism into account. Worst-case execution time (WCET)
estimates are one of the places where significant pessimism
that is potentially overestimated could reside in.

To alleviate the dilemma between runtime resource uti-
lization and worst-case temporal guarantees for critical func-
tions, mixed-criticality (MC) scheduling has been proposed for
embedded real-time systems [4, 30]. Under MC scheduling,
each high-critical task may have a relatively optimistic WCET
estimate in addition to the traditional most pessimistic one.
During runtime, the scheduler monitors the execution time
of tasks. If those high-critical ones always complete within
the optimistic WCET estimate, then the scheduler would also
schedule some low-critical tasks to execute and all tasks are
guaranteed to meet their deadline. In contrast, if any high-
critical task over-executes its optimistic WCET estimate (but
does not execute for more than the most pessimistic one), then
the scheduler immediately drops all the low-critical tasks in
order to still guarantee hi-critical tasks meet their deadlines.

One criticism MC scheduling has received is that dropping
the entire workloads of the low-critical tasks may lead to a
sharp performance degradation [10]. Therefore, much recent
work on MC scheduling attempts to address this issue to
provide a more graceful degradation when some high-critical
task over-execute its optimistic WCET estimate. In other
words, even in the most pessimistic scenario, certain provable
quality of service (QoS) for low-critical tasks, instead of
entirely dropping low-critical workloads, is desirable.
Related Work. Much of prior work interpreted and provided
the graceful degradation of the QoS of low-critical tasks in the
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forms of reducing execution time budget for every low-critical
job or dropping a fraction of jobs for every low-critical task. In
order to provide degraded performance for low-critical tasks,
several prior works [7, 11, 17, 22, 26, 28] attempted to improve
the performance of the low critical tasks on a more best-effort
basis with no provable guarantees. Most of the works that
do provide some guarantees to low critical tasks focused on
providing QoS for low-critical tasks by a reduced execution
budget for every low-critical task [3, 16, 20, 21]. [23] proposed
a semi-partitioned algorithm for multiprocessors with full-
service guarantees for low-critical tasks by migrations when
criticality mode switch happens on only one of the processors.
[15] studied guaranteed completion rates for low-critical tasks,
while [14, 24, 25] provided probabilistic guarantees for them.
[8] and [12] applied the concepts of weakly-hard constraints.
[18] proposed a framework to drop tasks dynamically. [13]
and [29] used Sigmoid-shaped utility functions to represent
the QoS for real-time tasks.

Alternatively, graceful degradation can also be interpreted
by bounded tardiness or lateness.1 [5, 6] provided bounded
tardiness guarantees for low-critical tasks. However, this
work focused on fixed-priority-based scheduling and lacked a
utilization-based schedulability test and closed-form tardiness
bounds. In contrast, we focus on EDF-based scheduling in
this paper and will present a utilization-based schedulability
test and lateness bounds in closed form.

We allow a subset of low-critical tasks (the ones that have
QoS requirements and/or benefits) to always execute with
hi-critical tasks together, without reducing execution budget
or dropping certain fractions of jobs, but only guarantee
bounded lateness (which implies bounded response times)
instead of meeting all deadlines for those low-critical tasks in
the most pessimistic scenarios2 (while all deadlines of high-
critical tasks still must be met). Such a graceful degradation is
favorable by tasks that have more resilience on accommodating
an increased constant latency by buffering than suffering
from constantly losing some execution (by reducing execution
budget or dropping a fraction of jobs).
Contributions. In this paper, we focus on the graceful degra-
dation for MC scheduling by providing bounded lateness for
certain low-critical tasks. More formally, we define MCQOS-
schedulability that massages the required bounded lateness
into the definition of conventional MC-schedulability. We then
propose our scheduler, called EDF-VDS,3 for systems that
require to be MCQOS-schedulable, and present our analysis

1The only difference between tardiness and lateness is that lateness can go
negative. When a deadline is missed, they are exactly the same.

2A task should be categorized as high-critical if no lateness can be tolerated
and all deadlines must be met (in the most pessimistic scenario).

3“EDF-VDS” stands for “earliest-deadline-first with virtual deadlines in the
LO-mode and a QoS server task in the HI-mode.”
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and a sufficient MCQOS-schedulability test for EDF-VDS.
Later on, we comment on several interesting issues related
to MCQOS-schedulability and EDF-VDS.
Organization. In the rest of the paper, we introduce our
system model (Section II), review algorithm EDF-VD (Sec-
tion III), present our proposed algorithm EDF-VDS and its
schedulability test (Section IV), discuss related issues (Sec-
tion V), and conclude (Section VI).

II. SYSTEM MODEL

In this paper, we consider the uniprocessor preemptive
scheduling of the classic and widely studied dual-criticality
MC implicit-deadline sporadic task model [1, 2]. Each task τi
in the task set T is either of high(HI) or low (LO) criticality,
and we denote the set of high-criticality tasks (HI-tasks) by
THI and the set of low-criticality tasks (LO-tasks) by TLO. That
is, THI ∪ TLO = T and THI ∩ TLO = ∅. Each (HI- or LO-) task
τi ∈ T releases a sequence of (potentially infinite) jobs, with
a minimum separation of Ti time units between consecutive
job releases. Each job of task τi may execute for up to its
worst-case execution time (WCET) to complete. Each HI-task
τi ∈ THI has two WCET estimates—a most pessimistic one
(with the larger value) denoted by CHI

i and a more optimistic
one (with the smaller value) denoted by CLO

i ; in contrast, each
LO-task τi has only a single (more optimistic) WCET estimate,
which is denoted by Ci. Every job (no matter of a HI- or
LO-task) has an absolute deadline at Ti time units after its
release. For any job J that has an absolute deadline at time d
and finishes its execution at time f , we define its lateness by
f − d. Note that bounded lateness implies bounded response
time, and, in particular, non-positive lateness (i.e., bounded by
0) implies that the deadline is met.

A job is called pending if it is released but not finished. We
also define the lateness of a task by the maximum lateness
among all its jobs. In addition, we may call a job of a HI-task
as a HI-job and a job of a LO-task as a LO-job for short.

In short, a HI-task τi is characterized by three parameters
(CLO

i , C
HI
i , Ti), whereas a LO-task τi is characterized by two

parameters (Ci, Ti). We also define the HI- and LO-utilizations
of a HI-task τi by uHI

i = CHI
i /Ti and uLO

i = CLO
i /Ti,

respectively; and define the (LO-) utilization of a LO-task τi
by ui = Ci/Ti. Furthermore, U HI

HI , U LO
HI , and ULO are defined

as follows:

U HI
HI =

∑
τi∈THI

uHI
i , U LO

HI =
∑
τi∈THI

uLO
i , ULO =

∑
τi∈TLO

ui.

Please note that, for a system to be feasible, the following
conditions must hold; otherwise, the system might be overuti-
lized.

ULO + U LO
HI ≤ 1 (1)

U HI
HI ≤ 1 (2)

MC-schedulability. In order to define the correctness criteria
of this work, we first give a widely-used MC schedulability
definition—later on, a different yet similar concept will be
introduced based on this. In the literature of dual-criticality
MC scheduling, the MC-schedulability of a system is often
defined as follows, by whether and which of the WCET
estimates remain true during runtime.

1) If all job complete within its more optimistic estimates
(i.e., CLO

i for a HI-task or Ci for a LO-task), then the
deadlines for all (HI- and LO-) tasks must be met.

2) If some job(s) of some HI-task(s) need to execute for
more than their optimistic estimate (CLO

i ) but can still
complete within the most pessimistic estimate (CHI

i ), then
the deadlines for all HI-tasks must be met.

3) If any job of a HI-task τi needs to execute for more
than CHI

i time units or any job of a LO-task τi needs to
execute for more than Ci time units, then the system is
considered as erroneous and no temporal guarantee would
be provided.4

In light of the above definition of MC-schedulability, many
MC schedulers would monitor the execution time of each job
and consider a mode switch when a job of some HI-task τi
has executed for CHI

i without signaling completion, and the
mode before and after the mode switch is often called the LO-
mode and the HI-mode, respectively. Upon the mode switch,
the scheduler immediately drops any incomplete and to-be-
released jobs of all LO-tasks, as they are not a criterion for the
MC-schedulability anymore. That is, no temporal guarantee of
any LO-task will be provided in the HI-mode.
QOS task set TQOS. In order to reduce the performance gap
upon the mode switch and provide some temporal guaran-
tees for some LO-tasks to achieve certain provable QoS, we
introduce a new set denoted by TQOS, which is a subset of
TLO, i.e., TQOS ⊆ TLO. The set TQOS should be specified by the
system designer, according to which LO-tasks are meaningful
and/or desirable to be provided certain QoS in the form of
bounded lateness, regardless of the behaviors of HI-criticality
tasks. We may call the LO-tasks in TQOS as QOS-tasks and
call a job of a QOS-task as a QOS-job for short. We also
define UQOS =

∑
τi∈TQOS

ui, which must satisfy the following
in order to be meaningful:

0 < UQOS < 1. (3)

To see this, UQOS = 0 implies no QOS-task in the system at all;
UQOS > 1 implies that the system is overutilized and therefore
is not feasible; and UQOS = 1, together with (1) and the fact
that TQOS is a subset of TLO, implies no HI-task in the system
at all and all deadlines of the only LO-tasks must be met by
applying an ordinary preemptive EDF scheduler.
MCQOS-schedulability. With the introduction of task set
TQOS, we define the following MCQOS-schedulability, which
dominates the conventional MC-schedulability discussed ear-
lier (i.e., any system that is MCQOS-schedulable must also be
MC-schedulable).

1) If all job complete within its more optimistic estimates
(i.e., CLO

i for a HI-task or Ci for a LO-task), then the
deadlines for all (HI- and LO-) tasks must be met.

2) If some job(s) of some HI-task(s) need to execute for
more than their optimistic estimate (CLO

i ) but can still
complete within the most pessimistic estimate (CHI

i ), then
the deadlines for all HI-tasks must be met and all QOS-
tasks have bounded lateness.

3) If any job of a HI-task τi needs to execute for more
than CHI

i time units, or any job of a LO-task τi needs to

4Alternatively, instead of being erroneous, any such jobs could be imme-
diately terminated and considered as completed.
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execute for more than Ci time units, then the system is
considered as erroneous and no temporal guarantee would
be provided.4

Thus, in contrast to the MC schedulers discussed earlier
that tends to drop all tasks in TLO upon the mode switch,
an MCQOS scheduler would only drop tasks in TLO \ TQOS

(LO but not QOS) while must allow tasks in TQOS to continue
their (unfinished) execution, release new jobs in the HI-mode,
and experience bounded lateness (that is provable).

III. ALGORITHM EDF-VD

In this section, we review the scheduler EDF-VD, which
was first proposed in [1, 2] to validate the MC-schedulability.
Therefore, there is no task set TQOS but only task sets THI and
TLO under EDF-VD. Later on, in Section IV, we will discuss
how to build a new scheduler EDF-VDS, which is based on
EDF-VD, to cope with the introduction of TQOS.

We first provide an overview describing the preprocessing
that is done by EDF-VD, then we discuss the manner in which
it makes run-time scheduling decisions.

Given the MC implicit-deadline sporadic task set T to be
scheduled on a preemptive uniprocessor, prior to run-time,
EDF-VD performs a schedulability test to determine whether
τ can be successfully scheduled by it or not. If T is deemed
schedulable, then a virtual deadline (T

′

i ≤ Ti) is computed
for each HI-criticality task. For simplicity, one may choose
to calculate one system-level deadline shrinking parameter
x ∈ (0, 1] for all HI tasks; i.e., T

′

i = Ti × x,∀τi ∈ τHI. Those
virtual deadlines will be used for the purposes of determining
(EDF) scheduling priority under the LO-mode.

During run time, suppose that a job of task τi arrives at
time instant t. If τi is a LO-task, then this job is assigned a
virtual deadline same as its actual deadline, t+Ti; whereas if
this is a HI-task, it is assigned a virtual deadline of t0 + T

′

i .
If some job executes for a duration exceeding its HI-criticality
WCET without signaling that it has completed execution,
the system triggers a mode switch. In response, all LO-jobs
are immediately discarded and subsequent execution of HI-
criticality tasks (including the jobs that are currently active)
continue to be scheduled according to EDF. But the actual job
deadlines (release time plus period) are used on and beyond
the mode switch point.

As mentioned earlier in this section, one may choose to
shrink all HI-criticality deadlines by the same factor x. Baruah
et al. [1, 2] proposed the following assignment for this factor:

x =
U LO

HI

1− ULO
. (4)

They also provided a utilization-based sufficient MC-
schedulability test accordingly:

xULO + U HI
HI ≤ 1. (5)

These results serve as a basis of our approach and analysis.

IV. ALGORITHM EDF-VDS

Based on algorithm EDF-VD, we design our proposed
algorithm, called EDF-VDS. In addition to EDF-VD which
was proposed for systems that need to be MC-schedulable,

EDF-VDS further addresses the systems where MCQOS-
schedulability is desirable or required.

In the LO-mode, EDF-VDS is identical to EDF-VD. Note
the fact that there is in fact no difference between MC-
schedulability and MCQOS-schedulability in the LO-mode, so
it is clear that the analysis and MC-schedulability test for EDF-
VD in the LO-mode applies to EDF-VDS as well. Thus, we
focus on the HI-mode in the rest of this section, and assume
that all deadlines before the mode switch have been met by
checking the MC-schedulability test for EDF-VD.
Time interval [t1, t2). Let t1 denote the time instant of the
mode switch. At time t1, EDF-VDS drops the LO-tasks in
TLO \ TQOS and “hold” the LO-tasks in TQOS, or QOS-tasks.
The QOS-tasks are not dropped and allowed to continue to
release new jobs, but they are not to be scheduled by EDF-
VDS until time instant t2 (to be defined later). Instead, EDF-
VDS schedules the HI-tasks by EDF according to their actual
deadlines until time instant t2, which is defined as the first
time instant such that all HI-criticality jobs released before
time instant t2 have completed their execution by time instant
t2. That is, intuitively t2 is the first “HI-task idle” instant after
the mode switch.
Server task τQOS. At time instant t2, EDF-VDS introduces
“server task” τQOS, which periodically releases “server jobs”
starting from time instant t2 and with a period TQOS. Each
“server job” has an exact execution time CQOS = UQOS ∗ TQOS,
which ensures that τQOS has a utilization of UQOS. Recall that
UQOS is defined as the total utilization of the tasks in TQOS.
i.e., UQOS =

∑
τi∈TQOS

ui. Starting from time instant t2, the
“server task” τQOS is scheduled with all the HI-tasks together by
EDF, where τQOS is also assigned implicit deadlines (i.e., TQOS

after each release). Whenever the server task τQOS is scheduled,
EDF-VDS schedules the pending job of any QOS-tasks with
the earliest deadline if there is any, or leave the processor idle
(but TQOS is still viewed as executing, i.e., the “budget” drains)
if no pending job from QOS-tasks exists.
Parameter TQOS. In EDF-VDS, TQOS is actually a tunable
parameter. The system designer can tune and pick arbitrary
positive values for TQOS as a tradeoff between the lateness
bounds that can be guaranteed and runtime overheads. As we
will see later, a smaller TQOS would lead to lower lateness
bounds while might induce more runtime scheduling over-
heads (e.g., more preemptions).
Return to LO-mode. Note that in much prior work on MC-
schedulability, t2 would actually be the time instant for the
scheduler to switch back to the LO-mode. This is because all
the LO-tasks are dropped in the HI-mode when considering
MC-schedulability only. As a result, “HI-task idle” instant
is the truly idle time instant. When considering MCQOS-
schedulability, in addition to the HI-tasks, QOS-tasks also need
to execute in the HI-mode. Therefore, the truly idle time
instant, i.e., the time instant that can safely allow scheduler
EDF-VDS switch back to the LO-mode, would be the first
time instant where all jobs of HI-tasks and QOS-tasks released
before this time instant have completed their execution.

A. Meeting Deadlines of HI-tasks
EDF-VDS is designed based on EDF-VD, and the need to

schedule τQOS together is the only difference that could have
an impact on the schedule of HI-tasks. Here we show that this
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Fig. 1: Minimum supply by τQOS during any time interval after time
t2 and of length `.

difference between EDF-VDS and EDF-VD will not cause any
deadline miss for HI-tasks.

Theorem 1. If a system is MC-schedulable under EDF-VD
and U HI

HI + UQOS ≤ 1, then all deadlines of HI-tasks will be
met in the HI-mode under EDF-VDS.
Proof. As a matter of fact, EDF-VDS has exactly the same
behaviour as EDF-VD in the LO-mode and during time interval
[t1, t2) in the HI-mode. Therefore, the system being MC-
schedulable under EDF-VD implies that all deadlines of HI-
tasks in the time interval [t1, t2) (and those in the LO-mode
as well) will be met. By the definition of time t2, all HI-jobs
that were released before time t2 must have completed at the
time instant t2. In addition, τQOS in EDF-VDS does not release
any job until time t2. Therefore, the schedule starting from
time t2 is equivalent to an ordinary EDF schedule for a set
of ordinary sporadic tasks from time zero, and such sporadic
task set has total utilization U HI

HI +UQOS, which is at most 1 as
the lemma states. Thus, by the classic schedulability results
for preemptive EDF on a uniprocessor [19], starting from t2,
all deadlines of HI-tasks and τQOS must be met, and the lemma
follows.

B. Lateness Bounds for QOS-tasks

In the HI-mode, the QOS-tasks execute their jobs based on
the processor supply that the server task τQOS provides. In this
context, we define the supply by the number of time units in
which τQOS is scheduled under EDF-VDS. Note that the last
part of the proof for Theorem 1 above has in fact also proves
that every job of the server task τQOS must meet its deadline
given that U HI

HI + UQOS ≤ 1, which we assume for the rest
of this section. As a result, starting from time t2, the supply
provided by τQOS follows the periodic resource model [27].

As shown in [27], Figure 1 illustrates the scenario for a
periodic resource to have minimum supply for an arbitrary
time interval of length `. This result also yields the following
linear lower bound on the supply for an arbitrary time interval
of length `. Please note that TQOS − CQOS = (1− UQOS)TQOS.

Property 1. For any time instant t ≥ t2, the supply provided
by τQOS within the time interval [t, t + `) is at least (` − 2(1 −
UQOS)TQOS)UQOS for all `.

The above property applies to any arbitrary time interval
of length `. Nonetheless, for such time intervals that begin
exactly at time t2, more supply can actually be guaranteed. For
a time interval of length ` starting from time t2, the scenario in
Figure 1 cannot happen, because the first period of the server
task τQOS must start right at time t2. In contrast, Figure 2
illustrates the scenario that yields minimum supply for a time

ℓ

𝑇QOS

𝐶QOS

(𝑇QOS−𝐶QOS)

𝑡2

Fig. 2: Minimum supply by τQOS during time interval [t2, t2 + `).

interval of length ` starting from time t2, and as a result, it
has the following linear lower bound.

Property 2. The supply provided by τQOS within the time
interval [t2, t2 + `) is at least (` − (1 − UQOS)TQOS)UQOS for
all `.

The above properties provide a basis to derive the minimum
processor supply the QOS-tasks would receive during a certain
time interval, and then we are able to bound the lateness for
the QOS-tasks. We focus on an arbitrary job J of some QOS-
task and let time instants d and f denote the absolute deadline
and complete time of J , respectively. Also, please note that we
are only interested in such QOS-job J that has not completed
by the mode switch and has a deadline after the mode switch,
i.e., d ≥ t1 and f ≥ t1 (because all deadlines before the mode
switch have been met). We then derive lateness bounds for J
(i.e., bounding f − d) in two cases for whether a QOS-idle
time instant exists in the time interval [t2, f).
QOS-idle time instant. We say a time instant t is QOS-idle if
and only if τQOS is scheduled by EDF-VDS at time t but there
is no pending QOS-job with a deadline at or before d at time
t (so that the processor is left physically idling or executing
some QOS-job with a deadline after d).

Lemma 1. If some QOS-idle time instant exists in the time
interval [t2, f), then

f − d ≤ 2(1− UQOS)TQOS. (6)

Proof. We let s ≥ t2 denote the latest such time instant. Then,
there must be some pending QOS-job with a deadline at or
before d at every time instant in [s, f); otherwise, either s
would have been a later time or J would have finished earlier
than time f . Therefore, within time interval [s, f), some QOS-
job with a deadline at or before d is being executed at every
time instant whenever TQOS is scheduled by EDF-VDS, and
we let W denote the total length of time for TQOS is scheduled
within [s, f). Then,

W ≤
∑

τi∈TQOS

(⌊
d− s
Ti

⌋
Ci

)

≤
∑

τi∈TQOS

((
d− s
Ti

)
Ci

)
= (d− s)

∑
τi∈TQOS

Ci
Ti

= (d− s)UQOS, (7)

because by the definition of s, any QOS-job released before s
and with a deadline at or before d must have completed its
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execution by s, and at or after time s, each task τi can release
at most

⌊
d−s
Ti

⌋
jobs with deadlines at or before d.

On the other hand, by Property 1,

W ≥ ((f − s)− 2(1− UQOS)TQOS)UQOS. (8)

By (7) and (8),

((f − s)− 2(1− UQOS)TQOS)UQOS ≤ (d− s)UQOS,

which implies

f − d ≤ 2(1− UQOS)TQOS.

The lemma follows.

Lemma 2. If no QOS-idle time instant exists in the time
interval [t2, f), then

f−d ≤
2
∑
τi∈THI

CHI
i

1− U HI
HI

+

∑
τi∈TQOS

Ci

UQOS
+(1−UQOS)TQOS. (9)

Proof. By the definition of t2, it is clear that no time instant
within time interval [t1, t2) has τQOS scheduled. Also, the
lemma states that no QOS-idle time instant exists in the time
interval [t2, f). Therefore, within time interval [t1, f), some
QOS-job with a deadline at or before d is being executed at
every time instant whenever TQOS is scheduled by EDF-VDS,
and we let W ′ denote the total length of time for TQOS is
scheduled within [t1, f). For each QOS-task τi, all of its jobs
with deadline before t1 must have completed by time instant
t1 because all deadlines have been met in the LO-mode; at
most one job of τi is released before t1 but has a deadline
at or after t1; and at or after time t1, τi can release at most⌊
d−t1
Ti

⌋
jobs with deadlines at or before d. Thus, we have

W ′ ≤
∑

τi∈TQOS

((
1 +

⌊
d− t1
Ti

⌋)
Ci

)

≤
∑

τi∈TQOS

((
1 +

d− t1
Ti

)
Ci

)
=

∑
τi∈TQOS

Ci + (d− t1)
∑

τi∈TQOS

Ci
Ti

=
∑

τi∈TQOS

Ci + (d− t1)
∑

τi∈TQOS

Ui

=
∑

τi∈TQOS

Ci + (d− t1)UQOS. (10)

On the other hand, since t2 is within time interval [t1, f), by
Property 2, we have

W ′ ≥ ((f − t2)− (1− UQOS)TQOS)UQOS. (11)

By (10) and (11),

((f − t2)− (1−UQOS)TQOS)UQOS ≤
∑

τi∈TQOS

Ci+(d− t1)UQOS,

which, by (3), implies

f − d ≤ t2 − t1 +
∑
τi∈TQOS

Ci

UQOS
+ (1− UQOS)TQOS. (12)

Bounding t2 − t1. Given (12) above, we only need to bound
t2−t1 so that f−d will be bounded, too. For each HI-task τi, it
can have at most one job released before the mode switch (i.e.,
time instant t1) but with a deadline after t1, and can release at
most

⌈
t2−t1
Ti

⌉
jobs (no matter with deadlines at, before, or after

t2) within time interval [t1, t2). Moreover, by the definition of
time instant t2, some HI-job must be executing at every time
instant in [t1, t2). Because only released jobs can be scheduled
to execute, it must hold that

t2 − t1 ≤
∑
τi∈THI

((
1 +

⌈
t2 − t1
Ti

⌉)
CHI
i

)
≤
∑
τi∈THI

((
2 +

t2 − t1
Ti

)
CHI
i

)
= 2

∑
τi∈THI

CHI
i + (t2 − t1)

∑
τi∈THI

CHI
i

Ti

= 2
∑
τi∈THI

CHI
i + (t2 − t1)U HI

HI ,

which implies

t2 − t1 ≤
2
∑
τi∈THI

CHI
i

1− U HI
HI

, (13)

because U HI
HI +UQOS ≤ 1 and (3) imply U HI

HI < 1. By combining
(12) and (13), the lemma follows.

Given that Lemma 1 and Lemma 2 have been proven and the
fact that QOS-job J was chosen arbitrarily, it is straightforward
to show the following theorem, which provides a lateness
bound for any QOS-task.

Theorem 2. If a system is MC-schedulable under EDF-VD
and U HI

HI + UQOS ≤ 1, then the lateness of any QOS-task in the
HI-mode under EDF-VDS will not greater than

(1− UQOS)TQOS +

max

{
(1− UQOS)TQOS,

2
∑
τi∈THI

CHI
i

1− U HI
HI

+

∑
τi∈TQOS

Ci

UQOS

}
.

Proof. Since the “if” conditions in Lemma 1 and Lemma 2 are
complementary, one of these two lemmas must apply to any
arbitrary QOS-job J with a deadline in the HI-mode. That is,
the lateness must be bounded by (6) or (9). Thus, with some
rearrangement, the theorem follows.
MCQOS-schedulability test. By the MC-schedulability test
for EDF-VD presented in Section III and Theorem 2 above,
we can conclude the following sufficient utilization-based
MCQOS-schedulability test for EDF-VDS.

Theorem 3. A system with given THI, TLO, and TQOS ⊆ TLO is
MCQOS-schedulable under EDF-VDS if

U LO
HI

1− ULO
ULO + U HI

HI ≤ 1 and U HI
HI + UQOS ≤ 1.
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V. DISCUSSIONS

In Section IV, we just presented algorithm EDF-VDS and its
MCQOS-schedulability test. In this section, we discuss several
issues or questions that might arise.
Necessity of U HI

HI + UQOS ≤ 1. Compared to the MC-
schedulability conditions for EDF-VD, the only additional
condition for EDF-VDS required to achieve MCQOS-
schedulability is U HI

HI + UQOS ≤ 1. So, one question might be:
is it necessary? The following theorem shows that the answer
is “Yes.”

Theorem 4. Any system such that U HI
HI + UQOS > 1 cannot be

MCQOS-schedulable under any algorithm.
Proof. U HI

HI + UQOS > 1 implies overutilization in the HI-
mode, because no job of any task in THI ∪ TQOS is ever
dropped at all. Therefore, at least one task in THI ∪ TQOS

must have its lateness increase without bound regardless the
scheduling algorithm, and this directly indicates the system is
not MCQOS-schedulable no matter the task with unbounded
lateness is a HI-task or QOS-task.
Implication by TQOS = TLO. Another question that might arise
is: how large the set TQOS ⊆ TLO could be? Can every LO-task
be included in TQOS, i.e., TQOS = TLO, so that every LO-task
is guaranteed bounded lateness? It should not be a problem,
provided that the condition for MCQOS-schedulability in
Theorem 3 hold. However, given that U HI

HI + UQOS ≤ 1 is
necessarily required, TQOS = TLO implies that U HI

HI + ULO ≤ 1.
Thus, all deadlines must be met when apply an ordinary EDF
scheduler to the entire task set T from the very beginning,
and none of MC scheduling, virtual deadlines, mode switch,
or server task is needed. Therefore, the cases where TQOS is
a proper subset of TLO, i.e., TQOS ⊂ TLO, would be a more
applicable domain for this research.
Extension to cope with entire EDF-VD family. Note that,
EDF-VDS has exactly the same behavior as EDF-VD until
time instant t2 and the schedule at or after t2 is irrelevant
to any setting of the virtual deadlines. Thus, the approach
we proposed here to construct EDF-VDS very likely has
the potential to be extended to any virtual-deadline-based
conventional MC scheduler (e.g., [9]). In this paper, we chose
the original EDF-VD scheduler to illustrate our approach for
simplicity and clarity. We defer the potential extensions to
more complicated virtual-deadline-based MC schedulers to
future work.

VI. CONCLUSION

In this paper, we focused on the graceful degradation for
MC scheduling by providing bounded lateness for certain low-
critical tasks, for which we defined MCQOS-schedulability.
We proposed a new scheduler EDF-VDS for systems to
achieve MCQOS-schedulable. Furthermore, we derived a
utilization-based MCQOS-schedulability test and closed form
lateness bounds for EDF-VDS. Finally, we discussed the
necessity of a condition in our MCQOS-schedulability test
and the potential of this approach to be extended.
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